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Abstract
This paper presents findings of the eleventh Video Browser Showdown competition, where sixteen teams competed in 
known-item and ad-hoc search tasks. Many of the teams utilized state-of-the-art video retrieval approaches that demonstrated 
high effectiveness in challenging search scenarios. In this paper, a broad survey of all utilized approaches is presented in 
connection with an analysis of the performance of participating teams. Specifically, both high-level performance indicators 
are presented with overall statistics as well as in-depth analysis of the performance of selected tools implementing result 
set logging. The analysis reveals evidence that the CLIP model represents a versatile tool for cross-modal video retrieval 
when combined with interactive search capabilities. Furthermore, the analysis investigates the effect of different users and 
text query properties on the performance in search tasks. Last but not least, lessons learned from search task preparation are 
presented, and a new direction for ad-hoc search based tasks at Video Browser Showdown is introduced.

Keywords Interactive video retrieval · Video browsing · Video content analysis · Content-based retrieval · Evaluations

1 Introduction

While video portals like YouTube can easily grow by hun-
dreds of hours of video content per minute, there is still a 
shortage of effective video retrieval models providing access 
to contents of  huge volumes. Whereas for domain-specific 
data, it is possible to collect large training datasets and try 
to train an effective model, for general domain datasets, it 
is hard to build a universal search approach. Nevertheless, 
there are attempts to train models with huge volumes of 
training pairs (item; text description) [1, 36, 45, 62]. Despite 
these efforts, it is worth noting that even with a perfect cross-
modal text-video search model there are other limitations 
affecting search effectiveness. Three important factors are 
limitations of human memory (i.e., ability to remember all 
details), language skills and density of items in the dataset 
(i.e., ability to identify a correct item in a larger cluster).

The analysis of annual reports from TRECVID [57], 
Video Browser Showdown (VBS) [31], or Lifelog Search 
Challenge [25] shows that there still exist many practical 
situations where state-of-the-art retrieval approaches do 
not provide sufficient results even for far smaller datasets. 
Hence, it is essential to continue with the development of 
new video retrieval models/tools as well as with evaluation 
efforts providing important performance insights.

This paper presents a thorough analysis of the 11th 
instance of the Video Browser Showdown competition 
with participating tools combining interactive search 
interfaces and ranking approaches based on deep machine 
learning models. The competition setting consists of 
a known large video dataset (V3C [66]) and evaluation 
methodology allowing fair comparison of participating 
systems. During the competition, all the teams have access 
to a distributed evaluation server [64], where competition 
tasks are presented to participating teams at the same time 
and with the same time limit. In particular, three task cat-
egories are evaluated [52]:Communicated by B. Bao.
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– Visual known-item search (KIS-v), where teams 
observe a target video segment from the collection. No 
meta-data is provided, no cameras are allowed.

– Textual known-item search (KIS-t), where teams 
receive a text description of a target video segment. 
The text is gradually extended.

– Ad-hoc video search (AVS) tasks introduced with a 
short text description, where teams have to submit as 
many correct shots (matching the description) as pos-
sible.

A known-item search task is considered as solved by a team 
once the team submits a correct frame/shotID from the target 
segment. Incorrect submissions result in a penalty deducted 
from the score. The evaluation server knows the target seg-
ment and thus evaluates submissions in known-item search 
tasks automatically. In the ad-hoc search category, teams 
submit all items where team members think the item is 
correct. Since the ground truth is unknown for the whole 
collection, live judges are necessary to assess the submis-
sions. Teams receive points for each correct submission 
(merging temporally close submissions into ranges counted 
only once), independent of whether other teams also found 
the same segment. The scoring is described in more detail 
in [31].

With these settings, the Video Browser Showdown hosted 
sixteen teams during the 2022 International Conference on 
Multimedia Modeling in Vietnam, where several teams (or 
members) participated remotely. All teams introduced a 
unique video search tool and some teams also implemented 
logging mechanisms. Hence, we collected a non-trivial 
amount of data from the competition which allows us to 
present the following key contributions, each in a separate 
section:

– A broad survey of multimedia search models and 
approaches participating in the 11th VBS.

– Overall summary of the competition results, showing 
success rate, submission times, and numbers of submis-
sions.

– Thorough result log analysis of selected teams, revealing 
performance insights as well as query statistics.

– Analysis of ad-hoc search category, showing timeline 
statistics and also a new revision of the task category.

– Query specification methodology in connection with a 
qualitative study.

The last section concludes the paper and envisions future 
settings of the Video Browser Showdown.

2  Related work used by participating 
systems

VBS 2022 hosted many participating systems, each imple-
menting different ranking models and search methods. A 
general overview of the systems and the approaches they 
employed is presented in Table 1. This section further sum-
marizes important or unique methods used by each partici-
pant. For additional detail about any system, please see the 
corresponding publication referenced beside the system 
name in the overview table.

2.1  Concept search

This section summarizes the concept-based search 
approaches utilised by participating systems, including 
concepts detected for the whole image as well as localized 
information obtained from object detectors or semantic 
segmentation.

VISIONE [4], as in previous years [2, 3, 5], supports que-
ries by object location appearing in a target scene. That is 
done by drawing simple diagrams on a canvas to specify 
objects (including their spatial locations). The object detec-
tion technique of VISIONE is based on three pre-trained 
DCNN models (i.e., VfNet [80], Mask R-CNN [27], Faster 
R-CNN [22]) for a total of 1460 object classes. Similarly, 
VERGE employs three different DCNN models (i.e., Effi-
cientNet-B3, EfficientNet-B5 [74] for label-based search of 
video shots and InceptionResNetV2 [73]) for keyframes’ 
enrichment with concept [56] and object [79] annotations.

IVIST  [42], AVSeeker  [41], diveXplore  [43] use MS-
COCO [46]. In particular, IVIST adopts an HTC [14] object 
detection model which is pre-trained on MS-COCO and 
supports an object query function to filter the frames which 
do not contain the query object categories. In contrast, AVS-
eeker [41] indexes object concepts on all keyframes into 
an Elasticsearch node, using categories from MS-COCO 
(detected by YOLOv4). This allows users to search for con-
cepts using advanced query formulations such as customized 
AND/OR operators, fuzzy matching, negation, etc. These 
are provided by the “Query String Query” of Elasticsearch. 
Similarly, diveXplore [43] provides object search for object 
categories from MS-COCO (detected by YOLOv5).

VERGE [6] involves spatio-temporal human activity rec-
ognition using a 3D-CNN architecture. This construction 
relies on a three-step pipeline [24]: object detector, object 
tracker, and activity recognizer to identify human-related 
activities effectively.

As before, VISIONE [4] supports queries by color loca-
tion [2, 3, 5]. A user can draw simple diagrams on a canvas 
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corresponding to colors appearing in a target scene. For 
the color annotation, two chip-based color naming tech-
niques [11, 76] are employed. vitrivr maintains similar color-
based sketches, as in previous iterations of the system [29, 
30, 65, 67].

VIREO [55] supports color sketch queries using a grid of 
48 cells (6x8), which users can individually fill with colors 
corresponding to their search target. Similarly, VERGE [6] 
maintains color-based queries using a grid of 9 cells (3x3). 
Video clips matching the colors in these positions are then 
assigned to a higher rank.

IVIST [42] enables a color query function to find frames 
depending on whether their top 3 dominant colors are 
included in the query colors or not. VideoFall  [60] also 
affords users with color search based on specific dominant 
colors. The annotation for dominant colors in VideoFall, spe-
cifically 12 basic colors, is captured by integrating a k-means 
clustering algorithm to the set of frame-pixel values.

vitrivr [28] supports semantic-based sketches, as in previ-
ous iterations of the system. Semantic sketches are based on 
a DeepLab segmentation model [15] utilized as described 
in [65].

diveXplore [43] provides concept-based search for con-
cepts in ImageNet-1000 [18] and Places365 (detected by 
EfficientNet-B2 [74]). Also, Exquisitor and ViRMA both 
support concept search for 12,988 ImageNet concepts, 
which were extracted for each keyframe using a pre-trained 
DCNN ResNet model [59]. To support its browsing and data 
model in VR, ViRMA further organises these concepts into a 
hierarchical structure using semantic relationships derived 
from WordNet [19]. Finally, in addition to the ImageNet 
concepts, Exquisitor also maintains search for activity con-
cepts of Kinetics-700, extracted from the video shots using 
a pre-trained 3D-ResNet model [26].

