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Abstract
At present, the majority of techniques for assessing image quality are limited to extracting features from an image in a single 
space. This paper proposes a new dual-space multi-feature fusion based method for full-reference image quality assessment. 
This method involves simultaneously extracting features from both the YIQ and L*a*b* color spaces. First, we extract the 
luminance, slope, chroma, and gradient features in the spatial domain of the image to describe the salient differences in the 
image. Second, based on contrast sensitivity characteristics, we extract spatial frequency features in the spatial domain of 
the image to represent frequency differences in the image. Next, merge the features extracted in the dual space to construct 
a quality perception feature vector. Finally, the feature vector is input into the Random Forest model for regression predic-
tion to obtain the predicted score of the image. Many experiments have been carried out on the four public datasets, and 
contrasted with other methods. The experimental confirm that the proposed method predicts image quality more accurately. 
The MATLAB source code and dataset of this paper will be published on GitHub, and the corresponding author can be 
contacted if necessary.
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1  Introduction

Recently, with the rapid development of internet technology, 
many kinds of media formats have filled people’s daily lives, 
and the sharing and transmission of images and videos are 
more frequent [1]. However, during the process of image 
capture and transmission, factors such as transmission pro-
tocols and signal interference can lead to image distortion, 
resulting in a decrease in image quality that affects user per-
ception. To improve the consistency of visual perception of 
image quality and meet the needs of observers, it is of great 
value to study the degradation of images generated during 
different processing stages [2]. In terms of image processing, 
image quality assessment (IQA) is important. Subjective and 
objective methods are the two categories of IQA methods, 

which vary depending on the assessment criteria and appli-
cation circumstances.

The subjective method assesses the quality of image 
directly by observers. Subjective assessment is the most 
reliable assessment method. The most commonly used sub-
jective evaluation methods include double-stimulus impair-
ment scale (DSIS), double-stimulus continuous quality 
scale (DSCQS), and single-stimulus continuous quality 
scale (SSCQS). However, it is frequently costly and time-
consuming [3]. Thus, in order to quantify visual quality effi-
ciently, objective methods that have a strong correlation with 
subjective scores must be developed [4].

The objective method uses the mathematical models to 
assess the image quality. Objective methods include full-
reference (FR), reduced-reference (RR), and no-reference 
(NR) image quality assessment.

The FR-IQA methods fully utilize the original images 
to assess the quality of distorted images [5]. Wen Sun et al. 
proposed an FR-IQA method based on superpixel similarity 
index, it uses three metrics to assess the quality of an image: 
pixel gradient similarity, superpixel luminance similarity, 
and superpixel chrominance similarity [6]. Although it 
improves calculation accuracy, its computational complexity 

Communicated by Q. Shen.

 *	 Zhiming Shi 
	 szmi_2007@126.com

1	 School of Software and Internet of Things Engineering, 
Jiangxi University of Finance and Economics, Nanchang, 
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00530-024-01353-5&domain=pdf


	 X. Wu, Z. Shi 151  Page 2 of 15

is high. Junfeng Yang et al. proposed a diffusion speed struc-
ture similarity index for FR-IQA. This method calculates 
image similarity by considering both intra-block structures 
and inter-block textures, thereby deriving the quality score 
of the image [7]. Kyohoon Sim et al. introduced a method for 
assessing image quality, named the deep and local similarity 
method. This technique uses 2D full-reference analysis to 
evaluate the similarity between original and deformed deep 
feature maps obtained from convolutional neural networks. 
The mean and deviation of these similarity measures are 
reported as key findings [8]. This method uses the mean 
and standard deviation to reflect the influence of visual sali-
ency and the distribution of image distortions on quality, 
respectively [9]. It has a good pooling method, but its com-
putational complexity is high. Zihan Zhou et al. proposed 
an FR-IQA method which constructed a kernel dictionary 
and introduced nonlinear sparse coding to IQA. While this 
method is proficient in analyzing various types of distor-
tions in a higher-dimensional feature space, its generaliza-
tion capability is limited [10]. Keyan Ding et al. proposed 
a method that combines the correlations of spatial averages 
with correlations of the feature maps [11]. This technique 
explains human perception scores on texture datasets as well 
as traditional image quality datasets. Dong Wu et al. pro-
posed an FR-IQA method based on multi-scale and multi-
directional visibility differences. This method considers the 
visibility differences and contrast sensitivity functions in 
the discrete and non-separable shear transform domain, as 
well as visual masking effects. It evaluates all sub-bands 
of the shear wavelet transform and combines the percep-
tual errors of these sub-bands to obtain an objective qual-
ity metric for distorted images [12]. This method maintains 
moderate computational complexity, but its generalization 
capability needs to be improved. Ke Gu et al. introduced a 
novel method for assessing the quality of perceptual images 
by leveraging the capabilities of the human visual system 
(HVS). This method efficiently applies convolution opera-
tions across several scales, taking into account factors such 
as gradient magnitude, similarity of color information, and 
perception-based pooling [13]. The advantage of FR-IQA 
lies in its higher accuracy, as it is based on the compara-
tive analysis between the original image and the deformed 
image being evaluated, enabling an accurate assessment of 
the degree of image distortion.

The RR-IQA method refers to using partial original image 
information as a reference for quality assessment. Mengzhu 
Yu et al. introduced a novel perceptual hashing method that 
incorporates the use of complementary color wavelet trans-
form (CCWT) and compressed sensing (CS) for the pur-
pose of RR-IQA. The CCWT is used to decompose the input 
color image into various sub-bands, while the block-based 
CS technique is utilized to extract relevant features from 
these CCWT sub-bands [14]. Wenhan Zhu et al. proposed 

a free energy based RR-IQA metric inspired by the prin-
ciple of free energy. This method involves decomposing 
the image using wavelet transformation, extracting the free 
energy features of sub-band images using coefficient matri-
ces, and finally using support vector regression to assess 
image quality [15].

