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Abstract
Emotions play an important role in human–computer interaction. Multimodal emotion recognition combines feature informa-
tion from different modalities to recognize emotional states. However, in real application scenarios, data from all modalities 
may not always be available. Thus, in multimodal emotion recognition a big challenge is how to utilize the semantic informa-
tion from available modalities to predict missing modality data. To address this issue, this study proposes a Semantic-Wise 
Guidance for Missing Modality Imagination Network (SWG-MMIN) consisting of three main modules, that is, the Compre-
hensive Modality Feature Enrichment (CMFE) module, the Semantic-Wise Fusion (SWF) module, and the Semantic-Wise 
Feature Guided Imagination (SWGI) module. The CMFE module addresses the issue of semantic loss in the process of 
integrating multimodal features by enhancing the semantic information. The SWF module performs an adaptive fusion of 
invariant and specific features of multimodal data. The SWGI module facilitates the missing modality data generation and 
enhances the robustness of joint multimodal representation. Extensive experiments are conducted on two benchmark datasets, 
IEMOCAP and MSP-IMPROV. The experimental results demonstrate that the SWG-MMIN model surpasses all baseline 
models under full modalities and uncertain missing modalities, significantly improving emotion recognition performance.
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1  Introduction

Multimodal emotion recognition effectively performs 
emotion recognition tasks by integrating feature infor-
mation from different modalities [1, 2, 28]. However, in 
real-world scenarios, missing modalities are common due 
to environmental factors [17], such as audio loss or cam-
era damage, leading to insufficient data [6], as shown in 
Fig. 1. Traditional approaches typically address the issue 
of missing modalities through data generation methods 
[30] or joint multimodal representation learning meth-
ods [26, 33]. Zhao et al. [37] proposed Missing Modality 
Imagination Network (MMIN) for emotion recognition 
with uncertain missing modalities, which integrated the 
above two methods to build a network for addressing 
emotion recognition with uncertain missing modalities. 
The effectiveness of MMIN surpasses that of using a sin-
gle method. However, this approach can be improved in 
the following areas:

Semantic loss in the process of unifying the dimension of 
multimodal features. In MMIN [37], before multimodal fea-
ture fusion, the features of different modalities are reduced 
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dimension by their respective modality encoders to obtain 
unified dimension. However, the dimension reduction pro-
cess inevitably results in the loss of certain semantic infor-
mation. This implies that important semantic information 
may be lost during this process, which leads to a decrease 
in the recognition accuracy of the model. Specifically, when 
dealing with the task of missing modalities, the insufficient 
feature information of the available modality hinders the 
module's imagination ability to accurately generate the 
missing modalities. And this leads to a substantial discrep-
ancy between the generated missing modalities and the real 
modalities. Thus, this discrepancy impacts the overall rec-
ognition performance of the model.

Weight assignment between modality-invariant and 
modality-specific features in multimodal feature fusion. 
Hazarika et  al. [12] proposed the Modality-Invariant 
and Modality-Specific Representations for Multimodal 
Sentiment Analysis (MISA) model, which projects each 
modality feature into a shared semantic space to identify 
potential commonalities among modalities. This approach 
alleviates the inherent discrepancies across heterogeneous 
modalities. However, MISA fails to address the appropri-
ate weights assignment to the joint representation of invar-
iant and specific features across modalities. For example, 
some emotions are more easily recognized by language, 
while others are more easily recognized by vision. There-
fore, this study proposes that the joint representation of 
modality-invariant and modality-specific features should 
be assigned distinct weights in multimodal fusion. Other-
wise, it will result in suboptimal joint multimodal repre-
sentation and cause a decrease in recognition accuracy.

Aiming at the issues of semantic loss in the process of 
dimension reduction and suboptimal joint multimodal rep-
resentation, this study proposes the Semantic-Wise Guid-
ance for Missing Modality Imagination Network (SWG-
MMIN). Firstly, the Comprehensive Modality Feature 

Enrichment module is introduced to obtain richer semantic 
information on the modality invariant features and spe-
cific features. Next, the Semantic-Wise Fusion module is 
employed to adaptively fuse the obtained invariant fea-
tures and specific features, so as to realize the adaptive 
joint representation of multimodal data. Finally, the fused 
features are fed into the Semantic-Wise Feature Guided 
Imagination module to help generate missing modality 
data and improve the robustness of the joint multimodal 
representation. The experimental results on two bench-
mark datasets of IEMOCAP and MSP-IMPROV show that 
the SWG-MMIN model outperforms other advanced mod-
els under the conditions of full modalities and uncertain 
missing modalities.

The contributions of this work can be summarized as 
follows:

1.	 This paper proposes an emotion recognition model 
Semantic-Wise Guidance for Missing Modality 
Imagination Network (SWG-MMIN), which contains 
the Comprehensive Modality Feature Enrichment 
module, the Semantic-Wise Fusion module, and the 
Semantic-Wise Feature Guided Imagination module. 
The effectiveness of the proposed model is verified 
on the widely used IEMOCAP and MSP-IMPROV 
datasets. The experimental results demonstrate that 
the SWG-MMIN model achieves significant perfor-
mance improvement compared to other models under 
the conditions of full modalities and uncertain miss-
ing modalities.

2.	 This paper introduces the Comprehensive Modality 
Feature Enrichment module that enriches the seman-
tic information of multimodal features, addressing the 
issue of semantic loss in the process of unifying mul-
timodal features. By reducing the semantic loss, the 
model obtains modality-specific and modality-invari-
ant features with richer semantic information, thereby 
improving the overall recognition performance of the 
model.

3.	 The Semantic-Wise Fusion module is designed to per-
form an adaptive fusion of invariant and specific features 
in multimodal features. This module assigns appropri-
ate weights to modality-invariant and modality-specific 
features, enabling the model to learn a robust joint mul-
timodal representation during cross-modality imagina-
tion.

