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Abstract
Digital image inpainting technology has increasingly gained popularity as a result of the development of image processing 
and machine vision. However, digital image inpainting can be used not only to repair damaged photographs, but also to 
remove specific people or distort the semantic content of images. To address the issue of image inpainting forgeries, a hybrid 
CNN-Transformer Network (CTNet), which is composed of the hybrid CNN-Transformer encoder, the feature enhancement 
module, and the decoder module, is proposed for image inpainting detection and localization. Different from existing inpaint-
ing detection methods that rely on hand-crafted attention mechanisms, the hybrid CNN-Transformer encoder employs CNN 
as a feature extractor to build feature maps tokenized as the input patches of the Transformer encoder. The hybrid structure 
exploits the innate global self-attention mechanisms of Transformer and can effectively capture the long-term dependency 
of the image. Since inpainting traces mainly exist in the high-frequency components of digital images, the feature enhance-
ment module performs feature extraction in the frequency domain. The decoder regularizes the upsampling process of the 
predicted masks with the assistance of high-frequency features. We investigate the generalization capacity of our CTNet on 
datasets generated by ten commonly used inpainting methods. The experimental results show that the proposed model can 
detect a variety of unknown inpainting operations after being trained on the datasets generated by a single inpainting method.

Keywords Image inpainting detection · Deep neural network · Hybrid CNN-Transformer encoder · High-pass filter

1 Introduction

Image inpainting is the process of recovering an image 
from a degraded version according to the residual image 
information. Digital image inpainting technology emerged 
in the early twentieth century, and was initially used to 
restore ancient artworks, cultural relics, and paintings. 
With the explosive growth of digital information, image 
inpainting technology is now flexibly used on various 
occasions, including image retouching, image denoise [1], 
watermark erasing [2], film special effects, and background 
beautification.

In recent years, digital image inpainting technology has 
become a research hotspot [3–10], which can be broadly 
classified into traditional image inpainting technology and 
deep learning-based image inpainting technology. Tradi-
tional digital image inpainting techniques [3–6] include 
diffusion-based methods and exemplar-based methods. 
Traditional digital image inpainting techniques are lim-
ited by the use of local diffusion information and can not 
create complex textures or semantic components [11]. To 
learn semantic features of the image, deep learning-based 
image inpainting technologies [7–10] train inpainting mod-
els on large-scale datasets and achieve impressive results 
across a wide range of application scenarios [12]. Benefit-
ing from the use of adversarial networks, these methods can 
adapt to different resolutions and generate missing objects 
automatically.

However, the image inpainting technique acts as a two-
edged sword. One can either use image inpainting to restore 
the integrity of the image or tamper with the image by filling 
in the gaps left by object removal, as shown in Fig. 1. With 
the development of image editing equipment, the tampering 
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traces hidden in inpainted images become more difficult to 
be identified by human eyes. If image inpainting technolo-
gies are maliciously used in news media, judicial forensics, 
or to mislead the public, they will cause great harm to peo-
ple’s daily life and bring about social and political instabil-
ity. To distinguish the authenticity of images, the in-depth 
research on digital image inpainting detection has attracted 
the attention of many researchers.

Early image inpainting detection methods mainly iden-
tify inpainting regions by calculating the similarity features 
between image blocks [13–17]. As convolutional neural 
networks become more prominent in computer vision, 
more researchers have turned to inpainting detection mod-
els incorporating convolutional neural networks [18–24]. 
These deep learning-based image inpainting detection mod-
els show apparent advantages in extracting image inpainting 
traces and reducing false alarm rates.

Although deep learning-based approaches have yielded 
positive results in image inpainting detection, they often 
have issues such as the lack of generalizability and rely-
ing on specific features and data distribution [25]. Current 
inpainting forensic technologies generally use CNN as the 
feature extractor, which tends to learn content features from 
the image, and it is easy to ignore tiny artifacts incurred 
during the inpainting process. At the same time, the convolu-
tion and downsampling operations in the forensic network 
may bring about information loss in feature representation, 
and the bilinear upsampling can also blur the precise mask 
predicted by the network.

