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Abstract

Digital image inpainting technology has increasingly gained popularity as a result of the development of image processing
and machine vision. However, digital image inpainting can be used not only to repair damaged photographs, but also to
remove specific people or distort the semantic content of images. To address the issue of image inpainting forgeries, a hybrid
CNN-Transformer Network (CTNet), which is composed of the hybrid CNN-Transformer encoder, the feature enhancement
module, and the decoder module, is proposed for image inpainting detection and localization. Different from existing inpaint-
ing detection methods that rely on hand-crafted attention mechanisms, the hybrid CNN-Transformer encoder employs CNN
as a feature extractor to build feature maps tokenized as the input patches of the Transformer encoder. The hybrid structure
exploits the innate global self-attention mechanisms of Transformer and can effectively capture the long-term dependency
of the image. Since inpainting traces mainly exist in the high-frequency components of digital images, the feature enhance-
ment module performs feature extraction in the frequency domain. The decoder regularizes the upsampling process of the
predicted masks with the assistance of high-frequency features. We investigate the generalization capacity of our CTNet on
datasets generated by ten commonly used inpainting methods. The experimental results show that the proposed model can
detect a variety of unknown inpainting operations after being trained on the datasets generated by a single inpainting method.

Keywords Image inpainting detection - Deep neural network - Hybrid CNN-Transformer encoder - High-pass filter

1 Introduction

Image inpainting is the process of recovering an image
from a degraded version according to the residual image
information. Digital image inpainting technology emerged
in the early twentieth century, and was initially used to
restore ancient artworks, cultural relics, and paintings.
With the explosive growth of digital information, image
inpainting technology is now flexibly used on various
occasions, including image retouching, image denoise [1],
watermark erasing [2], film special effects, and background
beautification.
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In recent years, digital image inpainting technology has
become a research hotspot [3—10], which can be broadly
classified into traditional image inpainting technology and
deep learning-based image inpainting technology. Tradi-
tional digital image inpainting techniques [3—6] include
diffusion-based methods and exemplar-based methods.
Traditional digital image inpainting techniques are lim-
ited by the use of local diffusion information and can not
create complex textures or semantic components [11]. To
learn semantic features of the image, deep learning-based
image inpainting technologies [7—10] train inpainting mod-
els on large-scale datasets and achieve impressive results
across a wide range of application scenarios [12]. Benefit-
ing from the use of adversarial networks, these methods can
adapt to different resolutions and generate missing objects
automatically.

However, the image inpainting technique acts as a two-
edged sword. One can either use image inpainting to restore
the integrity of the image or tamper with the image by filling
in the gaps left by object removal, as shown in Fig. 1. With
the development of image editing equipment, the tampering

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00530-023-01184-w&domain=pdf

3820

F. Xiao et al.

Fig. 1 Examples of image inpainting. Left is the original image, and
the right is the inpainted image

traces hidden in inpainted images become more difficult to
be identified by human eyes. If image inpainting technolo-
gies are maliciously used in news media, judicial forensics,
or to mislead the public, they will cause great harm to peo-
ple’s daily life and bring about social and political instabil-
ity. To distinguish the authenticity of images, the in-depth
research on digital image inpainting detection has attracted
the attention of many researchers.

Early image inpainting detection methods mainly iden-
tify inpainting regions by calculating the similarity features
between image blocks [13—17]. As convolutional neural
networks become more prominent in computer vision,
more researchers have turned to inpainting detection mod-
els incorporating convolutional neural networks [18-24].
These deep learning-based image inpainting detection mod-
els show apparent advantages in extracting image inpainting
traces and reducing false alarm rates.

Although deep learning-based approaches have yielded
positive results in image inpainting detection, they often
have issues such as the lack of generalizability and rely-
ing on specific features and data distribution [25]. Current
inpainting forensic technologies generally use CNN as the
feature extractor, which tends to learn content features from
the image, and it is easy to ignore tiny artifacts incurred
during the inpainting process. At the same time, the convolu-
tion and downsampling operations in the forensic network
may bring about information loss in feature representation,
and the bilinear upsampling can also blur the precise mask
predicted by the network.