2 � Related work

Multimodal emotion recognition. The current methods 
for multimodal emotion recognition (MER) [39] can be 
divided into two categories, that is, fusion strategy-based 

Fig. 1   Case of two missing modalities, where missing modalities are 
marked with dotted red lines
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methods [12, 21, 35] and cross-modality attention-based 
methods [18, 23, 31]. (1) Fusion strategy-based methods 
aim to design complex fusion strategies to generate robust 
multimodal representations and improve emotion recogni-
tion performance. Zadeh et al. [35] proposed the Tensor 
Fusion Network (TFN) which is an end-to-end multimodal 
sentiment analysis model. TFN implements dynamic mod-
eling of intra-modality and inter-modality through tensor 
fusion and modality embedding sub-networks. However, 
its high dimension and exponential computational com-
plexity limit its further development and application. Liu 
et al. (Z. [21]) proposed a low-rank multimodal fusion 
method that decomposes tensors and weights. It employs 
modality-specific low-rank factors for multimodal fusion 
so as to avoid the calculation of high-dimensional tensor 
and reduce memory consumption. However, this method 
does not consider modality-invariant features. Hazarika 
et al. [12] emphasized the significance of representation 
learning in multimodal fusion. They proposed a method 
that projects each modality into modality-invariant and 
modality-specific spaces to learn a more comprehensive 
multimodal representation. However, this study did not 
consider the adaptive weight assignment for invariant and 
specific features. (2) Methods based on Cross-modality 
attention aim to learn inter-modality correlations to obtain 
robust multimodal representations. Tsai et al. [31] pro-
posed Multimodal Transformer (MulT) consisting of paired 
cross-modality attention mechanisms. This model provides 
a potential cross-modality adaptation by directly focusing 
on low-level features of other modalities. However, the 
problem of multimodal alignment is still a challenge in 
practical applications. Liang et al. [18] proposed a new 
semi-supervised multimodal emotion recognition model 
(SSMM) based on cross-modality distribution matching. 
This method utilizes an amount of unlabeled data to train 
model and improve emotion recognition performance. 
However, it is a multimodal fusion model trained based 
on full-modality samples and its performance decreases 
greatly in the absence of partial modalities. Therefore, this 
study proposes the SWG-MMIN model, which compre-
hensively and effectively utilizes the specific and invari-
ant feature information from different modalities. The 
Semantic-Wise Fusion module is employed to adaptively 
fuse these features, enabling the model to learn a robust 
multimodal joint representation. Thus, the SWG-MMIN 
model performs accurate and efficient emotion recogni-
tion in scenarios under full and missing modalities due to 
overcome the limitations of other methods.

Modality feature enhancement. Feature enhancement 
techniques are widely adopted in computer vision (J. [14, 
15, 19]). Huang et al. [15] proposed a densely connected 

convolutional network (DenseNet). By introducing dense 
connections, the feature maps of each layer can be con-
nected with subsequent layers so as to enhance the ability 
to transfer and reuse features. Lin et al. [19] proposed the 
Feature Pyramid Network (FPN). By introducing multi-scale 
feature pyramids, the network can obtain feature information 
of different scales, thereby improving the performance of 
the object detection task. In addition, some research meth-
ods combine visual and textual information so that the tex-
tual features can get knowledge from the visual modality 
[24, 36]. Mun et al. [24] proposed a text-guided attention 
model. The model enhances the attention to image features 
and the accuracy of description generation by introducing 
textual information into the attention mechanism in image 
description generation. Zhang et al. [36] adopted the sen-
tence embedding framework SimCSE and extended it to a 
multimodal contrastive objective. At the same time, they 
utilized both visual and text information, where visual infor-
mation serves as auxiliary semantic information to further 
performance sentence representation learning. However, in 
multimodal emotion recognition, the semantic information 
contained in different modality features is crucial to the per-
formance of emotion recognition. Therefore, it is necessary 
to further explore how to enhance different modality features 
and reduce semantic loss when unifying multi-modality. To 
this end, this study introduces the Comprehensive Modality 
Feature Enrichment module, which aims to obtain feature 
information of different scales to compensate for seman-
tic loss in the dimension reduction of multimodal features. 
Owing to this module, richer emotional features can be 
obtained, and then improving the performance of emotion 
recognition.

Learning joint multimodal representations. In recent 
years, research on the missing modality issue has mainly 
focused on methods for learning joint multimodal rep-
resentations [11, 27, 32, 33], Zhao, Li, Jin, et al. [37] to 
encode all modality information. Han et al. [11] proposed 
a model that implicitly fuses audio and video information 
during the training of speech or facial emotion recognition. 
However, this model only enhances text modality emotion 
recognition and does not fully utilize the semantic rela-
tionships between modalities. Wang et al. [33] proposed a 
Transformer-based translation model, which simulates the 
relationship between the source and target languages by 
using emotional mechanisms. The model employs a paral-
lel translation approach to fuse text features with acoustic 
features, text features with visual features. The model also 
adopts forward and backward translation strategies to better 
fuse multimodal features. However, this model cannot han-
dle emotion recognition scenarios under uncertain missing 
modalities, and different models need to be established for 
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different missing modality conditions. Therefore, this study 
introduces the Semantic-Wise Feature Guided Imagination 
module. This module uses the adaptively fused feature of 
available modalities and cascades them into each auto-
encoder to assist generating the imagination data of missing 
modalities. By this process, the model can learn a robust 
joint multimodal representation. Therefore, the module is 
able to effectively handle the emotion recognition scenarios 
with various missing modalities.

