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Abstract
Compared to the traditional recommender systems, context-aware recommender systems are more in line with actual applica-
tion contexts. However, the existing researches are mostly focused on single context-aware recommendation, such as time-
aware recommendation or location-aware recommendation, and lack of in-depth research on multi-context-aware recommen-
dation. Therefore, we proposed a recommendation method of high-order tensor factorization based on multi-context-aware. 
First, on the basis of analyzing the influence of context on users’ interest preferences, the sensitivity of users to multiple 
contexts was detected using statistical methods. For context-sensitive users, four-dimensional tensors and feature matrices 
used to solve data sparsity were constructed based on rating matrix and situational information. And then the stochastic 
gradient descent algorithm was used for iterative calculation to fill in missing data values and carry out parameter optimiza-
tion. For context-insensitive users, we used matrix factorization to predict users’ interest preferences. Finally, we tested and 
validated our method on a multi-context-aware movie dataset, and the experimental results show that the proposed method 
could effectively reduce the prediction error and improve the recommendation quality.

Keywords  Recommender systems · Multi-context-Aware · Tensor factorization · Matrix factorization

1  Introduction

With the advent of big data, to obtain information on the 
Internet accurately and quickly under the condition of infor-
mation overload has become a hot research direction for 
scholars. The recommender systems can filter the redun-
dant information according to users’ interest preferences and 

recommend relevant items for them. However, in the con-
text-aware recommender systems, users’ interest preferences 
are also affected by the context. In different contexts, there 
may be significant differences in users’ interest preferences .

The traditional recommendation algorithm is usually a 
two-dimensional implementation of User-Item relationship. 
It assumes that users’ interest preferences and the attributes 
of items are static and ignored the influence of contexts. 
In the real world, users’ interest preferences are influenced 
by the surrounding environment, and different contexts may 
have different degrees of influence on users. So, taking into 
account context can improve the accuracy of determining 
users’ interest preferences. Adomavicius et al. [1] pointed 
out that in addition to the User-Item interaction matrix, 
users’ interest preferences are also influenced by different 
types of contexts, and integrating contexts into recommen-
dation is beneficial to improve the performance of recom-
mender systems. Therefore, they proposed the concept of 
Context-Aware Recommender Systems (CARS).

At present, most researchers have recognized the impor-
tance of contexts and attempted to incorporate relevant con-
texts in their research. Some believed that time is one of the 
situational information that cannot be ignored [2, 3]. Users’ 
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interest preferences change over time. With the emergence of 
new selection, users’ cognition and popularity of items would 
change. In addition to time, space is also a very important fac-
tor in the context. Users’ interest preferences vary from region 
to region, especially in the location-aware recommender sys-
tem, where users’ interest preferences are affected by spatial 
location information [4–6]. Studies have shown that recom-
mendation algorithms that consider either time or space out-
perform traditional recommendation algorithms. However, how 
to select the correct relevant context and how to integrate mul-
tiple contextual factors into the recommendation algorithm or 
model has become one of the main focuses of future research. 
In CARS, there may be a lot of contexts, and the impact of dif-
ferent context may be different. Therefore, it is very important 
to make effective use of multiple contexts for recommendation.

To address the above problems, we proposed a recom-
mendation method based on multi-context-aware higher-
order tensor factorization, which is based on detecting mul-
tiple valid contexts of users and integrating their interest 
preferences for multi-context-aware recommendations. Since 
users have different degrees of sensitivity to contexts. Firstly, 
we used the Chi-square test to detect user’s sensitivity to 
contexts, multiple effective contexts were found. Then, we 
integrated the sensitive contexts with users’ interest prefer-
ences matrix to build the multi-dimensional tensor model. 
At the same time, a joint tensor factorization of multiple 
feature matrices is constructed to alleviate data sparse. For 
context-insensitive users, the traditional matrix factorization 
method is used to predict their preferences.

2 � Related work

2.1 � Context‑aware recommender system

Context is a very complex concept with different definitions 
in different application contexts. Initially of the study, Schilit 
et al. [7] referred to contexts as locations, the collection of 
nearby people and objects, as well as the changes to these 
objects over time. Brown et al. [8] consider contexts as loca-
tion, identification of people around the user, time of day, 
season, temperature, etc. Dey [9] enumerates the context as 
the user’s emotional state, concerns, location and direction, 
date and time, goals, people in the user’s environment, etc. 
The current definition of context in the field of context-aware 
computing widely cites the concept proposed by Dey et al., 
who argue that a context can be information that describes the 
characteristics of any context of an entity. The entity here can 
be a person, place, or object, as long as the entity is considered 
relevant to the interaction between the user and the applica-
tion, including the user and the application system [10].

