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Abstract
Coarse registration of point cloud is a necessary step for object digitization. However, insufficient overlapping, large pose 
difference and the existence of noise and outliers seriously reduce the result. In this paper, several improvements were made 
to improve the registration effect under the above conditions. Firstly, a lightweight network for feature point detection based 
on local extremum is proposed to improve the repeatability and robustness of feature detection; Secondly, a feature descrip-
tion network combined with attention mechanism is constructed to generate highly differentiated descriptors for the feature 
points; Finally, a transformation parameters calculation strategy based on only two feature points is proposed, which improves 
the success probability under low overlapping. Experiments show that our feature detection, description and registration 
methods achieved satisfactory results in various challenging scenes and perform better than current mainstream methods.
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1 Introduction

Point cloud registration is a key problem in 3D computer 
vision with wide applications including 3D reconstruction 
[1], pose estimation [2], simultaneous localization and map-
ping (SLAM) [3], and Point cloud registration technology 
is also involved in emerging applications such as autono-
mous driving, robotics and augmented reality. Generally, 
the process is divided into two steps, coarse registration and 
fine registration. Among them, coarse registration is the 
basis of fine registration, and its result directly determines 
whether the iterative closest point (ICP) algorithm [4] can 
converge to the correct solution. In order to achieve accurate 
and robust coarse registration, a lot of research has been 
carried out. Some of the algorithms use highly robust fit-
ting or optimization techniques, such as RANSAC [5, 6] 
and fast global registration (FGR) [7, 8]; other algorithms 
achieve the goal by detecting and matching feature points. 
During the research, several feature points detection methods 

is developed, such as uniform sampling [9], Harris [10], ISS 
[11], Narf [12], etc. To match those feature points robustly, a 
lot of feature description methods are proposed by employ-
ing the local spatial or geometric metric relationships, such 
as SI [15], SCOV [16], ROPS [17] and SHOT [18]. In recent 
years, many researchers also proposed feature descriptors 
based on deep learning networks (DNN). For example, Li 
[19] proposed an end-to-end framework to learn local multi-
view descriptors of 3D point cloud and get better results 
than traditional methods in most of the test scenarios. Zeng 
[20] proposed the 3DMatch, which builds training samples 
from registered RGB-D data and generates describers by 
Siamese Neural Network. Despite the above progress, the 
stability of the coarse registration algorithm under extreme 
conditions, such as low overlap rate or large noise, still needs 
to be further improved.

In order to overcome the above problems, this paper pro-
poses new strategies in three aspects: feature point detection, 
feature descriptor construction and registration conditions. 
Specifically, the contributions of this paper are as follows:(1) 
A lightweight network for feature point detection based on 
the idea of non-maximum suppression (NMS) is proposed. 
Compared with the method of calculation directly on the 
point cloud data, our method uses a deep learning method 
to fit the local surface changes, which can filter out the influ-
ence of noise better. At the same time, the NMS strategy 
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also prevents the phenomenon of feature point aggregation 
and ensures the diversity of feature points. (2) We propose 
a lightweight feature descriptor construction network. The 
integration of attention mechanism makes it be able to make 
full use of the information contained in the point cloud and 
improve the discrimination of feature descriptors, also the 
Siamese structure makes sample construction and network 
training becomes easy. (3) By introducing the concept of 
virtual feature points, we reduce the number of feature points 
required for registration from 4 to 2, which improves the 
success of coarse registration under the condition of low 
overlapping. Experiments show that the proposed algorithm 
can get satisfactory results in various challenging scenarios, 
and the overall effect is better than the latest method.

The following sections are organized as follows. Section 2 
reviews relevant work. Section 3 introduces the algorithm 
and its implementation details. Section 4 verifies the effec-
tiveness of the proposed algorithm through experiments and 
compares it with the current mainstream algorithm. Finally, 
the thesis is summarized in Sect. 5, and further research 
direction is pointed out.

2  Related work

2.1  Coarse registration

At present, point cloud coarse registration algorithms can be 
divided into three categories: methods based on RANSAC, 
methods based on feature point, and methods based on deep 
learning.

(1) Methods based on RANSAC

In RANSAC-based methods, some points are randomly 
selected from the point clouds firstly. Then, the optimal 
corresponding points are sifted out by judging the spatial 
structure consistency. Finally, the registration parameters 
can be calculated from the matched points. 4PCS [21] is a 
typical RASAC-based method. The algorithm finds match-
ing pairs by coplanar-four-points criterion and shows good 
robustness. However, it consumed a lot of time to elimi-
nate the false matching pairs, thus limiting its application. 
To overcome the problem, Super 4PCS [22] established an 
intelligent index and eliminated invalid point pairs according 
to the normal angle constraint, which reduces the time com-
plexity of 4PCS to constant. Besides, the Super Generalized 
4PCS [23] algorithm adds non-coplanar optimization to the 
intelligent index strategy, the V4PCS [24] algorithm pro-
poses the concept of volume consistency and MSSF-4PCS 
[25] uses multi-scale clustering to extract point features. 
Although great progress has been made, due to the complex 
characteristics of point cloud data, the registration effect of 

the above methods is still not satisfactory when the point 
cloud symmetry is strong or the details of the overlapping 
region are not obvious.

(2) Methods based on feature points

This kind of method usually first calculates the signifi-
cance of each point in the point cloud under some measure-
ment index, and then identifies the points whose significance 
is higher than a threshold as feature points; finally, the point 
cloud registration is realized by constructing and matching 
the descriptor of the feature points.