3 � Method

3.1 � Overview

This study proposes a Semantic-Wise Guidance for Missing 
Modalities Imagination Network (SWG-MMIN). The model 
can effectively and comprehensively extract the semantic 
information from modality specific and invariant features to 
imagine missing modalities through efficient semantic guid-
ance. By adaptively fusing modality features, the proposed 
model learns a robust joint multimodal representation and 
achieves accurate emotion recognition in scenarios under 
both full modalities and missing modalities. The overall 
framework of the model is shown in Fig. 2.

Given a set of video segments, x = (xa, xv, xt) . represents 
the raw multimodal features, where xa, xvand xt represent 
the raw features of acoustic, visual, and textual modalities, 

respectively. First, a Comprehensive Modality Feature 
Enrichment module and a Semantic-Wise Fusion module 
are introduced under full modalities to pretrain the specific-
ity encoder and invariance encoder. And then SWG-MMIN 
is further trained under missing modalities to form a com-
plete model framework. As shown in Fig. 2, the visual 
modality is missing and represented by xv

miss
 , and then the 

input of the model is represented as (xa, xv
miss

, xt) . First, the 
above triplet is input into the Comprehensive Modality 
Feature Enrichment module to enhance the features of each 
modality. It can reduce the semantic loss of the modal-
ity due to dimension reduction. Second, the Semantic-
Wise Fusion module is employed to adaptively fuse the 
invariant features (Ha,Hv

miss
,Ht) and the specific features 

(ha, hv
miss

, ht) of the heterogeneous modality. The adaptively 
fused weighted features hfusion contain both invariant and 
specific features with different weights. Finally, hfusion is 
input into the Semantic-Wise Feature Guided Imagination 
module to help predict the missing modality embeddings. 
The latent vectors of each auto-encoder in the imagina-
tion module are collected and concatenated to form a joint 
multimodal representation S, which is then input into the 
classifier for emotion recognition. The pretrained Specific-
ity and Invariance Encoder in the full-modality scenario 
are similar to the Specificity and Invariance Encoder in 
the SWG-MMIN training process, with the only difference 
being that the parameters of the pretrained Specificity and 

Fig. 2   The framework of the proposed SWG-MMIN. SWG-MMIN 
is trained with all six possible missing modality conditions. Taking 
missing visual modality as an example, the modality-specific feature 
h is represented as h = (ha, hv

miss
, ht) and the modality-invariant H is 

represented as H = (Ha,Hv
miss

,Ht) . The Pretrained Specificity and 
Invariance Encoder, as well as the Pretrained Specificity Encoder, are 
pretrained under full-modality data, and the parameters of two blocks 
remain fixed during the SWG-MMIN training process
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Invariance Encoder remain fixed during the SWG-MMIN 
training process.

3.2 � Pretrained encoder network under full 
modalities based on semantic‑wise guidance

Figure 3 shows the pretrained network for each specificity 
encoder and invariance encoder under full modalities.

As shown in Fig. 3, the pipeline based on Semantic-
Wise Guidance network learning mainly contains the fol-
lowing modules: the Comprehensive Modality Feature 
Enrichment (CMFE) module, the modality specificity 
encoders, invariance encoder, the Semantic-Wise Fusion 
(SWF) module, and the classifier. The CMFE module 
aims to enhance the semantic information of the specific-
ity encoder in extracting modality-specific high-level fea-
tures h = (ha

0
, hv

0
, ht

0
) from the raw features x = (xa, xv, xt) . 

Specifically, the Acoustic Encoder (A Encoder) employs 
an LSTM network and a max-pooling layer to extract 
utterance-level acoustic features ha

0
= AEncoder(xa) . The 

enhanced acoustic features are represented as ha . The Vis-
ual Encoder (V Encoder) employs a structure similar to the 

Acoustic Encoder to extract features hv
0
= VEncoder(xv) . 

After the enhancement, the visual features are represented 
as hv . The text encoder (L Encoder) employs Text CNN 
to extract utterance-level text features ht

0
= LEncoder(xt) . 

The enhanced text features are represented as ht . The 
invariance encoder takes (ha, hv, ht) as input and maps the 
cross-modality features to a shared subspace through a 
learning strategy based on the central moment discrep-
ancy (CMD) distance. This strategy reduces the differ-
ence between the shared representations of each modality 
by minimizing the CMD loss to obtain modality-invariant 
features (Ha,Hv,Ht) . Finally, the modality-specific features 
(ha, hv, ht) and the modality-invariant features (Ha,Hv,Ht) 
are input into the SWF module for adaptive fusion to 
obtain the Semantic-Wise feature, which is then input to 
the classifier for multimodal emotion recognition.

Next, the Comprehensive Modality Feature Enrichment 
(CMFE) module and the Semantic-Wise Fusion module 
(SWF Module) are introduced in details.

, ,

, ,

Fig. 3   Pretrained Encoder network under full modalities based on Semantic-Wise Guidance

Fig. 4   Schematic diagram of the Comprehensive Modality Feature Enrichment Module, where M Encoder denotes the modality-specific encoder 
for different modalities, M ∈ A, V , L
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3.2.1 � Comprehensive modality feature enrichment module

Before multimodal fusion, it is necessary to encode het-
erogeneous modalities and transform the raw features into 
low-dimensional utterance-level representations to ensure 
unified dimensions for subsequent joint representations. 
However, semantic loss will inevitably occur in the process 
of dimension reduction for heterogeneous modalities. That 
is, these incomplete modality features further deepen the 
semantic gap between heterogeneous modalities. This will 
bring a negative impact on multimodal joint representation 
and reduce the recognition accuracy. To address the seman-
tic loss issue caused by dimension reduction, this study 
introduces a Comprehensive Modality Feature Enrichment 
(CMFE) module, as shown in Fig. 4.