In view of the above shortcomings, this paper constructs
a hybrid CNN-Transformer network, which consists of the
hybrid CNN-Transformer encoder, the feature enhance-
ment module, and the decoder module, for image inpaint-
ing detection and localization. The key idea of the hybrid
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CNN-Transformer encoder is to capture long-range depend-
encies of images through self-attention mechanism of Trans-
former. The feature enhancement module utilizes hierarchi-
cally combined layers to extract deep frequency features,
which the decoder incorporates into the upsampling process
of the predicted mask as extra supervision to improve the
generalization capability. We optimize the CTNet framework
using a hybrid loss function consisting of pixel-level and
image-level loss, reducing the impact of class imbalance in
the training dataset. Lastly, we provide a comparative analy-
sis to investigate both the performance and generalization
of our model.

The main contributions of our work include the
followings:

1) We introduce an encoder with a hybrid CNN-transformer
architecture for image inpainting detection, which makes
up for the defect of Transformer exclusively focusing on
modeling the global context. The hybrid encoder takes
full advantage of the characteristics of CNN and trans-
former to extract local and global inpainting features.

2) The high-frequency features are applied to supervise the
upsampling process of the extracted feature map output
by the hybrid encoder, which results in better accuracy
in detecting inpainted regions.

3) We tackle the challenge of constructing an image
inpainting detection method that attains good general-
izability for a variety of unseen inpainting operations
and, thus, is not limited to a specific inpainting method.

Experimental results show that our model achieves state-of-
the-art image inpainting detection performance on the test
set generated by ten commonly used inpainting methods.
The comparative experiments demonstrate the effectiveness
and generalization ability of our approach.

The rest of the paper is organized as follows. Section 2
briefly reviews several works related to image inpainting
approaches, inpainting detection, and Transformer. Section 3
presents the details of our method. Experimental results are
discussed in Section 4, including the experimental results of
our model and comparison with state-of-art methods. Sec-
tion 5 makes a summary of our work.

2 Related work
2.1 Image inpainting

Many methods have been proposed for image inpainting,
including traditional methods based on diffusion or patches
[26-34], and those based on deep learning [35-43]. Bertal-
mio et al. [26] proposed the first diffusion-based approach
in 2000, which smoothly propagated the image information
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along the isophote to fill the missing region. Telea et al.
[31] proposed an inpainting algorithm based on propagat-
ing an image smoothness estimator along the image gradi-
ent, which was simple to implement. Bertalmio et al. [32]
involved Navier—Stokes equations for an incompressible
fluid, which had the benefit of well-developed numerical
results. Herling et al. [33] presented an approach based on
high-quality image inpainting and enabled the realization of
Diminished Reality applications. Huang ef al. [34] proposed
an algorithm for automatically guiding patch-based image
completion leveraging mid-level structural cues.

Traditional image inpainting methods use the internal sta-
tistic information of the image, such as the edges of damaged
parts or similar image patches, which lack global semantic
information and can not produce non-continuous contents.
To solve the shortcomings of traditional methods, image
inpainting technology based on deep learning has gradually
become a research hotspot. Deep learning-based techniques
for image inpainting combine global semantic and texture
information, significantly improving inpainting effects. Yu
et al. [39] presented a novel generative network with a con-
textual attention layer, which can not only synthesize image
structures but also use neighboring images features. Yan et
al. [40] introduced a shift-connection to U-Net, which exhib-
ited fast speed with fine details by deep feature rearrange-
ment. Nazeri et al. [41] developed a two-stage adversarial
model that comprised of an edge generator and an image
completion network which can be used as an interactive
image editing tool. To tackle the challenge of visually plau-
sible results caused by deep learning-based methods, Wu et
al. [42] suggested an end-to-end generative model through
combining a local binary pattern. Considering the impact of
the corrupted regions of the image on normalization, Yu et
al. [43] proposed a spatial region-wise normalization that
divided pixels into small regions and computed the mean
and variance for normalization.