The NR-IQA refers to the method of evaluating image 
quality solely by analyzing the deformed image's features, 
without relying on information from the original image 
[16]. It has strong current development potential and will 
be obtained in the future [17]. Xiaohan Yang et al. pro-
posed a new transfer learning method for NR-IQA, which 
can effectively alleviate the overfitting issue [18]. Lixiong 
Liu et al. introduced a novel NR-IQA metric that considers 
the influence of pre-attention and spatial dependency on 
the perceived quality of distorted images. The proposed 
model, known as the pre-attention and spatial-dependency 
driven quality assessment predictor, incorporates the pre-
attention theory to simulate early phase visual perception 
by enhancing luminance-channel data [19]. Yang Wen 
et al. proposed an unsupervised image deblurring method 
for fuzzy images, which is based on multi-adversarial 
optimization cycles to uniformly generate adversarial 
networks. This method enhances the structure and detail 
retention capability of multi-adversarial networks by intro-
ducing a sensing mechanism [20]. Guanghui Yue et al. 
proposed a new NF-IQA method, named TANet. This 
method embeds a texture enhancement module in the shal-
low layers to evaluate facial images by considering texture 
artifacts. Experimental results on the constructed SZU-
RFD benchmark dataset show that the method achieves 
high accuracy [21]. To address the current lack of fair 
comparisons in assessing the performance of LFI stitch-
ing methods, Yueli Cui et al. built the first stitched WLFI 
dataset and proposed a blind stitching WLFI quality met-
ric to assess the visual quality. Compared to other qual-
ity metrics, the proposed metric demonstrates excellent 
performance [22]. Zhewei Fang et al. proposed a robust 
blind metric. This method captures local statistical features 
to capture local texture variations due to significant local 
texture degradation engendered by the DIBR procedure. 
Additionally, global features of the image are extracted 
to characterize overall blurriness. This metric outper-
forms the newly developed 3D-synthesized image metrics 
[23]. The NR-IQA typically involves the use of machine 
learning or deep learning techniques to classify or predict 
based on the features of distorted images. Nowadays, due 
to the availability of computational power and large sets 
of labeled training images, a lot of researches are going 
in the field of image quality assessment which utilizes 
Deep Learning methods [24]. Learning-based methods 
do achieve better performance than hand-crafted-based 
methods in certain fields [25]. In contrast, partial reference 
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assessment methods only require partial reference image 
information to assess quality by analyzing partial image 
features. The accuracy of NR-IQA is typically lower than 
that of FR-IQA because it does not rely on original image 
information and may be influenced by the type and degree 
of distortion.

The results of FR-IQA are compared based on the origi-
nal image, thus allowing for comparability across different 
times, locations and devices. The FR-IQA can more accu-
rately assess the degree of image distortion. Therefore, this 
paper introduces a dual-space multi-feature fusion-based 
method for FR-IQA.

The representation of images in different spaces has 
distinct features and application scenarios. Simultaneously 
extracting image features from these two color spaces can 
comprehensively utilize their advantages, construct more 
feature representation, and improve the precision and 
robustness of image quality assessment. Firstly, extract-
ing the luminance, slope, chroma, gradient, and spatial 
frequency features of the image in both the YIQ space and 
L*a*b* space. Next, the extracted features are combined to 
form a feature vector. Finally, the Random Forest regres-
sion model is used to predict the image quality.

In this paper, a method based on dual-space multi-
feature fusion is proposed to full-reference image quality 
assessment. The method calculates the similarity of two 
images by extracting the chroma, luminance, slope, gra-
dient, and spatial frequency features of the images. On 
one hand, compared to other color spaces of an image, 
the YIQ color space and L*a*b* color space of an image 
separate chroma information from luminance informa-
tion. This allows for independent extraction of chroma and 
luminance features during image processing, increasing 
the flexibility in image manipulation. On the other hand, 
both the YIQ and L*a*b* color spaces exhibit high chroma 
uniformity, meaning that chroma changes within the same 
distance are relatively consistent. This characteristic 
enhances stability and reliability when conducting chroma 
analysis and feature extraction. Currently, most methods 
extract features in a single space, where the information 
displayed in a single space is limited, and images show dif-
ferent information feature in different spaces. Inspired by 
this, this paper further improves the accuracy of evaluation 
by extracting the relevant features of images in the dual-
space of YIQ and L*a*b*. After that, the extracted fea-
tures are fused into a feature vector, which is input into the 
Random Forest for regression prediction. The dual-space 
feature extraction method and the slope feature extraction 
method proposed in this paper are a novel method. The 
main contributions of this paper are as follows:

We propose a new method for dual-space feature extrac-
tion, which goes beyond the method of feature extraction in 
a single space. In different spaces, images contain different 

information. As a result, our method is able to take full 
advantage of more information from the image.

We introduce a new feature of image, i.e., slope. In 
remotely sensed terrain images, the slope represents the 
undulating variation of the image. In non-topographic maps, 
the texture information of the image is reflected by extract-
ing the slope features of the image.

This paper is structured in the following manner: Sect. 1 
introduces the methods and relevant concepts of IQA, pro-
posing an FR-IQA method. Section 2 provides an overview 
of the conceptual structure of the method model. Section 3 
focuses on the necessary preprocessing of images before 
conducting image feature extraction, as well as the process 
and relevant computations of image feature extraction. Sec-
tion 4 summarizes the extracted features, performs feature 
fusion, and introduces the Random Forest model as the pri-
mary tool for data processing. Additionally this paper intro-
duces the validation of the proposed method in four public 
image datasets, comparing it with several mainstream and 
currently popular methods. It also includes feature analysis, 
model performance analysis, and sample size analysis. Sec-
tion 5 provides a summary of this paper, elaborating on the 
innovative aspects and future work.

2 � Method model

Given that features extracted in a single space often cannot 
fully describe all information of image and image have many 
features in different space, this paper proposes a dual-space 
multi-feature fusion based method to FR-IQA to further 
describe the internal in formation of the images. The model 
aims to extract features from two different spaces of the image 
simultaneously to construct a more comprehensive representa-
tion of image features. Considering human visual perception, 
we extract luminance and chroma features to assess color dif-
ferences, and further extracts slope features based on the lumi-
nance features. In addition, distorted images often disrupt the 
image structure, so gradient features are extracted to describe 
structural differences in the image [26]. Extracting spatial fre-
quency features reflects the visual differences in the image. 
The Fig. 1 illustrates the overall framework of the method pro-
posed in this paper. Where SY and SL respectively represent 
the luminance similarity calculated from the YIQ space and 
the L*a*b* space. Similarly, SP1 and SP2 represent the slope 
similarity, SC1 and SC2 represent the chroma similarity, SG1 
and SG2 represent the gradient similarity. Additionally, SH1, 
SM1, SL1 as well as SH2, SM2, SL2 represent the frequency 
similarity calculated from the YIQ space and the L*a*b* space. 
After extracting these 14 features, they are combined into a 
feature vector, which is then used to generate a dataset along 
with the subjective scores. Next, the dataset is partitioned 
into testing and training subsets. In this paper, decision trees 
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are used as regressors to construct a Random Forest model. 
The training set is inputted into the Random Forest for train-
ing. Finally, the proposed model is used to predicting image 
quality.

