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Abstract
In video captioning, many pioneering approaches have been developed to generate higher-quality captions by exploring and 
adding new video feature modalities. However, as the number of modalities increases, the negative interaction between them 
gradually reduces the gain of caption generation. To address this problem, we propose a three-layer hierarchical attention 
network based on a bidirectional decoding transformer that enhances multimodal features. In the first layer, we execute dif-
ferent encoders according to the characteristics of each modality to enhance the vector representation of each modality. Then, 
in the second layer, we select keyframes from all sampled frames of the modality by calculating the attention value between 
the generated words and each frame of the modality. Finally, in the third layer, we allocate weights to different modalities 
to reduce redundancy between them before generating the current word. Additionally, we use a bidirectional decoder to 
consider the context of the ground-truth caption when generating captions. Experiments on two mainstream benchmark 
datasets, MSVD and MSR-VTT, demonstrate the effectiveness of our proposed model. The model achieves state-of-the-art 
performance in significant metrics, and the generated sentences are more in line with human language habits. Overall, our 
three-layer hierarchical attention network based on a bidirectional decoding transformer effectively enhances multimodal 
features and generates high-quality video captions. Codes are available on https://github.com/nickchen121/MHAN.

Keywords  Video captioning · Bidirectional decoding transformer · Multimodal enhancement · Hierarchical attention 
network

1  Introduction

The task of video captioning involves understanding the 
scenes in a video and describing them with plausible sen-
tences. This task has numerous applications, including video 

retrieval, video recommendation, disabled support, and 
scene understanding. With the rapid development of deep 
learning, neural caption methods based on encoder-decoder 
architectures have become increasingly popular for video 
captioning [1–4]. In particular, transformer-based models 
have advanced the state-of-the-art [5–9].

To exploit the temporal structure of the video, the utili-
zation of video feature modalities has attracted significant 
attention. While many methods [10–14] have been proposed 
for solving the video captioning task, most employ a simple 
concatenation method to fuse modalities, which may lead to 
redundancy as the number of modalities increases. There-
fore, novel multimodal fusion methods for video caption-
ing have been proposed [15–19], demonstrating that reduc-
ing redundancy between modalities through a reasonable 
fusion approach can improve a model’s performance more 
effectively.

Inspired by these methods, we first extract four video 
feature modalities, including image, motion, object, 
and relationship between objects separately through 
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Inception-ResNet-V2, I3D, Mask R-CNN and TransE. 
Then we enhance the vector representation of modalities 
and reduce redundancy between modalities through a three-
layer hierarchical attention network. The network is divided 
into the following three layers:

•	 Self-encoding of modalities (Transformer Encoder): This 
layer obtains the association between frames to enhance 
the vector representation of each modality.

•	 Keyframes selected attention: This layer selects key-
frames through attention calculation between the cur-
rently generated words and the frames of each modality.

•	 Multimodal fusion attention: This layer assigns weights 
to different modalities to reduce redundancy between 
modalities before generating the current word.

Self-Encoding of Modalities. Given a video frame 
sequence V = V1,⋯ ,VL with a sampling frame length of 
L, the i-th feature modality of the video is expressed as 
Fi = Fi1,⋯ ,FiL . After obtaining the video’s image, motion, 
and object modalities, we obtain the association between 
their frames through self-attention calculation to fully cap-
ture the semantic information of the modalities. Among 
them, we capture the association between smaller video 
clips than frames by using extended multi-head attention to 
obtain fine-grained image and motion information. Since the 
relationship modality is composed of a series of entities that 

are not internally associated, we do not use self-attention 
calculation for it.

Keyframes selected attention. In video captioning, each 
word corresponds to an object or scene in the video. How-
ever, unimportant objects or consecutive similar frames may 
repeatedly appear in multiple frames, making the generated 
captions inaccurate. As shown in Fig. 1, an unimportant 
object such as a “dog” can be mistakenly selected as the sub-
ject of the description. Therefore, it is essential to accurately 
identify valuable objects in the video and remove redun-
dant frames to make the information transmitted from the 
encoder to the decoder more accurate. To achieve this, we 
not only obtain objects in the video using Mask R-CNN, but 
also obtain the relationship between objects using TransE. 
This allows us to indirectly reduce the weight of some use-
less objects through the mining of relationships. Addition-
ally, we calculate the attention value between the generated 
words and each frame in a modality to automatically select 
keyframes and reduce redundant frames. In Fig. 1, after 
we select keyframes, the subject of the video description 
becomes a woman, which is consistent with the ground truth.

Multimodal fusion attention. With the increase in the 
number of feature modalities, because different modalities 
may carry task-relevant information at different times, fusing 
them by a concatenation method of element-wise addition 
may limit the model’s ability to dynamically determine the 
relevance of each type of feature to different parts of the 

Fig. 1   An example of keyframe 
selection: suppose the ground 
truth for a given video is that 
a woman is cutting an onion. 
If we rely solely on an object 
detector, it may mistakenly 
identify unimportant objects 
such as a “dog” in redundant 
frames as the subject of the 
description. Keyframe selection 
can reduce such redundancy 
and enable us to generate more 
accurate sentences
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description [9]. At the same time, different input modalities 
are crucial for selecting the current word. For example, the 
caption "a girl is getting into a car" refers to objects and their 
relations. On the contrary, "a girl is jumping on a car" may 
rely on motion features to determine the behaviour of "jump-
ing". To solve this problem, before the decoder generates 
the current word, we calculate the attention value between 
the generated words and different modalities for assigning 
weights to these modalities.