Specifically, this study adopts the Avgpool operation to 
downsample the raw features xm(m ∈ a, v, t) with down-
sampling coefficients of 2, 4, and 8, respectively. Thus, 
downsampled features at three different scales xm

1
, xm

2
, xm

3
 

are obtained. Next, the downsampled features are input into 
the same modality-specificity encoder as the raw features, 
and four features hm

0
, hm

1
, hm

2
, hm

3
 with the same dimension are 

obtained. Among them, hm
0
 represents the modal-specificity 

features obtained from the raw features by the encoder and 
hm
1
, hm

2
, hm

3
 represents the modality semantic enrichment 

features obtained from the downsampling operation by the 
encoder. Next, hm

1
, hm

2
, hm

3
 are fused through a Semantic-wise 

Fusion module, and the fused semantic enrichment feature 
is combined with hm

0
 to obtain feature hm . Compared to the 

feature hm
0

 obtained from the raw features by the encoder, 
feature hm contains richer multi-scale semantic information, 
achieving the objective of feature semantic enhancement. 
The complete process can be expressed as follows:

where Encoder represents the corresponding modality 
encoder and SWF represents Semantic-wise Fusion mod-
ule, and Avgpool� represent Avgpool with downsampling 
factor γ(γ = 2, 4, 8).

(1)hm = Encoder(xm) + SWF
(
Encoder

(
Avgpool2i(x

m)
)
, Encoder

(
Avgpool2i+1(x

m)
)
, Enocder

(
Avgpool2i+2(x)

))

×

×

Fig. 5   Schematic diagram of Semantic-wise Fusion module, where C represents the output size of the unified multimodal feature dimension 
after the encoder
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3.2.2 � Semantic‑wise fusion module

In the joint representation of multimodal emotion recog-
nition, different modalities have both common and unique 
semantic characteristics in the semantic space. The invari-
ant features of heterogeneous modalities reflect the shared 
motives and goals expressed by each modality and these 
invariant features contribute to the understanding of global 
emotional states. Meanwhile, the specific features of het-
erogeneous modalities emphasize the distinctive emotions 
expressed by each modality. If their joint representation 
without considering weights, it may result in the model fail-
ing to handle the interrelationship between invariant and 
specific features across heterogeneous modalities. This will 
lead to a negative impact on emotion recognition tasks. To 
address this issue, this study proposes a Semantic-Wise 
Fusion (SWF) module to enable adaptive weight assignment 
between modality invariant and specific features, thereby 
obtaining an efficient joint multimodal representation. The 
structure of the module is shown in Fig. 5.

The specific and invariant features ha, hv, ht,Ha,Hv,Ht of 
heterogeneous modalities are used as input. And global Avg-
pool operation is performed on each of the above features, 
respectively, to obtain the global context information with 
scale 1 × C . Then the global context information is fused 
to obtain the fusion feature with scale 1 × 6C . The fusion 
feature is input into an FC layer, and then the output of the 
FC layer is split into 6 contexts with scale 1 × C . In the fol-
lowing, the 6 contexts are activated by the sigmoid function 
to obtain the fusion weights V1,V2,V3,V4,V5,V6 of the 6 dif-
ferent features. Finally, the fusion weights multiply with the 
corresponding input ha, hv, ht,Ha,Hv,Ht and obtain hfusion 
with adaptive fusion weights. This design fully utilizes the 
invariant features and specific features to achieve efficient 
multimodal feature fusion to implement more accurate emo-
tion recognition. The calculation process of joint multimodal 
representation hfusion with adaptive fusion weights is repre-
sented as formula (2).

3.3 � Semantic‑wise feature guided imagination 
module under missing modalities

To ensure the stability and accuracy of emotion recognition 
under missing modalities, this study introduces the Seman-
tic-Wise Feature Guided Imagination (SWGI) module in the 
construction of the SWG-MMIN model. The SWGI module 
enables the SWG-MMIN model to imagine missing modal-
ity data under different missing-modality conditions. The 
structure of the SWGI module is shown in Fig. 6.

The SWGI module employs a cascaded auto-encoder 
structure containing N auto-encoders to predict the multi-
modal embeddings of missing modalities based on the avail-
able modalities. Different from MMIN (Zhao, Li and Jin 
[37]), which directly inputs modality-specific features after 
concatenation, the SWGI module also reads the available 
modality adaptive fusion feature hfusion and cascaded input it 
into each auto-encoder. The fused feature involves both the 
unique semantics of specific features and the shared seman-
tics of invariant features, assisting the generation of missing 
modality data and alleviating the gap among heterogeneous 
modalities.

Taking the missing visual modality as an example, rep-
resented by hv

miss
 , the multimodal embeddings of across-

modality pairs under the missing condition is represented 
as hc = concat(ha, hv

miss
, ht) . The fused feature of specific and 

invariant features of the available modality is expressed as 
hfusion . Features hc adds hfusion and the result denoted as hF , 
which is to be fed into the SWGI module for multimodal 
imagination. Additionally, hfusion also being cascaded input 
into each auto-encoder to assist in generating missing modal-
ity data. Each auto-encoder learns from available modality 
data to acquire latent representations. It utilizes correlations 
between different modalities to reconstruct and estimate the 
missing modality data. Simultaneously setting imagination 
loss to make the output data of forward learning closer to 

(2)
hfusion = ha × V1 + hv × V2 + ht × V3 + Ha × V4 + Hv × V5 + Ht × V6

Fig. 6   Detailed structure of 
Semantic-Wise Feature Guided 
Imagination module
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real data. Therefore, the SWGI module is a cascaded auto-
encoder model consisting of N auto-encoders, each auto-
encoder is represented as �t , t = 1, 2, …, N, where the cal-
culation of each auto-encoder is defined as:

where ΔZt represents the output of the t th auto-encoder, as 
shown in Fig. 6. The predicted multimodal embeddings of 
the missing visual modality based on specific and invariant 
features of existing available modalities can be expressed 
as h� = ΔZN.