3 � Image feature extraction

3.1 � Image preprocessing

In image processing, preprocessing the input image is a com-
mon method. Xiao Lin et al. proposed the division of images 
into blocks and devised an encoding and decoding communi-
cation module to capture communication information among 
all image blocks [27]. Images have different features in differ-
ent color spaces. As illustrated in the Fig. 1, to establish a more 
comprehensive representation of image features, the model 
described in this paper all perform feature extraction in both 
the YIQ and L*a*b* color spaces. Most assessment images are 
in the RGB color space. Therefore, before conducting feature 
extraction, it is necessary to convert the two images into the 
YIQ and L*a*b* color spaces, respectively. Due to the inability 
to directly convert RGB images to the L*a*b* color space, con-
version via the XYZ color space is necessary. The conversion 
from the RGB space to YIQ space and L*a*b* space is detailed 
in formulas (1), (2), and (3):

(1)
⎡⎢⎢⎣

Y

I

Q

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.523 0.312

⎤⎥⎥⎦

⎡⎢⎢⎣

R

G

B

⎤⎥⎥⎦

where Y and L* represent the luminance channels of the 
image, while I, Q, a* and b* represent the image's chromi-
nance channels.

(2)
⎡⎢⎢⎣

X

Y

Z

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0.412 0.357 0.180

0.212 0.715 0.072

0.019 0.119 0.950

⎤⎥⎥⎦

⎡⎢⎢⎣

R

G

B

⎤⎥⎥⎦

(3)
⎡⎢⎢⎣

L∗

a∗

b∗

⎤⎥⎥⎦
=

⎡⎢⎢⎣

3.240 −1.537 −0.498

−0.969 1.875 0.041

0.055 −0.204 1.507

⎤⎥⎥⎦

⎡⎢⎢⎣

X

Y

Z

⎤⎥⎥⎦

Fig. 1   Overall framework of the 
method in this paper

a RGB image b YIQ space image

c L*a*b* space image

Fig. 2   Images in different color spaces
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Different color spaces have different features. According 
to the Fig. 2, (a) is an RGB image, Fig. 2(b) represents the 
image in the YIQ space, and Fig. 2(c) represents the image 
in the L*a*b* space.

3.2 � Luminance feature

The luminance feature is one of the significant features of 
an image, which reflects the overall luminance and contrast, 
typically represented by the magnitude of pixel values. 
When an image experiences luminance distortion, this une-
ven distribution of luminance causes certain areas to appear 
darker or brighter, thereby affecting the overall visual impact 
of the image.

This paper extracts the luminance feature from the 
image's luminance channel to assess the degree of luminance 
distortion in the image. Firstly, in the image's YIQ space and 
L*a*b* space, the Y and L* channels represent the image's 
luminance channels. Subsequently, the Y channel and L* 
channel are used to extract the luminance features from 
both the deformed image and the reference image. Next, 
the similarity calculation formula is applied to calculate the 
luminance similarity SY and SL from the images in both the 
YIQ space and L*a*b* space, respectively. The luminance 
similarity calculation formulas are as follows:

where the luminance information in the Y channel of the 
original image is represented by YR, and that of the distorted 
image is represented by YD; In the L channel, LR and LD 
stand for the luminance information of both images, respec-
tively. To avoid calculation errors due to a zero denominator, 
C1 is introduced as a constant. SY and SL represent the lumi-
nance similarity between the original and deformed images 
in YIQ space and L*a*b* space, respectively.

Through the extraction of the image's luminance fea-
tures and the subsequent calculation of the similarity, we 
can obtain the degree of resemblance between the two 
images. According to the Fig. 3, Fig. 3(a) is the original 
image, while Fig. 3(b) and (c) represent different levels 
of distortion under the same type of distortion (Level 1 
to 5, level 1 indicates the least distortion degree, level 
5 indicates the greatest distortion degree). The Fig. 3(b) 
represents distortion level 1, with a luminance similarity 
of 0.3331 in the YIQ space and 0.2623 in the L*a*b* space 
compared to the reference image. The Fig. 3(c) represents 
distortion level 5, with a luminance similarity of 0.3268 

(4)SY =
1

N

∑
x

2YR(x) ⋅ YD(x) + C1

Y2

R
(x) + Y2

D
(x) + C1

(5)SL =
1

N

∑
x

2LR(x)⋅LD(x) + C1

L2
R
(x) + L2

D
(x) + C1

in the YIQ space and 0.1852 in the L*a*b* space compared 
to the reference image. Therefore, the larger values of SY 
and SL, the smaller difference in luminance between the 
two images, indicating a higher degree of similarity in 
luminance and better image quality.

3.3 � Slope feature

The slope feature is a method to describe local variations 
in the image, measuring the degree of local changes at 
each pixel in the image. If the image undergoes distortion, 
it will result in greater local variations in the image. The 
slope maps corresponding to the original image and the 
deformed image are shown in the Fig. 4. Therefore, this 
paper introduces the concept of slope into non-topographic 
images, enabling the extraction of slope features. This will 
enhance the assessment of image quality's accuracy.

First, after extracting the luminance features from the 
image, we obtain the luminance feature maps, then extract 
slope features from luminance feature maps. For a pixel 
of an input image with two dimensions: horizontal and 
vertical, let the function be f(x, y). The slope at point (xi, 
yi) is calculated by computing the derivatives f'(xi) in the 
x-direction and f'(yi) in the y-direction. Then, we calculate 
the angle from the positive x-axis to the direction of the 
slope using the following formula:

a Original image b  Luminance 
 deformed image(Level 1)

c Luminance deformed image(Level 5)

Fig. 3   Comparison of luminance deformed images at different levels
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where arctan() represents the arctangent function. Finally, 
the slope features extracted from the original image and the 
deformed image are used to compute the similarity of slopes, 
with the following formula:

where SR and SD respectively represent the slope features of 
the original image and deformed image. SP1 and SP2 repre-
sent the slope similarity of the reference image and distorted 
image in the YIQ space and L*a*b* space, respectively.

Table 1 lists the values of SPi(i = 1,2) for different lev-
els of distortion in an input image in both color spaces. As 
the distortion level increases, the values of SPi gradually 
decrease. Therefore, a higher value of SPi denotes a lower 
degree of image distortion and better image quality.