In terms of feature point detection, Harris 3D [10, 26] can 
extract corners in the point cloud with high efficiency. How-
ever, in practical application, it is prone to the problem of 
feature points gathering together. Therefore, it is not easy to 
build highly differentiated descriptors for these points. The 
subsequent ISS [11, 27] is a feature point extraction method 
based on eigenvalue analysis, which has obvious geomet-
ric significance. But the principal component calculation is 
easy to be affected by outliers. Therefore, the robustness 
needs to be further improved. The NARF feature proposed 
by steder et al. [12] can detect the points robustly and effi-
ciently, but is more suitable for regular depth images. When 
applied to irregular point cloud, the repeatability of feature 
points is greatly reduced. Learning discriminative features 
for better localizing accurate and distinct keypoints across 
various objects is still a challenging task. Yang et al. [13] 
build a large-scale and diverse dataset named KeypointNet 
which contains 8,234 models with 103,450 keypoints and 
can boost the semantic understanding of 3D objects. Subse-
quently, Yang et al. [14] propose a self-supervised 3D key-
point detector UKPGAN based on the GAN-based sparsity 
control and salient information distillation modules, which 
is applicable to rigid/non rigid objects and real scenes.

In terms of feature description, PFH [28] parameterizes 
the spatial differences between query points and neigh-
borhood points and forms a multi-dimensional histogram 
to geometrically describe the nearest neighbors of points. 
The operator has rotation and translation invariance and is 
robust to sampling density change or noise. However, its 
computational complexity reaches o  (nk2), where n is the 
number of points in the point cloud and k is the number 
of neighborhood points used. To reduce the computational 
complexity, the FPFH describer [29] is proposed. By sim-
plifying the calculation of feature histogram, FPFH reduces 
the time complexity to o(nk) successfully. At the same time, 
the histogram weighting of neighborhood points makes the 
algorithm can capture local features better. In the Next, Bi 
proposed the RICI descriptor [30], which enhances the toler-
ance of the algorithm to outliers. Tal et al. [31] proposed a 
self-rotation descriptor, which improves the discrimination 
of the descriptor using a more local computational scale. 
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At the same time, inspired by the SIFT descriptor [32] in 
the image field; they also proposed the local depth SIFT 
(LD-SIFT) descriptor [31] with rotation and scale invari-
ance. PCEDNet [33] proposed a new parameterization and a 
new lightweight neural network structure, which has greatly 
improved the efficiency and classification ability.

(3) Methods based on deep learning

The rise of deep learning has brought new ideas to point 
cloud registration. Compared with the manual designed 
methods, methods based on deep learning can automatically 
find the potential laws and features in the data, so as to make 
full use of the original information and improve the effect 
of point cloud registration. In order to use the convolution 
network to process scattered point cloud, a common practice 
is to sample the point cloud to three-dimensional voxels or 
two-dimensional grids (such as 3DShapeNets [34], Point-
Grid [35], LORAX [36]), and then use convolution layers to 
generate a description of local geometric details. Especially, 
the 3DMatch [20] uses the registered depth data to make 
training samples, and then fits the hidden input–output rela-
tionship in the samples through a Siamese neural network, 
which improves the discrimination ability and robustness of 
the feature descriptor significantly. In order to extract feature 
information directly from point cloud, Qi et al. proposed 
PointNet [37], which processes each point independently 
through 1 × 1 convolution kennel. At the same time, it uses 
a symmetry function to eliminate the output change caused 
by the input order of the points.

Recently, the correspondences-based methods are gaining 
more and more attention, which constructs the correspond-
ences for all source points without distinguishing inliers 
and outliers using virtual points. DCP [38] uses DGCNN 
[39] and Transformer [40] to learn the task-specific features. 
Rpm-net [41] leverage data-driven deep neural networks to 
learn local features from large-scale datasets. In DeepVCP 
[42], these virtual corresponding points are constructed 
based on the assumption that accurate initial motion parame-
ters are provided as prior. Although shown to be more robust 
than traditional methods, they do not work well on partially 
visible point clouds. DCP was later extended to Prnet [43], 
which is a hard matching-based method and incorporates 
keypoint detection to handle partial visibility. However, this 
strategy can only work on the identified inliers and the draw-
back of one-to-many matching is ineluctable. [44] designs 
a dedicated soft-to-hard (S2H) matching procedure within 
the registration pipeline, which can be easily integrated with 
existing registration frameworks and has been verified in 
representative frameworks including DCP, Rpm-net. VRNet 
[45] constructs a pair of consistent point clouds by adjusting 
virtual corresponding points (vcps) to rectified virtual cor-
responding points (rcps) construct a pair of consistent point 

clouds, which effectively breaks the distribution limitation 
of VCPs and improves the registration performance and effi-
ciency. SpinNet [46] propose a new neural architecture to 
extract local features which is rotation invariant, representa-
tive, and its descriptor achieve good results in point cloud 
registration. Pointdsc [47] select consistent correspondences 
after the initial matching to tackle the outliers. This approach 
is effective but complex. Predator [48] proposes an over-
lap attention module to handle point-cloud pairs with low 
overlap, but this is operationally complex as well as time-
inefficient. DIP [49] presents a PointNet-based architecture 
for learning 3D local deep descriptors that can be used to 
register point clouds without requiring an initial alignment. 
Our network is also based on Siamese PointNet, but we add 
attention mechanism to the network, which enhances the 
expression ability of the network and obtain a better reg-
istration effect. At the same time, we simplify the network 
structure, making our network lighter and more efficient. 
Through experimental comparison, the registration rate of 
our network is as high as 97.08%, which is about 10% higher 
than DIP [49] and Predator [48], 30% higher than 3DMatch 
[20] and a traditional method [27] using ISS and FPFH.