In view of the above shortcomings, this paper constructs 
a hybrid CNN-Transformer network, which consists of the 
hybrid CNN-Transformer encoder, the feature enhance-
ment module, and the decoder module, for image inpaint-
ing detection and localization. The key idea of the hybrid 

CNN-Transformer encoder is to capture long-range depend-
encies of images through self-attention mechanism of Trans-
former. The feature enhancement module utilizes hierarchi-
cally combined layers to extract deep frequency features, 
which the decoder incorporates into the upsampling process 
of the predicted mask as extra supervision to improve the 
generalization capability. We optimize the CTNet framework 
using a hybrid loss function consisting of pixel-level and 
image-level loss, reducing the impact of class imbalance in 
the training dataset. Lastly, we provide a comparative analy-
sis to investigate both the performance and generalization 
of our model.

The main contributions of our work include the 
followings: 

1) We introduce an encoder with a hybrid CNN-transformer 
architecture for image inpainting detection, which makes 
up for the defect of Transformer exclusively focusing on 
modeling the global context. The hybrid encoder takes 
full advantage of the characteristics of CNN and trans-
former to extract local and global inpainting features.

2) The high-frequency features are applied to supervise the 
upsampling process of the extracted feature map output 
by the hybrid encoder, which results in better accuracy 
in detecting inpainted regions.

3) We tackle the challenge of constructing an image 
inpainting detection method that attains good general-
izability for a variety of unseen inpainting operations 
and, thus, is not limited to a specific inpainting method.

Experimental results show that our model achieves state-of-
the-art image inpainting detection performance on the test 
set generated by ten commonly used inpainting methods. 
The comparative experiments demonstrate the effectiveness 
and generalization ability of our approach.

The rest of the paper is organized as follows. Section 2 
briefly reviews several works related to image inpainting 
approaches, inpainting detection, and Transformer. Section 3 
presents the details of our method. Experimental results are 
discussed in Section 4, including the experimental results of 
our model and comparison with state-of-art methods. Sec-
tion 5 makes a summary of our work.

2  Related work

2.1  Image inpainting

Many methods have been proposed for image inpainting, 
including traditional methods based on diffusion or patches 
[26–34], and those based on deep learning [35–43]. Bertal-
mio et al. [26] proposed the first diffusion-based approach 
in 2000, which smoothly propagated the image information 

Fig. 1  Examples of image inpainting. Left is the original image, and 
the right is the inpainted image
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along the isophote to fill the missing region. Telea et al. 
[31] proposed an inpainting algorithm based on propagat-
ing an image smoothness estimator along the image gradi-
ent, which was simple to implement. Bertalmio et al. [32] 
involved Navier–Stokes equations for an incompressible 
fluid, which had the benefit of well-developed numerical 
results. Herling et al. [33] presented an approach based on 
high-quality image inpainting and enabled the realization of 
Diminished Reality applications. Huang et al. [34] proposed 
an algorithm for automatically guiding patch-based image 
completion leveraging mid-level structural cues.

Traditional image inpainting methods use the internal sta-
tistic information of the image, such as the edges of damaged 
parts or similar image patches, which lack global semantic 
information and can not produce non-continuous contents. 
To solve the shortcomings of traditional methods, image 
inpainting technology based on deep learning has gradually 
become a research hotspot. Deep learning-based techniques 
for image inpainting combine global semantic and texture 
information, significantly improving inpainting effects. Yu 
et al. [39] presented a novel generative network with a con-
textual attention layer, which can not only synthesize image 
structures but also use neighboring images features. Yan et 
al. [40] introduced a shift-connection to U-Net, which exhib-
ited fast speed with fine details by deep feature rearrange-
ment. Nazeri et al. [41] developed a two-stage adversarial 
model that comprised of an edge generator and an image 
completion network which can be used as an interactive 
image editing tool. To tackle the challenge of visually plau-
sible results caused by deep learning-based methods, Wu et 
al. [42] suggested an end-to-end generative model through 
combining a local binary pattern. Considering the impact of 
the corrupted regions of the image on normalization, Yu et 
al. [43] proposed a spatial region-wise normalization that 
divided pixels into small regions and computed the mean 
and variance for normalization.

2.2  Inpainting detection

Many inpainting detection approaches have been developed 
to prevent the malicious use of inpainting operations. Wu et 
al. [13] proposed a blind detection method based on zero-
connectivity features and fuzzy membership. However, the 
semi-automatic detection method requires manual selection 
of suspicious areas, which requires a large amount of com-
putation. Bacchuwar et al. [14] improved the algorithm of 
[13] by converting the image to Y-Cb-Cr format and using 
only the luminance component Y for detection, which speeds 
up the computation. Aiming at the problem that the uni-
form region in the image background will interfere with the 
detection process, Chang et al. [15] applied a multi-region 
relation technique to identify suspicious image patches from 
homogeneous regions.

