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Abstract
Social media is a more common and powerful platform for communication to share views about any topic or article, which 
consequently leads to unstructured toxic, and hateful conversations. Curbing hate speeches has emerged as a critical chal-
lenge globally. In this regard, Social media platforms are using modern statistical tools of AI technologies to process and 
eliminate toxic data to minimize hate crimes globally. Demanding the dire need, machine and deep learning-based techniques 
are getting more attention in analyzing these kinds of data. This survey presents a comprehensive analysis of hate speech 
definitions along with the motivation for detection and standard textual analysis methods that play a crucial role in identifying 
hate speech. State-of-the-art hate speech identification methods are also discussed, highlighting handcrafted feature-based 
and deep learning-based algorithms by considering multimodal and multilingual inputs and stating the pros and cons of each. 
Survey also presents popular benchmark datasets of hate speech/offensive language detection specifying their challenges, 
the methods for achieving top classification scores, and dataset characteristics such as the number of samples, modalities, 
language(s), number of classes, etc. Additionally, performance metrics are described, and classification scores of popular 
hate speech methods are mentioned. The conclusion and future research directions are presented at the end of the survey. 
Compared with earlier surveys, this paper gives a better presentation of multimodal and multilingual hate speech detection 
through well-organized comparisons, challenges, and the latest evaluation techniques, along with their best performances.
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1 Introduction

With the growing internet and technology, a large amount 
of information content is present on online community net-
works as multimodal data (Text, Pictures, and videos). If we 
look at the statistics, we can visualize that a large number of 
people using social media is escalating at a very great speed, 
and people can easily present their views to each other via 
various social media platforms. The type of content on the 
online social media stages contributes to the propagation of 
hate speech and misleading people. Right now, controlling 
this kind of media information is very important. Therefore, 

hate speeches harm individuals and impact society by raising 
hostility, terrorist attacks, child pornography, etc. Figure 1 
shows a portion of hate speech and offensive expressions 
posted on social media or the web. Figure 1(a) shows a 
clear example of encouraging violence during huge fights 
against CAA, NRC, and NPR across India in Jan 2020 [1]. 
Figure 1(b) shows the tweet released under #putsouthafri-
cansfirst, a person openly tweeting to attack the foreigners 
working in South Africa. Figure 1(c) shows a tweet posted 
in 2014 advocating killing Jewish people for fun after the 
synagogue shooting in Pittsburg [2]. Figure 1(d) shows a 
post posted in Jan 2018 that a supreme leader is giving a 
genuine threat statement to the US for war [3].

The recent instances of high-profile politicians making 
speeches were an apparent attempt at inciting violence, 
which led to large-scale violence. These instances are yet to 
be dealt with by law enforcement agencies. Hence, the integ-
rity of identifying hate instances is one of the most signifi-
cant challenges in social media stages, and research-based 
analysis of this type of content is necessary. The following 
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section describes the definition analysis of hate speech from 
various sources.

1.1  Hate speech: definition perspective 
and analysis

There is a general agreement among researchers to define 
hate speech, and researchers have described it as a language 
that attacks an individual or a society dependent on charac-
teristics like race, shading, nationality, sex, or religion [4]. 
This section provides some state-of-the-art definitions of 
hate speech (Table 1). Although many authors and social 
media platforms have given their purposes for hate speech, 
researchers are following them to understand the forms and 
classifications of hate speech. The definitions from the vari-
ous sources are as follows:

• Some of the scientific definitions include the commu-
nity's perspective.

• Major social networking sites like Facebook, YouTube, 
and Twitter are the most used platforms where hate 
speech occurs regularly.

The definition analysis (Table 2) mainly relies on vari-
ous sources like multiple definitions from scientific papers 
and powerful social media platforms. The dimensions used 
for analysis are “violence,” “attack,” “specific targets,” and 
“status.”

After a thorough definition analysis, we have also por-
trayed the definition of Hate Speech as follows:

“Hate Speech is a toxic speech attack on a person’s 
individuality and likely to result in violence when tar-
geted against groups based on specific grounds like 
religion, race, place of birth, language, residence, 
caste, community, etc.”