2.2  Attention mechanism

Attention plays an important role in human perception 
[50–52]. When people see a scene, they will involuntarily 
choose the most important part to watch. Attention mecha-
nism comes from the simulation of human vision. It allows 
the computer to efficiently and accurately screen out the use-
ful message from the massive information. With the con-
tinuous progress of deep learning technology, the attention 
mechanism has been widely used. For example, Wang et al. 
[53] proposed the residual attention network, which uses 
an encoder-decoder style attention module. By refining the 
feature map, the network not only performs well on clean 
data, but also is robust to noisy inputs. Hu et al. [54] pro-
posed the SE-Net, in which a new SE module is used. The 
module has a simple structure and strong universality. It can 
be embedded into any existing network, and the consumed 
computing resources only need to be increased by less than 
10%. CBAM [55] is another popular attention module for 
convolution networks, which combines channel attention and 
spatial attention in series. Spatial attention allows the neural 
network to transform the spatial information in the original 
picture into another space while retain the key information. 
Channel attention can change the proportion of weight dis-
tribution between convolution channels to give more play 
to the network efficiency. PointNet extracts a global feature 
when extracting data features, thus ignoring local features 
and the differences between feature channels. This may 
cause the network to ignore potential relationships among 
feature information of point clouds. To solve the above 
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problems, this paper adds a channel attention mechanism 
to the network structure to fully extract the feature informa-
tion contained in point clouds. At the same time, different 
weights are assigned to different feature information, which 
improves the network's ability to extract feature information.

3  Our algorithm

This paper presents a point cloud coarse registration method 
combining local extremum point extraction and deep learn-
ing feature descriptor. Specifically, we first extract curvature 
extremum points from source and target point clouds as fea-
ture points, respectively; then, we put the feature points into 
a lightweight attention based feature description network to 
generate the descriptor; finally, false matching pairs are fil-
tered by RANSAC and the registration is completed with at 
least 2 matching pairs with the help of virtual feature points. 
The flowchart of the specific algorithm is shown in Fig. 1.

In this paper, we first choose curvature extremum points 
as feature points in (b). As curvature extremum points locate 
at the places with the most drastic surface changes in the 
model, it contains rich surface information, which is ben-
eficial for generating feature descriptors. We regard it as 
the screening criterion and train a very lightweight net to 
detect the feature points. We also use a Siamese network 

with attention mechanism as the feature descriptor genera-
tor in (c), which can automatically find the most effective 
feature description strategy from a large number of sam-
ples, and effectively improve the discrimination of feature 
descriptors. Finally, by introducing virtual feature points, we 
reduce the minimum number of matching points required for 
registration from 4 to 2 in (d), which can effectively improve 
the registration efficiency and the registration success rate in 
the case of a low overlapping rate.

3.1  Curvature extremum points detection

(1) Theory

Curvature is a direct measurement of the local change 
of the surface. Generally, the greater the curvature, the 
richer the surface information contained. Therefore, if the 
curvature extreme points are used as feature points, they 
can encode the most surface information and improve the 
discrimination of feature descriptors. Following the idea of 
non-maximum suppression, this paper first calculates the 
gauss curvature value of each point in the point cloud, then 
fits the curvature distribution of the local neighborhood 
through a quadric surface, and finally recognizes the curva-
ture extreme point by comparing the distance between the 

Fig. 1  Pipeline of our algorithm. Given the source and target point 
cloud (a), we first extract curvature extremum points using our fea-
ture point detection network (b);then we use our deep feature descrip-

tion network to generate the descriptors of feature points and find 
matching points (c); finally, registration is completed with the help of 
virtual feature points (d); the result of registration (e)
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curvature extreme point from the quadric surface and the 
current point. The specific process is as follows:

(1) Create a Local Coordinate System (LCS) with the cur-
rent point as the origin, its normal as the z-axis, and the 
maximum principal curvature direction as the x-axis. 
Then, translate the current point and its r neighbor-
hoods to the LCS;

(2) Construct the objective equation in Eq. (1) and solve 
the parameter b0 ~ b5 , where n is the number of neigh-
borhood points, xi,yi are the x, y coordinate component 
of the neighborhood points under the LCS and ci is the 
gauss curvature of neighborhood points;

(3) Put y = 0 into Eq. (1) to obtain the curvature curve 
at the maximum principal curvature direction as 
f (x) = b0x

2 + b3x + b5 , then calculate the extremal 
coordinate of f (x) as xmax = −b3

/(
2b0

)
;

(4) Put y = 0 into Eq. (1) to obtain the curvature curve 
at the maximum principal curvature direction as 
f (y) = b1y

2 + b4y + b5 , then calculate the extremal 
coordinate of f (y) as ymax = −b4

/(
2b1

)
;

(5) Calculate the distance between the current point p and 
the curvature extremal point as l = ‖‖

‖

(
xmax, ymax

)‖‖
‖
 . If l 

is less than the average sampling density � of the point 
cloud, then identify it as a feature point; otherwise, p 
is far away from the real feature point and identified as 
a general point;

(6) Project the extremal point onto the point cloud by MLS 
surface [56] to obtain its accurate position.

In order to prevent the aggregation of extreme points, 
which will adversely affect the discrimination of feature 
descriptors, we further screen the initial feature points by 

(1)

argmin
n
∑

i=1

(

b0x2i + b1y2i + b2xiyi + b3xi + b4yi + b5 − ci
)2

using the idea of NMS, that is, we only retain the point with 
the largest curvature in the local neighborhood as the final 
feature point. However, it should be pointed out that the cur-
vature is a second-order differential of a continuous surface 
and it is difficult to be estimated accurately in the case of 
data missing or noise using traditional methods. This also 
makes it difficult to detect the curvature extreme points on 
the noise model, which will greatly reduce the repeatability 
of feature points. Thanks to the progress of deep learning, it 
brings an opportunity to the development of feature detec-
tion. Different from the traditional methods, deep learning 
can improve the robustness of feature detection through the 
diversity of training data.

(2) Feature point detection network

The computational cost of the traditional algorithm for 
detecting feature points is relatively small, but the accuracy 
is reduced due to noise and other factors in the non-ideal 
case. Therefore, the main challenge is how to extract enough 
expressive features for each point to make the model more 
accurate while ensuring that the computational cost is not 
too large. Aiming at this challenge, we take the above theory 
as the screening criterion, and train a lightweight network as 
a feature point detector. The specific structure of the network 
is shown in Fig. 2. In this network, we take the position and 
curvature of the point cloud as input and extract the features 
through 3 Convolution layers and a Max-pooling layer, then 
use the full connection layer to map the learned features to 
the sample label space. The last layer of the network is the 
softmax layer, which is used to map the features of the last 
fully connected layer to a score vector.