2.2 Inpainting detection

Many inpainting detection approaches have been developed
to prevent the malicious use of inpainting operations. Wu et
al. [13] proposed a blind detection method based on zero-
connectivity features and fuzzy membership. However, the
semi-automatic detection method requires manual selection
of suspicious areas, which requires a large amount of com-
putation. Bacchuwar et al. [14] improved the algorithm of
[13] by converting the image to Y-Cb-Cr format and using
only the luminance component Y for detection, which speeds
up the computation. Aiming at the problem that the uni-
form region in the image background will interfere with the
detection process, Chang et al. [15] applied a multi-region
relation technique to identify suspicious image patches from
homogeneous regions.

Zhu et al. [16] built a convolutional neural network to
detect patch-based inpainting operations. The authors con-
structed a class label matrix for each pixel of the image in the
process of training the encoder—decoder network. Li ef al.
[18] employed a fully convolutional network based on high-
pass-filtered image residuals, which enhanced the difference
between the inpainted and untouched region. Considering
the spatial and channel correlations of feature maps, Xiao
et al. [44] introduced a squeezed excitation block, which is
applied in the feature extraction and upsampling stage to pay
more attention on the spatial location and channel depend-
ence. Zhang et al. [19] used a modified U-shaped feature
pyramid network (FPN) to extract multi-scale inpainting
features. Wang et al. [20] used MASK R-CNN [45] com-
bined with FPN to extract features, which can detect images
tampered by conventional inpainting methods and images
modified by deep learning-based methods. Li ez al. [21] pro-
posed a method for generating a universal training dataset,
which imitates the noise pattern discrepancies between the
real and synthesized contents to train universal detectors.
Chen et al. [22] proposed a multi-view feature learning with
multi-view supervision network that contained novel ele-
ments designed for learning semantic-agnostic features. Wu
et al. [23] introduced MT-Net, a unified deep neural archi-
tecture that can handle images of arbitrary sizes and many
known forgery types. MT-Net detects forged pixels by iden-
tifying local anomalous features, thus it also performs well
in image inpainting detection. The forensic model proposed
by Wu et al. [24] consists of three parts, namely feature
enhancement, feature extraction, and decision block. Their
model is designed with the assistance of the NAS algorithm
and the embedded attention modules to optimize the latent
high-level features. Yang et al. [46] provides a near original
image augmentation strategy to push the inpainted images
closer to the original images. The authors add hard samples
into the training set and as a result help improve the accuracy
of their model.

However, many state-of-the-art image inpainting detec-
tion methods have problems such as heavy computation and
time-consuming pre-processing, most of which also suffer
from poor generalization ability. To address these issues, we
propose a pixel-level inpainting detection method based on
a hybrid CNN-Transformer encoder, which reduces com-
putation and enhances the generalization ability to unseen
inpainting methods.

2.3 Transformer

Transformer [47] is a classic NLP model proposed by the
Google team in 2017 and has been widely used in NLP and
machine translation. Based on the encoder-decoder archi-
tecture, Transformer ultimately uses self-attention mecha-
nism which replaces the temporal structure of the recurrent
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neural network. Generally, Transformer-based models are
trained on large text corpus and fine-tuned for specific tasks
to achieve better computational efficiency and accuracy.
Due to its remarkable ability to supporting parallel process-
ing of sequences, the Transformer architecture has proven
its potential in reducing training time significantly. Conse-
quently, this technique has since become the state-of-the-art
approach in many NLP tasks.

Inspired by Transformer, the Vision Transformer (ViT)
proposed by Dosovitskiy et al. [48] breaks the isolation
between NLP and computer vision (CV), and successfully
applies Transformer to image block sequences for further
image classification tasks. The pioneering work of ViT
model uses a self-attention mechanism to capture global
features from shallow networks, which solves the problem
of CNN’s difficulty in capturing and storing long-range
dependency information. When pre-trained on large-scale
datasets and transferred to multiple mid-sized or small image
recognition datasets (ImageNet [49], CIFAR-100 [50],
VTAB [51], etc.), ViT demonstrates superior transferability
on downstream tasks.

There are many follow-up studies [52-56] extending
ViT. For example, Touvron et al. [52] introduced the pyra-
mid structure into the Transformer, which performed bet-
ter on dense prediction tasks. Wang et al. [53] proposed
a teacher—student distillation training strategy for ViT,
and added a distillation token as supplementary informa-
tion for the classification token. The above studies reveal

Fig.2 The architecture of the
proposed CTNet
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the effectiveness of Transformer in computer vision tasks;
thus, we propose an image inpainting detection method that
combines Transformer and CNN encoder.