VIREO [55] allows users to perform search using a bank 
of 16,263 concepts. These are extracted by the concept 
decoder of the dual task model [78].

VideoFall [60] affords users with textual search and the 
visible textual information in the frames is extracted using 
Google Vision API.1

2.2  Embedding

In this section, we discuss joint embedding approaches, 
which combine text and image/video processing architec-
tures with the objective of mapping the same semantic infor-
mation to similar vectors.

The top three scoring systems, vibro, CVHunter and 
VISIONE, including a large number of other systems (AVS-
eeker, V-FIRST, VNUHCM and AIClub@UIT) all use 

networks derived from CLIP [62]. The text query phrases 
are transformed into a joint text-image vector space with 
cosine similarity. Specifically, VISIONE uses TERN [58] for 
text-image retrieval.

In addition to this, VISIONE uses CLIP2video [20] for 
text-video retrieval. Similarly, IVIST and VideoFall use net-
works based on CLIP too [62], where input text queries are 
matched with videos in a joint text-video vector space.

VERGE’s [6] text-video matching module translates a 
complex textual query and the videos into a joint latent space 
for direct comparison. Next, it utilizes the attention-based 
dual encoding network [21]. In contrast, VIREO [55] uses 
the dual-task model [78] for the same text-video retrieval 
task.

vitrivr and vitrivr-VR both rely on a custom visual-text 
co-embedding model  [72] inspired by approaches like 
W2VV++ [44]. In comparison to CLIP-based approaches, 
the embedding models are much simpler, resulting in lower 
hardware requirements.

2.3  Temporal querying

Since VBS tasks can comprise longer target video sequences 
(up to 20 s), some systems can address multiple items in the 
target sequence at once using a temporal query.

vibro [33] employs a two-tab system in order to enable 
temporal queries. Each tab can formulate queries of the sup-
ported modalities and produces an individual ranked order 
of keyframes. If both tabs contain a query and a result list, 
consecutive sequences of keyframes from a single video 
are ranked according to the probability that the sequence 
contains content from the first tab's result list followed by 
content from the second tab in an adjustable time range.

CVHunter  [49] supports two options to address a 
sequence of video segments: a context-aware ranker that 
supports unordered specification of target segments, and 
its special case, temporal query [50], where query parts are 
ordered in the same way as the searched sequence of seg-
ments. Both approaches require distances from all query 
parts to all selected frames. However, it is worth noting that 
based on the VBS log analysis, the context-aware ranker 
was rarely used.

VISIONE [4] uses a time quantization approach to support 
temporal queries, where each video is divided into intervals 
of 7 s. Given two queries, the temporal search is performed 
in two steps. First, the two queries are processed indepen-
dently, and for each query, just the result with the maximum 
score is kept for each time interval. Second, the results of 
the two queries that are temporally close are then combined 
into pairs, and just a sample of distinctive pairs is kept in 
the final result list.

V-FIRST [75] simply allows the user to input two sepa-
rate queries, then uses a weighted sum of the two queries to 1 https:// cloud. google. com/ vision/ docs/ ocr.

https://cloud.google.com/vision/docs/ocr
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generate ordered pairs of images in a video and return them 
for the user to browse.

VERGE [6] limits temporal queries to concepts; namely, 
the user is able to query for two concepts that should appear 
in subsequent shots of the same video. For each concept, a 
separate list of shot probabilities is created, then the intersec-
tion of concepts per video is computed, and finally, shots are 
re-ranked through an objective function.

vitrivr’s  [28] temporal queries are formulated using 
two or more blocks and upon presentation of the results, 
users have to switch to a dedicated temporal query result 
view [30]. In contrast, vitrivr-VR’s [71] temporal queries are 
formulated by grabbing and ordering small representations 
of query terms in virtual space. Temporal scoring is per-
formed as described in [28]. The results are then presented 
to the user as stacks of temporally aligned segments that are 
relevant to the query.

VIREO [55] first measures the cosine similarity for the 
two successive queries independently. The two distributions 
of keyframes will be aggregated using a sliding window to 
produce the final probability.

Exquisitor’s [40] temporal queries are defined by the user 
training two relevance feedback models, focusing on differ-
ent aspects of the desired shot. Once the models are defined, 
the results of each model will highlight the shots which 
come from the same video. In addition, temporal constraints 
can be better utilized to specify the desired target shot [37].

2.4  Relevance feedback

Once results are displayed in a video retrieval system, rel-
evance feedback tools enable users to provide feedback in 
the form of positive or negative examples. Compared to 
kNN-based browsing, this feedback updates the model or the 
current score rather than issuing a new independent query.

vibro [33] only uses relevance feedback for AVS tasks, 
where all presented results have to be marked as positive or 
negative by the user after an initial query, and all positive 
keyframes are used to produce a consecutive result list.

CVHunter [49] implements a Bayesian-like approach [16] 
to accumulate relevance scores for each representative frame 
in the dataset. A temporal variant [53] of this relevance feed-
back approach was successfully tested in the system as well.

V-FIRST [75] has an optional pseudo-relevance feedback 
feature, where it assumes the top-k (with k = 10 ) initial 
results are relevant and reformulates the query by taking 
their centroid. This can be useful to cluster a small set of 
correct answers to the top ranks.

Exquisitor [40] uses relevance feedback as its primary 
interactive approach for search, where it trains a linear SVM 
model to construct a hyperplane to retrieve the most rel-
evant items [38]. With multiple modalities involved, an SVM 
model for each modality is used to get candidates, which are 

then fused using rank aggregation. For VBS 2022, Exquisi-
tor uses two visual modalities, semantic concepts from Ima-
geNet and actions from Kinetics-700.

2.5  Query by example

Many VBS systems allow query reformulation, where users 
select an example item from the currently displayed can-
didate set. The essential part of this method is a similarity 
model assigning a similarity score for two items.

vibro [33] uses a Swin [48] architecture that has been 
fine-tuned for content-based image retrieval for visual simi-
larity search. The final embedding was binarized and con-
cluded to 1024 bits for each vector.

For visual similarity of two items, CVHunter, AVSeeker, 
V-FIRST, VideoFall and AIClub@UIT all use the same CLIP 
feature vectors [62] as was used for text search.

VISIONE [4] supports both visual similarity search, where 
the user can use an image as a query to search for video 
keyframes visually similar to it, and a semantic similarity 
search, where an image can be used to retrieve video key-
frames or video clips that are semantically similar to it. The 
visual similarity search is based on comparing GEM [63] 
features. For the semantic similarity CLIP2Video [20] and 
TERN [58] are used for searching video clips and video 
keyframes, respectively.

In VERGE’s [6] system, the visual similarity search mod-
ule enables the retrieval of visually similar content starting 
from a query image and considers feature vectors produced 
from a fine-tuned GoogleNet architecture [61] and an effec-
tive IVFADC indexing structure [35].

vitrivr [28] provides two modalities for query-by-exam-
ple. One enables users to simply upload a sample image 
to find visually similar items, and the other operates via a 
“more-like-this” button positioned next to results.

vitrivr-VR  [71] allows querying by frames of already 
retrieved videos through a similarity search. The feature 
used for this more-like-this search can be configured and 
was set to simple color and edge features for VBS 2022.

VIREO [55] calculates the cosine similarity of the dual-
task model’s [78] embedding feature and indexes the KNNs 
for visual similarity search.

diveXplore [43] provides content similarity search with 
GoogleNet neural codes from ImageNet-1000, using the 
Manhattan distance to the selected example image.

2.6  Other

This section describes features and approaches which do not 
fall directly under any previous categories.

CVHunter [49] allows a fast inspection of top-k items 
from each video in the result set by pressing a number key 
(defining the k) on a numeric keyboard. For AVS tasks, the 
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tool supports fast selection of all visible items and selection 
of a database subset distinct from another team member.