Context-aware is one of the most important research 
aspects of pervasive computing, in which people are able to 

access and process information at anytime, anywhere, and in 
any way. The context-aware enables the system to automati-
cally discover and utilize contextual factors such as loca-
tion and surroundings. The CARS introduce context into the 
traditional recommender system and applies many contexts 
such as time, location, device, and surroundings to generate 
recommendations for users, extending the traditional two-
dimensional recommendations to the multi-dimensional 
recommendations. Compared with the two-dimensional 
relational recommendation, CARS are based on the three 
elements of User-Item-Context.

CARS can be expressed formally as follows.
The utility function to measure the preference of user u 

for item i in the CARS is given by equation 1, given that U 
is the set of users, I is the set of items, and C is the set of 
included contexts.

Rating is a full sequence.
One of the main issues to be studied in CARS is how 

to integrate context with traditional User-Item two-dimen-
sional recommendation. Adomavicius et al. proposed three 
paradigms of context-aware recommendation according to 
which process the context is integrated in the recommenda-
tion, namely pre-context filtering, post-context filtering and 
context modeling [2], as shown in Fig. 1.

2.2 � Matrix factorization based methods

Traditional recommender system regarded the User-Item 
rating matrix as the primary processing data and attempt 
to predict users’ interest preferences for unrated items. In 
real life, recommender systems deal with massive data 
items. Matrix factorization technology is used to reduce 
the dimension of data so as to speed up calculation without 
losing important data items. Liu et al. [11] added consid-
eration of temporal and social to the matrix factorization 
approach. Shi et al. [12] then used matrix factorization to 

(1)R ∶ U × I × C ⟶ Rating

Fig. 1   Three paradigms of context-aware recommender systems
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mine emotion-specific movie similarities to obtain context-
aware recommendations. Baltruna et al. [13] then argued 
that matrix factorization with context-aware could improve 
the accuracy of standard matrix factorization. Zheng et al. 
[14] proposed a matrix factorization method based on a 
sparse linear method in which a user’s rating for an item is 
coalesced by that user’s ratings for other items. Kim et al. 
[15] incorporated the neural network KNN into the matrix 
factorization technique, also known as convolutional matrix 
factorization. The method applies the maximum a posteriori 
estimation method to optimize the parameters of the docu-
ment latent vector model, the user latent vector model and 
the item latent vector model.

2.3 � Tensor factorization based methods

It is common to refer to scalars as 0 tensors, vectors as 1st 
tensors, matrices as 2nd tensors, and so on to refer to multi-
dimensional data as tensors. Consider the tensor of order d ≥ 
3 as a d-dimensional generalized form of the matrix. Essen-
tially, tensor factorization is a higher-order generalization 
of matrix factorization that provides a flexible and versatile 
integration of contextual information. It does not use any 
post-filtering or pre-filtering techniques, which increases the 
significant complexity of the model.

Tucker decomposition and CP decomposition are the 
most commonly used methods for tensor factorization [16]. 
The CP decomposition is a special representation of the 
Tucker decomposition, which is essentially a decomposition 
of a tensor into a sum of tensors of finite rank 1. Suppose 
that given a third-order tensor X ∈ ℝ

(I×J×K) , then the CP 
decomposition can be expressed by equation 2:

Where ◦ denotes the vector outer product and R is a posi-
tive integer and ar ∈ ℝ

I , br ∈ ℝ
J , cr ∈ ℝ

K . The factorization 
process of the third-order tensor is shown in Fig. 2.