(6)Slope = arctan (
f �(yi)

f �(xi)
)

(7)SPi =
1

N

∑
x

2SR⋅SD + C1

S2
R
+ S2

D
+ C1

3.4 � Chroma feature

The color of an image is a global feature that describes the 
surface properties of objects or regions within the image, 
playing a crucial role in human visual perception. There-
fore, this paper converts RGB images to YIQ and L*a*b* 
color spaces for feature extraction, which are more percep-
tually uniform by the human eye.

In the YIQ color space, the image's color information is 
described through the I and Q channels, and the formula 
for computing the color similarity between the reference 
image and the distorted image is as follows:

where IR, ID and QR, QD represent the original image's and 
deformed image's color information in the I and Q channel, 
respectively. The similarity between the original image and 
deformed image in the I and Q channels is denoted by SI 
and SQ, respectively. N denotes the number of pixels. C1 is 
a constant, and SC1 represents the image's color fidelity in 
the YIQ space.

In the L*a*b* color space, the image's color information 
is described via the a* and b* channels, and the formula for 
computing the color similarity between the original image 
and deformed image is as follows:

where aR, aD and bR, bD refer to the color information of the 
original image and deformed image in the a* and b* channel, 
respectively. The similarity between the original image and 
deformed image in the a* and b* channels is denoted by Sa 
and Sb. N denotes the number of pixels. C1 is a constant, and 

(8)SI =
1

N

∑
x

2IR(x)⋅ID(x) + C1

I2
R
(x) + I2

D
(x) + C1

(9)SQ =
1

N

∑
x

2QR(x)⋅QD(x) + C1

Q2

R
(x) + Q2

D
(x) + C1

(10)

SC1 =
1

N

∑
x

(
2IR(x)⋅ID(x) + C1

I2
R
(x) + I2

D
(x) + C1

⋅

2QR(x)⋅QD(x) + C1

Q2

R
(x) + Q2

D
(x) + C1

)

(11)Sa =
1

N

∑
x

2aR(x)⋅aD(x) + C1

a2
R
(x) + a(x) + C1

(12)Sb =
1

N

∑
x

2bR(x)⋅bD(x) + C1

b2
R
(x) + b2

D
(x) + C1

(13)

SC2 =
1

N

∑
x

(
2aR(x)⋅aD(x) + C1

a2
R
(x) + a2

D
(x) + C1

⋅

2bR(x)⋅bD(x) + C1

b2
R
(x) + b2

D
(x) + C1

)

a Original image b Deformed image

c The slope map of the       (d) The slope map of the
original image     deformed image

Fig. 4   Slope maps corresponding to the original image and its 
deformed images

Table 1   Comparison of slope similarity for different levels of distor-
tion

Metric 1 2 3 4 5

SP1 0.3333 0.3333 0.3331 0.3330 0.3329
SP2 0.3308 0.3280 0.3030 0.2910 0.2854
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SC2 represents the color fidelity of the image in the L*a*b* 
color space.

Table 2 lists the values of SCi calculated for an input 
image at distortion levels 1 to 5 in two color spaces. As 
the distortion level increases, the value of SCi decrease. 
Therefore, larger values of SC1 and SC2 denote smaller 
color differences between the original image and deformed 
image, resulting in a lesser degree of color distortion in 
the image.

3.5 � Gradient features

The edges of images contain rich information, making the 
extraction of edge features crucial. In edge detection, a 
commonly used method is gradient-based edge detection. 
Commonly used gradient-based edge detection operators 
include the Sobel operator, Prewitt operator, and Roberts 
operator. Compared to the Sobel and Roberts operators, 
the Prewitt operator is better at suppressing noise, mak-
ing it less susceptible to interference from noise when 
detecting edges. It yields relatively good edge localiza-
tion results. Therefore, in this paper, the Prewitt operator 
is used to extract the gradient features to represent the 
edge information of the image. The Fig. 5 represents gradi-
ent maps extracted from different color spaces, with some 
detailed differences annotated.

Firstly, to acquire the image's horizontal and vertical 
gradients, the Prewitt operator is applied to the image 
through convolution in both the horizontal and vertical 
directions, resulting in the horizontal gradient and verti-
cal gradient of the image. The gradient components of the 
horizontal and vertical directions are as follows:

where f(x) represents the test image, the gradient component 
is denotes in the horizontal direction by Gh(x) and in the 

(14)Gh(x) =

⎡⎢⎢⎣

−1 −1 −1

0 0 0

1 1 1

⎤⎥⎥⎦
∗ f (x)

(15)Gv(x) =

⎡⎢⎢⎣

−1 0 1

−1 0 1

−1 0 1

⎤⎥⎥⎦
∗ f (x)

vertical direction by Gv(x). Thus, the formula for computing 
the image gradient G(x) is as follows:

Then, the gradient features of the original image and 
deformed image are used to calculate the gradient similar-
ity based on the similarity calculation formula, which is 
expressed as follows:

where GR(x) represents the gradient feature of the reference 
image, GD(x) represents the gradient feature of the distorted 
image. C1 is a constant. The gradient similarity between two 
images is computed by SGi(x) (i = 1,2), where the value of i 
denotes different spaces.

Finally, the gradient similarities computed in the YIQ 
space and L*a*b* space are denoted as SG1 and SG2, 
respectively. Table 3 lists the values of SGi calculated in 
the two spaces for input images with different distortion 
levels. As the distortion level increases, the values of SGi 

(16)G(x) =

√
G2

h
+ G2

v

(17)SGi =
1

N

∑
x

2GR(x)⋅GD(x) + C1

G2

R
(x) + G2

D
(x) + C1

Table 2   Comparison of chromatic similarity for different distortion 
levels

Metric 1 2 3 4 5

SC1 0.3332 0.3329 0.3327 0.3323 0.3318
SC2 0.3040 0.2827 0.2783 0.2557 0.2235

(a)Reference image b Gradient image in YIQ 
space

c Gradient image in L*a*b* space

Fig. 5   Gradient images extracted from different color spaces

Table 3   Comparison of gradient similarity corresponding to different 
levels of distortion

Metrics 1 2 3 4 5

SG1 0.9913 0.9818 0.9485 0.9407 0.9405
SG2 0.9914 0.9838 0.9523 0.9421 0.9416
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gradually decrease. Therefore, a larger SGi value indicates 
lower image distortion and better image quality.