1.2  Hate speech: forms and related words

Figure 2 shows significant hate forms of speech like Cyber-
bullying, Toxicity, Flaming, Abusive Language, Profanity, 
Discrimination, etc., and Table 3 presents the definitions of 
the above forms of hate speech found in the literature with 
their distinction from hate speech.

Fig. 1  Examples of hate speech and offensive expressions present over social media
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Hence, analyzing hate speech on the web is one of the 
critical areas to study due to the following reasons:

• Reduce conflicts and disputes created among human 
beings due to toxic language and offensive expressions.

• The broad availability and notoriety of online web-based 
media, like Facebook, Twitter, Instagram, web journals, 
microblogs, assessment sharing sites, and YouTube, 
boost communication and allow people to freely share 
information in the form of their thoughts, emotions, and 
feelings among strangers.

• Moreover, click baiting takes massive attention and 
encourages visitors to click on the link, harming readers' 
emotions.

• Hate speeches can incite violence and cause irreparable 
loss of life and money.

• The latest incident was triggered by online hate speech 
in the Philippines, citing the example of the Christchurch 
mosque shooting in 2019 [20].

• To forestall bigot and xenophobic viciousness and sepa-
ration spread among Asians and individuals of Asian 
drop uniquely in this pandemic. As per the report dis-
tributed by US Today in May 2021, more than 6600 hate 

Table 1  Some of the prominent definitions by some state-of-the-art

References Hate speech definitions

[5] An antagonistic, malevolent speech focused on an individual or a social event of people taking into account a part of their genuine 
or intrinsic qualities. It communicates unfair, scary, objecting, hostile, or potentially biased perspectives toward those attributes, 
including sex, race, religion, identity, shading, public beginning, incapacity, or sexual direction

[6] Hate speech is a conscious and hardheaded public assertion expected to slander a gathering of individuals
[7] Hate speech is a quick attack on individuals subject to race, identity, sex, character, and veritable sickness or impediment. We 

portray assail as horrible or dehumanizing talk, clarifications of deficiency, or calls for dismissal or seclusion
[8] Hate speech alludes to content that advances viciousness or scorn against the public dependent on specific ascribes, like ethnic or 

race beginning, religion, inability, sex, age, veteran reputation, and sexual direction/sex personality
[9] Content that attacks people based on actual or perceptual race, ethnicity, country of origin, religion, gender, sexual orientation, 

disability, or illness is not permitted. It is considered a potential threat or attack for the content that many people find offensive 
(jokes, Stand-up comedy, lyrics of popular songs, etc

[10] Hate speech attacks an individual or get-together depending on characteristics like religion, race, ethnicity, insufficiency, sexual 
heading, or sex character

[11] Hate speech attack others dependent on racism, ethnicity, public start, sexual bearing, sex, character, age, handicap, or genuine 
illness

[12] The language used to convey hate speech towards a selected bunch
[13] Hate Speech is a purposeful attack on a specific social occasion of people motivated by the pieces of the group's character
[14] Hate Speech assails or prompts malignance against gatherings in light of explicit qualities like actual looks, religion, ethnicity, 

sexism, and many more. Moreover, individuals with diverse phonetic styles in unobtrusive construction can happen

Table 2  Definition Analysis

Ref Dimensions

Specific targets Status Violence Attack

[5] Yes No Yes No
[6] Yes No Yes No
[7] Yes Yes No Yes
[8] Yes No Yes No
[9] Yes Yes Yes No
[10] Yes No No Yes
[11] Yes No No Yes
[12] Yes No Yes No
[13] Yes Yes Yes Yes
[14] Yes Yes Yes No

Hate Speech on Social 
Media Networks

Cyberbullying

Toxic 
comments

Discriminatio
n

Abusive 
Language

Profanity

Flaming

Fig. 2  Forms of Hate speech
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and offensive incidences against Asian- Americans and 
Asians have been accounted for [6].

• To save our society from being gravely damaged.

From the points mentioned above, it has been observed 
that detecting and restraining hate speech at an initial stage 
is very crucial and, indeed, a challenging task. Major online 
media stages like Facebook, Twitter, and YouTube are trying 
to eliminate hate speeches and other harmful content at an 
initial step as part of their ongoing projects, using advanced 
AI techniques. However, keeping an eye on an individual is 
vital to have hate off platforms. Social media platforms and 
an individual can adopt the following suggestions:

• The most significant source of hate speech on the internet 
is trolls. A person should block, mute, or report these 
trolls instead of giving recognition.