3 Proposed method

In this study, we propose an image inpainting detection
method based on the CNN-Transformer hybrid structure
(abbreviated as CTNet). On the one hand, it effectively
resolves the issue that a CNN network must transmit infor-
mation onto the subsequent layers and cannot capture the
long-term dependence relationship. On the other hand, the
decoder upsamples the features encoded by the Transformer
and incorporates residual noise as an auxiliary informa-
tion into the upsampling process to improve the localiza-
tion accuracy. The overview of the CTNet architecture is
presented in Fig. 2. We elaborate three main blocks of the
CTNet, i.e., the hybrid CNN-Transformer encoder, the fea-
ture enhancement module and the decoder module.

3.1 Hybrid CNN-Transformer encoder module
3.1.1 Convolution block
The original ViT encoder aggregates global features and

ignores image details at low resolutions when used for
classification tasks. This property is not conducive to
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reconstructing the full resolution image during the upsam-
pling process, resulting in rough edges output by the
decoder. Consequently, we first encode the image into high-
level feature representations using a CNN, which are then
reshaped into a 2D sequence as the input of the ViT encoder.

The CNN part of the hybrid encoder is shown in Fig. 3.
Given an RGB image x € RWXC wjith 3 channels and its
corresponding binary mask y, we first feed image x into the
ResNet50 [57] network pre-trained on the ImageNet dataset
to extract the output feature representations of the fourth
layer.

The stage O in Fig. 3 is the first layer of the ResNet 50
network, which performs convolution, regularization, acti-
vation functions, and max pooling on the input image. The
stage 1-stage 3 in Fig. 3 are the second—fourth layers of
the ResNet 50 network, each of them contains two resid-
ual blocks with skip connection, namely Conv Block and
Identity Block. The Conv Block is applied to change the
dimension of the feature maps, while the Identity Block cor-
responds to the case where the input has the same dimension
as the output. The utilization of the residual module solves
the problem of gradient vanishing or exploding when train-
ing deep neural networks, and it can also preserve and ensure
data integrity to a certain extent.

The output feature representations of
the first—fourth layers of ResNet50 are:
Fy e Rgxgxm’]y] c R%X%XZS()’ F e [R%X%XS'Z, F e RiEX16X1024 We

employ F} as the input of the Transformer encoder.

Fig.3 The CNN part of the
hybrid encoder, (C, H, W)

stage 0

3.1.2 Transformer Encoder Block

The Transformer encoder employed in ViT first splits
the input image x € R™W*C into N non-overlap-
ping patches of the size PXP, obtaining a flattened 2D
sequence:{x; eRPe|i=1,2... N}, where sequence

length N = H:ZW. Then, the encoder uses a trainable linear
projection to map the serialized xp into the D-dimensional
embedding space. To obtain the 1 X 1 patch sequence z;,
each block is randomly initialized and embedded through

the convolution layer with a kernel size of P X P:

z, = [xcls; 058

xpB; B s pE] + B, (M
where z, is the 1 X 1 patch sequence input to the L-layer
Transformer encoder after linear mapping and position
embedding, x, is a class token that gathers information
from all the patches, E € R(”*2 denotes the trainable
linear projection, and E,,; € R¥*D"? denotes the position
embedding.

The Transformer encoder consists of L layers of Multi-
head Self-Attention (MSA) and Multi-Layer Perceptron
(MLP) modules, as shown in Fig. 4. For the [-th layer of
the encoder, we denote its input as z,_; and the output as
z,, and apply Layer Normalization (LN) before each MSA
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Fig.4 One layer of the Transformer encoder. Each consists of MSA
and MLP blocks, with LN applied before every block, and residual
connection applied after every block

and MLP block. The residual connection is applied after
the MSA and MLP blocks as follows:

z, = MSA(LN(z,_,)) +2,_,.

z, =MLP(LN(z))) + z,. @
In thiSH paper, we utilize the output feature map
F; € Rie*61%% of the convolution module as the input of
the Transformer encoder. We first perform linear projection
on F5to convert it into a D (D = 768) dimensional sequence.
Next, patch embedding is applied to get 1 X 1 patches and
then input to the L (L = 12) layer Transformer encoder for
feature extraction. The final output feature map of hybrid
encoder is z; € (N, D).