3.6 � Spatial frequency feature

The spatial frequency feature of an image refers to the 
frequency of changes in pixel grayscale values within the 
image. In an image, the changes in grayscale values can be 
seen as a variation in spatial information, and spatial fre-
quency describes the frequency of such changes. The Con-
trast Sensitivity Function (CSF) measures the sensitivity of 
the Human Visual System (HVS) to different spatial fre-
quencies. Therefore, the CSF can be simulated by extracting 
an image's spatial frequency feature. In this paper, the CSF 
of the HVS is simulated using the Y channel of the image in 
both the YIQ space and the L*a*b* space. Firstly, the spatial 
frequency of the image is partitioned into high-frequency, 
mid-frequency and low-frequency sub-bands. Then, the 
energy values of these three sub-bands are calculated within 
4 × 4 discrete cosine transform (DCT) blocks of the image.

The formula for calculating the energy in the image's 
high-frequency region is as follows:

where RH represents the high-frequency region, the normal-
ized DCT coefficient of the image at the frequency domain 
(u,v) is represented by P(u,v), and EH represents the energy 
value of the high-frequency region.

Similarly, the formulas for calculating the energy in the 
mid-frequency and low-frequency regions of the image are 
as follows:

where RM and RL respectively represent the mid-frequency 
and low-frequency regions.

Next, the energy similarity of the three frequencies is 
calculated based on the similarity formula, which are as 
follows:

(18)EH =
∑

(u,v)∈RH

P(u, v)

(19)EM =
∑

(u,v)∈RM

P(u, v)

(20)EL =
∑

(u,v)∈RL

P(u, v)

(21)SHi =
1

N

∑
(u,v)∈RH

2ERH⋅EDH + C2

E2

RH
+ E2

DH
+ C2

(22)SMi =
1

N

∑
(u,v)∈RM

2ERM⋅EDM + C3

E2

RM
+ E2

DM
+ C3

where ERH and EDH, ERM and EDM, ERL and EDL respectively 
represent the energy with frequencies of high, mid, and low 
of the reference and distorted images. C2, C3 and C4 are a 
constant. The frequency similarity of the image in the high, 
mid, and low domains of the two spaces is represented by 
the variables SHi, SMi and SLi(i = 1,2).

Finally, the spatial frequency similarities calculated 
in the YIQ space and L*a*b* space are denoted as SH1, 
SM1, SL1 and SH2, SM2, SL2 respectively. According to the 
Fig. 6, (a) represents the original image, while Fig. 6(b) 
and (c) depict different levels of distortion for the same 
distortion type (graded from level 1 to 5, with 1 indi-
cating minimal distortion and 5 representing maximum 
distortion). Figure 6(b) is a level 1 deformed image with 
SH1, SM1 and SL1 values of 0.0026, 0.0026 and 0.0026 
respectively in the YIQ space; SH2, SM2 and SL2 values 
of 0.0012, 0.0024 and 0.0022 respectively in the L*a*b* 
space. On the other hand, Fig. 6(c) is a level 5 deformed 
image with SH1, SM1 and SL1 values of 0.0026, 0.0026 
and 0.0024 respectively in the YIQ space; SH2, SM2, and 
SL2 values of 0.0012, 0.0023 and 0.0019 respectively in 
the L*a*b* space. Therefore, the values of SHi, SMi and SLi 
can reflect the degree of image distortion.

(23)SLi =
1

N

∑
(u,v)∈RL

2ERL⋅EDL + C4

E2

RL
+ E2

DL
+ C4

(a)Original image (b Deformed image(Level 1)

(c) Deformed image(Level 5)

Fig. 6   The original image and deformed images of different levels
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4 � Model and experimental analysis

4.1 � Feature fusion

Through the aforementioned process, we can extract 2 
luminance features, 2 slope features, 2 chroma features, 
2 gradient features, and 6 spatial frequency features from 
the image in both spaces, yielding a total of 14 features. 
Subsequently, these 14 features are fused to build a new 
feature vector F.

F = [SY, SL, SP1, SP2, SC1, SC2, SG1, SG2, SH1, SM1, 
SL1, SH2, SM2, SL2]

4.2 � Random forest regression prediction model

The Random Forest (RF) is an ensemble learning method 
used for both classification and regression tasks. It consists 
of multiple decision trees, each functioning as a classifier 
or regressor. In regression tasks, Random Forest predicts 
results by averaging values. Compared to a single decision 
tree, Random Forest demonstrates higher accuracy and 
robustness, making it capable of handle high-dimensional 
data, large datasets, and complex feature spaces. Therefore, 
this paper uses the Random Froest regression model to pre-
dict image quality. The parameters chosen for the Random 
Forest model in this paper are 500 decision trees and a mini-
mum leaf node size of 2, i.e., (ntree, mtry) = (500, 2).

Firstly, during the training and testing stages of the 
model, we need to merge the feature vector F and the sub-
jective scores of corresponding images to generate a new 
dataset. Subsequently, the dataset is inputted into the model 
for training model and prediction image quality.

4.3 � Feature analysis

During the feature fusion process, each feature has a differ-
ent impact on the predictive performance of the model. One 
of the methods to calculate feature importance in Random 
Forests is by manipulating out-of-bag (OOB) data. The for-
mula to compute feature importance is as follows:

where errOOB1 represents the out-of-bag error calculated 
for each decision tree, errOOB2 represents the recalculated 
out-of-bag error after introducing noise to each feature, and 
N is the number of decision trees.

Therefore, to evaluate the contribution of each feature 
to the model, this paper plots the importance of the 14 
extracted features in the four datasets. As shown in Fig. 7, 
the same feature demonstrates different importance in 

(24)I =
∑ (errOOB2 − errOOB1)

N

different datasets, with a higher value indicating greater 
importance of the feature.

The analysis of the four figures reveals that in the LIVE 
dataset, SL, SL2, and SG2 emerge as the top three signifi-
cant features. Similarly, in the CSIQ dataset, SG1, SH2, 
and SL are denoted as the most important features. In the 
TID2008 dataset, SL1, SL2, and SP2 hold prominence as the 

a Feature importance on the LIVE dataset

b Feature importance on the CSIQ dataset

c Feature importance on the TID2008 dataset

d Feature importance on the TID2013 dataset

Fig. 7   Feature importance on different datasets



	 X. Wu, Z. Shi 151  Page 10 of 15

first three crucial features. Lastly, in the TID2013 dataset, 
SL2 takes precedence followed by SL and SP2. Hence, it 
is evident that a newly introduced contrast feature, namely 
slope feature SP, makes a notable contribution to the accu-
racy of IQA in this paper.