For the implementation details of our detection task, we 
added curvature information to help the network detect fea-
ture points better, i.e., taking (x, y, z, curvature) as input. 
The output of the network is a two-dimensional score vec-
tor, representing the probabilities of two categories (feature 
points or not), respectively. Finally, we screen the required 

Fig. 2  Feature point detection 
network
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feature points by setting a probability threshold. In train-
ing, since we regard this task as a classification problem, 
we choose cross-entropy as the loss function which is often 
used to evaluate the performance of a classification model. 
We also added different levels of noise and random rotation 
to the samples to increase the diversity of samples. Sub-
sequent experiments show that those strategy is effective, 
which makes our feature point detection network receives 
better repeatability and robustness than the current main-
stream algorithms.

3.2  Deep feature description network

In order to process the scattered point cloud directly, our 
feature description network uses PointNet as the backbone, 
which solves the problem of point cloud disorder by using 
a symmetric function. Also, it uses a spatial transformation 
network to solve the network output changing caused by 
point cloud pose variation.

Nevertheless, PointNet was originally designed for point 
cloud classification, so its feature description is not optimal 
for point cloud registration, that is, the direct use of PointNet 
structure cannot get the optimal feature descriptor. There-
fore, as shown in Fig. 3, we modify the network structure 
to be Siamesed, and use the Contrastive Loss to fine tune 
the network parameters, so as to make the generated feature 
descriptor meet the needs of point cloud registration. At the 
same time, as the output of the network becomes binarized, 
the sample preparation process can be greatly simplified, and 
the difficulty of network training can also be greatly reduced. 
Specifically, we take the feature points(x, y, z) mentioned 
above as the input, finally generate a 1 × 1024 descriptor 
for finding matching points. During training, we input the 
descriptor into the Contrastive Loss for network’s learning.

It is noteworthy that compared with point cloud classi-
fication, the local attribute of feature description is more 
obvious, that is, the required neighborhood points to gener-
ate feature is much less and the solution space range required 
to search is much smaller. Therefore, as shown in Fig. 4, we 
simplified the MLP part of the original network. Specifically, 

our network has reduced four full connection layers, three 
batch normalization layers and two drop out layers. Experi-
ments show that the above modifications do not affect the 
discrimination of feature description.

In order to make the network be able to capture the chan-
nel differences, we insert an attention module at the last of 
each Siamese branch, that is, the CBAM module mentioned 
above. The original CBAM module contains two parts: the 
channel and the spatial attention. In the channel attention 
module, the network compresses the feature map in the spa-
tial dimension, obtains a one-dimensional vector, so as to 
obtain the channel weighted vector and extract important 
channel information. As CBAM is a lightweight module, the 
computing resource consumption of this module is almost 
negligible. On the other hand, spatial attention pays more 
attention to the spatial information of data. As mentioned 
before, the T-Net has eliminated the impact of pose chang-
ing, therefore, spatial attention has little improvement to our 
network. More importantly, spatial attention will highlight 
the main characteristics of the data while ignore the neigh-
borhood characteristics, which will have a negative impact 
on the feature description. Therefore, we dropped the spatial 
attention mechanism and only used the channel attention in 
our network.

After the above modifications, the final structure of our 
network is shown in Fig. 3. In the Siamese part of the net-
work, the two branches deal with the feature points from the 
source point cloud and the target point cloud, respectively. 
Specifically, the local neighborhood data set of each feature 
point 

(
x1, x2, ...xn

)
 is mapped into a one-dimensional vec-

tor after a multi-layer representation network, as shown in 
Eq. (2):

where f  represents the mapping from a point set to the vec-
tor, which is invariance to the order of the input points, F is 
the result vector, � and h∗ are continuous functions, which 
represent multi-layer perceptron networks.

(2)F = f
(
x1, x2, ...xn

)
= �

(

max
{
h
(
xi
)}

i=1,...n

)

,

Fig. 3  Our deep feature descrip-
tion network
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Next, we project the feature vector F into the channel 
attention module to generate a new feature map to empha-
size the differences of channels. The process is shown in 
the Eq. (3):

where MC(F) is the output of the attention module, 
W0 ∈ RC∕r×C , W1 ∈ R

C×
C

r  , � represents sigmoid, r is the 
reduction ratio.

It can be seen from the equation that the feature vector 
passes through the average pool layer and the maximum pool 
layer in parallel, then passes through a shared MLP, and 
finally generates a 1024-dimensional feature description vec-
tor through sigmoid processing and maximum pool.

3.3  Registration with virtual feature points

In order to ensure the stability of the calculation, it usu-
ally needs at least four pairs of matching points to get the 
registration parameters for traditional methods. However, 
when the overlapping of two point clouds is too small or 
the matching is disturbed by noise and outliers, no enough 
matching points can be found. In this paper, we propose 
the concept of virtual feature points. As shown in Fig. 5a, 
b, ▲and ●are the two real matching points. In order to 
complete the calculation of registration parameters, we 

(3)
MC(F) = s(MLP(AvgPool(F)) +MLP(MaxPool(F)))

= s
(
W1

(
W0

(
FC
avg

))
+W1

(
W0

(
FC
max

)))
,

move these matching points along their normal vector 
for a distance d to generate virtual matching points (rep-
resented by dotted lines). Finally, with the help of virtual 
corresponding points, the number of matching points 
meets the requirements, and then the registration param-
eters can be calculated.

At the same time, a fewer matching points means fewer 
sampling in the RANSAC algorithm. According to the 
sampling formula as shown in Eq. (4), if we set the sam-
pling success confidence � to 0.99 and the proportion w 
of real matching points in the initial result to 50%, then 
in classical RANSAC, the minimum number of samples n 
is 4, that is, the required sampling times k is 71. Instead, 
in virtual corresponding point algorithm, n is 2, and the 
number of sampling required is 16, which shows that our 
algorithm is more efficient than traditional methods.