• A person should do a proper data analysis and facts 
before forwarding the posts.

• Social media firms should follow strong policy rules 
against abusive behavior.

The following section describes the general framework of 
hate speech detection adopted by several researchers.

1.3  Motivation

Recently, it has been observed that the number of users are 
actively involving on social media in the forms of What-
sApp post, Facebook posts, YouTube shorts, reviews, com-
ments etc. on various topics. People are sharing their views 
resulting in tremendous amount of data on the web. The data 
should be analyzed for further research. Giving the vari-
ous hate form definitions, their analysis and to highlight the 
motivation behind the hate content detection in every aspect, 
we briefly discuss the recent works in this area in terms of 

various methodologies, modalities, performances, bench-
marks etc. The further future trends are also highlighted giv-
ing the motivation to researchers for detecting hate content.

1.4  General framework of hate speech detection

Figure 3 provides a framework for the process of hate speech 
identification. The foremost step is to search the powerful 
source platform where most hate speech/ offensive languages 
occur. Most state-of-the-art adopted significant social media 
firms like Facebook and Twitter. The second step is to col-
lect data either in the form of posts or tweets. Gathering a 
great measure of information from web-based media stages 
nowadays is one of the significant research challenges for 
researchers and academia. The platforms provide a simple 
and quick approach to gathering and storing information 
through inbuilt APIs [21]. Figure 4 shows the types of data 
accessible and non-accessible via social media, respectively.

A large amount of hate speech data collection is from 
two powerful social media platforms: Twitter, Instagram, 
Facebook, and these two platforms are actively working on 
combating hate speeches. The next phase includes data nor-
malization and feature extraction for training a model, and 
the last step performs classification to classify the problem.

Most literature surveys ([14, 25–27, 4, 28–31]) have been 
published till now. Table 4 compares our survey with related 
surveys in various aspects like definition analysis, compari-
son with other hate forms, NLP aspect in terms of modali-
ties, and explanation of models and datasets. This paper also 
gives an itemized portrayal of hate speech identification in 
multimodal information by considering major phases like 
data collection, text mining approaches in automatic hate 
speech detection, and different machine and deep learning 
approaches. This paper is a more detailed and systematic 
survey considering various parameters in terms of datasets, 
methods, etc. as follows:

Table 3  Comparison between Hate speech and its various forms

Forms Definitions of forms Distinction from hate speech

Cyberbullying Characterized as a deliberate demonstration completed by a social 
occasion or individual using electronic stages [15]

Hate speech is abusive speech explicitly directed toward 
a unique, non-controllable attribute of a group of 
people

Discrimination Interaction via a distinction and afterward utilized as the premise 
of unreasonable treatment [16]

Hate speech is a virulent form of discrimination

Flaming Flaming describes antagonistic, profane, and threatening remarks 
that can upset and offend other members of the forums, gener-
ally called trolls [17]

Unlike flaming, hate speech can occur in any context

Abusive Language The term abusive language seeks to diminish or humiliate some 
person or group [18]

Hate Speech is a type of abusive language

Profanity Hostile or indecent words or expressions Hate speech can use profane words but not always
Toxic language Conveying content that is disrespectful, abusive, unpleasant, and 

harmful [19]
Not all toxic comments contain hate speech
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• The study of detecting online hate content has been grow-
ing only in the last few years, and machine learning is 

more prominent. This survey covers the job done in deep 
and hybrid architectures to determine the issue of recog-
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Fig. 3  General framework of hate speech detection

Fig. 4  a Type of data accessible 
via some social media networks 
and b Type of data not acces-
sible via some social media 
networks [22–24]

)b()a(

User comments and Posts

Reviews

Ad Posts (e.g., dark posts)

Private messages sent and received

Posts on authorised accounts

Comments

Stories

Posts from other business accounts

Tweets and Replies

Ads

User Profiles

High volume of tweets on particular 
subjects

Infromation about the authors 

Monitoring of groups and Events

Stories 

Monitoring of comments on posts from 
unauthorised accounts

User comments with hashtags

Replies to stories

Private Messages

Sensitive Information like graphic 
violence and adult contents

Table 4  Comparison table of related surveys

Ref Definition 
analysis

Comparison with 
other hate forms

Feature Extraction 
(NLP Aspect)