Zhu et al. [16] built a convolutional neural network to 
detect patch-based inpainting operations. The authors con-
structed a class label matrix for each pixel of the image in the 
process of training the encoder–decoder network. Li et al. 
[18] employed a fully convolutional network based on high-
pass-filtered image residuals, which enhanced the difference 
between the inpainted and untouched region. Considering 
the spatial and channel correlations of feature maps, Xiao 
et al. [44] introduced a squeezed excitation block, which is 
applied in the feature extraction and upsampling stage to pay 
more attention on the spatial location and channel depend-
ence. Zhang et al. [19] used a modified U-shaped feature 
pyramid network (FPN) to extract multi-scale inpainting 
features. Wang et al. [20] used MASK R-CNN [45] com-
bined with FPN to extract features, which can detect images 
tampered by conventional inpainting methods and images 
modified by deep learning-based methods. Li et al. [21] pro-
posed a method for generating a universal training dataset, 
which imitates the noise pattern discrepancies between the 
real and synthesized contents to train universal detectors. 
Chen et al. [22] proposed a multi-view feature learning with 
multi-view supervision network that contained novel ele-
ments designed for learning semantic-agnostic features. Wu 
et al. [23] introduced MT-Net, a unified deep neural archi-
tecture that can handle images of arbitrary sizes and many 
known forgery types. MT-Net detects forged pixels by iden-
tifying local anomalous features, thus it also performs well 
in image inpainting detection. The forensic model proposed 
by Wu et al. [24] consists of three parts, namely feature 
enhancement, feature extraction, and decision block. Their 
model is designed with the assistance of the NAS algorithm 
and the embedded attention modules to optimize the latent 
high-level features. Yang et al. [46] provides a near original 
image augmentation strategy to push the inpainted images 
closer to the original images. The authors add hard samples 
into the training set and as a result help improve the accuracy 
of their model.

However, many state-of-the-art image inpainting detec-
tion methods have problems such as heavy computation and 
time-consuming pre-processing, most of which also suffer 
from poor generalization ability. To address these issues, we 
propose a pixel-level inpainting detection method based on 
a hybrid CNN-Transformer encoder, which reduces com-
putation and enhances the generalization ability to unseen 
inpainting methods.

2.3  Transformer

Transformer [47] is a classic NLP model proposed by the 
Google team in 2017 and has been widely used in NLP and 
machine translation. Based on the encoder-decoder archi-
tecture, Transformer ultimately uses self-attention mecha-
nism which replaces the temporal structure of the recurrent 
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neural network. Generally, Transformer-based models are 
trained on large text corpus and fine-tuned for specific tasks 
to achieve better computational efficiency and accuracy. 
Due to its remarkable ability to supporting parallel process-
ing of sequences, the Transformer architecture has proven 
its potential in reducing training time significantly. Conse-
quently, this technique has since become the state-of-the-art 
approach in many NLP tasks.

Inspired by Transformer, the Vision Transformer (ViT) 
proposed by Dosovitskiy et al. [48] breaks the isolation 
between NLP and computer vision (CV), and successfully 
applies Transformer to image block sequences for further 
image classification tasks. The pioneering work of ViT 
model uses a self-attention mechanism to capture global 
features from shallow networks, which solves the problem 
of CNN’s difficulty in capturing and storing long-range 
dependency information. When pre-trained on large-scale 
datasets and transferred to multiple mid-sized or small image 
recognition datasets (ImageNet [49], CIFAR-100 [50], 
VTAB [51], etc.), ViT demonstrates superior transferability 
on downstream tasks.

There are many follow-up studies [52–56] extending 
ViT. For example, Touvron et al. [52] introduced the pyra-
mid structure into the Transformer, which performed bet-
ter on dense prediction tasks. Wang et al. [53] proposed 
a teacher–student distillation training strategy for ViT, 
and added a distillation token as supplementary informa-
tion for the classification token. The above studies reveal 

the effectiveness of Transformer in computer vision tasks; 
thus, we propose an image inpainting detection method that 
combines Transformer and CNN encoder.