The decoder of the Transformer is an autoregressive 
decoder that only considers the generated words when gen-
erating the current word. To enhance the captions’ genera-
tion ability, we adopt a bidirectional decoder consisting of 
a backward decoder and a forward decoder. The backward 
decoder generates captions in reverse order, and the forward 
decoder adds a cross multi-head attention to integrate the 
context of the reverse caption. This way, the forward decoder 
can take into account the context of the ground-truth cap-
tion every time it predicts the next word. Additionally, we 
generate pseudo reverse captions to mitigate the information 
leakage of the bidirectional decoder.

The main contributions of this paper can be summarized 
in four aspects.

•	 We use different encoders according to the characteris-
tics of different modalities. For instance, we utilize the 
extended multi-head attention to capture the association 
between time clips smaller than video frames for obtain-
ing fine-grained image and motion features.

•	 We address the issue of unimportant objects and several 
consecutive similar frames that may repeatedly appear 
in multiple frames and make the generation of captions 
inaccurate. We calculate the attention value between the 
generated words and each frame in modality to select the 
keyframes.

•	 We propose a method for multimodal fusion, called mul-
timodal fusion attention, which assigns weights to dif-
ferent modalities to reduce the damage caused by the 
interaction between modalities to a caption generation.

•	 We evaluate the Multimodal-enhanced Hierarchical 
Attention Network for Video Captioning (MHAN) on 
two datasets, MSVD and MSR-VTT. In particular, our 
MHAN achieves state-of-the-art performance and out-
performs the runner-up methods by a large margin in 
CIDEr-D, which is specially designed for captioning 
tasks.

The rest of this paper is organized as follows. We first dis-
cuss related work on video captioning in Sect. 2. Secondly, 
we detail the Multimodal-enhanced Hierarchical Attention 
Network for Video Captioning (MHAN) in Sect. 3. Then, 
we present the experimental results and analyses in Sects. 4 
and 5, respectively. Finally, we conclude the paper in Sect. 6.

2 � Related work

This section describes the related work from two perspec-
tives: (1) Video Captioning and (2) Multimodal Extraction 
and Fusion.

2.1 � Video captioning

Captioning a short video in natural language has been chal-
lenging for machines, but with the rapid development of 
deep learning, several methods have emerged to address 
this problem. Donahue et al. were the first to adopt a deep 
neural network to solve the video captioning problem [1]. 
Later, many video captioning methods based on encoder-
decoder architecture rose to prominence [2–4]. These meth-
ods encode the video using a Convolutional Neural Net-
work (CNN) [20] and employ a Long Short-Term Memory 
(LSTM) [21] to generate video captions. One of the first 
works to utilize an encoder-decoder framework is Venugo-
palan et al., where captions are generated by LSTM and 
visual features extracted by CNN [2]. With the emergence of 
the attention mechanism and Transformer [22], Singh et al. 
employ a hybrid attention mechanism by extending the soft 
temporal attention mechanism with a semantic attention to 
make the system able to decide when to focus on visual 
context vector and semantic input. [5]. Wang et al. proposed 
a bidirectional decoding Transformer to generate captions 
using the context [7]. The CLIP-DCD [8] proposed by Yang 
et al. uses CLIP [23] to encode video content and then uses 
a Transformer decoder to generate subtitles.

2.2 � Multimodal extraction and fusion

The utilization of multimodal features in video captioning has 
attracted great attention due to the need to exploit the tem-
poral structure of the video. For instance, Aafaq et al. lever-
age the state-of-the-art 2-D CNN and 3-D CNN (C3D [10]) 
pre-trained on a large dataset to extract visual spatio-temporal 
features [11]. With the success of object detection in Computer 
Vision, the bottom-up attention algorithm applies object detec-
tion to extract regional features, significantly improving the 
video captioning performance [12]. Zhang et al. respectively 
utilize object detection and knowledge graph to extract objects 
and relationships between the objects in the video and then 
fuse them with spatio-temporal features of the video to refine 
the fine-grained actions between the objects [6]. Jin proposed 
a deep multimodal embedding network that embeds four dif-
ferent modality features, namely frame, audio, motion, and 
category, into different LSTM layers according to their char-
acteristics [13]. To discover and integrate the rich and prime-
val external knowledge (i.e., frame-based image caption), Liu 
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et al. proposed a Hierarchical & Multimodal Video Caption 
(HMVC) model to jointly learn the dynamics within both vis-
ual and textual modalities for video caption task, which infers 
an arbitrary length sentence according to the input video with 
arbitrary number of frames [14].

However, the above methods mainly supplement new 
feature modalities during encoding, and most use a sim-
ple concatenation method to fuse these modalities. When 
the number of modalities increases, fusing them by simple 
concatenation may limit the model’s ability to dynamically 
determine the relevance of each type of feature to different 
parts of the description and weaken the vector representa-
tion of the video.