At present, tensor factorization is widely used in recom-
mender systems for its advantage of being able to solve the 
problem of multi-dimensional data [17]. The context-aware 

(2)X ≈

R∑
r=1

ar◦br◦cr

recommender system will inevitably lead to the problem of 
multi-dimensional space, and the tensor factorization tech-
nology will be more convenient to integrate context. Most 
of them are used to recommend points of interest. Cai et al. 
[18] constructed the three-dimensional tensor of User-Item-
Label for label recommendation, improved the statistical 
information among users, items and labels by using low-
order polynomials, and solved the problem of data sparse at 
the same time. Luan et al. [19] proposed a cooperative ten-
sor factorization method, which utilized a three-dimensional 
tensor with three feature matrices to recommend points of 
interest. They used an element-level gradient descent opti-
mization algorithm to solve the problem. Meanwhile, many 
scholars combine tensor factorization with neural network 
to solve the multi-type information in the CARS. Chen et al. 
[20, 21] proposed a model that combines tensor factoriza-
tion and adversarial learning for context-aware recommen-
dations. They combined deep neural networks and tensor 
algebra to capture nonlinear interactions among multi-aspect 
factors. Wu et al. [22] proposed a Neural network based 
Tensor Factorization model for predictive tasks on dynamic 
relational data. They argued that users’ preferences would 
change over time and the underlying factors driving the user 
project relationship would also change over time.

3 � User multi‑context sensitivity detection

Existing related studies have shown that there are significant 
differences in users’ sensitivity to different types of contexts 
[23], that is, users are context-sensitive. In terms of movie rec-
ommendations, some users are sensitive to their own emotions. 
When they are in a good mood, they will choose relaxing or 
cheerful movies, otherwise they will choose sad movies. We 
believe that in the same context with different dimensions, 
when there are significant changes in user interest preferences, 
this context is the sensitive context for the user. In this paper, 
the chi-square test of significance test method is used to detect 
whether users are sensitive to a certain context. Chi-square test 
is generally applicable to fitness test, independence test and 
unity test, and usually represents the deviation degree between 
the observed value and the theoretical value. The statistical 
value of each observed context for the corresponding prefer-
ence in each dimension is used as the observation value of 
the Chi-square test. The average value of the user’s evaluation 
number in a single situation is taken as the theoretical value. 
The calculation formula is as in equation 3:

Fig. 2   Third-order tensor factorization process
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Where Ai is the observed count at level i, Ei is the expected 
count at level i, n is the total count, and pi is the expected 
frequency at level i. When n is relatively large, the X2 sta-
tistic approximately obeys a cardinal distribution with I-1 
degrees of freedom.

Based on the LDOS-CoMoDa movie rating dataset [24], 
we select users who have evaluated more than 5 items and 
more than 10 items as test targets. The Chi-square value 
of each user for a single situation is calculated. If the Chi-
square value is greater than the critical value compared with 
the critical value table of Chi-square test, it indicates that the 
user is sensitive to the context, otherwise it is not sensitive. 
Then the number of individual contexts judged as sensitive 
contexts is counted, and the high number is considered as 
user sensitive contexts. Individual contexts fall under the 
user sensitive context statistics as shown in Fig. 3.

In the figure, the horizontal axis indicates the results of sen-
sitive statistics for users evaluating more than 5 and more than 
10 items. Each part is represented as 12 different contexts in 
the dataset, including time, daytype, season, location, weather, 
social, endEmo, dominantEmo, mood, physical, decision, and 
interaction. As can be seen from the figure, the results of both 
parts are high in the statistics of daytype and season, then it 
is considered that the user sensitive context is daytype and 
season.

(3)

X2 =
∑ (A − E)2

E
=

k∑
i=1

(Ai − Ei)
2

Ei

=

k∑
i=1

(Ai − npi)
2

npi
(i = 1, 2, 3, ..., I)

4 � Tensor factorization 
for multi‑context‑aware recommendation 
methods

4.1 � User interest model based on four‑dimensional 
high‑order Tensor

From the user multi-context sensitivity detection, it is con-
cluded that most users are sensitive to both daytype and sea-
son. We constructed a tensor X ∈ ℝ

(U×T×D×S) of User-Item-
Daytype-Season to represent the users’ interest preferences 
for items in different dimension of contexts. Where U, T, D, 
and S denote the number of users, items, daytype dimensions 
and season dimensions, respectively. For ease of reading, 
Table 1 lists the key notations of this article.

The four modules are described in detail as follows.
Module1(User ) :  U = [u1, u2, ..., uU] represen ts 

the presence of U different users; Module2(Item): 
T = [t1, t2, ..., tT] represen ts  T  d i f fe ren t  i t ems; 
Module3(Daytype): D = [d1, d2, ..., dD] represents that there 
are D different dimensions of daytypes; Module4(Season): 
S = [s1, s2, ..., sS] represents that there are S different dimen-
sions of seasons.