3  Proposed method

In this study, we propose an image inpainting detection 
method based on the CNN-Transformer hybrid structure 
(abbreviated as CTNet). On the one hand, it effectively 
resolves the issue that a CNN network must transmit infor-
mation onto the subsequent layers and cannot capture the 
long-term dependence relationship. On the other hand, the 
decoder upsamples the features encoded by the Transformer 
and incorporates residual noise as an auxiliary informa-
tion into the upsampling process to improve the localiza-
tion accuracy. The overview of the CTNet architecture is 
presented in Fig. 2. We elaborate three main blocks of the 
CTNet, i.e., the hybrid CNN-Transformer encoder, the fea-
ture enhancement module and the decoder module.

3.1  Hybrid CNN‑Transformer encoder module

3.1.1  Convolution block

The original ViT encoder aggregates global features and 
ignores image details at low resolutions when used for 
classification tasks. This property is not conducive to 

Fig. 2  The architecture of the 
proposed CTNet
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reconstructing the full resolution image during the upsam-
pling process, resulting in rough edges output by the 
decoder. Consequently, we first encode the image into high-
level feature representations using a CNN, which are then 
reshaped into a 2D sequence as the input of the ViT encoder.

The CNN part of the hybrid encoder is shown in Fig. 3. 
Given an RGB image x ∈ ℝ

H×W×C with 3 channels and its 
corresponding binary mask y, we first feed image x into the 
ResNet50 [57] network pre-trained on the ImageNet dataset 
to extract the output feature representations of the fourth 
layer.

The stage 0 in Fig. 3 is the first layer of the ResNet 50 
network, which performs convolution, regularization, acti-
vation functions, and max pooling on the input image. The 
stage 1–stage 3 in Fig. 3 are the second–fourth layers of 
the ResNet 50 network, each of them contains two resid-
ual blocks with skip connection, namely Conv Block and 
Identity Block. The Conv Block is applied to change the 
dimension of the feature maps, while the Identity Block cor-
responds to the case where the input has the same dimension 
as the output. The utilization of the residual module solves 
the problem of gradient vanishing or exploding when train-
ing deep neural networks, and it can also preserve and ensure 
data integrity to a certain extent.

T h e  o u t p u t  fe a t u r e  r e p r e s e n t a t i o n s  o f 
t he  f i r s t – fou r t h  l aye r s  o f  ResNet50  a r e : 
F0 ∈ ℝ

H

4
×

W

4
×64

,F1 ∈ ℝ
H

4
×

W

4
×256

, F2 ∈ ℝ
H

8
×

W

8
×512

, F3 ∈ ℝ
H

16
×

W

16
×1024 . We 

employ F3 as the input of the Transformer encoder.

3.1.2  Transformer Encoder Block

The Transformer encoder employed in ViT first splits 
the input image x ∈ ℝ

H×W×C  into N non-overlap-
ping patches of the size P × P, obtaining a flattened 2D 
sequence:

{

xi
P
∈ ℝ

P2
⋅c ∣ i = 1, 2…N

}

 , where sequence 

length N =
H×W

P2
 . Then, the encoder uses a trainable linear 

projection to map the serialized xP into the D-dimensional 
embedding space. To obtain the 1 × 1 patch sequence z0 , 
each block is randomly initialized and embedded through 
the convolution layer with a kernel size of P × P:

where z0 is the 1 × 1 patch sequence input to the L-layer 
Transformer encoder after linear mapping and position 
embedding, xcls is a class token that gathers information 
from all the patches, E ∈ ℝ(P

2
⋅C)×D denotes the trainable 

linear projection, and Epos ∈ ℝ
(N+1)⋅D denotes the position 

embedding.
The Transformer encoder consists of L layers of Multi-

head Self-Attention (MSA) and Multi-Layer Perceptron 
(MLP) modules, as shown in Fig. 4. For the l-th layer of 
the encoder, we denote its input as z

�−1 and the output as 
z
�
 , and apply Layer Normalization (LN) before each MSA 

(1)z0 =
[

xcls; x
1
P
E; x2

P
E; ⋯ ; xN

P
E
]

+ Epos,

Fig. 3  The CNN part of the 
hybrid encoder, (C, H, W) 
represents the input dimension. 
C and C1 are the number of 
convolution kernels, and S is 
the stride. In stage 1, C = C1 , in 
stage 2, 3, 4, C = 2 × C1
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and MLP block. The residual connection is applied after 
the MSA and MLP blocks as follows:

In this paper, we utilize the output feature map 
F3 ∈ ℝ

H

16
×

W

16
×1024 of the convolution module as the input of 

the Transformer encoder. We first perform linear projection 
on F3 to convert it into a D (D = 768) dimensional sequence. 
Next, patch embedding is applied to get 1 × 1 patches and 
then input to the L (L = 12) layer Transformer encoder for 
feature extraction. The final output feature map of hybrid 
encoder is zL ∈ (N,D).