Therefore, several novel video captioning methods [9, 
15–19] based on multimodal fusion have been proposed. Qin 
et al. propose a multi-modal fusion encoder that fuses features 
from visual, aural, speech and meta modalities to represent 
video contents [15]. Hori et al. introduced a multimodal atten-
tion model that can selectively utilize features from different 
modalities for each word in the output description [9]. Based on 
the mainstream pre-fusion and post-fusion methods, Yubo Jiang 
proposed a two-stage method to fuse features and improve the 
accuracy of natural language description [16]. Li et al. proposed 
an adaptive spatial location module for the video captioning 
task, which dynamically predicts the importance of each video 
frame in generating the description sentence [17]. Huang et al. 
proposed the XlanV model, which decides whether to attend 
to static or dynamic features by fusing these multi-modality 
features adaptively [18]. Yan et al. constructed a multimodal 
features fusion network to learn the relationship between dif-
ferent feature modalities, which is used to fuse different feature 
modalities [19].

2.3 � Summary

Inspired by the aforementioned methods, we extract four 
feature modalities from videos: image, motion, object, 
and the relationship between objects. However, when we 
fuse these modalities using a simple concatenation method 
with element-wise addition, we do not observe a noticeable 
improvement in model performance. To address this issue 
and further improve accuracy, we propose a three-layer hier-
archical attention network based on a bidirectional decoding 
transformer. This network enhances the vector representation 
of the modalities and reduces redundancy between them.

3 � Approach

In this section, we first briefly introduce the basic modules 
used in our approach, and then describe our approach in 
detail.

3.1 � Basic module

These basic modules are based on a transformer architecture 
and multimodal feature extraction.

3.1.1 � Transformer architecture

The transformer architecture consists of an encoder and a 
decoder, each composed of a stack of identical layers. Each 
layer comprises sublayers constructed by Multi-Head Atten-
tion (MHA) and Feed-Forward Network (FFN). Addition-
ally, there is a residual connection around the two sub-layers, 
followed by layer normalization.

The MHA sublayer allows the model to jointly attend 
to information from different representation subspaces at 
different positions and comprises h identical heads. Each 
headi uses Qi = QW

Q

i
,Ki = KWK

i
 , and Vi = VWV

i
 as input. 

The MHA is calculated as follows:

where, WQ

i
,WK

i
, and WV

i
 are learned parameters, and 

W
Q

i
,WK

i
,WV

i
∈ ℝ

N×dk , where WO is a learned projection 
matrix.

The attention in Eq. (1) is known as "Scaled Dot-Product 
Attention." It maps a query and a set of key-value pairs to 
an output:

where Ei =
QiK

T
i√

dk
 represents the N × N attention score matrix 

Ei , whose element emn
i

 is the attention score between the m-th 
and n-th token in the i-th subspace.

The FFN sublayer comprises two linear transformations 
with a ReLU activation in between:

where, W1 ∈ ℝ
d×df ,W2 ∈ ℝ

df×d, b1 ∈ ℝ
df  , and b2 ∈ ℝ

d are 
learned parameters, and d = dk × h.

3.1.2 � Feature modalities extraction

Multimodal extraction using image and motion modalities 
has become prevalent in video captioning. The image modal-
ity is typically used to express the colors and shapes in the 
image, while the motion modality is essential for captur-
ing the spatio-temporal motion dynamics in the video. In 
this study, given a sequence of video frames V = V1,⋯ ,VL 
with length L, we employed the Inception-ResNet-V2 [24] 

(1)
MHA(Q,K,V) = Concat(head1,… , headh)W

O,

where headi = Attention(QW
Q

i
,KWK

i
,VWV

i
),

(2)Attention(Qi,Ki,Vi) = softmax

�
QiK

T
i√

dk

�
Vi,

(3)FFN(X) = max(0,XW1 + b1)W2 + b2,
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pre-trained on ImageNet [20] to extract the image features 
FI = FI1,⋯ ,FIL , where FIi ∈ ℝ

dI . We also utilized the I3D 
[25] pre-trained on Kinetics [26] to extract the motion fea-
tures FM = FM1,⋯ ,FML , where FMi ∈ ℝ

dM.
Moreover, the object modality in the video exhibits a 

dynamic behavior compared to those in the picture, with 
links between them. As illustrated in Fig. 2 using the Object 
Detection and Relationship Acquisition (ODRA) framework, 
we first leverage the Mask R-CNN [27] object detector to 
extract the semantic object features FO = FO1,⋯ ,FOL , 
where FOi ∈ ℝ

dO (such as people, buildings, and cars). We 
then acquire relationship features FR = FR1,⋯ ,FRL , where 
FRi ∈ ℝ

dR , between the objects using the TransE [28] knowl-
edge graph model based on the knowledge representation 
learning framework OpenKE [29].

Object detection. We extract the location and eigenvectors 
of objects using Mask R-CNN pre-trained on the COCO 
dataset [30], and obtain the categories of the objects from a 
set of 50 common categories. Specifically, we first input a 
video Vi into the Feature Pyramid Network [31] to obtain its 
feature maps. We then use the Region Proposal Network [32] 
to filter out a series of Regions of Interest (ROI). Finally, as 
it extracts ROI of different sizes, we employ an ROI pooling 
layer to obtain the exact ROI size, namely Object Regions 
(OR). The position coordinates of the OR, the eigenvectors, 
and the categories are expressed as Rli = [l1,⋯ , lk] , 
Rvi = [v1,⋯ , vk] and Roi = [o1,⋯ , ok] , respectively, where 
Rli ∈ ℝ

dl ,Rvi ∈ ℝ
dv , Roi ∈ ℝ

do,k represents the k-th detected 
object, lj = [

xj

wf

,
yj

hf
,
wj

wf

,
hj

hf
] provides the center coordinates 

(
xj

wf

,
yj

hf
) , width wj

wf

 and height hj
hf

 of the j-th object area after 

normalization according to the size of the video frame with 
width wf  and height hf  , and vj represents the eigenvector of 
the j-th object. Finally, we concatenate Rli and Rvi to obtain 
the object features, denoted as FOi , as follows:

where FOi ∈ ℝ
dl+dv , the [⋅;⋅] denotes the concatenation of 

two matrices.