3.4 � Loss functions

During SWG-MMIN model training, the emotion recogni-
tion classification loss Lcls is used to supervise the training 
of emotion category targets. Lcls adopts cross-entropy loss 
to measure the difference between the model output Y and 
the target emotion category Ŷ  . The loss can be expressed as:

In addition, the performance of the SWG-MMIN model can 
be further improved by combining imagination loss Limagine 
and invariant loss Linvariance . The imagination loss Limagine is 
employed to minimize the discrepancy between the output h′ 
of the imagination module and the ground-truth representa-
tions h″. And the invariant loss Linvariance aims to ensure the 
invariant feature H′ of the full modality prediction as close as 
possible to the invariant feature H of the target modality con-
tinuously. In this paper, the Root Mean Square Error is used 
as a metric to guarantee the accuracy of the model for emo-
tion recognition, where i represents the i th sample of video 
segments.

The total loss function of the model is the sum of the clas-
sification loss, imagination loss, and invariance loss, shown as 
in formula (7). �1 and �2 are the weight factors. By minimizing 
the total loss function, the model can implement the optimiza-
tion to the emotion recognition accuracy, imagination module 
generation ability and modality invariance. The total loss func-
tion is expressed as:

(3)

⎧
⎪⎨⎪⎩

hF = hc + hfusion
ΔZt = 𝜑t(hF), t = 1

ΔZt = 𝜑t(hfusion + ΔZt−1), t > 1

(4)Lcls = CrossEntropy(Y ,
⌢

Y)

(5)Limagine = RMSE(h��
i
, h�

i
)

(6)Linvariance = RMSE(Hi,H
�

i
)

(7)L = Lcls + �1Limagine + �2Linvariance

4 � Experimental results

4.1 � Dataset

In this paper, the proposed SWG-MMIN model is verified on 
two datasets IEMOCAP [4] and MSP-IMPROV [5], respec-
tively. Following the label division of MMIN Zhao, Li and Jin 
[37], both datasets are categorized into four emotion labels, 
that is, happy, angry, sad, and neutral. The split ratio of train-
ing set, validation set and test set is 8:1:1.

IEMOCAP [4] is a dataset containing recorded videos of 
dyadic conversations sessions. In each session, it contains 
scripted plays and spontaneous dialogues between a male 
speaker and a female speaker, with a total of 10 speakers in 
the database. This dataset offers approximately 12 h of audio-
visual data, including video, audio and text. Following the 
emotional label processing method described in MMIN Zhao, 
Li and Jin [37], the dataset forms the four-class emotion rec-
ognition settings.

MSP-IMPROV [5] consists of 6 conversations by 12 Eng-
lish major students, a total of about 8438 utterance samples, 
and a total time of more than 9 h. The audio was recorded 
using two collar microphones at a sampling rate of 48 kHz and 
32-bit PCM. The video was recorded by a digital camera with 
a resolution of 29.97 frames per second.

For all experiments on IEMOCAP, this paper uses weighted 
accuracy (WA) [3] and unweighted accuracy (UA) [10] as two 
evaluation metrics. For MSP-IMPROV experiments, due to the 
imbalance of emotion categories in this dataset, F1 scores are 
used as evaluation metrics.

4.2 � Experimental settings

Similar to the raw features extraction method in MMIN 
Zhao, Li and Jin [37], the audio features xa are 130-dimen-
sional OpenSMILE [8] features configured as "IS13 Com-
ParE". The visual features xv are 342-dimensional ″Dense-
face″ features extracted by pretrained DenseNet [15]. The 

Table 1   Multimodal emotion recognition results on IEMOCAP data-
set under full-modality condition

Best results are given in bold

Model Train Test WA UA

cLSTM-MMA [25]

{a,v,t} {a,v,t}

0.7394 –
SSMM [18] 0.7560 0.7456
MMIN [37] 0.7651 0.7779
HFGCN [29] 0.7468 –
GraphSAGE [20] 0.6543 0.6640
CITN-DAF [9] 0.7750 –
SWG-MMIN 0.7772 0.7874
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text features xt are 1024-dimensional BERT word embed-
dings extracted by a pretrained Bert-large [7].

The output size of both the specificity encoder and the 
invariance encoder is 128. The Semantic-Wise Feature 
Guided Imagination module consists of 5 auto-encoders. For 
the SWG-MMIN model, this study uses the Adam optimizer 
[16] for training. The batch size is 64, the dropout rate is 
0.5, the initial learning rate is 0.0002, and the learning rate 
is updated using LambdaLR [34].

The models are trained and evaluated on the IEMOCAP 
and MSP-IMPROV datasets with tenfold and 12-fold cross-
validation, where each fold consisted of 60 epochs. Each 
model is run three times to alleviate the impact of parameter 
random initialization and verify the robustness of models. 
All models are implemented using the PyTorch and trained 
on a single RTX3090 GPU.

4.3 � Comparison experiments

4.3.1 � Full‑modality comparison results

First, the SWG-MMIN model is compared with other 
advanced multimodal emotion recognition models under 
the full-modality condition on IEMOCAP dataset.

cLSTM-MMA [25]: It proposes a multimodal attention 
mechanism to model the correlation between three modali-
ties, replacing concatenation.

SSMM [18]: It introduces a semi-supervised training 
strategy for discrete multimodal emotion recognition.

MMIN (Zhao, Li and Jin [37]): Its modality encoder net-
work learns effective robust joint multimodal representations 
in both full and missing modalities for multimodal emotion 
recognition.

HFGCN [29]: It is a Hierarchical Fusion Graph Convo-
lutional Network that learns more informative multimodal 
representations by considering modality dependencies.