3.2 Feature enhancement module

The key to detecting inpainting areas in image detection is to
obtain the tampering traces. For the inpainting traces mainly
exist in the high-frequency components of digital images,
the first step in inpainting detection is to suppress contents
of input images and highlight inpainting traces. A common
practice is to use high-pass filters to obtain high-frequency
residuals, such as PF (pre-filtering) filter [18], Bayer filter
[58], IRHP (Improved Random High-Pass) filter [59].

Fig.5 The initialized convolution kernels for the PF filter
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As shown in Fig. 5, the PF filter proposed by Li et al.
[18] employs a learnable pre-filtering module to extract the
residual noise of the image. The PF filter convolves each
channel of the three-channel image with a 3 x 3 high-pass fil-
ter kernel with a stride of 1. Then, the obtained noise residu-
als are concatenated as the input of the subsequent network.

Bayar et al. [58] proposed a constrained convolution
structure to suppress image content and can adaptively
learn low-level forensic features. The authors add additional
constraints to the first convolutional layer filter of the deep
neural network to capture the changes in the dependencies
among neighboring pixels caused by inpainting operation.
The constraints of the first convolution layer are as follows:

{ w(0,0) = -1 3

(1) —
Zm,,#o w, (m,n) =1,

where w,(j) (m, n) represents the weight of the k-th convolution
kernel at position (m, n) in the first convolutional layer, and
w;cl)(O, 0) is the center position of the convolution kernel.
The weights at the center of the convolution kernel are ini-
tialized to -1, and then the weights on the surrounding posi-
tions are normalized so that their sum equals 1. During the
training phase, the constrained convolutional layer updates
the weights through backpropagation after each iteration,
enabling the network to extract image manipulation features
adaptively.

IRHP [59] is an improved random high-pass filter ini-
tialization method that reduces computational costs while
maintaining data flow stability at kernel’s input and output.
During the weight initialization of the CNN’s first layer, a
group of random high-pass filters are generated, and the data
flow is kept stable at the input and output of the convolution
kernel. Precisely, a simple high-pass filter template of size
5 % 5is depicted in Fig. 6:

where w;;_; , y are scalar random variables following the
simple uniform distribution, C is an unknown constant. To
initialize the convolution kernel as a high-pass filter, the
mathematical expectation of w;;_;, ~ y should be equal
to —%, which compensates for the unknown constant C.
Accordingly, the interval of the uniform distribution for the

sampling of w; is U(—%, O) or U(O, —%), depending on

Wi Wy W3 W, Wy X1 X2 X3 X4 Xg
We W7 Wg Wy Wy X¢ X7 Xg X9 Xy
wig wip € wiz wyy X11 X122 X25 X13 X4
Wis Wi Wi7 Wig Wig X15 X16 X17 X183 X19
Wao Wa1 Wpy Wpz Wy X20 X1 X22 X4 X5

Fig.6 Left is the initialization weight of the IRHP convolution ker-
nel, and the right is the input feature matrix of the CNN
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the value of C. From this distribution, we can calculate the
variance of w; as:

C2

Var(wi) = W

“
With the assumption of x;,_;, _y are mutually correlated
random variables and w;;_, , .y are random variables with a
non-zero expectation, the authors proved that the variance of
w; should be equal to }%} Combining the above two equations,
we can derive the value of C as:

C? 1

= Ll coivan )

Var(w;) = IS N

In the case of a 5x5 filter, AN=3x(5%x5-1)=72,
C = +v/72 =~ +8.4853. Because the distribution of w; is

U <— %c’ 0) orU <0, - %C ), the uniform distribution interval

of w;is U(=0.7071,0) or U(0, 0.7071) (Fig. 7). Fig. 8 shows
a randomly initialized IRHP convolution kernel:

Extensive experiments are conducted to find proper com-
binations of different high-pass filters. We find that the com-
bination of PF filter, Bayer filter, and IRHP filter performs
best on the test dataset. Therefore, we hierarchically com-
bine PF filter, Bayer filter and IRHP filter as three sets of
filters to extract image noise residual. We first input the
three-channel image x € R?P*W*C into the PF filter, Bayer
filter and IRHP filter, respectively. Then, the enhanced fea-
tures are concatenated along the channel to obtain
Y. € (H, W, 15). Next, y, is passed through three standard
convolutional layers. Each convolutional layer includes con-
volution, batch normalization, and activation functions. The
outputs of each layer
e(Bre) e (LY c)yme (L) are
used to supervise the upsampling process of the subsequent
decoder network.