(4)FOi = [Rli;Rvi],

Relationships acquisition based on knowledge graph. We 
first use the categories Roi as input for TransE to predict 
relationships Rri = [r1,⋯ , r (k−1)k

2

] between the objects and 
represented the relationships using 300-dimensional 
GLOVE vectors, where Rri ∈ ℝ

dglove . Then we encode Roi and 
Rri into word vectors using Word2Vec [33]. The encoding 
process is as follows:

where the embedding matrix Wo ∈ ℝ
dglove×dmodel and 

Wr ∈ ℝ
do×dmodel is pre-trained by Word2Vec. Finally, we syn-

thesize the relationship features using R′
oi

 and R′
ri
 as:

where FRi ∈ ℝ
2×dmodel.

3.2 � Framework: multimodal‑enhanced hierarchical 
attention network

As shown in Fig. 3, our proposed Multimodal-enhanced 
Hierarchical Attention Network (MHAN) mainly consists 
of an Objects and Relationships Encoder (ORE) and a Bidi-
rectional Decoder (BDD).

3.2.1 � Objects and relationships encoder (ORE)

The objects and relationships encoder is primarily responsi-
ble for processing the four feature modalities at two levels. 
In the first stage, each modality is encoded separately using 
different encoders. In the second stage, our model can select 
keyframes from all sampled frames of each modality.

3.2.2 � Self‑encoding of feature modalities

In Section  3.1.2, given a sequence of video frames 
V = {V1,⋯ ,VL} with length L, we obtain image features 
FI = {FI1,⋯ ,FIL} ∈ ℝ

L×dI , motion features FM ∈ ℝ
L×dM , 

object features FO ∈ ℝ
L×dO , and relationship features 

FR ∈ ℝ
L×dR in the video. To unify the dimensions of the four 

feature modalities, we apply linear transformations to map 
their dimensions to dmodel , where the calculation formula is:

(5)R�
oi
= RoiWo,

(6)R�
ri
= RriWr,

(7)FRi = [R�
oi
;R�

ri
],

(8)F
�

Ii
= wIiFIi + bIi, bIi ∈ ℝ

dmodel ,

(9)F
�

Mi
= wMiFMi + bMi, bMi ∈ ℝ

dmodel ,

Fig. 2   The figure illustrates our proposed Object Detection and Rela-
tionship Acquisition (ODRA) framework
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where wIi ∈ ℝ
dmodel×dI , wMi ∈ ℝ

dmodel×dM , wOi ∈ ℝ
dmodel×dO and 

wRi ∈ ℝ
dmodel×dR.We then obtain F�

I
= {F

�

I1
,⋯ ,F

�

IL
} ∈ ℝ

L×dmodel , 
F

′

M
 , F′

O
 , and F′

R
 , respectively.

Next, to strengthen the vector representation of these 
modalities through the connection between frames, we send 
F

′

I
 and F′

M
 into different encoders of Transformer as inputs 

to acquire EI = EI1,⋯ ,EIL ∈ ℝ
L×dmodel and EM . The calcula-

tion formula for attention in the encoder is (taking EI as an 
example):

(10)F
�

Oi
= wOiFOi + bOi, bOi ∈ ℝ

dmodel ,

(11)F
�

Ri
= wRiFRi + bRi, bRi ∈ ℝ

dmodel ,

(12)

Attention(EI ,EI ,EI) = softmax

(

(EIWT
Q)(EIWT

K )
T

√

dk

)

(EIWT
V ),

where WQ , WK  , and WV  are learned parameters, and 
WQ,WK ,WV ∈ ℝ

dmodel×dmodel . We use extended multi-head 
attention in the above two encoders, as multi-head atten-
tion (Vaswani et al. utilize eight heads) allows a model to 
jointly attend to information from different representation 
subspaces at different positions [22]. When we employ the 
extended multi-head attention (our model uses 64 heads, that 
is, h = 64 in Eq. (1)), MHAN can capture the correlation of 
different positions in time clips smaller than video frames.

Finally, similar to the process of encoding image and 
motion features, we use multi-head attention with eight 
heads to encode FO , resulting in the object encoding 
EO = EO1,⋯ ,EOL . However, there is no relevant order 
between F′

Ri
 and F′

Rj
 , so we employ an encoder without an 

attention layer to encode FR , resulting in the relationship 
encoding Er . We do not use positional encoding to encode 
the object and relationship modalities because they are 
not contextually ordered.

Fig. 3   The figure illustrates our proposed Multimodal-enhanced Hier-
archical Attention Network(MHAN)based on the bidirectional decod-
ing transformer in detail. It consists of two modules: (1) the Objects 
and Relationships Encoder (ORE), which is divided into two parts 
and encodes four feature modalities to obtain the output E

ORE
 . The 

first part is self-encoding (Transformer Encoder), which captures the 
association between frames to enhance the vector representation of 
each modality. The second part is the keyframes selected attention, 
which selects keyframes from all sampled frames for each modality. 