GraphSAGE (J. [20]): It proposes a SER model for var-
iable-length utterance modeling, aiming to maximize emo-
tional information retention within the utterances.

CITN-DAF [9]: It enables parallel computation of 
modalities, and explores modal interactions using circulant 
matrices, enhancing feature integration with dimension-
aware fusion.

The experimental results are shown in Table 1. The SWG-
MMIN model proposed in this paper achieves better per-
formance than other models. The recognition accuracy of 
SWG-MMIN are improved by 1.21% and 0.95% in terms of 
weighted accuracy (WA) [3] and unweighted accuracy (UA) 
[10] than MMIN (Zhao, Li and Jin [37]).

4.3.2 � Uncertain missing‑modality comparison results

The model is compared with other advanced models under 
different missing modality conditions on the IEMOCAP 
dataset.

MCTN [26]: It learns a joint representation through 
cyclic translation between missing and available modalities.

MMIN (Zhao, Li and Jin [37]): Its modality encoder net-
work learns effective robust joint multimodal representations 
in both full and missing modalities for multimodal emotion 
recognition.

MMIN-Augmented baseline (Zhao, Li and Jin [37]): It 
pools the missing-modality training set and full-modality 
training set together to train the MMIN model.

Table 2   Multimodal emotion recognition results on the IEMOCAP dataset under missing-modality condition

Best results are given in bold

Model Metric Testing conditions

{a} {v} {t} {a, v} {a, t} {v, t} average

MCTN [26] WA 0.4975 0.4892 0.6242 0.5634 0.6834 0.6784 0.5894
UA 0.5162 0.4573 0.6378 0.5584 0.6946 0.6834 0.5913

MMIN [37] WA 0.5303 0.4864 0.6564 0.6395 0.7251 0.7082 0.6243
UA 0.5440 0.4598 0.6691 0.6434 0.7435 0.7162 0.6293

MMIN [37] WA 0.5658 0.5252 0.6657 0.6399 0.7294 0.7267 0.6410
UA 0.5900 0.5160 0.6802 0.6543 0.7514 0.7361 0.6524

MRAN [22] WA 0.5544 0.5323 0.6531 0.6470 0.7300 0.7211 0.6397
UA 0.5701 0.4980 0.6642 0.6446 0.7458 0.7224 0.6408

IF-MMIN 
[40]

WA 0.5620 0.5197 0.6702 0.6533 0.7405 0.7268 0.6454
UA 0.5813 0.5041 0.6820 0.6652 0.7544 0.7362 0.6490

SWG-MMIN WA 0.5636 0.5351 0.6743 0.6521 0.7497 0.7354 0.6517
UA 0.5855 0.5194 0.6845 0.6596 0.7623 0.7414 0.6587
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MRAN [22]: It proposes the Multimodal Embedding and 
Missing Index Embedding to guide the reconstruction of 
missing modalities features.

IF-MMIN [40]: It uses an invariant feature learning strat-
egy for a missing modality imagination network.

The experimental results are shown in Table 2.
The SWG-MMIN model achieves the-state-of-the-art 

results on {v},{t},{v,t},{a,t} and the average of six miss-
ing modalities. Under the conditions {a} and {a, v}, SWG-
MMIN is comparable to the best baseline. These results 
show that the SWG-MMIN model has excellent perfor-
mance and robustness in performing emotion recognition 
tasks. From Table 2, it can be seen that the {v} modality 
obtains greater performance improvement than other miss-
ing modalities. It can be attributed to the CMFE module, 
which especially enhances the visual modality feature. In 
contrast, the performance under {a} and {a, v} conditions 
are comparable to the baseline, the possible reason why the 
audio modality lacks semantic information compared to the 
other two modalities. However, the proposed model can still 
learn robust joint multimodal representations and obtaining 

Semantic-Wise Features based on enhanced modality fea-
tures, resulting in robust performance under different miss-
ing conditions.

Next, the comparative experiment is conducted on MSP-
IMPROV dataset, and the experimental results are shown 
in Table 3. The experimental results show that the pro-
posed SWG-MMIN model achieves the-state-of-the-art F1 
score under all missing-modality conditions. Even for weak 
modality {a}, there is also a certain improvement compared 
to the baseline model.

In summary, the proposed SWG-MMIN model shows 
excellent emotion recognition ability on two benchmark 
datasets, which verifies the robustness and generalization 
of the SWG-MMIN model.

4.3.3 � Ablation study

In this section, ablation experiments are carried out on the 
SWG-MMIN model. To analyze the significance of each 
component in the SWG-MMIN model, we add an invariant 
feature semantic subspace based on CMD distance to the 

Table 3   Multimodal emotion recognition results on the MSP-IMPROV dataset under missing-modality conditions

Best results are given in bold

Model Metric Testing conditions

{a} {v} {t} {a,v} {a,t} {v,t} average

MCTN [26] F1 0.3285 0.3810 0.5050 0.4683 0.5611 0.5886 0.4721
MMIN-Aug [37] F1 0.4278 0.4185 0.5544 0.5396 0.6038 0.6295 0.5455
MMIN [37] F1 0.4647 0.4471 0.5573 0.5740 0.6188 0.6411 0.5649
SWG-MMIN F1 0.4664 0.4651 0.5808 0.5780 0.6205 0.6480 0.5722