Modality (text-T, 
images- I, videos – V)

Linguistic aspect Models aspect Datasets

[4] T Monolingual
[14] T Monolingual
[25] T Multilingual
[26] T Multilingual
[27] T Multilingual
[28] T Monolingual
[29] T Multilingual
[30] T Multilingual
[31] T Monolingual
Our survey T + I + V Multilingual
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nizing hate speech. This survey also covers the feature 
extraction methods used in automatic hate speech detec-
tion.

• The beauty of this literature covers possible identified 
merits and demerits of the recent state-of-the-art works, 
their fundamental aspects, and techniques used in tabular 
form.

• Another beauty of this survey is that it covers publicly 
available datasets, dataset challenges, and benchmark 
models.

• Most previous surveys are on textual data, and limited 
literature is particularly for detecting hate speech in mul-
timodal information. Therefore, this review paper also 
considers multimedia data (such as text, images, and vid-
eos) to highlight the detection process and the previous 
works on multilingual hate speech detection. However, 
this survey incorporates some famous works done for 
multilingual and multimodal data in this field.

• The survey also considers the current challenges and pos-
sible future directions; which researchers can view as 
further work in this area.

1.5  Review technique

However, various investigations have been distributed in 
earlier years identifying hate speech, yet this survey con-
tains some noticeable works in this field. We considered 
influential journals, conferences, and workshops from vari-
ous online databases such as IEEE Xplore, Science Direct, 
Springer, ACM Digital Library, MDPI, CEUR Proceed-
ings, etc. The comprehensive survey contains a review of 
more than 120 articles based on keywords like “hate speech 
detection,” “offensive language detection,” “multilingual,” 
“images,” “videos,” etc. It has been observed from Fig. 5 
that the number of articles published on hate speech detec-
tion seemed to increase yearly in the last five years.

This survey presents a comprehensive analysis of hate 
speech detection research arena as shown in Fig. 6. It breaks 
down the hate speech detection into several meaningful cate-
gorizations such as types of hate speeches, approaches, data-
sets, feature extraction methodologies etc. Special attention 
has been paid in the exploration of multimodal and multi-
lingual approaches of better classification capabilities. Spe-
cifically, feature extraction methods such as Bag-of-Words, 
N-grams, Lexicon & Sentiment based features, TF-IDF, part 
of speech, word references and rule based are analyzed and 
also presented visually in Fig. 7. Next, hate speech detec-
tion methods are discussed in great detail categorizing them 
into traditional machine learning based and deep learning 
based approaches. A separate section elaborates the merits 
and demerits of the same. Special analysis of publicly avail-
able multimodal hate speech datasets is also presented that 
dives into the challenges posed by each of the multimodal 
hate speech datasets. Evaluation metrics and performance 
benchmarks are presented to highlight the effectiveness of 
current state-of-the-art approaches for hate speech detection.

This survey is organized as follows. The introduction is 
discussed in Sect. 1, whereas Sect. 2 describes possible fea-
ture extraction techniques in context with NLP Aspect for 
automatic hate speech detection. Section 3 covers the most 
vital work using different methodologies like machine and 
deep learning and the conversation on multilingual work. 
Section 4 highlights the challenges related to hate speech 
datasets and their benchmark models. In contrast, Sect. 5 
depicts the various evaluation metrics and performance 
measures. Finally, Sects.  6 and 7 portrays the conclusion 
and further future directions respectively.