IVIST [42] exploits a scene-text searching function to 
search frames that contain the query text in the correspond-
ing scene by adopting PixelLink [17] and ASTER [70], so 
that users can try to find frames where specific scene texts 
exist. VNUHCM and AIClub@UIT also follow the approach 
of using textual information in video frames for retrieval.

VideoFall [60] introduces a method of submitting results 
in its video retrieval system, which involves two distinct 
interfaces prior to submission. The first interface is designed 
for users to input queries and explore the keyframe collec-
tion like normal, whereas the second interface is designed 
for users to verify the data received from the first interface 
and subsequently submit the final frame to the competition 
server.

VERGE [6] utilises a human and face detection mod-
ule that aims to count the number of individuals in each 
frame by identifying their silhouettes and heads using the 
CrowdHuman dataset [69] and the YOLOv4 [12] deep neu-
ral network.

Both vitrivr and vitrivr-VR employ a novel query-by-pose 
approach [28, 71], allowing the specification of poses seen in 
the target clip. This pose-based query mode uses key-points 
extracted from segment keyframes using OpenPose [13]. In 
addition, vitrivr allows users to query by pose by dragging 
the key-points on a 2D canvas, while vitrivr-VR allows the 
posing of the key-points in 3D space, which are then pro-
jected with perspective on a camera-like canvas.

diveXplore [43] supports search for texts in OCR results 
detected with CRAFT [7, 8].

The ViRMA [19] prototype system employs a novel VR 
interaction approach by utilising the M 3 data model [23], 
which takes the media objects from the VBS dataset and 
maps them into a multidimensional media space based on 
their metadata. Users can then visualise the video data by 
filtering and dynamically projecting the multidimensional 
media space to the more familiar 3D space and then can 
explore this visualisation using virtual reality [19]. This type 
of 3D visualisation is effective at browsing and summarising 
a collection, but is less effective at search, which is likely 
why the ViRMA system did not perform well in VBS 2022.

2.7  Browsing

Table 1 contains four popular browsing approaches applied 
at VBS. The Ranked List simply refers to any visualization 
of the ranked result set. Video Summary refers to displaying 
a list of selected frames from a video. Video Player/Pre-
view also refers to displaying frames, but at a higher frame 
rate (not just representative frames). Finally, the Tempo-
ral Context refers to the visualizations of resulting frames 
with the temporal neighborhood. Systems that have notable 

variations on these four browsing approaches are discussed 
in this section.

vibro [33] allows browsing of result lists by displaying 
the 4000 most relevant keyframes to the current query in a 
list or on a 2D sorted map. Additionally, the entire keyframe 
collection can be explored with the help of a hierarchical 
graph [32]. A single click on each of the presented key-
frames opens the corresponding video in the video section of 
the UI, where all keyframes are listed in chronological order, 
and the video can be viewed with a video player. Double 
clicks on keyframes will create a new result list and jump 
to the keyframes location in the exploration graph section.

VISIONE [4] groups the results by video so that one row 
(containing up to 20 frames) for each video is displayed in 
the browsing interface; the rows of videos and the frames 
in it are sorted according to the score given by the retrieval 
model. There is a menu on each frame that allows the user to 
do similarity searches, see the entire video starting with the 
selected frame, or see a preview of the video in a neighbor-
hood of the selected frame.

IVIST [42] displays the top-100 lists of keyframes at once, 
organised into pages. Short video clips ( < 5s), including 
each keyframe, are displayed as a GIF to provide temporal 
context. A keyframe can then be selected to display a video 
player function.

AVSeeker [41] generates a ranked-list of the top 2,048 
keyframes that best match the query and groups them by 
video. The videos are then ranked by the average score of 
their top 3 best-matching keyframes to generate the final 
ranked list. These highest-scoring keyframes are also used as 
the preview of their corresponding video in the final result. 
Once a preview is clicked, a menu will pop up, which allows 
the user to see all matched keyframes, all keyframes of the 
video, and the video itself.

To expedite the process of elimination, V-FIRST [75] 
groups results by video up to a specific number of frames 
per video. Frames with high similarity are also removed to 
increase the variety of results.

VNUHCM [54] allows users to control the number of 
frames that are displayed. For each frame that is selected, a 
small video player of the corresponding timestamp is shown 
for users to interact with.

To allow fast and visually aided browsing within videos, 
vitrivr-VR provides a multimedia drawer view [71]. This 
video segment view, which resembles a VR drawer con-
taining the most representative frames of the segments of 
a video, allows users to browse the segments of a video in 
3D space simply by moving their hand through the drawer.

Exquisitor [40] displays the top 42 keyframes from its 
ranked list to the user. The user can either interact with 
the displayed keyframes to update the relevance feedback 
model, which will produce a new ranked list to get items 
from, or they can continue going through the current ranked 
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list one keyframe at a time or get the next 42 keyframes. For 
this VBS, Exquisitor does not provide a video player for the 
shots. Instead, it displays a shot with 1 to 5 frames depend-
ing on its length. In addition to this the next 2 shots’ frames 
are also displayed below the selected shot [40]. Aside from 
the shot summary, a timeline browser for the video is avail-
able either as a vertical grid, or horizontal slider [39].

3  Overall results

In this section, we will discuss the final results of the VBS 
2022 competition in detail. For this purpose, we analyze 
all three task types separately: KIS-v, KIS-t, and AVS (see 
Sect. 1).

We start with the overall scores, which are shown in 
Fig. 1 for all teams. We can identify three major groups of 
teams. The first group consists of the four top teams, who 
achieved more than 230 points. Among them is the vibro 
team, who was able to collect the maximum score in all three 
sessions: 100pts in KIS-v, KIS-t, and AVS, respectively. 
vibro is closely followed by CVHunter and VISIONE, who 
also reached a similar score for KIS-t (100pts and 90pts) 
and KIS-v (96pts and 100pts), but got fewer points for AVS 
(81pts and 74pts). The IVIST team, as the last one in this 
group, was also able to get the maximum score for AVS but 
achieved substantially fewer points in KIS-t (59pts), while 
scoring well in KIS-v (90pts).

In the second group, there are the teams that scored 
210-137 points (AVSeeker, V-FIRST, VideoFall, VERGE, 
vitrivr, VNUHCM, VIREO, AIClub, and vitrivr-VR). For 
these teams, we can see a much lower and linearly decreas-
ing score, with different difficulties per team. For example, 
the vitrivr, VIREO, and AIClub teams were challenged by 

KIS-t, where they achieved only 30pts, 30pts, and 21pts, 
respectively. VIREO also had difficulties with KIS-v, where 
they achieved only 31pts.

Finally, in the third group, there are teams that were only 
able to collect up to 77 points: diveXplore, Exquisitor, and 
ViRMA. While Exquisitor was still okay in KIS-v (40pts), 
ViRMA could only score in KIS-t (9pts) and AVS (13pts). 
diveXplore scored in all three sessions but only with a low 
number of points (28pts, 23pts, and 24pts for KIS-v, KIS-t, 
and AVS).

From the number of submissions for KIS (Fig. 2), we can 
see that the teams in the first group were able to correctly 
solve 13 tasks in KIS-v, with only one wrong submission 
from CVHunter. The situation was different for KIS-t, where 
vibro submitted six wrong results, CVHunter one, VISIONE 
three, and IVIST two.

The teams in the second group were also very success-
ful with KIS-v tasks but had substantially more wrong 
submissions (e.g., V-FIRST solved 12 KIS-v tasks cor-
rectly, but also had six wrong submissions). The AIClub 
team is an exception for KIS-v in this group: they solved 
12 tasks correctly, with only two wrong submissions. For 
KIS-t, the situation was much worse than in the first group 
though: for many teams, the number of wrong submissions 
is higher than the number of correct ones (except VERGE, 
who could solve six KIS-t tasks correctly, with only one 
wrong submission).

In the last group of teams, the number of correct KIS 
submissions is generally low, except for Exquisitor, who 
could correctly solve six KIS-v tasks. It seems that ViRMA 
had serious difficulties with KIS-t, for which they submit-
ted seven wrong submissions, while only one task could be 
solved correctly.