Based on the above analysis, the calculation process of 
registration parameters combined with virtual correspond-
ing points and RANSAC is as follows:

(1) Randomly select two pairs of matching feature points 
in the source point set and the target point set, and then 
move the two points along their normal vector for a 
distance of 10 � , where � is the average sample density.

(2) Check the distance between the virtual corresponding 
points and the distance between the real corresponding 
points. If the difference exceeds 3 � , it indicates that 
they are not real matching points, and return to step (1).

(4)k = log (1 − t)∕ log (1 − wn).

Fig. 4  The modified PointNet 
and Channel Attention
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(3) Calculate the registration parameter R|t using the cor-
responding points, and transform all feature points in 
source point cloud by R|t.

(4) Search as many matching pairs as possible in the 
remaining feature points. That is, if the distance 
between the feature points in the source point cloud 
and a feature point in the target point cloud is less than 
3 � , it will be added to the matching point set.

(5) Optimize registration parameters using all matching 
point pairs found.

(6) Repeat step (1–5) according the Eq. (4), and select the 
one that finds the most corresponding points as the cri-
terion to obtain the optimal transformation parameters.

It is noteworthy that even if the accuracy of normal vec-
tor may be affected by noise, our method is not expected to 
be so since the major focus is on the consistency of normal 
vector. By using a larger neighborhood to calculate the nor-
mal vector, we can ensure that the consistency of the normal 
vector is not affected by the noise and improve the efficiency 
in the meantime. Although this may lead to the increase of 
absolute error in numerical value compared to the general 
method, it will not affect the final result as long as the con-
sistency of normal vector is maintained..

4  Experiments

This section verified the algorithm in this paper from the 
aspects of repeatability of feature extraction, ablation experi-
ment for feature point detection, discrimination of descrip-
tors, universality of the algorithm, etc. The algorithm is 
implemented in pytorch and tested on a PC with Intel Core 
i7 8700 CPU@3.2 GHz, 16GB RAM and NVDIA GTX 
1080Ti GPU. When testing the alignment effect, we mainly 

use the data set from the Stanford 3D scan repository, in 
addition to data sets from [20] and [57], and some mod-
els from ModelNet40 [58] and the KITTI outdoor LiDAR 
dataset [59].

For training details, we train our feature point detection 
network/feature description network using Stochastic Gradi-
ent Descent for 50/70 epochs, with initial learning rate 0.01, 
momentum 0.9, and weight decay  10–4. The learning rate is 
exponentially decayed by 0.5/0.1 every 10 epochs. To ensure 
the smooth form in the loss trajectory, we use batch size 128 
and 64, respectively.

4.1  Repeatability of feature points

In order to fully verify the effect of our algorithm, we 
selected four models (armadillo, bunny, dragon and Bud-
dha) as the test objects and take repeatability as a metric to 
measure the results. Specifically, we calculate the distance 
between each pair of adjacent points and take 5 �(the aver-
age sampling density of a point cloud) as threshold. If the 
position draft after noise is added is less than the threshold, 
the feature point is recognized as repeatable. We report the 
percentage of repeatable in Table 1.

To simulate the real data, we add the noise along the nor-
mal vector, that is, along the surface of the object (coor-
dinate z axis), which produces the maximum error. In the 

Fig. 5  Registration with virtual 
feature points. a Given two 
pairs of real matching points in 
source and target point cloud 
and then generate virtual cor-
responding feature points. b 
Using RANSAC for registra-
tion. c Real and virtual match-
ing points after registration

Table 1  Average repeatability

Repeatability Dragon Armadillo Bunny Happy

ISS 49.23 72.87 82.2 59.26
Harris 65.95 76.83 98.13 45.9
UKPGAN 67.22 80.91 99.16 67.75
Ours 58.86 83.41 98.94 69.69
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experiments, we test repeatability by adding 0.5 � noise to 
the point cloud models and comparing the feature position 
offset with that before adding. Also, we compared our results 
with three well-known feature point detectors, ISS, Harris 
and UKPGAN [14].

Figure 6 shows the experimental results of the armadillo 
model. The blue points in the figure are the feature points 
detected without noise, and the purple points are the fea-
ture points detected with 0.5 � noise added to the model. 
Statistic shows that the repetition rate of our algorithm is 
83.41%, that of UKPGAN is 80.91%, that of Harris/ISS 
is 76.83%/72.87%, which means our method is robust and 
stable.

Using the same criteria, we tested the repeatability of 
feature detection on the other three models, and the quali-
tative results are shown in Figs. 7, 8 and 9, respectively. 
Statistics show that the average repeatability of our algo-
rithm is 17% higher than that of ISS, 10% higher than that 
of Harris and as accurate as UKPGAN. The reason for this 
is that, both ISS and Harris methods calculate directly on 
the discrete point cloud. Therefore, the surface information 
at non-sampling points cannot be used, and the change of 
sampling points caused by noise is more likely to affect the 
stability of calculation. UKPGAN perform better than ISS 
and Harris thanks to estimating local reference frame (LRF). 
Its salient information distillation can force UKPGAN to 

Fig. 6  Feature point drift under 0.5 � noise for the Armadillo model

Fig. 7  Feature point drift under 0.5 � noise for the Bunny model

Fig. 8  Feature point drift under 0.5 � noise for the Buddha model
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extract irrelevant points of point cloud models so that it can 
achieves high repeatability on many models. However, the 
focus of its training was not the model with rich surface 
feature information, which resulted in his performance in 
model armadillo and Buddha being inferior to ours. We use 
a continuous surface to fit the local curvature distribution, 
which can make more comprehensive use of the potential 
surface information. Also, the least square criterion used in 
the fitting can further filter out the influence of noise. More 
importantly, out lightweight network is much simpler than 
UKPGAN, which greatly improves the efficiency of subse-
quent registration. Consequently, out method outperforms 
UKPGAN and is significantly better than Harris and ISS 
(Fig. 10).