2  Feature extraction techniques 
in automatic hate speech detection

A feature is the closed characteristics of an entity or a phe-
nomenon. [32] Focus on natural language processing (NLP) 
to explore the automation of understanding human emotions 
from texts. This section provides various text features used 
to extract hate content (Fig. 7). Word references and lexi-
cons are the most straightforward and basic approaches for 
feature extraction in text analysis. Identifying the appropri-
ate features for classification is more tedious when using 
machine learning. The fundamental step in traditional and 
deep learning models is tokenization, in which the primary 
and straightforward approach is dictionaries/ lexicons. 
Dictionary is a method that generates a set of words to be 
looked at and included in the text. Frequencies of terms are 
used directly as features. Features play an essential role in 
machine learning models. Machine learning approaches 
cannot work on raw data, so feature extraction techniques 
are needed to convert text into vectors of features. Many 
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2.2  N‑grams

The N-grams approach is the most utilized procedure in 
identifying hate speech and offensive language ([12, 18, 33, 
38–41]). The most widely recognized N-grams approach 
combines the words in sequence into size N records. The 
objective is to enumerate all size N expressions and check 
their events. It further increases the performance of all clas-
sifiers since it incorporates each word context [42]. Rather 
than utilizing words, it is additionally conceivable to use 
the N-grams approach along with characters. [43] Proved 
character N-gram features are more predictive in detecting 
hate speech than token N-gram features, whereas it is not 
valid in the case of identifying offensive language. Although 
N-grams also have limitations, like all the related words have 
maximum distance in a sentence [33], an answer for this 
issue lies in incrementing the N value. However, it lowers 
the processing speed [15]. [39] Proved that greater N values 
perform better than lower N-values (unigrams and trigrams). 
The authors [4, 38] observed that character N-gram features 

basic features like BOW, Term Frequency- inverted Term 
Frequency, Word references, etc., are used.

2.1  Bag‑of‑words (BOW)

BOW is an approach like word references extensively used 
for document classification ([14, 33–35]). The frequency of 
each word is used as a characteristic for training a classifier 
after gathering all the words. The burden of this technique 
is that the sequencing of words is disregarded, whether it is 
syntactic or semantic information. Both pieces of informa-
tion are crucial in detecting hate content. [36] Used BOW to 
represent Arabic hate features as text pre-processing before 
applying various machine learning classifiers. [37] Derived a 
method for detecting Arabic religious hate speech using dif-
ferent features with the machine and deep learning models. 
Consequently, it can prompt misclassification of whether 
the terms are utilized in multiple contexts. N-grams were 
executed to overcome the issue.

A Literature Review on Multimodal and Multilingual Automatic Hate Speech Detection

3. Automatic Hate 
Speech Detection 
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perform better when combined with extra-linguistic features. 
The authors generated one hot N-gram and N-gram embed-
ding feature to train the model and analyzed better perfor-
mance by N-gram embedding [44].

2.3  Lexicon‑based and sentiment based

Lexical features use unigrams, and bigrams of the target 
word, whereas syntactic features include POS tags and vari-
ous components from a parse tree. The parser used in NLP, 
proposed by the Stanford NLP Group [45], was used to catch 
the linguistic conditions inside a sentence [15]. Lexicon-
based methods are crucial in identifying the sentiments of 
speech. For example, nigga is an offensive word and must 
be prohibited in ordinary language [46]. Hateful speech on 
a social stage cannot be a positive polarity because awful 
grammar provides a negative inclination by the speaker to 
the listeners and readers. Authors in ([12, 39, 47–50]) [51]) 
consider sentiments as a characteristic for identifying hate 
speech. Some authors [39] used the sentiment features in 
combination with others, which proved in result enhance-
ment. [52] Presents metaheuristic approach for sentiment 
analysis and proved that the optimization methods can be 
alternatively used against machine leaning models with 
promising results.

2.4  Topic modeling

This method is also famous for topic classification, which 
focuses on extracting topics that occur in a corpus. Topic 
modeling is also used for detecting hateful comments from 
central social media platforms like Youtube [53]. [54]) used 
the Latent Dirichlet Allocation model ([55]) to discover 
abstract topics and use them in classifying multimodal data. 
[56] Derived text clusters from LDA for multilingual hate 
speech detection and proved that topic modeling is not giv-
ing any major incite for classification.

2.5  TF‑IDF

TF-IDF is a scoring measure broadly used in informa-
tion retrieval and is planned to reflect how important a 
term is in a given record. TF-IDF is the most common 
feature extraction technique used by traditional classi-
fication methods for hate speech identification ([35, 57, 
58]). TF-IDF differs from a bag of words technique or 
N-gram technique because the word recurrence offsets the 
frequency of each term in the corpus, which clarifies that a 
few words show up more often than expected (for example, 
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stop words). [59] Used N-grams and TF-IDF values to 
perform a comparative analysis of the machine learning 
models to detect hate speech and offensive language and 
claimed that the L2 normalization of TF-IDF outperforms 
the baseline results.