(2) The Bidirectional Decoder (BDD), which consists of a backward 
decoder (BD) and a forward decoder (FD). The backward decoder 
generates a reverse caption, and the forward decoder adds cross 
multi-head attention to integrate the context �⃖�D of the reverse cap-
tion. Each decoder assigns weights to different modalities through 
multimodal fusion attention (Multimodal fusion attention is one of 
the internal structures of the transformer decoder), according to the 
generated captions and the output E

ORE
 , to affect the generation of the 

current word
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3.2.3 � Keyframes selected attention

In Sect. 3.2.2, we obtain the encoding of four feature modali-
ties, namely EI , EM , EO , and ER , respectively. To reduce 
redundancy between frames, we select K keyframes from 
each modality of a video. These K keyframes are the most 
dissimilar visually.

Taking the image encoding EI = EI1,⋯ ,EIL ∈ ℝ
L×dmodel 

as an example, where L is the number of all frames in a 
video, when we predict the word of caption yt , we obtain 
the word embedding Et−1 ∈ ℝ

L×dmodel . This is an embedded 
representation of the first t − 1 words through the masked 
multi-head attention of layer one decoder (N=1). We then 
calculate the similarity � ∈ ℝ

L×L between Et−1 and EI using 
the following equation:

For N videos in a batch, we calculate the similarity and con-
catenate the resulting �i:

where A ∈ ℝ
N×L×L.

We then count the number N0 of non-zero elements using 
PyTorch on A and use KI as the number of keyframes:

For each �i in the batch, we take out the indices of the top KI 
elements �i1,⋯ , �iKI

 and obtain the corresponding frames 
E

�

I
= EI1,⋯ ,EIKI

 in the image encoding EI according to 
these indices. E�

I
∈ ℝ

KI×dmodel is a new vector representa-
tion of the image modality after selecting KI keyframes. 
The method of selecting keyframes for motion and object 
modalities is the same, while for the relationship modality, 
we replace Et−1 with the object encoding EO , and the other 
steps are the same.

Finally, we concatenate the four feature modalities of the 
selected keyframes as the output EORE of ORE:

where Eq.(15) being a dynamic frame selection process, the 
number of frames selected in the same video may vary for 
each different modality, so EORE ∈ ℝ

(KI+KM+KO+KR)×dmodel.

3.3 � Bidirectional secoder (BDD)

The Bidirectional decoder consists of a backward decoder 
and a forward decoder. The backward decoder generates 

(13)� = softmax

�
Et−1E

T
I√

dk

�
.

(14)A = [�1;�2;⋯ ;�N],

(15)
N0 = torch.nonzero(A),

KI = N0 ∥ N.

(16)EORE = [E
�

I
;E

�

M
;E

�

O
;E

�

R
],

captions in reverse order. Then, the forward decoder adds 
cross multi-head attention to integrate the context of the 
reverse caption.

3.3.1 � Backward decoder (BD)

The Backward Decoder (BD) generates a reverse cap-
tion from right to left by integrating the output EORE . 
When the predicted word is the end marker < S > , the 
prediction of the reverse caption ends. We express it as 
�⃖�C = [s1,⋯ , sL,< Ss >] . As shown in the BD of Fig. 3, we 
obtain the context �⃖�D of the reverse caption as:

where �⃖���DL  is the hidden state obtained from the Linear layer 
when the BD generates the last word sL.

3.3.2 � Forward decoder (FD)

The Forward Decoder (FD) predicts a word from left to right 
by integrating the output EORE . Then, we integrate the con-
text of the reverse caption generated by the BD. Compared 
with the BD, the FD adds cross multi-head attention, inte-
grating the context �⃖�D , so that the forward decoder can take 
into account the context of the ground-truth caption every 
time it predicts the next word. When the predicted word is 
the end marker < S > , the prediction of the forward caption 
is completed, which is expressed as ��⃗C = [s1,⋯ , sT ,< S >].

3.3.3 � Multimodal fusion attention

In the above two decoders, multimodal fusion attention 
assigns weights to different modalities through the EORE and 
Et−1 ∈ ℝ

(KI+KM+KO+KR)×dmodel computed attention value E�

t−1
 

to reduce redundancy between feature modalities, which is 
calculated as follows:

3.4 � Training

During the training of MHAN, one of the most crucial 
aspects is the introduction of bidirectional decoding. To 
achieve this, we utilize a two-stage method that generates 
video captions with bidirectional encoding. Specifically, we 
first obtain the reverse caption through the backward decoder 

(17)�⃖�D = �⃖���DL,

(18)

E
�

t−1
= Attention(Et−1,EORE,EORE)

= softmax

�
Et−1E

T
ORE√
dk

�
EORE.
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and then integrate it into the forward decoder to generate a 
forward caption.

For bidirectional decoding, we introduce the typical 
cross-entropy losses Lbd and Lfd for the backward and for-
ward decoders, respectively. Given a video V, its ground-
truth caption �⃗Y = [y1,⋯ , yL] of length L, and the pseudo 
reverse caption �⃖Y = [y1,⋯ , yT ] of length T from a training 
dataset D , the loss formula of the bidirectional decoder L 
is as follows:

where, � ∈ [0, 1] is a hyper-parameter used to balance the 
preferences between the two decoders. Next, we will explain 
the pseudo reverse caption and these two losses in detail.