4.4 � Image datasets

We conducted experimental tests on four publicly avail-
able image datasets, which are LIVE, CSIQ, TID2008, and 
TID2013. Each image dataset contains multiple types of 
distortion and corresponding original images.

LIVE: The LIVE dataset comprises of 779 distorted 
images, obtained by subjecting the reference images to five 
distinct computer distortion operations at five different lev-
els. These operations include structural distortions (Gauss-
ian blur), image-related distortions (JPEG compression, 
JPEG2000 compression, and JPEG2000 fast scale fading 
distortion), random noise (white noise), along with 29 high-
resolution 24-bit/pixel RGB color reference images. Each 
type of distortion is present at five different levels.

CSIQ: The CSIQ dataset includes 30 pristine images and 
866 composite distorted images. It cover six types of distor-
tions: Gaussian blur, additive color Gaussian noise, addi-
tive white Gaussian noise, global contrast attenuation, JPEG 
compression, and JPEG2000 compression. Each distortion 
type generates 866 degraded versions of the original image 
across 4 to 5 different levels of degradation.

TID2008: The TID2008 contains 25 reference images and 
1700 distorted images. The types of distortion in the data 
set are: additive Gaussian noise, additive noise with a color 
component stronger than the illumination component, spa-
tial position correlation noise, mask noise, high frequency 
noise, pulse noise, quantization noise, Gaussian blur, image 
noise, JPEG compression, JPEG2000 compression, JPEG 
transmission errors, JPEG2000 transmission errors, non-
eccentric noise, local block distortion of different intensifi-
cation, intensity mean shift and contrast change. Each type 
of distortion is present at four different levels.

TID2013: The TID2013 dataset contains 25 reference 
images and 3000 distorted images. Compared to TID2008, 
TID2013 introduces seven additional types of distortions: 
changing color saturation, multiple Gaussian noise, comfort 
noise, lossy compression, color image quantization, color 
difference, and sparse sampling. Each type of distortion is 
present at five different levels.

4.5 � Experimental analysis

The proposed method in this paper has been assessed using 
public datasets: LIVE, CSIQ, TID2008, and TID2013. The 
evaluation involved conducting 1000 experiments to assess 
the performance of the method. This assessment is based on 

calculating the average values of four evaluation metrics: 
Root Mean Squared Error (RMSE), Spearman rank-order 
correlation coefficient (SROCC), Pearson linear correlation 
coefficient (PLCC), and Kendall rank-order correlation coef-
ficient (KROCC).

Before conducting the experiments, this paper sets the 
parameters C1, C2, C3 and C4 in the above formulas as 1, 
1.7, 2000 and 0.6, respectively. In calculating the similar-
ity formulas (4), (5), (7) to (13) and (17), C1 is set to a 
value of 1. In calculating the mid-frequency similarity of 
images, C3 is set to 2000 because mid-frequency represents 
details and structures with moderate changes in the image, 
aiming to better match the human eye's sensitivity to mid-
frequency components. On the other hand, through multi-
ple experiments and comparisons with other values settings, 
the constant values set in the paper have achieved optimal 
results. This paper adopts five-fold cross-validation to assess 
the generalization ability of the Random Forest regression 
model, determine the optimal combination of hyperparam-
eters, and avoid overfitting issues. The image dataset is 
divided into 80% for training the model and 20% for evalu-
ating image quality prediction. Furthermore, to confirm the 
benefits of the proposed method, a comparison is made with 
four metrics of several other method. As shown in Tables 4, 
5, 6 and 7, the comparison includes traditional image quality 
assessment methods such as SPSIM [6], DSSIM [7], MaD-
DLS [8], KSCM [10], DISTS [11], MMVD [12], PSIM [13], 
PSNR [28], VIF [29], SSIM [30], FSIM [31], GSM [32] and 
VSI [33]. It also includes deep learning-based image qual-
ity assessment methods such as LLF-ELM [34], with the 
optimal results highlighted in bold.

From Table 4 to Table 7, according to the comparison 
results, the method proposed in this paper outperforms the 

Table 4   Comparison of RMSE metrics for different methods

Methods LIVE CSIQ TID2008 TID2013

SPSIM 7.6288 0.0934 0.6046 0.5165
DSSIM 8.1397 0.0829 0.6261 0.5502
MaD-DLS 6.6111 0.0690 – 0.5225
KSCM 8.3316 0.0794 0.6473 0.5859
DISTS – – – –
MMVD 7.4964 0.0845 0.4279 0.5157
PSIM 7.7996 0.0696 0.5628 0.5193
PSNR 13.3597 0.1575 1.0994 0.8832
VIF 7.6137 0.0980 0.7899 0.7880
SSIM 8.9455 0.1334 0.8511 0.7608
FSIM 7.6742 0.1078 0.6527 0.6349
GSM 8.4326 0.1146 0.7235 0.6603
VSI 8.6817 0.0979 0.6466 0.5404
LLF-ELM – 0.0659 0.5159 0.4949
Proposed 4.2173 0.0683 0.5268 0.4443
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previous methods. Compared with the deep learning-based 
LLF-ELM method, the method proposed in this paper only 
slightly lower RMSE and SROCC values on the CSIQ data-
set, and lower RMSE values on the TID2008 dataset. Apart 
from this, the overall performance of this paper is superior 
to the LLF-ELM method. Overall, the proposed method 
demonstrates higher accuracy in predicting image quality.

Additionally, comparison plots are generated to visually 
depict the predicted values and true values of the proposed 
method on the test sets of the LIVE, CSIQ, TID2008 and 
TID2013 datasets. As shown in the Fig. 8, the test sam-
ple sizes for the four test sets are 785, 600, 1360 and 2400, 
respectively. The red represents the true values, and the blue 

represents the predicted values. The horizontal axis denotes 
the samples, and the vertical axis denotes the image scores. 
From the figure, it can be visually observed that the pre-
dicted values of each image on the model have a good fit 
with the true values, as well as the overall prediction error 
of the model. Smaller errors between the predicted and true 
values indicate higher accuracy of the proposed method in 
predicting image quality.