We use the rating of the item as an indication of the users’ 
interest preferences, with higher ratings indicating that the 
user likes the item more. For each X(u, t, d, s) denotes the 
rating of user u for item t with daytype d and season s. If 
the user does not interact with this item in that context, then 
X(u, t, d, s)=0 .

As in Fig. 4, a schematic diagram of the constructed four-
dimensional tensor is shown. The constructed tensor can be 
represented as a combination of three-dimensional (User-
Item-Daytype) tensor in different seasons.
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Fig. 3   Single context belongs to user sensitive context statistics (The 
higher the interaction count, the more likely the context is to belong 
to a sensitive context.)

Table 1   Notations used in the paper

Notation Description

Ai The observed count at level i
Ei The expected count at level i
n Total count
pi The expected frequency at level i
U,T,D,S The set of users,items,daytype,seasons
M1,M2,M3 Feature matrices
Qj The value of item Q in dimension j
Gj The value of item G in dimension j
ur,tr,dr,sr The rank-one vectors of user, item, daytype, and season
X(1),X(2),X(3) Expand tensor X  according to different modes
�0 The regularization coefficient
�1,�2,�3 Weight of feature matrix
� The learning rate
k The number of hidden factors
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4.2 � Construction of feature matrices

The user is limited to the evaluation of a few items in 
contextual conditions, and the amount of data is extremely 
sparse, and populating it with zero values using only the 
data present in the tensor would greatly reduce the accu-
racy of the prediction. To reduce the data sparsity, we fur-
ther constructed three feature matrices Item-Item similar-
ity matrix, User-Daytype matrix, and User-Season matrix. 
And used the tensor for collaborative factorization. All 
three feature matrices are common to at least one dimen-
sion of the constructed four-dimensional tensor. 

(1)	 Item-Item similarity matrix M1 Driven by interest, the 
categories in which users watch movies have greater 
similarity. For the same context, movies with high sim-
ilarity in recommendation categories are more capable 
of satisfying user interest preferences. For example, if 
the user prefers to watch mystery movies, the system 
can recommend mystery movies to meet the user’s 
needs better than comedy movies. Therefore, in this 
paper, the first three attribute types (gener1, gener2, 
gener3) of item features are used as item category fea-
tures, and the Item-Item similarity feature matrix M1 
is constructed based on the cosine similarity. The simi-
larity between items is calculated as shown in equa-
tion 4: 

(2)	 User-Daytype matrix M2 According to the previous 
multi-context sensitivity detection, the daytype is a 
sensitive context for most users. Therefore, this paper 
constructed a User-Daytype context matrix to represent 
user interest preference on the daytype. To simplify the 
calculation, we used the average ratings of users on 
each dimension of the daytype to construct the User-
Daytype feature matrix M2. An example of this matrix 
is as follows. 

(4)

cosSim
�
Qj,Gj

�
=

Q ∙ G

‖Q‖ ‖G‖

=

∑J

j=1
Qj × Gj�∑J

j=1

�
Gj

�2
×

�∑J

j=1

�
Gj

�2

(3)	 User-Season matrix M3 Similarly, season is also a user-
sensitive context through user multi-context sensitiv-
ity detection. The User-Season matrix can also reflect 
users’ interest preferences in different dimensions of 
the context from the perspective of the season. The 
User-Season matrix M3 is constructed based on the 
average ratings of user interest preferences of the item 
on each dimension of the season. A partial example of 
this matrix is as follows. 

4.3 � Recommendation methods 
for multi‑context‑aware

4.3.1 � Context‑aware collaborative Tensor factorization

The ultimate goal of both tensor factorization and matrix 
factorization is to fill in the missing items based on the exist-
ing data items. Tucker decomposition and CP decomposition 
are the most commonly used methods in tensor factorization 
[16]. CP decomposition is a special representation of Tucker 
decomposition, which can be applied to massive data and is 
more convenient to calculate. Therefore, we used CP decom-
position. The tensor X ∈ ℝ

(U×T×D×S) constructed in our 
experiments can be decomposed into U ∈ R(u×k),T ∈ R(t×k)

,D ∈ R(d×k),S ∈ R(d×k).The expression for its decomposition 
is given in equation 5.