3.2  Feature enhancement module

The key to detecting inpainting areas in image detection is to 
obtain the tampering traces. For the inpainting traces mainly 
exist in the high-frequency components of digital images, 
the first step in inpainting detection is to suppress contents 
of input images and highlight inpainting traces. A common 
practice is to use high-pass filters to obtain high-frequency 
residuals, such as PF (pre-filtering) filter [18], Bayer filter 
[58], IRHP (Improved Random High-Pass) filter [59].

(2)
z�
�
= MSA

(

LN
(

z
�−1

))

+ z
�−1,

z
�
= MLP

(

LN
(

z�
�

))

+ z�
�
.

As shown in Fig. 5, the PF filter proposed by Li et al. 
[18] employs a learnable pre-filtering module to extract the 
residual noise of the image. The PF filter convolves each 
channel of the three-channel image with a 3 × 3 high-pass fil-
ter kernel with a stride of 1. Then, the obtained noise residu-
als are concatenated as the input of the subsequent network.

Bayar et al. [58] proposed a constrained convolution 
structure to suppress image content and can adaptively 
learn low-level forensic features. The authors add additional 
constraints to the first convolutional layer filter of the deep 
neural network to capture the changes in the dependencies 
among neighboring pixels caused by inpainting operation. 
The constraints of the first convolution layer are as follows:

where w(l)

k
(m, n) represents the weight of the k-th convolution 

kernel at position (m, n) in the first convolutional layer, and 
w
(1)

k
(0, 0) is the center position of the convolution kernel. 

The weights at the center of the convolution kernel are ini-
tialized to -1, and then the weights on the surrounding posi-
tions are normalized so that their sum equals 1. During the 
training phase, the constrained convolutional layer updates 
the weights through backpropagation after each iteration, 
enabling the network to extract image manipulation features 
adaptively.

IRHP [59] is an improved random high-pass filter ini-
tialization method that reduces computational costs while 
maintaining data flow stability at kernel’s input and output. 
During the weight initialization of the CNN’s first layer, a 
group of random high-pass filters are generated, and the data 
flow is kept stable at the input and output of the convolution 
kernel. Precisely, a simple high-pass filter template of size 
5 × 5 is depicted in Fig. 6:

where wi,i=1,2,…,N are scalar random variables following the 
simple uniform distribution, C is an unknown constant. To 
initialize the convolution kernel as a high-pass filter, the 
mathematical expectation of wi,i=1,2,…, N should be equal 
to −C

N
 , which compensates for the unknown constant C. 

Accordingly, the interval of the uniform distribution for the 
sampling of wi is U

(

−
2C

N
, 0
)

 or U
(

0,−
2C

N

)

 , depending on 

(3)
�

w
(1)

k
(0, 0) = −1

∑

m,n≠0 w
(1)

k
(m, n) = 1,

Fig. 4  One layer of the Transformer encoder. Each consists of MSA 
and MLP blocks, with LN applied before every block, and residual 
connection applied after every block

Fig. 5  The initialized convolution kernels for the PF filter
Fig. 6  Left is the initialization weight of the IRHP convolution ker-
nel, and the right is the input feature matrix of the CNN
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the value of C. From this distribution, we can calculate the 
variance of wi as:

With the assumption of xi,i=1,2,…,N are mutually correlated 
random variables and wi,i=1,2,…,N are random variables with a 
non-zero expectation, the authors proved that the variance of 
wi should be equal to 1

N
 . Combining the above two equations, 

we can derive the value of C as:

In the case of a 5 × 5 filter, 3N = 3 × (5 × 5 − 1) = 72 , 
C = ±

√

72 ≈ ±8.4853 . Because the distribution of wi is 

U
(

−
2C

N
, 0
)

 or U
(

0,−
2C

N

)

 , the uniform distribution interval 

of wi is U(−0.7071, 0) or U(0, 0.7071) (Fig. 7). Fig. 8 shows 
a randomly initialized IRHP convolution kernel:

Extensive experiments are conducted to find proper com-
binations of different high-pass filters. We find that the com-
bination of PF filter, Bayer filter, and IRHP filter performs 
best on the test dataset. Therefore, we hierarchically com-
bine PF filter, Bayer filter and IRHP filter as three sets of 
filters to extract image noise residual. We first input the 
three-channel image x ∈ ℝ

H×W×C into the PF filter, Bayer 
filter and IRHP filter, respectively. Then, the enhanced fea-
tures are concatenated along the channel to obtain 
yc ∈ (H,W, 15) . Next, yc is passed through three standard 
convolutional layers. Each convolutional layer includes con-
volution, batch normalization, and activation functions. The 
o u t p u t s  o f  e a c h  l a y e r 
y1 ∈

(

H

2
,
W

2
,C3

)

, y2 ∈
(

H

4
,
W

4
,C2

)

, y3 ∈
(

H

8
,
W

8
,C1

)

 a re 
used to supervise the upsampling process of the subsequent 
decoder network.

3.3  Decoder module

For the feature representation zL output by the encoder, the pro-
posed decoder first reshapes it utilizing two convolution layers, 
and converts the hidden feature zL ∈ (N,D) to 
x0 ∈

(

H

16
,
W

16
,C0

)

 . Then, we adopt the simple progressive 

(4)Var
(

wi

)

=
C2

3N2
.

(5)Var
�

wi

�

=
C2

3N2
=

1

N
⇒ C = ±

√

3N.

upsampling approach to export the prediction mask with with 
same resolution as the original image. Each upsampling block 
consists of three stages. The length and width of the original 
feature map are doubled by bilinear interpolation, and concat-
enated with three features output by the feature enhancement 
module along the channel, respectively. Then, two standard 
convolution layers are used to reduce the number of channels.

S p e c i f i c a l l y ,  t h e  f e a t u r e  m a p s 
x1 ∈

(

H

8
,
W

8
,C1

)

, x2 ∈
(

H

4
,
W

4
,C2

)

, x3 ∈
(

H

2
,
W

2
,C3

)

 
are concatenated with three features y1 , y2 , y3 output by the 
feature enhancement module to regularize the upsampling 
operation of the predicted mask. Finally, the feature map 
obtained by the concatenation of x3 and y1 goes through a 
convolution and softmax layer, outputting the predicted 
mask with the same size as the input image.

3.4  Loss function

We consider a pixel-scale loss for enhancing the model’s 
sensitivity for detecting pixel-level inpainting, and an image-
scale loss to reduce the false alarm rate. Typically, the miss-
ing regions of the inpainted images tend to be much smaller 
than the original regions, and merely using cross-entropy 
loss results in a low true-positive rate for the model to cor-
rectly identify tampered regions. Focal loss [60] is applied 
to make up for the defect of cross-entropy loss. Focal loss is 
a variant of cross-entropy loss:

where y is the ground-truth mask of the digital image, ŷ is the 
predicted mask output by the proposed CTNet, �, � ∈ (0, 1) 
are hyperparameters. In addition to the pixel-scale loss, we 
also employ an image-level binary cross-entropy loss [22] 
LCls to reduce the false alarm rate:

where G(ŷ) is the output value of the predicted image mask 
ŷ after global max pooling, G(ŷ) should tend to be zero when 
the input image is untampered. In summary, we use a com-
bination of pixel-level loss and image-level loss:

where �1, �2 ∈ (0, 1) are regularization hyperparameters.

(6)
L Focal (y, ŷ) = −

∑

𝛼(1 − ŷ)𝛾 ∗ y log(ŷ)

−
∑

(1 − 𝛼)ŷ𝛾 ∗ (1 − y) log(1 − ŷ),

(7)LCls(y, ŷ) = −y ∗ logG(ŷ) + (1 − y) ∗ log(1 − G(ŷ)),

(8)L(y, ŷ) = 𝜆1L Focal (y, ŷ) + 𝜆2LCls(y, ŷ),

Fig. 7  Example of a 5 × 5 IRHP convolution kernel. The center value 
C=8.4853, w

i,i=1,2,…,N is a pseudo-random initialization parameter 
following the uniform distribution U(−0.7071, 0)
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4  Experiments and results

4.1  Datasets

Following the training and test set configuration of [24], the 
training set we chose contains a total of 48k inpainted images 
sampled from Dresden [61] and Places [62] datasets. The 
test set contains 10k images sampled from Dresden, Places, 
CelebA and ImageNet datasets to conduct various experi-
ments. The training images are modified by the inpainting 
method proposed by [7]. The test images are inpainted by 
ten representative inpainting approaches, among which four 
are conventional methods, namely TE [31], NS [32], PM 
[33] and SG [34], and the remaining six methods are based 
on deep learning, which include GC [7], CA [39], SH [40], 
EC [41], LB [42], and RN [43]. Each of the above inpaint-
ing methods modifies 1k original images, and we obtain a 
total of 10k inpainting images and corresponding masks of 
the test set. The inpainting shapes include basic rectangles, 
circles, ellipses, etc.