3.4.1 � Pseudo reverse caption

It is noteworthy that we generate pseudo reverse captions 
to mitigate the information leakage of the bidirectional 
decoder, which results in inconsistent lengths of �⃗Y  and �⃖Y  . 
Specifically, we reverse all the ground-truth captions of a 
video to obtain the corresponding reverse captions. Then, 
we randomly shuffle these reverse captions to obtain the 
pseudo reverse captions that correspond to the ground-
truth captions. As a result, the final reverse caption is not 
the inversion of the ground-truth caption.

3.4.2 � Backward decoder loss

The backward decoder loss is defined as the negative log-
likelihood to generate the reverse caption:

where, yt is the word being predicted, and �ore and �bd are 
the learnable parameters of the Objects and Relationships 
Encoder and the Backward Decoder, respectively.

3.4.3 � Forward decoder loss

The traditional transformer decoder masks its input so 
that the decoder cannot refer to the following words of 
the ground-truth caption when predicting a word of the 
caption. Therefore, we utilize a bidirectional decoder that 
aims to obtain the following words from �⃖�D generated by 
the backward decoder. Then, we integrate �⃖�D into the 
word generation of the forward caption when the forward 
decoder generates the current word. The cross-entropy 

(19)L = (1 − �)Lbd + �Lfd,

(20)
Lbd =

∑

(V , �⃖Y)∈D

∑

t

(− log p(yt|V , y1,⋯ , yt−1; 𝜃ore; 𝜃bd)),

loss of the forward decoder is defined similarly to Eq. 
(20):

where �fd is the learnable parameters of the forward decoder.

4 � Experiments

In this section, we will first describe four experimental set-
tings: Datasets, Feature Extraction, Evaluation Metrics, and 
Parameter Settings. We will then introduce the performance 
comparison of our method.

4.1 � Experimental settings

4.1.1 � Datasets

Various experiments were conducted using the two most 
popular benchmark datasets to demonstrate the effectiveness 
of our proposed MHAN: the Microsoft Research Video Cap-
tioning Corpus (MSVD) [48] and the Microsoft Research 
Video to Text (MSR-VTT) [49].

MSVD: This dataset consists of 1970 YouTube video 
clips ranging from 10 to 25 s in length. Each clip describes 
a single activity and has approximately 40 English captions. 
As in [50, 51], the training, validation, and test sets contain 
1200, 100, and 670 clips, respectively.

MSR-VTT: This dataset contains 10,000 video clips, each 
of which has 20 captions and a category tag annotated by 
1327 workers from Amazon Mechanical Turk. Following 
the split settings in previous works [34], we allocated 6513, 
497, and 2990 clips to the training, validation, and test sets, 
respectively.

4.1.2 � Evaluation metrics

We have used standard automatic evaluation metrics to test the 
performance of our model, including BLEU [52], METEOR 
[53], CIDEr-D [54], and ROUGE-L [55]. BLEU and METEOR 
were initially designed for machine translation evaluation and 
are commonly used to assess the quality of machine-generated 
text. CIDEr-D is a recently introduced evaluation metric for 
image caption tasks, designed specifically for caption system 
evaluation, while ROUGE-L was used to evaluate the extracted 
text summarization proposed in 2004.

(21)

Lfd =
∑

(V ,�⃗Y)∈D

∑

l

(− log p(yl|V , y1,⋯ , yl−1; 𝜃bd; 𝜃ore; 𝜃fd),



2477Multimodal‑enhanced hierarchical attention network for video captioning﻿	

1 3

4.1.3 � Feature extraction

To extract the image features from the videos in MSVD and 
MSR-VTT, we first sample the videos at 5 and 3 frames per 
second, respectively. We then feed the sampled results into 
the Inception-ResNet-V2 model. After that, we re-sample the 
videos at the rate of 25 and 15 frames per second, respec-
tively. We extract the motion features using the I3D model, 
which takes as input 64 overlapping continuous frames and 
extracts features at intervals of 5 frames. The dimensions 
of the image and motion features are 2048-D and 1024-D, 
respectively. In addition, we use GLOVE [56] vectors of the 
auxiliary video category labels to help with feature encod-
ing. We extract 50 and 60 frames from the visual features in 
MSVD and MSR-VTT at equal intervals, respectively. We 
then project both features to dmodel = 512 in this paper.

4.1.4 � Parameter settings

To obtain the objects and relationships between them, we 
set the confidence of Mask R-CNN to 0.7 and the minimum 
detection size to 224 × 224 . We used a dataset of 613 non-
repeated triples for TransE and represented the relationships 
using 300-dimensional GLOVE vectors. For the encoders 
and decoders used by MSVD and MSR-VTT, we respec-
tively used 2/4 layers, 512/640 word embedding dimensions, 
512/512 model dimensions, 2048/2048 hidden dimensions, 
and 8/10 attention heads per layer. However, we set the num-
ber of heads to 64 for the extended multi-head attention. 

During training, we set the hyperparameter � used to bal-
ance the preferences between the two decoders to 0.6, and 
the number of training epochs to 25 and 15 for MSVD and 
MSR-VTT, respectively. We used Adam optimizer with a 
batch size of 32 and 16, and a learning rate of 1e-4 and 3e-5 
for MSVD and MSR-VTT, respectively. To generate a bet-
ter caption, we used beam search with a size of 5, and set 
the dropout rate to 0.15 and 0.1 for MSVD and MSR-VTT, 
respectively. All experiments were conducted on RTX3060 
GPUs.