Where U, T, D, and S are called factor matrices and are 
combinations of rank-one vectors. ur ∈ RU,tr ∈ RT,dr ∈ RD

,sr ∈ RS(r=[1,2,...,R])denote the rank-one vectors of user, 
item, daytype, and season, respectively.R is a positive integer 
that represents the number or rank of components. Usually, 
we correspond the rows of the factor matrix to each dimen-
sion of the tensor, and the columns to the rank R.

The three constructed feature matrices M1, M2, and M3 
can be decomposed into two smaller matrices using matrix 

⎡
⎢⎢⎢⎢⎢⎣

3.9605 3.6346 3.4285

3.8613 3.7258 4

⋮ ⋱ ⋮

3.7105 4.1667 4

4 3.2857 3.6363

⎤
⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

3.8 4 3.5589 4.0588

3.9 3.7272 3.7083 3.9697

⋮ ⋮ ⋮ ⋮

4 5 3.6052 4.3846

0 0 3 3.6667

⎤⎥⎥⎥⎥⎥⎦

(5)X ≈ [U, T ,D, S] =

R∑
r=1

�r◦ur◦tr◦dr◦sr

Fig. 4   Schematic diagram of four-dimensional tensor construction



2258	 S. Cheng et al.

1 3

factorization, respectively. In general, the factorization of the 
matrix can be expressed by equation 6.

Where k denotes the rank of the factorization and represents 
the matrix containing k implied features. We considered that 
users’ interest preferences for items are mainly determined 
by k hidden features.

To implement the calculation between the tensor and the 
matrix, it is first necessary to transform the tensor matrix into 
the same dimension as the matrix. For a third-dimension ten-
sor X ∈ ℝ

n1×n2×n3 can be expanded in three modules. Accord-
ingly, each modal expansion yields a matrix, as shown in 
equation 7–9:

The created feature matrix M1 shares the item dimension 
with tensor X  . M2 shares the user and daytype dimensions 
with the tensor. And M3 shares the user and season dimen-
sions with the tensor. Thus, the data in the matrix can be 
fused into the tensor by a shared matrix dimension.Given 
the tensor X ∈ ℝ

(U×T×D×S) and the feature matrices M1, 
M2, M3, construct the objective function as shown in 
equation 10.

Where ‖...‖ denotes finding its two-parametric number and 
1

2
‖X − U◦T◦D◦S‖2

F
 denotes the least square error loss func-

tion that decomposes the four-dimensional tensor into four 
factor matrices U, T, D, and S. Then this part of the formula 
can be further expressed as equation 11.

(6)M = YZT (M ∈ Rn×m,Y ∈ Rn×k,Z ∈ Rm×k)

(7)
X(1) =

[
X(∶, ∶, 1),X(∶, ∶, 2),… ,X

(
∶, ∶, n3

)]

∈ R
n1×(n2n3)

(8)
X(2) =

[
X(∶, ∶, 1)

T
,X(∶, ∶, 2)

T
,… ,X

(
∶, ∶, n3

)T]

∈ R
n2×(n1n3)

(9)
X(3) =

[
X(∶, 1, ∶)

T
,X(∶, 2, ∶)

T
,… ,X

(
∶, n2, ∶

)T]

∈ R
n3×(n1n2)

(10)

F(U, T ,D, S) =
1

2
‖� − U◦T◦D◦S‖2

F

+
�1

2

���M1 − TT
T���

2

F

+
�2

2

���M2 − UD
T���

2

F

+
�3

2

���M3 − US
T���

2

F

+
�0

2

�‖U‖2
F
+ ‖T‖2

F
+ ‖D‖2

F
+ ‖S‖2

F

�

Tensor factorization can usually be computed using Alter-
nating Least Squares (ALS) and Gradient Descent (GD), 
and considering their limitations, we used Stochastic Gra-
dient Descent (SGD) for optimization. To implement the 
multiplication of a tensor and a matrix, the tensor needs to 
be matrixed first. Matricization is the rearrangement of the 
elements of an n-dimensional array into a matrix. Matri-
cization of a tensor means transforming the tensor into a 
matrix from different dimensions of the tensor. The prod-
uct is calculated by multiplying the matrix formed by the 
n-dimensional matricization by the matrix. The derivative 
of our four-dimensional tensor for the matrix U when n = 1 
is chosen is given in equation 12.

Then, for the U matrix in tensor X  can be updated based on 
the following equation 13, where � denotes the learning rate.