When looking at the AVS tasks (Fig. 3), it is obvious 
that the IVIST team submitted most correct results (1851), 

Fig. 1  Overall scores per team and task type
Fig. 2  Distribution of correct and incorrect submissions for known-
item search tasks per team
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closely followed by vibro with 1568 submissions, while 
CVHunter and VISIONE submitted only 1095 and 1038 cor-
rect results, respectively. However, it is interesting that also 
most teams in the second group found many correct items for 
AVS: most notably vitrivr and VIREO, who submitted 1310 
and 1437 correct AVS items, respectively. Most wrong sub-
missions were made by the top-scorer in this session (IVIST 
with 425 wrong submissions). The number of undecidable 
submissions was generally low (at most 62), which is not 
only evidence of great team performance in general, but also 
proof of confidence of the AVS judging team.

It is worth noting that the submission time distribution 
provides deeper insights into how proficient each team’s sys-
tem performed during the real-time competition. The faster 
the system locates the target, the more efficient it is. As can 
be seen from  Fig. 4, most teams had the shortest time to 

search for the AVS tasks regardless of the correctness, fol-
lowed by the KIS-t and KIS-v tasks, respectively.

Figure 5 illustrates the distribution of time until the first 
correct submission across all teams and task type which 
excludes unsolved attempts. For the AVS tasks, the time is 
almost identical to the time to first submission meaning that 
many early submissions are correct. In contrast, the amount 
of time to find the correct answer for the other 2 tasks varies.

4  Analysis of KIS logs

As in previous years, during the competition, each team was 
asked to log the user interactions and the result sets of their 
queries for each task. Each team was given the choice of log-
ging this data locally or sending it directly to the DRES com-
petition server using a specific log format. In this section, 
we present the analysis of these logs to better understand 
the ranking performance of each system during KIS tasks.

The logs are in JSON format and each comprises the team 
identifier (in some cases, also the user identifier), timestamp, 
query description, and the list of top-ranked items that were 
retrieved for the query at hand. We report the analysis of 
result and query logs only for a subset of six teams (namely 
vibro, CVHunter, VISIONE, VERGE, vitrivr, vitrivr-VR). 
Unfortunately, the other teams did not log results in the com-
mon format or had incomplete/missing logs.

4.1  Log pe‑processing

Of the six teams with logs, three saved the logs locally 
(vibro, CVHunter, VISIONE), while the others (VERGE, 
vitrivr, vitrivr-VR) sent the logs to DRES. We normalized 
the event timestamps of locally saved logs to the UNIX 
timestamp format used in DRES. Concerning possible 

Fig. 3  Distribution of correct, incorrect, and undecidable submissions 
for Ad-hoc video search tasks per team

Fig. 4  Distribution of time until the first submission per team and 
task type

Fig. 5  Distribution of time until the (first) correct submission per 
team and task type
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clock shifts between DRES and local clocks, we mostly 
rely on the synchronization performed by the OS. However, 
we carefully checked shifts in the submission timestamps 
and, according to our analysis, there might be only small 
differences (about 1 s). Therefore, we conclude that the 
presented times are consistent, and the slight shift does not 
affect the following analysis. We filtered data to only contain 
log entries that fall into the task duration interval and also 
removed all logs that comes after the correct submissions 
of respective teams.

Note that the set of logs collected may be incomplete 
(due to external circumstances or team log choices) and thus 
our analysis represents an approximation of all interactions 
and results of the tools. For example, VERGE experienced 
network problems during the competition and some of its 
logs were sent, but not received by the DRES server as evi-
denced by the fact that there are no logs of this team for an 
entire task (T6). Moreover, different teams used different 
logging parameters and units of retrieval. vibro logged only 
the top-1000 results for each query, while other teams logged 
the top-10,000 results. In our analysis we considered only 
the top-1000 results to keep the logging scale the same for 
all teams. Concerning the logging unit, vibro, CVHunter, 
and VISIONE logged frames; VERGE and vitrivr logged 
segments (predefined shots and custom shots with time 
intervals, respectively); vitrivr-VR logged both frame and 
predefined segments. In order to standardize the units of 
retrieval, we transform each of them into a temporal form. 
Specifically, if a frame is given, we convert the frame num-
ber into the corresponding physical time, using the frame 
rate metadata associated to each video, and we check if it 
ends inside the ground-truth interval. If a shot id has been 
logged, we convert the shot id to the corresponding tem-
poral endpoints inside the video, using the provided shots 
metadata, and we check if the middle time of the submitted 
interval is inside the ground-truth interval. We note that dur-
ing the competition a live judge was allowed to manually 
accept submissions from the same shot just outside (less 
than 3 s) the KIS ground truth segment boundary. However, 
these cases are rare and for the analysis of result log item 
correctness, the original official ground truth was utilized.

In the following analysis, it is also important to capture 
submissions not only at the level of the whole team but first 
and foremost at the level of the specific user who used the 
tool. This is important, as it may happen that if we collapse 
all the statistics of the whole team—two users as they were 
a single one—some inconsistencies may arise.

Throughout the following analysis, for the systems that 
logged the user ID (vibro, CVHunter, VISIONE, vitrivr-VR) 
and for each task, we labeled the user as best and other, 
where we define the best user as the one among the two that, 
for that particular task, obtained—ordered by decreasing 
importance—(i) the best shot rank, (ii) the best video rank, 

(iii) the shortest time when the best shot was retrieved, (iv) 
the shortest time when the best video was retrieved. Each 
metric serves to perform a tie-break in case all the previous 
ones are equal among the two users. Using this formulation, 
the shot rank has primary importance. In fact, if the shot 
rank differs, we have that the best user is immediately the 
one having the lowest shot rank. In case any of these metrics 
are missing for that specific user and task, we set them to 
their maximum values ( 103 in case of ranks and a time longer 
than the task duration in case of times).

4.2  Comparison of retrieval models

One area of interest in comparing the system retrieval mod-
els is analyzing whether a correct item (frame or shot) of 
the searched video segment appeared in the top positions of 
the retrieved results. In this respect, Fig. 6 shows, for each 
system, the best-achieved rank of a correct item (frame or 
shot) before submission across all 23 KIS tasks (ten of which 
are textual KIS, reported in Table 2). The distribution of 
the minimum achieved rank by the best users reflects the 
overall teams’ scores. For example, the best rank is below 
100 in about 87% of cases for vibro and CVHunter, 78% 
for VISIONE, 68% for VERGE, 65% for vitrivr, and 30% 
vitrivr-VR. However, the minimum achieved rank of the 
other user is below 100 in about 52% of cases for vibro, 
35% for CVHunter, 48% for VISIONE, and 9% vitrivr-VR. 
The considerably worse performance of the other users for 
some tasks may be caused by two main reasons: (i) we are 
not considering the logs after a team's correct submissions; 
(ii) a particular user may formulate better initial queries for 
some tasks than the other user.

In Fig. 7 we report, for each tool and each KIS task,

– The best achieved rank of a correct item (frame or 
video shot of the target video segment) in the top 
logged results of the best user in the considered task 
(before the team correct submission, if any);

Fig. 6  Best rank of correct items appearing in result logs



3490 J. Lokoč et al.

1 3

– The time tf  when the best rank of a correct item – as 
described above – was obtained;

– The best achieved rank of any item (frame or shot) of 
the correct video by the best user in the considered task 
(before the team correct submission, if any). Note that, 
in this case, the item may not overlap the target video 
segment even if it belongs to the correct video;

– The time tv when the best rank of any item of the cor-
rect video was obtained;

– The time tcs of the correct submission.

We can observe that the ranks and the overall competition 
scores of the top three teams are somewhat matched. In fact, 
vibro, CVHunter, and VISIONE are able to find the correct 

video in the first 10 results more consistently. In general, 
browsing failures (red and orange cells) are most evident in 
the case of textual KIS or, as easily guessed, when the best 
rank of a corrected item is high. However, it is also interest-
ing to note that for some tasks and tools, a correct video 
was in the top 10 results, but it was not correctly identified 
and submitted (e.g., vibro in task T2, VISIONE in task T11, 
VERGE in task V10, vitrivr in tasks T1 and T8, vitrivir-VR 
in task V2).