3.3 Decoder module
For the feature representation z; output by the encoder, the pro-

posed decoder first reshapes it utilizing two convolution layers,
and converts the hidden feature z; € (N,D) to

X) € <l—hé, %, CO>. Then, we adopt the simple progressive
—0.2313 -0.0666 —0.1706 —0.5250 -0.5772
—-0.5182 -0.0018 -0.5467 —0.2407 -—0.0559
-0.4711 -0.5040 8.4853 —0.5513 -—0.3093
—0.4237 -0.1851 -0.6255 -0.5770 -0.5398
—-0.2109 -0.6927 -0.6765 -—0.1684 —0.0787

Fig.7 Example of a 5x5 IRHP convolution kernel. The center value
C=8.4853, w;;_1,. n is a pseudo-random initialization parameter
following the uniform distribution U(—0.7071, 0)

upsampling approach to export the prediction mask with with
same resolution as the original image. Each upsampling block
consists of three stages. The length and width of the original
feature map are doubled by bilinear interpolation, and concat-
enated with three features output by the feature enhancement
module along the channel, respectively. Then, two standard
convolution layers are used to reduce the number of channels.

Specifically, the feature maps

H W H W H W
X, € <§,§,C1), X, € <Z,X,C2>, X; € <5,7,C3)

are concatenated with three features y,, y,, y; output by the
feature enhancement module to regularize the upsampling
operation of the predicted mask. Finally, the feature map
obtained by the concatenation of x; and y, goes through a
convolution and softmax layer, outputting the predicted
mask with the same size as the input image.

3.4 Loss function

We consider a pixel-scale loss for enhancing the model’s
sensitivity for detecting pixel-level inpainting, and an image-
scale loss to reduce the false alarm rate. Typically, the miss-
ing regions of the inpainted images tend to be much smaller
than the original regions, and merely using cross-entropy
loss results in a low true-positive rate for the model to cor-
rectly identify tampered regions. Focal loss [60] is applied
to make up for the defect of cross-entropy loss. Focal loss is
a variant of cross-entropy loss:

L poea 059) = = )" (1 = 5)" * ylog()

A ) 6)
= D (1= = (1 = y)log(l - ),

where y is the ground-truth mask of the digital image, y is the
predicted mask output by the proposed CTNet, a,y € (0, 1)
are hyperparameters. In addition to the pixel-scale loss, we
also employ an image-level binary cross-entropy loss [22]
L, to reduce the false alarm rate:

Lo, 9) = =y # log G@) + (1 —y) = log(1 = G(®),  (7)

where G(9) is the output value of the predicted image mask
y after global max pooling, G(9) should tend to be zero when
the input image is untampered. In summary, we use a com-
bination of pixel-level loss and image-level loss:

L(y’ 52) = AILFocal (y’ 5)) + /12LCls(y’ 5))’ (8)

where 1,, 4, € (0, 1) are regularization hyperparameters.
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4 Experiments and results
4.1 Datasets

Following the training and test set configuration of [24], the
training set we chose contains a total of 48k inpainted images
sampled from Dresden [61] and Places [62] datasets. The
test set contains 10k images sampled from Dresden, Places,
CelebA and ImageNet datasets to conduct various experi-
ments. The training images are modified by the inpainting
method proposed by [7]. The test images are inpainted by
ten representative inpainting approaches, among which four
are conventional methods, namely TE [31], NS [32], PM
[33] and SG [34], and the remaining six methods are based
on deep learning, which include GC [7], CA [39], SH [40],
EC [41], LB [42], and RN [43]. Each of the above inpaint-
ing methods modifies 1k original images, and we obtain a
total of 10k inpainting images and corresponding masks of
the test set. The inpainting shapes include basic rectangles,
circles, ellipses, etc.