By the same token, T, D, and S are updated as follows in 
equation 14–16.

‖‖M1 − TTT‖‖2F denotes the least square error of decomposing 
the M1 matrix into T and T matrices. ‖‖M2 − UDT‖‖2F denotes 
the least square error of decomposing the M2 matrix into U 
and D matrices. ‖‖M3 − UST‖‖2F denotes the least square error 
of decomposing the M3 matrix into U and D matrices.

�0

2

�‖U‖2
F
+ ‖T‖2

F
+ ‖D‖2

F
+ ‖S‖2

F

�
 is a regularization 

term to prevent overfitting. �0 is the regularization coef-
ficient, and �1, �2, �3 are the model parameters controlling 
the weights of different parts of the objective function.

The learning process of this algorithm is shown in 
Algorithm 1, where the input is a four-dimensional tensor 
X  with three feature matrices M1, M2, and M3. In the 
algorithm, the four-factor matrix is first initialized using 
the minimum random value, then the optimal values of 
the parameters are learned using the stochastic gradient 

(11)

F =
1

2

[
X(1) − U(S ⊙ D⊙ T)

T
]2

=
1

2

[
X(2) − T(S ⊙ D⊙ U)

T
]2

=
1

2

[
X(3) − D(S ⊙ T ⊙ U)

T
]2

=
1

2

[
X(4) − S(D⊙ T ⊙ U)

T
]2

(12)

𝜕F

𝜕U
= 2 ×

1

2

(
X(1) − U(S ⊙ D⊙ T)

T
)

×
𝜕
[
X(1) − U(S ⊙ D⊙ T)

T
]

𝜕U

= −
[
X(1) − U(S ⊙ D⊙ T)

T
]
(S ⊙ D⊙ T)

(13)U = U + 𝛼
[
X(1) − U(S ⊙ D⊙ T)T

]
(S ⊙ D⊙ T)

(14)T = T + 𝛼
[
X(2) − T(S ⊙ D⊙ U)

T
]
(S ⊙ D⊙ U)

(15)D = D + 𝛼
[
X(3) − D(S ⊙ T ⊙ U)

T
]
(S ⊙ T ⊙ U)

(16)S = S + 𝛼
[
X(4) − S(D⊙ T ⊙ U)

T
]
(D⊙ T ⊙ U)
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descent method, and finally the dense four-factor matrix 
is output.

Algorithm 1 Tensor joint matrix factorization algorithm
Input: original tensorX , identity matrices M1, M2, M3
Output: factor matrices U, T, D, S
1: Initialization of the factor matrix using the minimum random value

according to the size of each dimension of the tensor X
2: Iteration starts, set the difference between loss values β less than 0.0001

stop
3: Calculate each gradient as follows:
4: ∇UF = −

[
X(1) − U(S �D � T )T

]
(S �D � T ) + λ2 M2 − UDT

)
+

λ3 M3 − UST
)
+ λ0U

5: ∇TF = −
[
X(2) − T (S �D � U)T

]
(S �D � U) + λ1 M1 − TTT

)
+ λ0T

6: ∇DF = −
[
X(3) −D(S � T � U)T

]
(S � T � U)+λ2 M2 − UDT

)
+λ0D

7: ∇SF = −
[
X(4) − S(D � T � U)T

]
(D � T � U) + λ3 M3 − UST

)
+ λ0S

8: Update the values according to the new gradient:
9: Ui+1 = Ui − αi∇UF

10: Ti+1 = Ti − αi∇TF
11: Di+1 = Di − αi∇DF
12: Si+1 = Si − αi∇SF
13: End the iteration according to the stop condition
14: Return U, T, D, S

The complexity of the algorithm is analyzed below. 
Assuming that the tensor X ∈ ℝ

(n×n×n×n) , where R denotes 
the rank of X  , it is known that S ∈ R(n×R),D ∈ R(n×R)

,T ∈ R(n×R) , then the time complexity of computing 
(S ⊙ D⊙ T)T  is about O(n3R) ; obviously, X(1) ∈ ℝ(n×n

3) 
and 

�
S
⨀

D
⨀

T
�T

∈ ℝ(n×n
3) , then the computation of 

[X(1) − U(S
⨀

D
⨀

T)
T
](S

⨀
D
⨀

T) is approximately 
O(n4R) . The time complexity of the algorithm is about 
O(n4R) when the value of the rank R in the calculation is 
taken to be smaller. The algorithm needs to store the matrix 
of four-dimensional tensor expansion, the feature matrix and 
the associated product values, then the space complexity is 
about O(n4).