4.2 � Performance comparison

The performance of our proposed MHAN will be compared 
with the following state-of-the-art methods: RecNet [34], 
PickNet [36], MARN [40], mg-LSTM [37], TDConvED 
[38] DRPN [35], ASL+BL [39], NACF [41], SHAN [44], 
MGRMP [42], GSB + CoSB [43], TVRD+OAG [46], ORG-
TRL [45] and HMN [47]. Unless otherwise stated, we report 
the results directly from the original papers. The test results 
of the MSVD and MSR-VTT datasets are shown in Table 1. 
Our MHAN outperforms most state-of-the-art methods on 
both datasets.

Notably, our MHAN achieves significant improvement 
on the CIDEr-D metric, which is specifically designed for 
captioning tasks. For example, it shows a relative improve-
ment of 1.5% on MSVD compared with HMN, and 1.3% 
on MSR-VTT compared with SHAN. This is because our 
model can focus on key frames and assign higher weights 

Table 1   Experimental results on 
MSR-VTT and MSVD datasets 
are presented in this paper

The best and suboptimal results of all methods are indicated by the bold and italic, respectively. ROUGE-
L, BLEU4, METEOR, and CIDEr-D are abbreviated as R, B@4, M, and C, respectively. IV4, R152, 
R101, IRV2, 3DR, I, C, F and M denote Inception-V4, ResNet-152, ResNet-101, InceptionResNetV2, 3D 
ResNeXt-101, I3D, C3D, Faster-RCNN and Mask-RCNN, respectively. And the relationship (RS) column 
denotes whether this method uses relationships to enhance performance

Method Features RS Dataset: MSVD Dataset: MSR-VTT

B@4 M R C B@4 M R C

RecNet [34] IV4 ✗ 52.3 34.1 69.8 80.3 39.1 26.6 59.3 42.7
DRPN [35] IV4 ✗ 57.3 34.3 72.0 86.4 39.5 27.7 61.0 49.2
PickNet [36] R152 ✗ 52.3 33.3 69.6 76.5 41.3 27.7 59.8 44.1
mg-LSTM [37] R152 ✗ 53.0 32.9 69.8 75.1 40.8 27.5 60.7 45.4
TDConvED [38] R152 ✗ 53.3 33.8 – 76.4 39.5 27.5 – 42.8
ASL+BL [39] R152 ✗ 50.4 34.2 70.4 73.7 38.4 27.2 59.7 44.1
MARN [40] R101+3DR ✗ 48.6 35.1 71.9 92.2 40.4 28.1 60.7 47.1
NACF [41] R101+3DR ✗ 55.6 36.2 – 96.3 42.0 28.7 – 51.4
MGRMP [42] IRv2+3DR ✗ 55.8 36.9 74.5 98.5 41.7 28.9 62.1 51.4
GSB+CoSB [43] R101+3DR ✗ 50.7 35.3 72.1 97.8 41.4 27.8 61.0 46.5
SHAN [44] IRV2+I ✓ 50.9 35.1 72.4 94.5 40.3 28.8 61.2 54.1
ORG-TRL [45] IRV2+C+F ✓ 54.3 36.4 73.9 95.2 43.6 28.8 62.1 50.9
TVRD+OAG [46] IRV2+C+F ✓ 50.5 34.5 71.7 84.3 43.0 28.7 62.2 51.8
HMN [47] IRV2+C+F ✓ 59.2 37.7 75.1 104.0 43.5 29.0 62.7 51.5
MHAN (Ours) IRV2+I+M ✓ 55.6 38.5 74.9 105.6 42.3 29.8 62.0 54.8
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to the more important modals through the generated words 
before generating the final caption. However, our model does 
not perform best on the BLEU metric, which is designed for 
machine translation and word-level-based matching. Addi-
tionally, Novicoca et al. [57] have shown that BLEU is not 
consistent with human judgement, while CIDEr-D is more 
in line with human writing habits [16]. Therefore, it is dif-
ficult for CIDEr-D and BLEU to improve the same model 
significantly. For example, while the BLEU4 of HMN is the 
highest in MSVD and MSR-VTT, the CIDEr-D score is not 
the highest.

5 � Analysis

This section provides a comprehensive analysis of the 
MSVD dataset from various perspectives to enhance our 
understanding of our approach. We begin with a quantitative 
analysis, followed by a case study.

5.1 � Quantitative analysis

We will first investigate the feasibility of our model after 
implementing a hierarchical attention network by conducting 
an ablation study. Then, we will discuss three comparative 
experiments as follows:

•	 Feasibility analysis of the extended multi-head attention,
•	 Selection of the number of keyframes,
•	 Necessity of the bidirectional decoder.

5.1.1 � Ablation study of hierarchical attention network

For evaluating the effectiveness of our proposed MHAN, 
Table 2 shows that when we integrate more feature modali-
ties into the encoder using a concatenation method of 
element-wise addition, the model’s performance improves 
gradually. However, when our MHAN uses the hierarchical 
attention network to reduce the redundancy between modal-
ity frames and fuse four modalities through multimodal 
fusion attention, our proposed MHAN shows a significant 
improvement of 4.5% from 101.1 to 105.6 in CIDEr-D.

5.1.2 � Feasibility analysis of the extended and multi‑head 
attention

In Section 3.2.1, we investigate the closer correlations 
between smaller video clips rather than frames through the 
use of extended multi-head attention. As shown in Table 3, 
when increasing the number of heads to 64, the encoder 
can capture sufficient relevance between the video clips, 
resulting in a significant improvement in performance. 
However, if the number of heads is increased to 128, the 
model is prone to overfitting. Therefore, we ultimately 
adopted 64 heads.