To enhance the model robustness, we adopt following
data augmentation methods for the training images:

e Resize. The resolution of all images in the training set is
adjusted to 256x256.

e Rotation. Half of the training samples are flipped hori-
zontally, and the others are flipped vertically.

e Normalization. We perform normalization on three chan-
nels of the input RGB image, mapping pixel values to a
range between zero and one.

4.2 Implementation details

The experimental platform in this research is shown in
Table 1.

We deploy the stochastic gradient descent(SGD) as the
optimizer and set the learning rate, momentum, and weight
decay as 0.001, 0.9, and 1e - 6 to update the CTNet. During
the training process, the CTNet deploys ResNet-50 and ViT
as backbone networks of the hybrid encoder, both of which
are pre-trained on ImageNet dataset. The average F1 score
and AUC (Area Under the Receiver operator characteristic

Table 1 Experimental

environment Item Configuration
CPU E5-2620 v4
GPU GTX1080Ti
System Ubuntu 16.04
RAM 128G
Framework Pytorch 1.4.0

@ Springer

curve) are selected as indicators to evaluate our model’s
performance.

4.3 Benchmark experiments

A series of experiments are conducted to evaluate the
detection performance of the CTNet comprehensively. In
benchmark experiments, we compare CTNet with four state-
of-the-art image inpainting detection methods on the test
set. The involved detection algorithms include MVSS-Net
[22], ManTra-Net [23], HP-FCN [18] and IID-Net [24]. The
benchmark experiments in this paper include testing directly
using the pre-trained model officially released by the original
paper, and retraining on our training dataset [24] before test-
ing with 10 unseen inpainting methods. The training strate-
gies and parameter settings are consistent with the original
paper.

Table 2 shows the comparison results using AUC and
pixel-level F1 scores as critics. In the “Retrain” column,
“GC” indicates that the models are retrained on the training
set synthesized by GC [7], while “—” means the pre-trained
models are directly applied to evaluate the detection perfor-
mance on the test set.

We can observe that our proposed CTNet has achieved
the best detection results on the test set synthesized by 10
unseen inpainting methods. The average AUC value and F1
score have reached 99.11% and 89.71%, leading the second-
placed IID-Net model by 0.7% and 2.14%. The advantage
of CTNet is more prominent with F1 score, indicating its
performance on heterogeneous images is very stable.

In benchmark experiments, it is not difficult to find that
the pre-trained HP-FCN and MVSS-Net models have poor
performance when directly used for testing. At the same
time, their average AUCs are greater than 50%, and the
binary classification results are higher than random predic-
tions. However, their average F1 scores are lower than 1%,
indicating that these methods are only designed for specific
image inpainting processes, which causes problems such as
inability to detect unexpected image inpainting methods and
poor generalization ability.

We also give some examples of the detection results in
Fig. 8. It can be seen that the proposed algorithm obtains the
most accurate results comparing with other deep learning-
based digital image inpainting detection algorithms. Because
our CTNet adopts a hybrid structural encoder that simultane-
ously considers the global information and high-resolution
representation of the image, it has a stronger inpainting
feature extraction ability than the CNN encoder used by
our competitors. In the meantime, CTNet also shows great
adaptability to unseen inpainting algorithms.
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Fig. 8 Examples of the localization maps for inpainting detection

4.4 Ablation study

To verify the effectiveness of individual components on the
model performance, ablation experiments are carried out
in this paper. We modify some network structures in var-
ied settings with the modules added progressively. First, we
conduct experiments only utilizing one high-pass filter of
the feature enhancement module. Second, we only use the
CNN or Transformer module of the hybrid encoder. Third,
we drop the image-level loss in the hybrid loss function.
The results of the ablation experiment are shown in Table 3.

IID-Net

The average AUC values and F1 scores are shown in
Table 3. In the part of feature enhancement module, the
model utilizing a single high-pass filter cannot achieve good
detection results. Experiments show that using multiple
high-pass filters can effectively enhance the trace introduced
by inpainting operations, significantly improving both mean
AUC and F1 scores.