4.3.2 � Matrix factorization

In this paper, context-insensitive users are predicted using 
the traditional matrix factorization method [25] for User-
Item ratings. The constructed User-Item rating matrix is 
denoted as M, where M(u, t) ratings the users’ interest pref-
erences of the item, and the prediction model corresponds 
to the objective function in equation 17.

4.3.3 � Top‑N recommends

In this paper, the recommendation method used the Top-N 
recommendation strategy. In the corresponding contexts, users 
sensitive to multiple contexts use the outer product of the out-
put four-factor matrix to recover the sparse tensor based on 

(17)F(U, T) =
1

2

���M − UTT���
2

F
+

�1

2
‖U‖2

F
+

�2

2
‖F‖2

F

the higher-order tensor factorization, and users not sensitive 
to contexts use the matrix factorization method for the scoring 
prediction array. The reconstructed tensor Xnew , matrixMnew 
expressions are as in equation 18–19.

Where Xnew(u, t, d, s) is the preference pre-rating of context-
sensitive user u for item t in the context with daytype d and 
season s, and Mnew(u, t) is the preference rating of context-
insensitive user u for item t. Finally, the Top-N items are 
recommended for different users by pre-rating the location 
items in reverse order.

5 � Experiments

5.1 � Multi‑context movie dataset

The experimental dataset in this paper was chosen from the 
real movie dataset LDOS-CoMoDa, collected by Prof. Ante 
Odi’c, which contains multiple contexts [24]. The dataset not 
only contains basic information about users and items such 
as age, sex, city, country, director, country, language, year, 
genre, actor, budget, but also collects information about 12 
contexts. The relevant information of the dataset is shown in 
the following Table 2.

The 12 contexts in the dataset with different categories 
are time, daytype, season, location, weather, social, endEmo, 
dominantEmo, mood, physical, decision, and interaction. The 
specific description of each context is shown in Table 3.

5.2 � Baseline methods

(1)	 Standard-CP [26]: Only the four-dimensional tensor is 
used as input, and the influence of feature lifting on it 
is not considered. By setting �1, �2, �3 in the determined 
objective function to zero can be obtained as in equa-
tion 20. 

(2)	 HOSVD [27]: HOSVD is a common method applied 
to tensor factorization, which is to fill the data after 

(18)Xnew = U ⊙ T ⊙ D⊙ S

(19)Mnew = UTT

(20)

F(U, T ,D, S) =
1

2
‖X − U◦T◦D◦S‖2

F
+

�0

2

�‖U‖2
F

+‖T‖2
F
+ ‖D‖2

F
+ ‖S‖2

F

�

Table 2   Statistics of the dataset

Total User Item Rating Ave-rating

2296 121 1232 1–5 3.83
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decomposing the tensor by different modes and then 
using the SVD method in turn. It is often used in con-
textual recommender systems because of its applicabil-
ity to higher-order data.

(3)	 NMF [28]: The method of non-negative matrix factori-
zation is often used for the recommendation of two-
dimensional data items and, like traditional SVD, does 
not consider the effect of context on the results.

5.3 � Evaluation Metrics

We used the classical Root Mean Square error (RMSE) 
and Mean Absolute Error (MAE) as evaluation metrics. 
RMSE and MAE are used to measure the deviation between 
the actual and predicted values and are calculated as in 
equation 21–22.

X(u,t,d,s) , X
�

(u,t,d,s)
 denote the actual rating and predicted rating, 

respectively, and N denotes the number of predicted ratings.

5.4 � Experiment results

5.4.1 � Parameter optimization

We first conducted optimization experiments on the param-
eters of the multi-context-aware recommendation method. 
The parameters to be optimized include the learning rate � 
and �0, �1, �2, �3 . In order to ensure the accuracy of param-
eter optimization and prevent overfitting caused by the com-
plexity of the model, we adopt a three-fold cross-validation 

(21)RMSE =

�∑N

i=1
(X(u,t,d,s) − X

�

(u,t,d,s)
)
2

N

(22)MAE =

∑N

i=1
�X(u,t,d,s) − X

�

(u,t,d,s)
�

N

experimental method to calculate the experimental results. 
Both context-sensitive and context-insensitive users selected 
80% of the random data as the training set and the remaining 
20% as the test set. 