4.6 � Ablation experiments

In this paper, five features of the image are extracted in the 
dual-space, namely: luminance, slope, chrominance, gradi-
ent, and spatial frequency features. In order to verify that 
feature extraction in dual-space for image quality assess-
ment is more accurate than in single space, as well as to 
measure the effectiveness of the proposed "slope" metric, 
we conducted two ablation experiments. In the first abla-
tion experiment, we compared the differences in image 
quality prediction between feature extraction in the single 
YIQ space, L*a*b* space, and dual-space. The experimental 
data is written in Tables 8 and 9. In the second ablation 
experiment, we plotted the Tables 10 and 11 for image qual-
ity prediction with and without the "slope" feature. From 
Tables 8 to Table 11 respectively demonstrate the SROCC 
and PLCC values between the predicted results and subjec-
tive scores for single space, dual-space, and with/ without 
"slope" feature.

The best results highlighted in bold. It can be observed 
from Table 8 to Table 11 that the dual-space method and 
the "slope" feature proposed in this paper both contribute to 
improving the accuracy of image quality prediction.

Table 5   Comparison of SROCC metrics for different methods

Methods LIVE CSIQ TID2008 TID2013

SPSIM 0.9620 0.9440 0.9104 0.9044
DSSIM 0.9584 0.9516 0.9028 0.8758
MaD-DLS 0.9724 0.9634 – 0.8849
KSCM 0.9585 0.9519 0.8790 0.8603
DISTS 0.954 0.929 – 0.830
MMVD 09557 0.9351 0.9347 0.9106
PSIM 0.9622 0.9621 0.9120 0.8925
PSNR 0.8756 0.8058 0.5531 0.6394
VIF 0.9636 0.9195 0.7491 0.6769
SSIM 0.9479 0.8756 0.7749 0.7417
FSIM 0.9634 0.9240 0.8804 0.8022
GSM 0.9561 0.9108 0.8504 0.7946
VSI 0.9524 0.9423 0.8979 0.8965
LLF-ELM – 0.9701 0.9212 0.9027
Proposed 0.9769 0.9695 0.9355 0.9273

Table 6   Comparison of PLCC metrics for different methods

Methods LIVE CSIQ TID2008 TID2013

SPSIM 0.9559 0.9344 0.8927 0.9091
DSSIM 0.9545 0.9401 0.8844 0.8941
MaD-DLS 0.9703 0.9648 – 0.9068
KSCM 0.9524 0.9531 0.8760 0.8812
DISTS 0.954 0.928 – 0.855
MMVD 0.9567 0.9365 0.9271 0.9171
PSIM 0.9584 0.9642 0.9078 0.9080
PSNR 0.8723 0.8000 0.5734 0.7017
VIF 0.9604 0.9277 0.8084 0.7720
SSIM 0.9449 0.8613 0.7732 0.7859
FSIM 0.9597 0.9118 0.8738 0.8589
GSM 0.9512 0.8964 0.8422 0.8463
VSI 0.9482 0.9279 0.8762 0.9000
LLF-ELM – 0.9695 0.9224 0.9169
Proposed 0.9808 0.9696 0.9279 0.9350

Table 7   Comparison of KROCC metrics for different methods

Methods LIVE CSIQ TID2008 TID2013

SPSIM 0.8271 0.7880 0.7303 0.7251
DSSIM 0.8204 0.8013 0.7205 0.6978
MaD-DLS – – – –
KSCM – – – –
DISTS 0.811 0.767 – 0.639
MMVD 0.8501 0.7674 0.7574 0.7426
PSIM 0.7161 0.7395 0.8273 0.8294
PSNR 0.6865 0.6084 0.4027 0.4696
VIF 0.8282 0.7573 0.5860 0.5147
SSIM 0.7963 0.6907 0.5768 0.5588
FSIM 0.8335 0.7561 0.6945 0.6269
GSM 0.8150 0.7374 0.6569 0.6255
VSI 0.8058 0.7857 0.7123 0.7183
LLF-ELM – 0.8470 0.7587 0.7321
Proposed 0.8820 0.8509 0.7691 0.7719
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4.7 � Analysis of model performance

In Random Forests, the training data for each decision 
tree is obtained through bootstrap sampling, which means 
that some samples may not appear in the training set of a 
certain tree. For these unsampled samples, their perfor-
mance can be evaluated by the number of times they do 
not appear in any tree, which is known as the out-of-bag 
error. The formula for calculating the out-of-bag error is 
as follows:

where T and P represent the true values and predicted values 
for each sample respectively, and N represents the number 
of samples.

To measure the model's generalization performance, 
which enables it to adapt well to new data, we plot the 
model error curve under different numbers of decision 
trees. This facilitates a clearer understanding of how the 
quantity of decision trees affects the outcomes of Random 
Forests predictions. As shown in the Fig. 9, the error curve 
experiences a rapid decline within the range of 0–10 deci-
sion trees. With the increase in the number of decision 
trees, the out-of-bag error gradually decreases and even-
tually stabilizes at around 0.0030. Therefore, the model 
demonstrates strong generalization performance.

(25)OOB =

∑�T − P�
N

a Predicted values vs. truth values on the LIVE dataset

b Predicted values vs. truth values on the CSIQ dataset

c Predicted values vs. truth values on the TID2008 dataset

d Predicted values vs. truth values on the TID2013 dataset

Fig. 8   Comparison of predicted values and truth values on the test 
sets of the four datasets

Table 8   Comparison of SROCC metrics for different spaces

Spaces LIVE CSIQ TID2008 TID2013

YIQ space 0.9542 0.9503 0.8825 0.8828
L*a*b* space 0.9508 0.9469 0.8756 0.9083
Dual-space (Proposed) 0.9769 0.9695 0.9355 0.9273

Table 9   Comparison of PLCC metrics for different spaces

Spaces LIVE CSIQ TID2008 TID2013

YIQ space 0.9659 0.9519 0.8857 0.8971
L*a*b* space 0.9632 0.9544 0.8700 0.9083
Dual-space (Proposed) 0.9808 0.9696 0.9279 0.9350

Table 10   Comparison of SROCC metrics with/without "slope" fea-
ture

Compare LIVE CSIQ TID2008 TID2013

With "slope" 0.9769 0.9695 0.9355 0.9273
Without "slope" 0.9721 0.9524 0.9175 0.9046

Table 11   Comparison of PLCC metrics with/without "slope" feature

Compare LIVE CSIQ TID2008 TID2013

With "slope" 0.9769 0.9695 0.9355 0.9273
Without "slope" 0.9670 0.9588 0.9150 0.9130
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4.8 � Analysis of sample quantity

In addition, this paper conducted further experiments 
by adjusting the number of training and testing samples 
on four datasets. Specifically, the experiments involved 
calculating four assessment metrics at each stage as the 
training samples decreased from 80 to 20% in increments 
of 10%, while the corresponding testing set increased by 
10%. Tables 12, 13, 14, and 15 display the experimental 
outcomes.