We also emphasize that the best rank and correct submis-
sion times can be from different team members. Hence, it 
might happen that the time between the occurrence of the 
best item and submission is unrealistically low. For exam-
ple, vitrivr-VR had the best video rank 97 in time 104 s and 

Table 2  Textual KIS tasks

Name Hints

 T 1 Close-up of motorbike exhaust pipes being cleaned with a wet sponge.
Two chromed pipes are visible, open on the left.
The forearm of a man wearing black T-Shirt is visible a few times.

 T 2 Two shots: first of a gorge with rocks hanging over a wooden walkway, second a wooden bridge seen from a creek.
In the first shot, the creek is not visible, just the rocks on the right and trees and gorge on the left.
Shot in autumn, with still some green trees but colored leafs on the ground, and boulders on both sides of the creek (in 2nd shot).

T 3 Almost static shot of a brown-white caravan and a horse on a meadow.
The caravan is in the center, the horse in the back to its right, and there is a large tree on the right.
The camera is slightly shaky, and there is a forested hill in the background.

 T 6 Slow pan over a table with a glass, vase, leather cases and a wooden frame slate, then over a board with a timetable.
The scene is poorly lit, and the text on the slate reads "Welcome to our Story", followed by a date.
The timetable is titled "OUR WEDDING".

 T 7 A girl riding a red bicycle, followed by a close-up shot of a termite trail on a tree root.
The girl’s head is not visible, she wears a blue shirt and short red pants, and has a bag and a tripod in a basket on the bicycle’s handlebar.
The focus in the shot of the termite trail gradually changes from back to front.

 T 8 Shot of an opened magazine, showing a drawing of a bearded man on the right side, then a shot of a person standing in a street and hold-
ing different pages of an open magazine in front of the camera.

The person in the street wears a blue T-shirt and light grey jacket, and is wearing a mask and sunglasses. There are white frames with 
black text messages flashing up inbetween.

The drawing in the first shot is on black background, the man has a white beard, the title of the left page is "vote for Pedro".
 T 9 Close-up shot of a yellow slug (naked snail) eating a green leaf with a tiny green branch.

The leaf is in the lower center of the image, the slug curved in the right half.
The slug and the leaf are on a bed of needles and small branches.

 T 10 A shot of a man in a water slide, followed by two shots of two men trying to light a fire on a beach.
The man slides down head first, and wears black bathing trunks.
There is a circle of stones around the fire, and we do not see the heads of the two men.

 T 11 View from an upper deck of a ship down to a lower deck and water, slowly changing the view to the front of the ship, where a man with a 
camera walks into view.

The lower deck is on the left, with green floor and two red/orange chairs, and water is on the right.
The man wears black trousers and a grey jacket.

 T 12 A split screen shot of a building with a green facade with many different plants, static view on the left, detail view moving down on the 
right.

The walls on the ground floor are concrete walls, partly covered with woodwork.
The shadow of another building is moving down, until most of the building is in sunlight.
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submission at time 106 s in task V10. On the other hand, 
long submission delays for both users just confirm issues 
with browsing.

Regarding vitrivr-VR, please also note that it uses an 
asynchronous workflow and allows users to browse very 
easily within multiple result sets at the same time, as well 
as within entire videos from different queries. The current 
logging format does not always allow the path from query to 
submitted result to be determined uniquely, and this explains 
why correct results submitted by vitrivr-VR do not always 
appear in the top-ranked logged query results or appear at 
a very high rank.

Some teams (e.g. VISIONE, vitrivr, and vitrivr-VR) dis-
play the search results by grouping together those from the 
same video and showing a limited number of items for each 
video in the browsing interface. Therefore, many correct 
submissions may have been generated from a video level-
hit and not by scanning the top results from the highest to 
the lowest score (i.e., in the order in which they were logged 
and used in the analysis reported in this section). See for 

example, VISIONE in task V7: even if the best correct item 
rank is pretty high (751), the correct video was displayed 
in the first page of the results (7-th row in the browsing 
interface).

4.3  Browsing efficiency

Figure 8 shows the relation between the rank of the first 
appearance of a correct item (frame or shot) in the logged 
result set and the elapsed time in second between this first 
appearance and the correct submission, if any, both for 
visual KIS (left-hand graph) and textual KIS (right-hand 
graph) tasks. Note that these graphs give an approximation 
of the real browsing time because (i) it is possible that a 
correct submission was made though inspecting the video 
and not the top-ranked frames/shots, (ii) the team user who 
first retrieved a correct item may not be the same who sub-
mitted the final correct answer (information on which team 
member made the correct submission is not available for 
all teams). Nevertheless, these graphs give some insight 

Fig. 7  The table reports for each tool with logs (i) the best achieved 
rank of a correct item (frame or video shot); (ii) the time tf  in seconds 
when the best ranked correct item was retrieved; (iii) the best ranking 
of any frame/shot of the correct video (but not necessarily the cor-
rect video segment); (iv) the time tv in seconds when the best ranked 
video frame/shot was retrieved; (v) the time tcs of the tool’s correct 
submission. Red values are for the best detected ranks of searched 
video frames/shots if the target video segment was not present in the 

logged result for a task. Green cells show the best achieved correct 
item with a rank less than 100. Yellow cells show the best achieved 
video item with rank less than or equal to 10. Red cells indicates 
browsing failures, when a correct item was in the first 1000 results 
but was not submitted. Orange cells are other browsing failures, when 
the correct video was present—but no correct frame or shot was pre-
sent—and no correct submission was made
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into  how long it took users to find a correct item once it 
was present in the result set. This time clearly depends 
also on the specific system browsing capabilities and the 
user behavior (e.g., some user may prefer to check just a 
limited number of results and eventually reformulate the 
query instead of exhaustively inspecting the results set). 
Overall, we observed that—as expected—the time between 
the first appearance of a correct item and the submission 
tends to increase with the rank of the item. However, in 
textual KIS tasks, it happens more often that the rank of 
the first appearance is low (even 1), but the operator takes 
a long time before submitting a correct result (which we 
recall he/she has never seen before, but knows only a tex-
tual description). For example, in the graph in Fig. 8b, 
we can see five cases where the rank was less than 25, 
but the operator took more than two minutes to make a 
correct submission, and in one case, no correct result was 
submitted at all. These outliers are less frequent in the case 
of visual tasks—only one team in a single task, VERGE 
in V10, had a correct item in 15th position (obtained after 
only 20 s from the start of the task) but did not submit any 
correct results at the end. More generally, it is interesting 
to note that the variance of the time delta increases with 
the rank, as different strategies may be used by the team 
members., e.g. exhaustive inspection of a result set, query 
reformulation, or video-level browsing, just to guess a few.

4.4  Querying modalities

In this section, we aim to provide a more in-depth look on 
what kind of query modalities the individual teams actually 
used during the competition. In order to do so, we divided 
the query logs into six categories by summarizing the under-
lying analysis methods of the different teams. The outcome 

was: Text, Image, ODLS, OCR, ASR and Color. Text includes 
joint-embedding queries for most of the logging teams and 
VERGE’s concept search. Image groups methods such as 
query-by-example through visual similarity search and 
relevance feedback with global image embeddings. ODLS 
stands for object-detection-localisation and segmentation 
and includes those kind of queries that specified a number 
of objects or objects and their positions in an image. Since 
ODLS queries of the VISIONE system were often used in 
combination with the text modality, we keep also multi-
modal combinations in the ODLS category. Examples are 
VISIONE’s concept search and VERGE’s number-of-object 
filter. Although OCR (optical character recognition) and ASR 
(automatic speech recognition) searches were formulated 
with text, the underlying analysis methods are fundamen-
tally different compared to the other methods, which is why 
we assigned two additional categories. The last query type 
Color groups methods, where color was solely used for a 
search. Please note that >1000 used in tables/graphs may 
mean also that the searched target was filtered out.

Table 3 depicts per-team relative usage of individual 
query categories. Throughout all teams, pure text que-
ries are by far the most used variant, while image queries 
are the second most used. Obviously, these results are 
affected by what modalities are actually implemented by 
individual teams, but nevertheless, text queries dominate 
considerably.

Additionally, Fig. 9 compares query modalities usage 
across the two task types KIS-t and KIS-v. Even though 
text is still the most frequently used category for both task 
types, query modalities such as image and ASR gain popu-
larity in the KIS-v tasks, where audio-visual information is 
presented.