5.1.3 � Selection of the number of keyframes

In Eq.(15), we automatically obtain the number of key-
frames by focusing on the proportion of non-zero ele-
ments generated after attention value calculation. This 
method of dynamically obtaining the number of key-
frames of each modality is better than fixing this value. 
As shown in Table 4, when we select a small number 
of keyframes, such as 20 or 30, the video information 
obtained is insufficient, and the performance is inferior. 

Table 2   Ablation study of 
hierarchical attention network. 
( ✓ ) indicates that the modal is 
added to the encoder, and (✗) 
indicates that it is not used

Image Motion Object Relationship B@4 M R C

✓ ✓ ✗ ✗ 53.2 37.0 73.8 99.5
✓ ✓ ✓ ✗ 53.4 37.9 74.6 100.6
✓ ✓ ✓ ✓ 55.8 38.5 75.1 101.1
MHAN (Ours) 55.6 38.5 74.9 105.6

Table 3   Feasibility analysis of the extended and multi-head attention

Number of heads B@4 M R C

8 54.6 37.9 74.4 104.5
16 53.0 38.1 74.2 100.8
32 53.6 38.1 74.5 101.8
64 55.6 38.5 74.9 105.6
128 54.7 38.1 74.4 101.1

Table 4   Selection of the number of keyframes

Number of keyframes B@4 M R C

20 52.5 37.6 74.6 101.0
30 53.7 38.0 74.3 101.9
40 55.7 38.5 75.4 104.5
50 54.9 38.7 75.4 103.8
Dynamic selection 55.6 38.5 74.9 105.6
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When we use all 50 frames as keyframes, the performance 
is not as good as when we use 40 keyframes due to the 
redundancy between frames. Finally, when we use the 
method of automatically obtaining the number of key-
frames, the model achieves the highest CIDEr-D score of 
105.6, demonstrating the effectiveness of our approach.

5.1.4 � Necessity of the bidirectional decoder

We introduce the hyperparameter � to balance the prefer-
ences of the forward and backward decoders during training 
(see Eq.(19)). In Fig. 4, we trained MHAN on the MSVD 
dataset using different values of � to determine its optimal 
value. When � = 1 (red line), the bidirectional decoder 
degenerates into a unidirectional decoder, where the back-
ward decoder does not participate in training, resulting in the 
worst performance of the model. When 0.5 ≤ 𝜆 < 1 , there 
is a significant improvement in all four metrics compared 
to � = 1 , indicating that the backward decoder affects the 
generation of captions in the forward decoder and proving 
the effectiveness of the bidirectional decoder. When we set 
� = 0.6 (blue line), a stable balance is achieved between the 
two decoders, resulting in the best performance across all 
four metrics.

5.2 � Case study

Although we can evaluate our model and summarize its 
performance through the evaluation mechanism described 
in Section 4.2, the scores may not directly reflect the 

quality of the sentences generated by MHAN. Therefore, 
we present a few visualized examples of captions gen-
erated by fusing modalities through element-wise addi-
tion (EWA), our proposed MHAN, and human annotation 
(Ground Truth) in Fig. 5 to analyze and verify the findings 
in the Performance Comparison section.

As shown in Fig. 5, MHAN accurately predicted the 
behavior of the cat and the man in the No.1 and No.2 vid-
eos, respectively, while EWA used "playing" and ended 
the prediction with an incorrect action, "drinking." The 
model with object detection is expected to use specific 
words to describe the video. However, in No.3, EWA used 
the abstract word "a vegetable" instead of "an onion." 
When EWA tried to use the specific word "a potato," the 
described object was "carrots" in No.4. Additionally, we 
found that EWA failed to fully learn the video content 
when using a concatenation method of element-wise addi-
tion to fuse these modalities, which may lead to inaccurate 
predictions. For example, in the EWA of No.5, "cleaning" 
was replaced by an inaccurate action, "standing." Even 
in the No.6 video, where a man and a monkey were fight-
ing (practicing karate), EWA ignored the other subject, 
"a man."

In summary, our proposed MHAN effectively integrates 
multiple modalities into a bidirectional decoding trans-
former through a hierarchical attention network, accurately 
describing the subjects’ actions in the video. The captions 
generated by MHAN are also more consistent with human 
language habits. This further explains why our MHAN 
achieved a higher CIDEr-D but only a minor increase in 
BLEU, as described in Section 4.2.

6 � Conclusions

This paper proposes a Multimodal-enhanced Hierarchi-
cal Attention Network (MHAN) based on a bidirectional 
decoding transformer for video captioning. MHAN not 
only considers the context when generating the descrip-
tion through a bidirectional decoder but also strengthens 
the vector representation of modalities, selects keyframes 
for each modality, and reduces redundancy between 
modalities to effectively fuse multiple modalities through 
the hierarchical attention network. Additionally, experi-
ments on two mainstream benchmark datasets, MSVD and 
MSR-VTT, demonstrate the effectiveness of the proposed 
method, which achieves state-of-the-art performance in 
significant metrics. The captions generated by MHAN are 
also more in line with human language habits.

Fig. 4   Necessity of the bidirectional decoder. When � = 1 , the bidi-
rectional decoder degenerates into a unidirectional decoder
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