4.2  Ablation experiment

4.2.1  Feature detection network

In an attempt to ensure that our detection network has the 
highest accuracy and the minimum network computation, 
we compared the detection accuracy of the network with and 
without transformation matrix, and when the number and 
dimensions of convolutional layers are different.

Accuracy and recall are common measures to determine 
the validity of a detection network. They are defined as:

Here, TP, FP and FN are the true positives, false positives 
and false negatives, respectively.

PointNet set up two layers of STN network to solve the 
problem of invariance under transformations. They are 
designed to adjust the position of point cloud in space and 
for the alignment of features, respectively. PointNet’s origi-
nal task was to classify 3D objects, while we classify points 
in the point cloud model, so the features of each point can be 
extracted well without adding the transformation matrix. We 
specifically selected the armadillo model and add 5 � noise 
for ablation experiments. Specifically, we take the feature 
points under the clean point cloud as the benchmark and 
enumerate seven schemes for comparison. Among them, 
scheme 7 is to calculate the curvature extremum points with 
the traditional algorithm and screen the feature points with 
the idea of NMS (so-called NMS).

As shown in Table 2, the first three schemes contain STN 
and convolutional layers, while the last three schemes only 
contain convolutional layers. The sizes of the convolutional 
layers a, b, c and d are 4 × 64 × 1,64 × 64 × 1,64 × 64 × 1,64 × 

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

Fig. 9  Feature point drift under 0.5 � noise for the dragon model

Fig. 10  Registration result with describers from original PointNet (b), our feature description network without (c) and with attention module (d)



Coarse registration of point cloud base on deep local extremum detection and attentive… Page 11 of 21 23

64 × 1,64 × 128 × 1, respectively. We can see from the table 
that deep learning schemes performed better than traditional 
methods, and the scheme with three convolutional layers has 
the best results. The precision of scheme 2 is slightly better 
than that of scheme 5, but the recall is not as good as the lat-
ter. Moreover, since scheme 2 contains two STN networks, 
its computation is much larger. In summary, we choose the 
scheme 5 as our final feature point detection model.

4.2.2  Channel attention

To achieve the best registration effects, we registered the 
Armadillo model with original PointNet, our revised feature 
description network without/with attention module as back-
bone, respectively. As shown in Fig. 7, when using original 
training weight of the PointNet, there is a large deviation 
on the model legs, and the overlap rate is only 64.15% after 
the registration, which shows that the PointNet is not suit-
able for point cloud registration before modification. After 
we simplified the MLP layer and turned the network into a 
Siamese structure, the generated descriptors become more 
in line with the needs of point cloud registration, and the 
registration effect was greatly improved, with an overlap rate 
of 94.04%. Finally, when the attention module is added, the 
network learns the differences between channels, and the 
registration rate is improved to 99.41%, which verified the 
effect of the attention module.

4.3  Discrimination of descriptors

In order to verify the discrimination of feature descriptors, 
we first extract 500 curvature extreme points from the reg-
istered data as feature points; then, the feature descriptors 
are calculated by using the source point cloud and target 
point cloud before registration. Finally, we establish the 
matching relationship of feature descriptors through KD 
tree, and count the proportion of correctly matched feature 
points to the overall feature points (we call this criterion 
Fetch-Ratio later). Obviously, the better the discrimination 
of feature descriptors, the more feature points can be cor-
rectly matched.

In Table 3, we list the Fetch-Ratio of the four models 
under different noise levels and compare with 3DMatch and 
DIP [49]. Horizontally, in each noise level, the Fetch-Ratio 
of our feature description network is generally greater than 
DIP and 3dmatch, which means that our network can make 
better use of the feature information contained in the point 
cloud. DIP is only focused on the local geometric informa-
tion, which makes its descriptors more distinctive on dif-
ferent models. Consequently, DIP outperforms our method 
in model bunny and dragon. Vertically, both algorithms are 
inevitably affected by noise, but our method is still higher 
than DIP and 3dmatch at each noise level. DIP is particu-
larly affected by noise, which means although the features 
extracted by DIP are rotation invariant, they are not robust 
and general when being applied to models with strong noise. 
On the whole, the descriptors we generated are more robust 
and discriminative than the descriptor of DIP and 3dmatch, 
and will also bring some improvement in the subsequent 
registration effect.

4.4  Registration effect

In this section, we tested the registration effects of 
ISS + FPFH, 3DMatch, DIP [49], Predator [48] and our algo-
rithm under the conditions of noise-free, 0.1 � , 0.5 � noise 
levels and 10% outliers. The dataset is shown in Fig. 11 and 
their average sampling density is 0.001mm. We recorded 
the average angle of the normal vector and translation in the 
common part of the data as the initial conditions. The angle 
and translation in the common part of armadillo is 111°and 
0.079mm, respectively.

In all experiments, the number of match points used by 
3dmatch/DIP/Predator is 500(which is the default value), 
and the number of key points selected by our algorithm is 
128. We report all the registration rate in Table 4.

Table 2  Precision and recall

Scheme Precision Recall

1 STN + 4conv(a, b, c, d) 0.79 0.76
2 STN + 3conv(a, b, c) 0.85 0.93
3 STN + 2conv(a, b) 0.74 0.78
4 Only 4conv(a,b, c, d) 0.8 0.88
5 Only 3conv(a, b, c) 0.83 0.94
6 Only 2conv(a, b) 0.79 0.8
7 NMS 0.77 0.79