To enhance the model robustness, we adopt following 
data augmentation methods for the training images:

• Resize. The resolution of all images in the training set is 
adjusted to 256×256.

• Rotation. Half of the training samples are flipped hori-
zontally, and the others are flipped vertically.

• Normalization. We perform normalization on three chan-
nels of the input RGB image, mapping pixel values to a 
range between zero and one.

4.2  Implementation details

The experimental platform in this research is shown in 
Table 1.

We deploy the stochastic gradient descent(SGD) as the 
optimizer and set the learning rate, momentum, and weight 
decay as 0.001, 0.9, and 1e - 6 to update the CTNet. During 
the training process, the CTNet deploys ResNet-50 and ViT 
as backbone networks of the hybrid encoder, both of which 
are pre-trained on ImageNet dataset. The average F1 score 
and AUC (Area Under the Receiver operator characteristic 

curve) are selected as indicators to evaluate our model’s 
performance.

4.3  Benchmark experiments

A series of experiments are conducted to evaluate the 
detection performance of the CTNet comprehensively. In 
benchmark experiments, we compare CTNet with four state-
of-the-art image inpainting detection methods on the test 
set. The involved detection algorithms include MVSS-Net 
[22], ManTra-Net [23], HP-FCN [18] and IID-Net [24]. The 
benchmark experiments in this paper include testing directly 
using the pre-trained model officially released by the original 
paper, and retraining on our training dataset [24] before test-
ing with 10 unseen inpainting methods. The training strate-
gies and parameter settings are consistent with the original 
paper.

Table 2 shows the comparison results using AUC and 
pixel-level F1 scores as critics. In the “Retrain” column, 
“GC” indicates that the models are retrained on the training 
set synthesized by GC [7], while “−” means the pre-trained 
models are directly applied to evaluate the detection perfor-
mance on the test set.

We can observe that our proposed CTNet has achieved 
the best detection results on the test set synthesized by 10 
unseen inpainting methods. The average AUC value and F1 
score have reached 99.11% and 89.71% , leading the second-
placed IID-Net model by 0.7% and 2.14% . The advantage 
of CTNet is more prominent with F1 score, indicating its 
performance on heterogeneous images is very stable.

In benchmark experiments, it is not difficult to find that 
the pre-trained HP-FCN and MVSS-Net models have poor 
performance when directly used for testing. At the same 
time, their average AUCs are greater than 50% , and the 
binary classification results are higher than random predic-
tions. However, their average F1 scores are lower than 1 % , 
indicating that these methods are only designed for specific 
image inpainting processes, which causes problems such as 
inability to detect unexpected image inpainting methods and 
poor generalization ability.

We also give some examples of the detection results in 
Fig. 8. It can be seen that the proposed algorithm obtains the 
most accurate results comparing with other deep learning-
based digital image inpainting detection algorithms. Because 
our CTNet adopts a hybrid structural encoder that simultane-
ously considers the global information and high-resolution 
representation of the image, it has a stronger inpainting 
feature extraction ability than the CNN encoder used by 
our competitors. In the meantime, CTNet also shows great 
adaptability to unseen inpainting algorithms.

Table 1  Experimental 
environment

Item Configuration

CPU E5-2620 v4
GPU GTX1080Ti
System Ubuntu 16.04
RAM 128G
Framework Pytorch 1.4.0
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4.4  Ablation study

To verify the effectiveness of individual components on the 
model performance, ablation experiments are carried out 
in this paper. We modify some network structures in var-
ied settings with the modules added progressively. First, we 
conduct experiments only utilizing one high-pass filter of 
the feature enhancement module. Second, we only use the 
CNN or Transformer module of the hybrid encoder. Third, 
we drop the image-level loss in the hybrid loss function. 
The results of the ablation experiment are shown in Table 3.