From Table 12 to Table 15, it can be visually observed 
that by reducing the model training sample size in the four 
datasets, the four evaluation metrics of the method RMSE, 
SROCC, PLCC and KROCC have all decreased. The experi-
mental results indicate that as the quantity of training sam-
ples increases, the accuracy of the proposed image quality 
prediction method in this paper also gradually improves.

5 � Conclusion and outlook

5.1 � Conclusion

This paper introduces a dual-space multi-feature fusion 
based method to FR-IQA. The method concurrently extracts 
luminance, slope, chroma, gradient and spatial frequency 
features from both spaces. These features are then integrated 
into a feature vector, which is combined with average subjec-
tive scores to generate a dataset. Finally, the Random Forest 
model is used to predict regression using the dataset.

The innovations of this method are show:

1.	 Not limited to extracting features in a single space, it 
can effectively avoid the problem of insufficient feature 
extraction caused by spatial limitations. By extracting 

Fig. 9   The impact of the number of decision trees on the model's gen-
eralization performance

Table 12   The relationship between sample quantity and prediction 
performance in the LIVE dataset

Training sample 
quantity

RMSE SROCC PLCC KROCC

786 (80%) 4.6857 0.9727 0.9795 0.8654
687 (70%) 4.7852 0.9700 0.9785 0.8650
589 (60%) 4.7593 0.9695 0.9760 0.8645
491 (50%) 5.1568 0.9682 0.9753 0.8539
393 (40%) 5.2716 0.9668 0.9743 0.8482
295 (30%) 5.3876 0.9638 0.9721 0.8425
196 (20%) 5.4961 0.9598 0.9711 0.8318

Table 13   The relationship between sample quantity and prediction 
performance in the CSIQ dataset

Training sample 
quantity

RMSE SROCC PLCC KROCC

600 (80%) 0.0710 0.9654 0.9696 0.8386
525 (70%) 0.0732 0.9667 0.9688 0.8437
450 (60%) 0.0737 0.9630 0.9688 0.8264
375 (50%) 0.0748 0.9623 0.9601 0.8250
300 (40%) 0.0784 0.9600 0.9589 0.8236
225 (30%) 0.0814 0.9539 0.9541 0.8118
150 (20%) 0.0889 0.9484 0.9459 0.8021

Table 14   The relationship between sample quantity and prediction 
performance in the TID2008 dataset

Training sample 
quantity

RMSE SROCC PLCC KROCC

1360 (80%) 0.5079 0.9223 0.9279 0.7691
1190 (70%) 0.5387 0.9203 0.9202 0.7659
1020 (60%) 0.5362 0.9126 0.9138 0.7543
850 (50%) 0.5666 0.9045 0.9103 0.7460
680 (40%) 0.5822 0.8936 0.9020 0.7278
510 (30%) 0.6166 0.8842 0.8918 0.7154
340 (20%) 0.6534 0.8661 0.8739 0.6893

Table 15   The relationship between sample quantity and prediction 
performance in the TID2013 dataset

Training sample 
quantity

RMSE SROCC PLCC KROCC

2400 (80%) 0.4443 0.9273 0.9350 0.7719
2100 (70%) 0.4622 0.9201 0.9301 0.7595
1800 (60%) 0.4809 0.9174 0.9231 0.7539
1500 (50%) 0.4823 0.9128 0.9199 0.7434
1200 (40%) 0.4948 0.9074 0.9176 0.7402
900 (30%) 0.5154 0.8999 0.9094 0.7283
600 (20%) 0.5367 0.8958 0.9033 0.7210
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features from multiple spaces, it is possible to obtain a 
richer set of feature information, which better describes 
the content and structure of the image;

2.	 This paper introduces a method that applies the slope 
feature of remote sensing images to extract the slope 
feature of non-terrain images. In remote sensing images, 
slope is an important terrain feature that can reflect 
the undulations and changes in the terrain. However, 
non-terrain images often lack terrain undulations, and 
extracting the image's slope, which reflects the texture 
information.

This paper is the first to propose extracting image features 
in dual-space and introduces a new metric called "slope". 
Experimental results on four datasets demonstrate that the 
proposed method exhibits good predictive performance and 
generalization ability compared to mainstream methods.

5.2 � Outlook

The proposed is an FR-IQA method, which typically requires 
the availability of the original image as a reference. How-
ever, in numerous instances, obtaining the original image is 
difficult, which limits the applicability of FR-IQA methods. 
In subsequent research endeavors, it would be beneficial 
to explore the integration of dual-space methods into NR-
IQA. Additionally, proposing better feature pooling strate-
gies can also contribute to improving the accuracy of model 
predictions.

Despite our method has achieved promising performance 
and improved the accuracy of IQA, there is still room for 
overall improvement. Limitations of our work: 1. Image fea-
ture extraction is a crucial process in IQA. In this paper, we 
extract universal features of images in two spaces for image 
quality prediction. Therefore, we will conduct in-depth 
research on image feature extraction to extract more useful 
features. 2. In terms of feature fusion strategy, we only fuse 
features into a feature vector based on empirical methods. 
We are aware that the strategy of feature fusion can affect 
prediction results to a certain extent. Therefore, in future 
work, we will design a more efficient feature fusion strategy 
to enhance prediction accuracy. 3. This paper uses the Ran-
dom Forest model for regression prediction of image quality 
scores. With the continuous development of deep learning, 
we will conduct research in this area and utilize deep learn-
ing methods for more accurate predictions.

5.3 � Future work

Unlike traditional two-dimensional images, light field 
images contain information about the direction and inten-
sity of light propagation in space, typically involving more 
information dimensions. Light field images possess unique 

characteristics, such as additional angular and depth infor-
mation, which may require higher quality standards and 
more specialized evaluation metrics. When assessing the 
quality of light field images, their uniqueness may necessi-
tate the use of more targeted evaluation metrics and methods 
to evaluate their quality, and these metrics may differ from 
those used for traditional images.

In terms of light field image super-resolution, the devel-
opment of quality assessment methods for light field images 
is relatively mature at present. For instance, a new evaluation 
metric designed in [22], as well as a tensor-based method for 
light field image quality assessment proposed in [35], have 
advanced the field to a certain extent and made significant 
contributions. Although light field images differ from tradi-
tional two-dimensional images, they are essentially based 
on a color space. Therefore, it may be worthwhile to explore 
the application of the dual-space method mentioned in this 
paper to this field in our future work.
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