Table 3  Fetch-ratio

Fetch-ratio 3DMatch % DIP % Ours %

Armadilo5 � 37.76 69.12 71.43
Armadilo10 � 27.55 30.89 33.67
Armadilo20 � 19.39 18.76 19.39
Bunny5 � 11.76 36.14 33.33
Bunny10 � 13.73 17.25 17.65
Bunny20 � 7.84 6.54 11.76
Dragon5 � 25 55.23 50.78
Dragon10 � 19.53 20.58 26.56
Dragon20 � 14.06 15.74 18.75
Buddha5 � 41.18 70.63 80.21
Buddha10 � 46.52 41.06 51.34
Buddha20 � 21.39 19.11 24.6
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Figure 12 shows the registration effects of the three 
algorithms for the noise-free point cloud. It can be found 
that although ISS filters out the points with significant 
features in the point cloud, the position of the extracted 
feature points were changed greatly due to the resampling 
and noise, which makes registration results deviate greatly 

at the head and legs. In Fig. 12b, with the better descriptor 
generated by 3DMatch, the registration effect of the head 
and legs of the model is improved. The overlap-attention 
block in Predator can exchange early information between 
the latent encodings of the two point clouds which greatly 
improves registration performance. Both DIP and Predator 
perform better than the first two methods, except for some 
details like ears and hands. Our algorithm adopts curvature 
extreme points with better repeatability, and uses the chan-
nel attention mechanism to strengthen the discrimination 
of descriptors further. Therefore, the registration effect is 
the best of the five, and the model fitted well at the head, 
legs and hands.

In Fig. 13, we added Gaussian noise with amplitude 
of 0.1 � to the point cloud to verify the robustness of our 
algorithm. The results show that the ISS + FPFH has poor 
robustness, mainly because the LCS constructed by FPFH 
is affected by the noise, resulting in deviation of the reg-
istration. 3DMatch performs better than ISS + FPFH, but 
there is still a large deviation at the head of the model. DIP 

Fig. 11  Original data

Table 4  Coarse registration rate

Bold indicates the highest Coarse registration rate for all methods at 
each noise level, indicating that our method is better than other meth-
ods

Method Noise level

0 0.1 � 0.5 � 10% Outlier

ISS + FPFH 69.77 66.15 56.7 21.8
3DMatch 68.20 67.07 70.45 60.56
DIP 89.67 83.54 79.21 68.14
Predator 85.88 79.88 75.43 75.98
Our 97.08 95.84 96.84 82.85

Fig. 12  Registration result for noise-free point cloud
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and Predator pay few attentions to noisy data when train-
ing, so they are affected and the registration rate decreases 
about 6%. Our feature network is trained with noisy data, 
so the algorithm has the best robustness in the case of 
noise, and the registration rate still reached 95.84%.

In the experiment in Fig. 14, we increased the noise 
amplitude to 0.5 � . The registration effect of ISS + FPFH 
is further deteriorated, and the hand and head of the model 
were deviation greatly. The registration effect of 3DMatch 
was also worse. As previously analyzed, DIP is vulnerable 
to noise and Predator is committed to improving registra-
tion effect in low-overlap scenario, which leads to a further 
deterioration of the effect. In contrast, our algorithm still 
performed well, the registration results in the parts with sig-
nificant characteristics such as the head, hands and legs of 
the model are comparable to the case of noise-free, which 
means our algorithm still has high robustness in the case of 
strong noise.

In the experiment of Fig. 15, we added 10% outliers to 
both models. It can be seen from the results that the ISS 
algorithm has poor robustness to outliers, resulting in 
registration failure and the point cloud model is directly 
flipped. 3DMatch and DIP random sample the point cloud 

to generate matching points, so it has a considerable chance 
to include outliers to the matching set, resulting in a poor 
registration effect. The overlap-attention block of Predator 
can predict salient points lying in the overlap region, which 
makes it achieve an unexpected good result on models with 
outliers. In our algorithm, when selecting curvature extreme 
points, a distance threshold is used to filter outliers, so the 
probability that an outlier point is selected is rare. At the 
same time, we also use a distance threshold constraint on the 
virtual corresponding points, even if outliers are selected, 
they will be filtered at this stage, which makes the final reg-
istration accuracy not be reduced too much.

As shown in Table 4, we take the coarse registration rate 
as our metric to evaluate the effect of our algorithm on the 
armadillo model. Specifically, we calculated the proportion 
of the number of points whose nearest neighbor distance 
meets the threshold (0.1 � ) after coarse registration and fine 
registration, and calculated the ratio of the two. Horizon-
tally, our algorithm performs well in all the noise cases. The 
registration rate reaches 97.08% for the noise-free situation, 
and only decreases by 1.24% and 0.24% in the case of 0.1 
� and 0.5 � noise, respectively. Although the registration 
rate decreases by 14.23% when 10% outliers are added, it 

Fig. 13  Registration result of 0.1 � noise level

Fig. 14  Registration result of 0.5 � noise level
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is still much higher than other methods. In other words, the 
registration accuracy of our algorithm will not differ much 
with noise and outliers. However, 3DMatch performs much 
worse than our algorithm. The highest registration accuracy 
is only 70.45%, and it drops to 60.56% rapidly when outliers 
are added. The registration accuracy of ISS + FPFH under 
0.5 � noise and 10% outliers drop by 23.07% and 47.97%, 
respectively, which is much more obvious, and the registra-
tion accuracy is only 46.7% and 21.8%. DIP and Predator 
seem to have a greater decline than 3DMatch when noise is 
added, but their overall performance is still better than first 
two methods. Vertically, our algorithm also performs better 
than other four methods in all cases, which shows that the 
registration accuracy of our algorithm is greatly improved 
compared with both deep learning algorithms and traditional 
algorithm.

4.5  Algorithm universality

Aim to verify the generality of our algorithm, we select 
five more models including the Dancing Children, the 

Horse, the Bunny, the Buddha and the Dragon. The origi-
nal data is shown in Fig. 16 and their average sampling 
density is 0.001mm. For initial conditions, the average 
angle and translation in the common part of five models 
is 7°and 0.1 mm, respectively. Among them, the Danc-
ing Children model and the Horse model are produced 
manually by obtaining visible point clouds from different 
perspectives, while the other three models are the actual 
scanning data from the Stanford 3D scanning repository. 
We also add 0.5 � noise to all those models to increase the 
challenge.