The average AUC values and F1 scores are shown in 
Table 3. In the part of feature enhancement module, the 
model utilizing a single high-pass filter cannot achieve good 
detection results. Experiments show that using multiple 
high-pass filters can effectively enhance the trace introduced 
by inpainting operations, significantly improving both mean 
AUC and F1 scores.

In the hybrid architecture encoder network part, employ-
ing only CNN or Transformer as the encoder caused the 
average AUC and F1 score to drop. In contrast, the hybrid 
encoder that combined the two improved the F1 score by 
5 % , proving that the hybrid encoder can effectively take 
high-resolution features and global context information into 

Fig. 8  Examples of the localization maps for inpainting detection

Table 3  Ablation experiment 
results

The best performance are in bold

Feature enhancement module IRHP ✓

PF ✓

Bayer ✓

IRHP+PF+bayer ✓ ✓ ✓

Hybrid CNN-transformer encoder Convolution block ✓ ✓ ✓ ✓

Transformer encoder ✓

Hybrid encoder ✓

Loss function Focal loss ✓ ✓

Image-level loss ✓ ✓

Hybrid loss ✓ ✓

Mean AUC 91.38 90.27 93.41 98.02 97.33 99.11
Mean F1 score 84.19 82.44 83.57 85.13 84.66 89.71
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account. In the loss function part, adding image-level BCE 
loss on the basis of Focal Loss can effectively reduce the 
false alarm rate.

The qualitative results of pixel-level inpainting detec-
tion in varied setups is indicated in Fig. 9. For each row, 
the images from left to right are inpainted image, ground 
truth, without high-pass filter module, without transformer, 
without CNN, without focal loss and our model. From the 
third to seven columns of Fig. 9, we can observe that the 
combination of hybrid structure encoder, feature enhance-
ment module and decoder can more precisely detect and 
locate inpainted regions. In summary, our model achieves a 
good balance between detection sensitivity and specificity.

4.5  Robustness analysis

Image inpainting operations in real life are often accom-
panied by post-processing operations, which may dimin-
ish model performance in real-world detection scenarios. 
To further verify the robustness of CTNet against image 
post-processing operations, we perform the following three 

perturbations on the images in the test set, and use a unified 
perturbation factor p for different cases: 

Fig. 9  Exemplar visual comparisons on test dataset, where first two columns are inpainted images and corresponding ground truth, the third to 
seven columns are results based on different settings

Fig. 10  Inpainting detection performance of our model under various 
disturbances in terms of average AUC values
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1) JPEG compression. We use the unified perturbation fac-
tor p as the quality factor p to compress the test images.

2) Gaussian noise. To simulate the low-light conditions, 
we add Gaussian noise that is normally distributed with 
a mean of zero and a standard deviation STD equals 
(100 − p)∕10.

3) Image resampling. We change the resolution of the digi-
tal image to p% of the original size.

Figure 10 shows the robustness analysis results of our 
model. The abscissa p represents the disturbance factor, and 
the values of p in the robustness experiments are 95, 90, 
and 85, respectively. As p decreases, the pixel-level inpaint-
ing detection becomes more difficult. With the decrease of 
perturbation factor p, the detection performance of the mod-
els dropped slightly. When the value of p is reduced from 
95 to 90, we can observe that our model has better robust-
ness to JPEG compression and Gaussian noise with small 
perturbations. The average AUC scores are all greater than 
90 because we introduce frequency-domain features rich in 
high-frequency information.

As the perturbation strength increases, the detection per-
formance of CTNet gradually decreases, but the average 
AUC score remains above 80. Therefore, we can speculate 
that the robustness of our model to image resampling pertur-
bations will be significantly improved if image samples con-
taining different sizes are utilized for training. The robust-
ness test results show that the CTNet has good robustness to 
minor disturbances caused by image post-processing.

5  Conclusion

In this paper, we have proposed the CTNet, an image inpaint-
ing detection method based on a hybrid CNN-Transformer 
mechanism. Our CTNet exploits the inherent global self-
attention mechanism of the Transformer encoder to obtain 
long-range dependencies. In addition, the proposed decoder 
uses the frequency-domain features output by the high-pass 
filter to supervise the upsampling process of the predicted 
mask, which improves the accuracy of locating inpainted 
regions. The experimental results show that the CTNet 
can generalize to ten commonly used inpainting methods 
after training on a single inpainting method. The compara-
tive experimental results demonstrate the superiority of the 
detection performance of the proposed model compared to 
the current state-of-the-art repair detection methods.
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