Nonetheless, a question may arise whether text queries 
are also effective apart from being popular. To clarify this, 

Fig. 8  Relation between the rank of the first occurrence of a shot in 
the result logs and time delta to correct submission, for both visual 
a and textual b KIS tasks. NCS stands for Non-Correct Submissions 
and corresponds to all the correct frames found in the result logs that 

were not correctly submitted (either because of running out of time or 
incorrect submissions). The blue line is found through linear regres-
sion, and it is accompanied by the 95% confidence intervals
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Table 4 depicts the ranking of correct shots/frames per team 
and query type. In most cases, the performance of text que-
ries is similar to or better than the performance of other 
query modalities. One notable exception is CVHunter, where 
Image queries for instance achieved 43% results within top 
100, while only 19% of text queries were within the top-100. 
In this case, however, CVHunter often utilized relevance 
feedback queries, which incrementally refines the previous 
text search results, so the performance of Image queries is in 
a sense pre-conditioned by the performance of text queries.

4.5  Querying density

In this section, we focused on how individual teams divide 
their time between querying and other activity (e.g., brows-
ing). First of all, we focused on whether the querying inten-
sity changes in the course of the task duration. We divided 
each task into 1-minute intervals and counted the volume of 
per-team queries from this interval.2

The count of per-team queries decreases from approx. 3.6 
in the first minute to approx. 2.1 in the last minute. This may 
indicate that in later stages, teams focus more on browsing, 
while earlier they try to re-formulate their search more. Even 
though, the differences are not so substantial, so we can 
also focus on per-team querying density in general. Table 4 
contains the mean volume of queries per team per minute 
of their active participation.3 Here, two main outliers are 
VISIONE, who made on average 5.4 queries per minute and 
vitrivr-VR, who only logged 1.9 queries per minute. In case 
of vitrivr-VR, the main cause is the tool design itself, which 
is much more focused on browsing than its competitors. In 
the case of VISIONE, the cause is that queries are evaluated 
“on-the-fly” at any user interaction with the search inter-
face (even just moving or resizing an object in the canvas), 

without the necessity of explicitly clicking on the “search” 
button.

Finally, we also measured users’ reaction times, i.e., how 
fast did they construct the first query. Figure 10 depicts this 
statistic per team and task type. Notably, vitrivr-VR experi-
enced significantly higher times for their initial queries than 
the rest of the teams. This is not unexpected, particularly 
considering the rise of text-based, cross-modal retrieval, 
since text entry in VR is still much slower than using con-
ventional keyboards.

We also assumed that textual description is faster to pro-
cess and therefore initial query times would be significantly 
smaller for textual KIS tasks. While this was true for some 
teams (vibro, VISIONE), the results were not conclusive 
in general. In fact, it is important to note that certain teams 
including VISIONE and vibro, occasionally did not manu-
ally type the textual query during textual KIS. Instead, they 
copied and pasted the query from the DRES visualization 
interface used to view the tasks. Unfortunately, this copy and 
paste action was allowed but not logged, so it is impossible 
to determine which teams relied on this method and how 
frequently they did so.

4.6  Analysis of textual queries

In this subsection, we focused on the properties of the tex-
tual queries. Specifically, we evaluated the length of textual 

Table 3  Percentages of query 
type use across all KIS tasks for 
each individual team

Team Text Image ODLS OCR ASR Color

vibro 69.9 27.8 0.0 0.0 0.0 2.3
CVHunter 82.2 17.8 0.0 0.0 0.0 0.0
VISIONE 78.5 0.0 21.1 0.0 0.0 0.3
VERGE 88.6 8.5 1.4 0.0 0.0 1.4
vitrivr 82.1 0.0 1.0 8.3 6.0 2.7
vitrivr-VR 96.9 0.0 0.0 3.1 0.0 0.0

Fig. 9  Comparison of query type use across all teams for KIS-v and 
KIS-t tasks. Results are grouped by query type and task type

2 We only kept those teams that did not yet solve the task, i.e., the 
timestamp of their correct submission was higher than the upper 
bound of respective interval (or they did not solve the task at all).
3 Counting from the task start time to task end time or correct sub-
mission time, whichever comes first.
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queries w.r.t. the number of words and number of characters, 
for which the mean values are depicted in Table 4. Note that 
vitrivr logs do not contain the text of the query, therefore 
we exclude them here. We observed some notable differ-
ences in textual querying strategies of individual teams: 
both VERGE and vitrivr-VR used on average shorter queries 
(w.r.t. both metrics), while VISIONE usually constructed 
much more complex queries - in average twice as large as 
its next competitor.

There are two main reasons behind this observation. 
First, VISIONE provided more extended and detailed textual 
descriptions of the searched scene compared to other teams. 
Second, a significant portion (about 83%) of VISIONE’s 
queries were temporal textual queries (descriptions of 
two different scenes of the same video clip), which were 

concatenated as a single textual query in this analysis. We 
also note that the vibro team did not log temporal queries as 
temporal fusion was an on the fly computed interface option 
for two independent queries.

We were also interested, in whether the additional effort 
coming with the construction of larger queries pays off, i.e., 
whether better ranking of correct items/videos are achieved. 
Nonetheless, as teams use different ranking models and per-
team querying strategies also differ substantially, we have to 
resort to per team comparisons. Figure 11 depicts per team 
enhanced boxplots of queries, where the correct shot was 
within, or outside of top-1000 results. In general, the dif-
ferences were smaller than we expected, but even though, 
for vibro, CVHunter and VERGE teams, within top-1000 
queries were significantly larger (w.r.t. both number of words 
and number of characters; in case of t-test, p-values <= 
0.04) than outside top-1000 queries. Especially for vibro, 
the pattern was quite notable. However, just producing larger 
(more descriptive) queries might not lead to better results. 
This is illustrated by VISIONE, whose queries were largest 
in general, but lengths of within top-1000 and outside top-
1000 queries were without statistically significant difference.

We also observed how much the initial results could be 
improved via subsequent text query reformulations. For 
this, we grouped all queries collected for each user and task 
and ordered them from first to last. We denote this as query 
sequences and grouped queries w.r.t. their position within 
the sequence. Figure 12 depicts enhanced boxplots for the 
ranks of correct shots. It can be seen that textual reformula-
tion may lead to some notable improvements. On the other 
hand, results also reveal numerous browsing errors, where 
correct shots were within top 10 or top 100, but queries 

Table 4  KIS tasks query statistics per team and query type

Only the query types with 10+ per-team occurrences are depicted. For each team, the mean volume of queries, mean number of words and mean 
string length of textual queries are depicted. Then, for all pairs of a team and a query type, top-K denote percentage of queries, for which the tar-
get shot was within the first K results and > 1000 denote percentage of queries, where correct shot was not present in top-1000 results

Team Query Query per Words per query Top-10 Top-20 Top-50 Top-100 Top-200 >1000
type minute Query length

Vibro Text 4.96 8.09 40.86 7.3 12.2 21.1 29.3 37.4 43.1
IMAGE – – 10.2 14.3 20.4 30.6 32.7 51.0

CVHunter Text 3.40 9.14 49.06 10.8 13.8 15.4 19.2 20.0 48.5
IMAGE – – 10.7 14.3 39.3 42.9 57.1 32.1

VISIONE Text 5.41 21.2 103.89 9.7 16.3 19.4 26.0 35.7 48.0
ODLS – – 13.1 19.7 19.7 23.0 26.2 54.1

VERGE Text 2.58 4.49 25.20 13.4 14.4 23.0 32.1 45.5 38.0
IMAGE – – 11.1 11.1 11.1 27.8 38.9 55.6

vitrivr Text 3.28 N/A N/A 3.2 4.8 8.9 13.3 18.5 67.3
OCR – – 0.0 0.0 0.0 4.0 12.0 88.0

vitrivr-VR Text 1.91 5.70 28.37 0.0 1.6 3.8 7.0 10.3 80.0

Fig. 10  Time to initiate the search with the first query. Results are 
grouped by team and task type
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were reformulated anyway. This may indicate the necessity 
to focus more on the browsing capabilities of individual 
tools to prevent such oversights.