Table 4   Results of ablation experiments of each module on IEMOCAP

Best results are given in bold

CMFE SWF SWGI Metric Testing conditions

{a} {v} {t} {a, v} {a, t} {v, t} average

WA 0.5529 0.5224 0.6638 0.6407 0.7343 0.7154 0.6382
UA 0.5735 0.5076 0.6771 0.6552 0.7515 0.7285 0.6489

√ WA 0.5565 0.5265 0.6663 0.6433 0.7376 0.7185 0.6414
UA 0.5780 0.5129 0.6817 0.6556 0.7529 0.7331 0.6523

√ WA 0.5572 0.5289 0.6683 0.6431 0.7369 0.7264 0.6434
UA 0.5807 0.5139 0.6833 0.6560 0.7518 0.7379 0.6539

√ √ WA 0.5607 0.5310 0.6706 0.6458 0.7381 0.7302 0.6460
UA 0.5829 0.5160 0.6841 0.6569 0.7552 0.7402 0.6558

√ √ WA 0.5628 0.5298 0.6728 0.6459 0.7431 0.7315 0.6476
UA 0.5816 0.5181 0.6843 0.6593 0.7571 0.7398 0.6567

√ √ √ WA 0.5636 0.5351 0.6743 0.6521 0.7497 0.7354 0.6517
UA 0.5855 0.5194 0.6845 0.6596 0.7623 0.7414 0.6587
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MMIN (Zhao, Li and Jin, 2021) as the baseline model. Then, 
Comprehensive Modality Feature Enrichment (CMFE) mod-
ule, Semantic Efficient Fusion (SWF) module, and Semantic 
Wise Feature Guided Imaging (SWGI) module are gradually 
applied to the model to verify the impact of each component 
on model performance. The experimental results are shown 
in Table 4.

Comprehensive Modality Feature Enrichment (CMFE) 
module. By adding the CMFE module to the baseline 
model, it can be observed that the model performance 
has improvement compared to the baseline model under 
various missing conditions. This indicates that the CMFE 
module has a significant effect on emotion recognition 
tasks. The effect proves the excellent performance and 
robustness of the CMFE module.

Semantic-Wise Fusion (SWF) module. Table 4 shows 
that by adding the SWF module, the performance of the 
model has been improved under most conditions. The 
effect under the condition of weak modality {a} and weak 
modality combination {a,v} is also improved to a certain 
extent. It proves that the SWF module plays an indispen-
sable role in the SWG-MMIN model performing emotion 
recognition tasks.

4.4 � Semantic‑Wise Feature Guided Imagination 
(SWGI) module

The construction of this module needs to rely on the adaptive 
fusion of modality-invariant and modality-specific features 
by the SWF module, so the ablation experiment is performed 
on the combination of SWF and SWGI modules. As shown 
in Table 4, on the basis of adding the SWF Module to the 
baseline model, the adaptive fused feature is fed into the 
SWGI module for generating imaginative representations. 
The performance of the model has been improved to a cer-
tain degree under different missing modality conditions. 
Among them, the improvement is most obvious under the 
condition of strong mode combination {a, t}. The effective-
ness of the Semantic-Wise Feature Guided Imagination 
module is proved.

The above ablation experiments prove the effectiveness 
of each module in the SWG-MMIN model, as well as the 
complementary dependency relationships between the mod-
ules. This indicates that each component in the model plays 
a significant role.

Table 5   Results of the downsampled features of the CMFE module 
on IEMOCAP. Baseline + CMFE (xm

1
) : add the CMFE module with 

a downsampled feature on the baseline; Baseline + CMFE (xm
1
, xm

2
) : 

add the CMFE module with two downsampled features on the base-
line; Baseline + CMFE (xm

1
, xm

2
, xm

3
) : add the CMFE module with three 

downsampled features on the baseline; Baseline + CMFE (xm, xm, xm) : 
add the CMFE module with three raws features on the baseline; 
SWG-MMIN- CMFE (xm, xm, xm) : the CMFE module with three raws 
features on the SWG-MMIN

Best results are given in bold

Model Metric Testing conditions

{a} {v} {t} {a, v} {a, t} {v, t} average

Baseline WA 0.5529 0.5224 0.6638 0.6407 0.7343 0.7154 0.6382
UA 0.5735 0.5076 0.6771 0.6552 0.7515 0.7285 0.6489

Baseline + CMFE (xm
1
) WA 0.5526 0.5228 0.6659 0.6398 0.7363 0.7179 0.6392

UA 0.5729 0.5095 0.6798 0.6526 0.7519 0.7308 0.6496
Baseline + CMFE (xm

1
, xm

2
) WA 0.5549 0.5245 0.6661 0.6411 0.7369 0.7182 0.6403

UA 0.5748 0.5101 0.6811 0.6542 0.7521 0.7319 0.6507
Baseline + CMFE (xm

1
, xm

2
, xm

3
) WA 0.5565 0.5265 0.6663 0.6433 0.7376 0.7185 0.6414

UA 0.5780 0.5129 0.6817 0.6556 0.7529 0.7331 0.6523
Baseline + CMFE (xm, xm, xm) WA 0.5553 0.5226 0.6360 0.6424 0.7096 0.7147 0.6301

UA 0.5748 0.5107 0.6497 0.6539 0.7129 0.7186 0.6368
SWG-MMIN-CMFE (xm, xm, xm) WA 0.5605 0.5332 0.6582 0.6458 0.7168 0.7305 0.6408

UA 0.5763 0.5148 0.6621 0.6554 0.7286 0.7377 0.6458
SWG-MMIN WA 0.5636 0.5351 0.6743 0.6521 0.7497 0.7354 0.6517

UA 0.5855 0.5194 0.6845 0.6596 0.7623 0.7414 0.6587
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4.4.1 � Analysis of CMFE module

This section investigates the impact of different scale down-
sampled features in the CMFE module on model perfor-
mance. On the basis of the raw features, this module adds 

three downsampled features of different scales and fuses 
them to make up for the information loss of the raw features 
during the dimensionality reduction process. As shown in 
Table 5, as the number of downsampled features increases, 
the performance of the model also improves accordingly. 
However, due to computational considerations, this paper 
finally determines the number of downsampled features to 
3 to achieve a balance between parameters and performance. 
In addition, this paper also explores the effectiveness of 
downsampled features at different scales in the CMFE mod-
ule by replacing the downsampled features with scale-invar-
iant raw features. The results show that model performance 
is adversely affected after replacing downsampled features, 
indicating that downsampled features at different scales can 
effectively compensate for information loss. While simply 
repeating features has a negative impact on performance. 