As shown in Figs. 17, 18, 19, 20, 21, ISS + FPFH and 
3DMatch perform poorly in several models. For example, 
in Fig. 17, they deviations a lot at the head and base of the 
second child, and there are also large deviations in the early 
faucet in Fig. 21. DIP and Predator achieve an excellent 
result in Figs.17, 18, 19. However, they perform not so well 
in models with rich surface feature information like Figs. 20 
and 21. The registration effect of our algorithm has signifi-
cant improvements over ISS + FPFH and 3DMatch. When 
facing models with smooth surface, we can do as well as 

Fig. 15  Registration result of 10% outliers

Fig. 16  Original data
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DIP and Predator. And, our algorithm can still maintain a 
high level in Figs. 20 and 21 where other methods achieve 
unsatisfactory results.

We report all the coarse registration rate on five models 
in this section. We can see from Table 5 that although our 
algorithm cannot get best results on every model, the maxi-
mum gap between us and the best method is less than 2%. 
Moreover, our average registration rate has reached 90%, 
which means the generalization ability of our algorithm.

4.6  Registration on more dataset

Recently, more and more papers [38, 41–45, 49] focus on 
indoor scenes, ModelNet40 [58] and KITTI outdoor LiDAR 

dataset [59]. In order to verify the university of our algo-
rithm further, we select several models from 3DMatch 
[20], NDT [57], ModelNet40 and KITTI to compare with 
two state-of-the-art methods. Specifically, Fig. 22 is from 
3DMatch and its angle and translation in the common part 
is 13 and 0.15mm, respectively; Fig. 23 is from NDT and 
its angle and translation in the common part is 5°and 0.037 
mm, respectively; Figs. 24 and 25 is from KITTI; Figs. 26, 
27, 28 is from ModelNet40.

Indoor scene point cloud data is usually characterized 
by structural occlusion and self-similarity. These factors 
have brought some difficulties to the registration of indoor 
scene registration. ModelNet40 is usually used to evalu-
ate the performance of 3D shape classification algorithms. 

Fig. 17  Registration result of the Dancing Children model

Fig. 18  Registration result of the Horse model

Fig. 19  Registration result of the Bunny model
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KITTI includes multi-view images taken by autonomous 
vehicles and some lidar data. It is a great challenge to 
perform well on these datasets. As shown in Figs. 22, 23, 
24, 25, 26, 27, 28, with highly differentiated descriptor, 
all DIP, Predator and our algorithm achieve an excellent 

result on all datasets. According to statistics, the aver-
age registration rate of three methods is higher than 85%, 
which also shows that we are able to complete the task of 
registration on these challenging datasets.

4.7  Registration with two matching points

[48] points out that although the low-overlap regime is 
very relevant for practical applications, the registration 
performance of some state-of-the-art methods deteriorates 
rapidly when the overlap between the two point clouds is 
very low (< 30%).When the overlapping area of two point 
clouds is too small, it will bring great challenges to align-
ment, because it will lead to that only few feature points 
can be searched in the overlapping area. Also, the feature 
points in non-overlapping areas will bring more interfer-
ence to feature point matching in that situation. Figures 29 
and 30 show such scenarios. In the overlapping region of 

Fig. 20  Registration result of the Buddha model

Fig. 21  Registration result of the Dragon model

Table 5  Coarse registration rate on dataset of generality test

Method Model

Dragon Chil-
dren

Horse Bunny Buddha

ISS + FPFH 86.25 78.54 76.91 86.15 79.24
3DMatch 81.3 81.88 75.7 84.29 82.13
DIP 89.74 88.54 88.69 89.16 90.44
Predator 77.62 91.23 90.05 92.35 80.17
Our 90.13 90.81 89.46 94.58 88.54
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the two models in the figure, only three matching points 
located in the overlapping region can be found in armadillo 
and two in dragon. Therefore, the traditional methods can-
not stably calculate the registration parameters. However, 
the overlap-attention block can greatly improve performance 
in the low-overlap scenario. We introduced the concept of 
virtual feature points, so more virtual matching points can 
be constructed by offsetting the matched points along its 
normal vector. Finally, enough corresponding points can 

still be got to calculate the registration parameters. It can 
be seen from the figure that our method outperforms Preda-
tor because the overlapping region is too small for Predator 
to extract good enough features for registration. Thanks to 
our proposed virtual matching points, two models coincide 
well after registration and our registration rate reaches 86%, 
which is higher comparison than Predator’s 79%.

Fig. 22  Registration result of the indoor scene model (1)

Fig. 23  Registration result of the indoor scene model (2)

Fig. 24  Registration result of KITTI (1)
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5  Conclusion

In this paper, a coarse point cloud registration algorithm 
based on local extremum feature and depth descriptor 

matching is proposed. The algorithm identifies the curva-
ture extreme points as feature points through a lightweight 
network, which improves the repeatability and robustness 
of feature detection; meanwhile, it generated highly differ-
entiated descriptors through a lightweight attention-based 

Fig. 25  Registration result of KITTI (2)

Fig. 26  Registration result of ModelNet40 (1)

Fig. 27  Registration result of ModelNet40 (2)
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Fig. 28  Registration result of ModelNet40 (3)

Fig. 29  Registration with virtual feature points (armadillo)

Fig. 30  Registration with virtual feature points (dragon)
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feature description network. We also propose a method 
to generate virtual corresponding points based on feature 
points and their normal vectors, which reduces the mini-
mum number of feature points required for registration 
from 4 to 2. Experiments show that the proposed feature 
extraction, description and registration methods have more 
advantages than traditional methods, and have achieved 
good registration results in various challenging scenes.

In the future, we will do more research from the following 
aspects: first of all, when testing Fetch-Ratio, we found that 
although the performance of our network is still better than 
3dmatch and DIP, the drop of Fetch-Ratio of our network 
is relatively large when the noise level reaches a very high 
level. How to further improve the robustness of the network 
in high noise environment is one of our research directions. 
Secondly, we find that the distance along the normal vector 
needs to be turned manually when generating virtual match-
ing points. In future studies, we will further improve the 
algorithm.
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