In the hybrid architecture encoder network part, employ-
ing only CNN or Transformer as the encoder caused the
average AUC and F1 score to drop. In contrast, the hybrid
encoder that combined the two improved the F1 score by
5%, proving that the hybrid encoder can effectively take
high-resolution features and global context information into

Table 3 Ablation experiment

results Feature enhancement module

Hybrid CNN-transformer encoder

Loss function

Mean AUC
Mean F1 score

IRHP v

PF v

Bayer v

IRHP+PF+bayer v 4 v

Convolution block v v v v

Transformer encoder 4

Hybrid encoder v

Focal loss v v

Image-level loss v 4

Hybrid loss v v
91.38 90.27 9341 98.02 9733 99.11
84.19 8244 8357 8513 84.66 89.71

The best performance are in bold

@ Springer
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masks

inpainted images
tﬂ,l—r [ 4.1) I

|

w/0 high-pass filters w/o transformer

w/o CNN w/o focal loss ours

Fig.9 Exemplar visual comparisons on test dataset, where first two columns are inpainted images and corresponding ground truth, the third to

seven columns are results based on different settings

account. In the loss function part, adding image-level BCE
loss on the basis of Focal Loss can effectively reduce the
false alarm rate.

The qualitative results of pixel-level inpainting detec-
tion in varied setups is indicated in Fig. 9. For each row,
the images from left to right are inpainted image, ground
truth, without high-pass filter module, without transformer,
without CNN, without focal loss and our model. From the
third to seven columns of Fig. 9, we can observe that the
combination of hybrid structure encoder, feature enhance-
ment module and decoder can more precisely detect and
locate inpainted regions. In summary, our model achieves a
good balance between detection sensitivity and specificity.

4.5 Robustness analysis

Image inpainting operations in real life are often accom-
panied by post-processing operations, which may dimin-
ish model performance in real-world detection scenarios.
To further verify the robustness of CTNet against image
post-processing operations, we perform the following three

100

JPEG compression (QF=p)

Image resampling (SIZE=p%)
Gaussian noise (STD=(100-p)/10)
95

Average AUC
o
S

2
<)

80

75

95 90 85
Pertubation p

Fig. 10 Inpainting detection performance of our model under various
disturbances in terms of average AUC values

perturbations on the images in the test set, and use a unified
perturbation factor p for different cases:

@ Springer
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1) JPEG compression. We use the unified perturbation fac-
tor p as the quality factor p to compress the test images.

2) Gaussian noise. To simulate the low-light conditions,
we add Gaussian noise that is normally distributed with
a mean of zero and a standard deviation STD equals
(100 — p)/10.

3) Image resampling. We change the resolution of the digi-
tal image to p% of the original size.

Figure 10 shows the robustness analysis results of our
model. The abscissa p represents the disturbance factor, and
the values of p in the robustness experiments are 95, 90,
and 85, respectively. As p decreases, the pixel-level inpaint-
ing detection becomes more difficult. With the decrease of
perturbation factor p, the detection performance of the mod-
els dropped slightly. When the value of p is reduced from
95 to 90, we can observe that our model has better robust-
ness to JPEG compression and Gaussian noise with small
perturbations. The average AUC scores are all greater than
90 because we introduce frequency-domain features rich in
high-frequency information.

As the perturbation strength increases, the detection per-
formance of CTNet gradually decreases, but the average
AUC score remains above 80. Therefore, we can speculate
that the robustness of our model to image resampling pertur-
bations will be significantly improved if image samples con-
taining different sizes are utilized for training. The robust-
ness test results show that the CTNet has good robustness to
minor disturbances caused by image post-processing.

5 Conclusion

In this paper, we have proposed the CTNet, an image inpaint-
ing detection method based on a hybrid CNN-Transformer
mechanism. Our CTNet exploits the inherent global self-
attention mechanism of the Transformer encoder to obtain
long-range dependencies. In addition, the proposed decoder
uses the frequency-domain features output by the high-pass
filter to supervise the upsampling process of the predicted
mask, which improves the accuracy of locating inpainted
regions. The experimental results show that the CTNet
can generalize to ten commonly used inpainting methods
after training on a single inpainting method. The compara-
tive experimental results demonstrate the superiority of the
detection performance of the proposed model compared to
the current state-of-the-art repair detection methods.
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