(1)	 Optimization of learning rate � When optimiz-
ing the learning rate � , it is necessary to ensure that 
�0, �1, �2, �3 take relatively fixed values. The experi-
mental results for different learning rates � are shown 
in Fig. 5. It can be seen from the figure, as the value 
of � increases both RMSE and MAE decrease first and 
then increase. When the value of � is 1e-4, both RMSE 
and MAE are minimal, and the recommendation model 
reaches the relatively optimal results.

(2)	 Optimization of �0, �1, �2, �3 The parameters 
�0, �1, �2, �3 control the feature matrix and the degree 
of regularization influence, which have a large impact 
on the recommendation accuracy. We chose 0.2–1.6 

Table 3   Description of 
situational factors

Context Dimensions

Time Morning (1), afternoon (2), evening (3), night (4)
Daytype Working day (1), weekend (2), holiday (3)
Season Spring (1), summer (2), autumn (3), winter (4)
Location Home (1), public place (2), friend’s house (3)
Weather Sunny / clear (1), rainy (2), stormy (3), snowy (4), cloudy (5)
Social Alone (1), my partner (2), friends (3), colleagues (4), parents(5),public (6), my family (7)
EndEmo Sad (1), happy (2), scared (3), surprised (4), angry (5), disgusted (6), neutral (7)
DominantEmo Sad (1), happy (2), scared (3), surprised (4), angry (5), disgusted (6), neutral (7)
Mood Positive (1), neutral (2), negative (3)
Physical Healthy (1), ill (2)
Decision User decided which movie to watch (1), user was given a movie (2)
Interaction First interaction with a movie (1), n-th interaction with a movie (2)

Fig. 5   Effect of learning rate � on the model
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step 0.2 as the value of each parameter, and the specific 
degree of impact is shown in Fig. 6. From Figure 6, we 
can see that the model can achieve better results when 
�0 is 0.4, �1 is 0.4, �2 is 1.2, and �3 is 1.2. The values 
chosen for �2 and �3 are larger than those for �0 and �1 
because �2 and �3 control the degree of influence of 
daytype and season.

When performing matrix factorization for context-
insensitive users, the number of hidden factors k has a 
large impact on their results, and we choose the opti-
mal value of k by the RMSE. It can be seen from Fig. 7 
that RMSE decreases and flattens out as the value of k 
increases, and the RMSE is minimal when k = 14 in the 
selected interval.

5.4.2 � Method Comparison

Based on the parameter optimization, the proposed method 
was compared with three baseline methods (Standard-
CP, HOSVD and NMF), and the experimental results on 
RMSE and MAE are shown in Fig. 8.

It can be seen from the figure that the NMF has higher 
values on both RMSE and MAE than the other methods. 
Since it only considers users’ interest preferences and does 
not take into account contexts. Standard-CP and HOSVD 
are the most commonly used tensor factorization methods, 
and their values are closer. Our method adds the feature 
matrix based on tensor factorization to alleviate the prob-
lem of data sparsity, and the values of RMSE and MAE 
are 0.4765 and 0.3988, which are 5.09% and 5.32% lower 
than optimal HOSVD. Therefore, the method proposed 

in this paper can reduce the recommendation error to a 
certain extent and effectively improve the recommenda-
tion accuracy.

6 � Conclusions

In the context-aware recommender system, making full use 
of multiple context information can effectively improve the 
accuracy of recommendation. In this paper, we proposed 
a recommendation method based on multi-context-aware 
higher-order tensor factorization. Firstly, users’ sensi-
tivities to the contexts were tested, and then users were 
divided into two categories. For the context-sensitive users, 
a four-dimensional tensor was constructed to simulate the 
relationship between users, items, daytypes and seasons. 

Fig. 6   Effect of different parameters on the model

Fig. 7   Effect of hidden factor k on MF

Fig. 8   Comparison with baseline method
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Further, three feature matrices were constructed combined 
with different dimensions to solve the problem of data 
sparsity. Compared with the standard tensor factorization, 
high-order matrix decomposition and traditional matrix 
decomposition methods, this method has higher accuracy 
and better recommendation results. In the future work, we 
will deeply study the multi-context-aware recommender 
system from the influence difference of each dimension of 
high-order tensor.
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