Table 6   Results of different fusion methods on IEMOCAP dataset 
under full-modality condition. SWG-MMIN(MHSA): MHSA(Multi-
Head Self-Attention) fusion method; SWG-MMIN(LAFF): 
LAFF(Lightweight Attentional Feature Fusion) block

Best results are given in bold

Model Train Test WA UA

SWG-MMIN(MHSA)
{a,v,t} {a,v,t}

0.7628 0.7744
SWG-MMIN(LAFF) 0.7605 0.7725
SWG-MMIN(SWF) 0.7772 0.7874

Table 7   Results of different 
fusion methods on IEMOCAP 
dataset under missing-modality 
conditions

Best results are given in bold

Model Metric Testing conditions

{a} {v} {t} {a,v} {a,t} {v,t} average

SWG-MMIN (MHSA) WA 0.5606 0.5227 0.6716 0.6365 0.7490 0.7269 0.6446
UA 0.5836 0.5189 0.6843 0.6569 0.7601 0.7366 0.6567

SWG-MMIN (LAFF) WA 0.5593 0.5385 0.6744 0.6396 0.7419 0.7365 0.6484
UA 0.5832 0.5145 0.6888 0.6536 0.7555 0.7421 0.6563

SWG-MMIN (SWF) WA 0.5636 0.5351 0.6743 0.6521 0.7497 0.7354 0.6517
UA 0.5855 0.5194 0.6845 0.6596 0.7623 0.7414 0.6587

(a) IEMOCAP                      (b) MSP-IMPROV

Fig. 7   Visualization analysis of the ground-truth and SWG-MMIN imagined multimodal embeddings
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Furthermore, it proves the important role of the CMFE mod-
ule in enhancing model performance, which is not solely 
dependent on the SWF module. Downsampled features at 
different scales are also an indispensable part of the CMFE 
module. This highlights the necessity and effectiveness of 
different scales downsampled features in improving model 
performance.

4.4.2 � Analysis of SWF module

This section studies the impact of different fusion methods 
on the performance of the SWG-MMIN model. Compara-
tive experiments with other fusion methods are conducted 
to verify the effectiveness of the SWF adaptive fusion mod-
ule. As shown in Table 6, under full-modality condition, 
the SWF fusion module is replaced with the MHSA (Multi-
Head Self-Attention) fusion method and LAFF (Lightweight 
Attentional Feature Fusion)(F. [13]) block, respectively. It 
can be observed that the proposed SWG-MMIN (SWF) in 
this paper outperforms these two methods in both weighted 
accuracy (WA) and unweighted accuracy (UA). Thus, it 
demonstrates the effectiveness of the SWF fusion module 
proposed in this paper in improving model performance.

This section further conducts comparative experiments 
under different missing-modality conditions to more com-
prehensively verify the effectiveness of different fusion 
methods. The experimental results are shown in Table 7. 
It can be observed that the SWG-MMIN (SWF) proposed 
in this paper is better than other models in the overall 
average performance. And it also achieves the best perfor-
mance under most missing-modality test conditions. Under 
the conditions {v}, {t} and {v, t}, SWG-MMIN (SWF) 
is slightly weaker than SWG-MMIN (LAFF). The rea-
son may be that the LAFF fusion module is designed for 
text-to-video retrieval tasks, performing better in text and 
video feature fusion but relatively worse in audio feature 
fusion. Therefore, the applicability of LAFF in this task 
is relatively low. The SWG-MMIN model proposed in this 
paper has achieved the best overall results. And the fusion 
module requires the adaptive fusion of six features, which 
is unsuitable for complex fusion networks. The SWF mod-
ule is concise and performs well for this task, achieving an 
effective balance of accuracy and resources.

4.5 � Visualization analysis

The t-SNE algorithm is used to randomly select sentences 
from the test sets of IEMOCAP and MSP-IMPROV. The 
aim is to visualize the ground-truth multimodal embed-
dings and SWG-MMIN-imagined multimodal embeddings 
in a two-dimensional plane under different missing modal-
ity conditions. As shown in Fig. 7, where A represents 

the ground-truth multimodal embeddings of the audio 
modality, and A-Imagined represents SWG-MMIN imag-
ined multimodal embeddings of the audio modality based 
on the visual and text modalities. It can be seen that the 
ground-truth multimodal embeddings of the three modali-
ties are very similar to the SWG-MMIN imagined mul-
timodal embeddings. And it demonstrates the effective-
ness of the SWG-MMIN model on imagining the missing 
modalities based on the available modalities.

5 � Conclusion

This study proposes a Semantic-Wise Guidance for the 
Missing Modality Imagination Network (SWG-MMIN). 
The SWG-MMIN model alleviates the modality gap by 
introducing the Comprehensive Modality Feature Enrich-
ment module, Semantic-Wise Fusion module, and Semantic-
Wise Feature Guided Imagination module. These modules 
fully utilize the semantic information of modality-invariant 
features and specific features to alleviate the heterogene-
ous modality gap and improve the robustness of joint mul-
timodal representations. Experiments on the benchmark 
datasets IEMOCAP and MSP-IMPROV demonstrate the 
effectiveness and robustness of the SWG-MMIN model. It 
outperforms other baseline models in scenarios under full 
modalities and missing modalities. In future work, we will 
further explore methods to improve robust joint multimodal 
representation based on the fusion of modality-specific fea-
tures and invariant feature.
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