5  Analysis of AVS tasks

As in previous years, VBS organized another session focus-
ing on ad-hoc search tasks. Specifically, 8 AVS tasks (see 
Table 5) were performed where teams are required to submit 
as many correct shots as possible. Figure 13 shows shares 
of correct submissions of all teams in all tasks. It is appar-
ent that there is not one dominant team for all tasks. For 
example, looking at the top two AVS systems, vibro was 
way more effective than IVIST in the task a01, while in 
the task a10 the situation was reversed. Nevertheless, all 
top-performing AVS systems (vibro, IVIST, VIREO, and 
CVHunter) show an ability to solve a non-trivial share of 
the multi-set of correct submissions.

Figure 14 shows how the overall number of received cor-
rect submissions grows over time of each AVS task, while 
Fig. 15 shows the number of submissions in specific time 
slots.

In both graphs, the same submissions from n different 
teams count as 1. Hence, the graphs show the progress in 
the detection of new and unique correct scenes. The trend 
is similar for all tasks. After a first slow period (about 40 s, 
except task a07), there starts to be a continuous growth with 
occasional peaks.

Figures 16 and 17 present the number of submissions 
and the first k submissions by n teams. It is apparent that 
the overall number of submissions is always higher than the 
overall number of correct submissions (only unique sub-
missions are counted). Regarding times to first submissions, 
there is not a clear difference between the time until the 
first submission and the first correct submission. Similarly, 
except for task a09, the times to the first submissions by 
50% of teams are quite similar to the corresponding times 
in the correct submission graph. However, the times to the 
tenth submissions by 50% of teams are becoming lower than 
the times for correct tenth submissions by 50% of teams in 
tasks a02, a05, and a06. To sum up the analysis, there are 
differences in the complexity of AVS tasks. Some  tasks are 
easier to solve for many teams, while others are way more 

Fig. 11  Distribution of the number of words and string lengths for 
textual queries. Grouped by individual teams and ranks of the correct 
results

Fig. 12  Ranking distribution of correct shots w.r.t. query sequence 
position. “First” and “Second” denote the first text query per task and 
the next text query (i.e., first reformulation/extension). “Last” denotes 
the very last text query logged for a particular user and task. Note that 
only query sequences with length >= 3 are depicted

Table 5  AVS tasks

Name Hint

a01 Find shots showing one person playing a guitar (other people but no other musicians may be visible)
a02 Find shots of one or more persons balancing on a bar, railing, rope or slackline, without any device 

under their feet
a04 Find shots of someone riding a horse or sitting on a horse (living animal)
a05 Find shots taken from any vehicle driving inside a tunnel, requiring part of the vehicle being visible
a06 Find outdoor shots showing a teddy bear (toy)
a07 Find shots of a waterfall, without people
a09 Find shots of one or more decorated trees (not just branches) that are not lit (inside or outside)
a10 Find shots of someone with their hands on a camera (not e.g. a phone-like device), filming or tak-

ing/preparing to take a picture



3496 J. Lokoč et al.

1 3

challenging and also interesting for VBS-like interactive 
search evaluations.

The VBS 2021 report [31] presented an observation 
that in several AVS tasks, there were many teams in disa-
greement with one judge. Since the text query preparation 
for VBS 2022 was more thorough (see Sect. 6), we also 
analyzed the agreement/disagreement stats in Table 6. 
Compared to the previous year, the data do not reveal 
a significant level of disagreement across seven tasks. 
Indeed, except a few exceptions (e.g., eleven teams against 
one judge in task a02), the teams mostly agreed with the 

Fig. 13  Share of AVS submissions judged as correct per  team and 
task

Fig. 14  Cumulative correct video submissions over time during an 
AVS task. Log scale on y axis

Fig. 15  Correct video submissions over time during an AVS task

Fig. 16  Selected AVS metrics per task. Higher y-axis values indicate 
that teams found it easier to find results to submit for a task

Fig. 17  Selected AVS metrics per task, looking at correct submis-
sions. Higher y-axis values indicate that for a given task, it is easier to 
find results that judges deem correct
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judge's decision. Only in one task a09, there are cases 
where the teams disagreed with judges more often. How-
ever, this might also be caused by the task's difficulty and 
attempts to send at least something (the overall numbers 
are low).

5.1  New direction for Ad‑hoc search at VBS

For many years, AVS tasks were evaluated at VBS in a simi-
lar fashion as at TRECVID. Teams were supposed to submit 
as many correct shots as possible, often overloading judges 
with thousands of submissions. The scoring function was 
designed to provide a high score for precision and (pooled) 
recall. However, there were also opinions questioning the 
current way AVS tasks are evaluated.

Although 100% recall with high precision of found 
shots is an important goal in various domains (security, 
endoscopy), for VBS, it is also highly important to first 
localize videos containing a correct shot. In other words, 
ad-hoc search can be divided into two task categories—
localization of correct videos and effective search (e.g., 
advanced browsing) of the videos. From the organization's 
perspective, finding just one piece of evidence of video 
correctness (i.e., only the first correct shot) decreases 
the workload for judges and also simplifies discussions 
about a fair scoring function. Therefore, we have decided 
to focus on the video localization part of AVS tasks at the 
next VBS events.

A possible new scoring formula to compute AVS score 
per team can follow the objective of finding as many vid-
eos as possible, where the team must submit one correct 
shot from each video (i.e., evidence for each video). We 
note that the formula should integrate a penalty mechanism 
preventing floods of unverified submissions. In addition, 
a maximum limit of submissions per team could also be 
introduced as well (not considered currently). An example 
approach to defining the score ft of a team t in an AVS task 
could be as follows:

Although there are data to estimate the penalty from the 
VBS 2022 competition, we plan to carefully set this penalty 
based on more experiments. The reason is that the available 
data might be biased with respect to the AVS scoring for-
mula used at VBS 2022.

While possibly suffering from the bias of teams optimiz-
ing for the scoring function used at the VBS 2022, an early 
analysis of this data shows an average of 1.39 incorrect sub-
missions before the first correct submission per task, team, 
and video. The maximum number of incorrect submissions 
before the first correct submission for the corresponding 
video was 19. With the new scoring function in place, it 
will be interesting to see if more careful inspection of sub-
missions can be encouraged.

6  Lessons from text query definition

In the purely physical VBS editions up to 2020, the judges 
for AVS tasks were seated next to each other in the room, 
and any questions concerning the ambiguity of handling que-
ries were done informally among them. As reported in [31], 
a briefing with the judges was conducted for the first virtual 
VBS in order to discuss and refine the AVS queries, but 
was found insufficient to ensure consistency of judgements. 
Thus, the briefing of the judges for VBS 2022 was extended 
to consist of (i) a session discussing and refining the AVS 

ft =1000 ⋅max
(

1

|C|

Vt∑

v

(
cv − iv ⋅ p

)
, 0
)
, where

iv ∶= number of incorrect submissions before

the first correct submission for video v,

number of submissions in v else

cv ∶= 1 if correct submission for v, 0 else

Vt ∶= set of videos with a submission for team t

p ∶= submission penalty constant (e.g. 0.2)

C ∶= distinct correct videos across all teams

Table 6  Number of teams in 
agreement/disagreement with 
judges

Bold font highlights cases where the fraction is lower or equal to one (i.e., #agreement

#disagreement
≤ 1)

Number of Teams

 Task 1 2 3 4 5 6 7 8 9 10 11

a-1 1317/369 188/30 36/5 3/0 – – – – – – –
a-2 140/47 59/6 33/0 30/0 23/0 3/2 9/0 4/0 2/0 – 2/1
a-4 605/172 266/9 165/2 93/0 61/0 35/0 8/0 5/0 3/0 – 1/0
a-5 345/246 156/23 100/6 45/0 9/0 5/0 7/0 – 1/0 – –
a-6 134/82 71/10 52/6 46/1 40/0 34/0 25/1 15/0 4/0 5/0 2/0
a-7 778/542 291/93 159/32 91/12 66/5 28/1 17/2 3/0 1/0 – –
a-9 44/74 9/19 3/5 2/3 1/5 2/1 – 1/1 – 1/0 2/0
a-10 1419/512 371/38 157/6 85/1 44/0 17/0 7/1 3/0 1/0 – –
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query texts like in 2021, (ii) a similar session for refining the 
KIS-t queries and (iii) a dry-run session in which the judges 
tried to solve the AVS tasks themselves and provided feed-
back about the query texts. Both the discussion and dry-run 
sessions were held as web conferences. Six judges partici-
pated in the sessions. More details and the evolution of this 
process can be found in Bailer et al. [9].

The creation procedure for creating the textual queries 
was unchanged from previous editions of VBS (see [51] for 
details). The queries were provided in a shared document 
that was made available to the judges in advance of the ses-
sions. However, the ground truth was not included in the 
document.

Discussion session. In the discussion session, both AVS 
and KIS-t queries were covered. For AVS queries, the query 
text was read together with the judges and they were asked 
whether they could imagine scenes covered by the query, 
and request clarifications on possible interpretations of the 
queries that came to their mind. A reformulation that found 
consensus in the group was chosen for proposed changes. 
Where necessary, additional notes were recorded for later 
reference by the judges.

For KIS-t queries, the query was read together with the 
judges and the target clip was shown. As it was unclear 
which order would be better, reading the query first and 
watching the clip were tried, but first, reading the query 
seemed preferable. Then required changes and clarifica-
tions of the queries were discussed, watching the clip again 
if needed.

Dry-run. In order to perform the dry-run, SOMHunter 
V2 [77] was used as a browsing tool. The existing Docker 
deployment of the tool4 was modified to run a set of inde-
pendent instances (one per judge) on the same machine. A 
startup script took care of modifying configurations so that 
the Docker containers required by each instance would use 
a dedicated set of ports. The containers were hosted on an 
Amazon Web Services EC2 machine with 64GB RAM.

After a very brief introduction to the tool, the judges 
were given up to 10 min  to explore and discuss one query. 
Searching was stopped once a larger number of results was 
collected. The results were analysed in order to understand 
what type of content could be found for the query, and which 
ambiguities and border cases may exist. Similar to the dis-
cussion session, consensus on reformulation of queries was 
found and additional notes were recorded where necessary. 
All but one of the AVS tasks have been solved by the judges 
in the dry-run session, which already provided a good indi-
cation that the tasks would be solvable in the competition.

Query improvements. Both sessions resulted in a number 
of changes to the originally proposed queries. As shown in 

Fig. 18, the mean lengths of the queries increased after each 
of the sessions as details and clarifications were added. Fig-
ure 19 provides details about these changes on a word level, 
expressed as the number of changes per query. Most changes 
concerned nouns: more than 1.6 noun additions/changes per 
query were made for AVS queries, and almost 2 additions/
changes for KIS-t queries. The numbers are slightly lower 
for adjectives and prepositions, but the pattern is similar to 
nouns. It is worth noting that while the number of changes is 
similar for both types, more additions were made for KIS-t 
queries, which indicates the higher need to adding details. 
Also, changes of words (typically finding a more precise 
term of easier to understand synonym) were only done in the 
discussion session, while after the dry-run only words were 
added. Examples were added for some AVS queries, but this 
occurs in less than 1 in 5 cases.
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Assessment. In order to assess the effectiveness of the 
modified judges briefing, we performed an online survey 
among all participating team members in the week after 
VBS 2022. We received 20 responses, of which 17 respond-
ents stated they had participated in 2021. The repeated par-
ticipants were asked to compare the clarity of the KIS-t and 
AVS queries as well as their perception of the consistency of 
the judgements of their AVS submissions on a 5-point scale 
ranging from much worse to much better. The responses to 
these questions are shown in Fig. 20. Roughly one-third of 
the respondents did not observe any changes, and one-eighth 
found the KIS-t queries less clear than in the previous year. 
But the majority of the respondents found the clarity of the 
descriptions as well as the judgement consistency better 
or much better. It is worth noting that for AVS clarity and 
judgement consistency, none of the respondents reported a 
decrease in the quality and also much better was chosen in 
some cases (which was not chosen for KIS-t). We believe 
that this is a consequence of performing the dry-run, which 
helped both improve AVS queries and ensure later judging 
quality.

7  Discussion and future challenges

A VBS-like evaluation is a unique large-scale experiment 
organized once per year. The observed results of the experi-
ment provide a unique insight into the expected interactive 
search performance in KIS and AVS challenges with current 
state-of-the-art models. Based on the observed results, we 
would like to provide a summary of findings with a discus-
sion on future directions.

– We start with the most resonating message (and not only 
within the VBS community [47]) that the CLIP model 
and its variants represent a game-changer in cross-modal 
search. The approach and its near-future potential (using 

larger training datasets [68]) may break some assump-
tions that were made for challenges like VBS. This can 
be shown with Fig. 21 illustrating  Zipf’s law for the 
commonly observed distribution of concepts in image 
datasets [81]. For known-item search tasks, there were 
two challenges – concepts with a high number of occur-
rences often required non-trivial additional interaction, 
while rare concepts used to be hard to find with models 
trained with standard general-purpose training datasets. 
With CLIP based models and huge training datasets, rare 
concepts are now more likely to be known by content-
based ranking approaches and thus often become find-
able with a free-form text query. Hence, one of the key 
remaining challenges for the future seems to be effec-
tive refinement and browsing in large clusters with many 
similar instances. We add that  large clusters can also 
emerge if users do not actively remember all the details 
of the searched scene.

– Based on our survey on textual task quality, the concepts 
users imagine are sometimes culturally dependent. These 
issues indeed remain a challenge even with potentially 
much better ranking-models and represent an interesting 
task for future evaluations. We note that, so far, VBS has 
mostly data of users from Western cultures using CLIP, 
so the alignment of concepts between user and model 
may be high.

– Human interaction was still important even at this itera-
tion of VBS, where top performing teams already used 
CLIP. Even despite the overall good ranking performance 
of the joint embedding models, one third to one half of 
issued text queries (for systems employing the CLIP 
model) ended up with a search scene outside of consid-
ered ranked results (i.e., rank > 1000, see Table 4). On 
average, users are able to improve their textual queries 
over time (Fig. 12) and also refine/modify the queries 
with different modalities (Fig. 9).
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– Another future challenge are evaluations of the impact 
of users. We can observe that today’s vision-language 
models are sensitive to differences in wording, so their 
use in video retrieval systems harms the retrieval con-
sistency [10], i.e., the desirable property that a system 
returns consistent results for similar but differently 
phrased information needs. We are planning future eval-
uations with more users per team and more controlled 
settings (predefined start query) to further analyse the 
impact of users vs. tools.

– Another interesting challenge for future evaluations is to 
focus on different types of visual data. Interactive search 
in various visualizations of other types of data (e.g., 
images from human motion in RGB color space) might 
test generalization of presented approaches and systems 
for different domains, especially in situations where a 
good initial text query is not available.

8  Conclusions

The paper presents findings from the eleventh iteration of 
the Video Browser Showdown, where 16 teams participated 
with their interactive video search systems. The wide pano-
rama of video analysis and retrieval approaches was used, 
as described in the related work section. The results confirm 
the effectiveness and reign of joint-embedding approaches, 
where CLIP-based models demonstrate impressive per-
formance. The top three systems vibro, CVHunter, and 
VISIONE (according to the VBS ranking), were able to 
solve all visual known-item search tasks as well as almost 
all textual known item search tasks. Considering the size of 
the video collection, this is a great achievement compared 
to the previous several years. The result logs of six teams 
revealed that with multiple attempts to formulate a (mostly 
text) query, the teams were able to find known-items at good 
ranks. However, there emerged also several browsing/visu-
alization issues where the teams overlooked a correct item 
with a good rank. The analysis of AVS tasks did not reveal 
a clear winner, although the average performance of vibro, 
IVIST, and VIREO teams were impressive. The analysis 
of agreement/disagreement with judges revealed a positive 
effect of the new query preparation process, which was sup-
ported by an online survey as well. For future VBS evalu-
ations, we plan to make visual known-item search tasks 
harder (e.g., shorter targets segments or domain-specific 
collections) and reconsider AVS tasks (search for videos 
with a correct item).
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