2.6  Part‑of‑speech

POS tagging is a well-known task in NLP. This approach 
refers to the technique of classifying words into their parts 
of speech. Moreover, it improves the value of the context 
and identifies the word's role in the context of a sentence 
[60]. Some authors [40] used this approach to classify rac-
ist text. PoS tagging with TF-IDF gives a better result in 
Indonesian Hate Speech Detection [61].

2.7  Word embedding

The most widely recognized technique in text analysis 
of hate content is the utilization of word references. This 
methodology comprises all words (the word reference) 
that are looked at and included in the message. The fre-
quencies are utilized straightforwardly as features and 
for calculating scores. In NLP, Word embedding is used 
for representing of words while performing text analysis 
[62]. Uses word2vec embedding for extracting hate con-
tent features for grouping the semantically related words. 
[63] Applies attention based neural networks and word 
embedding feature extraction methods for classification. 
Hate speech detection in Spanish language [64] uses word 
embedding methods like Word2Vec, Glove, FasText for 
feature extraction.

Another procedure used in text analysis of hate con-
tent is the distance metric, which can be used to supple-
ment word reference-based methodologies. A few inves-
tigations have called attention when the negative words 
are obscured with a purposeful incorrect spelling [65]. 
Instances of these terms are @ss, sh1t [18], nagger, or 
homophones, for example, joo [65].

2.8  Rule‑based approach

Text analysis uses a rule-based feature selection technique 
for finding the regularities in data, for example, IF–THEN 
clauses. [66] Proves that rule-based methods do not include 
learning but depends on word reference of subjectivity 
pieces of information. This particular approach is used to 
extract subjective sentences to generate hate content classi-
fiers for unlabeled corpus [48]. [67] works on the combina-
tion of dictionary-based classifiers along with rule-based 
classifiers to generate the semantic features for hate speech 
classification.

3  Automatic hate speech identification 
approaches

This segment describes the research on hate speech iden-
tification using various models by establishing a thorough 
subjective and quantitative examination of what specifies 
multilingual hate speech. This section compares differ-
ent machine and deep learning models for detecting hate 
speech in multiple languages, along with the labels/clas-
sification and datasets used. Authors also compares the 
deep learning based models with shallow based [68] learn-
ing models. Figure 8 shows various traditional and deep 
learning models used to identify hate speeches. It has also 
been observed that in the past few years, most work has 
been done on the general English language using various 
machine-learning models. It has also been seen that the 
results of deep learning and hybrid learning models out-
performed using precision and recall. Following two Sects. 
3.1 and 3.2, describes the sub-domain AI approaches to 
multilingual data.

3.1  Machine learning approaches to hate speech 
detection

Several machine learning models are being created to per-
form tasks like classification, prediction, clustering, etc. 
Machine learning models are also able to take advantage of 
data availability. Labeled data, which is utilized for train-
ing the model to achieve reliable accuracy, comes under the 
classification task. The machine learning algorithms per-
formance directly depends on how accurately the features 
are identified or extracted. Classification algorithms perform 
detection tasks after normalizing the text. The efficacy of a 
model on a combination of several datasets is always better 
than training on a specific dataset [69]. Machine-learning 
algorithms are categorized as supervised, semi-supervised, 
and unsupervised methods. Researchers used these methods 
to detect online hate data in various languages. Out of differ-
ent machine learning models, researchers primarily use SVM 
to classify social media data as hate or non-hate. Random 
Forest holds the second position, and so forth [70]. From 
Table 5, it has been clearly seen that most research is being 
conducted on the general English language using supervised 
machine learning methods. Some authors investigated the 
impact of pre-processing techniques [36] to improve text 
quality and mainly to retain the features without losing infor-
mation [71] for better performance. A piece of research on 
multi-class classification on some datasets [18] carried out 
a machine learning-based approach for classifying online 
user comments into four classes (Clean, Hate, Derogatory, 
and Profanity) on the Amazon dataset. As Supervised, the 
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learning approach is area subordinate since it depends on 
manually marking a massive volume of information.

The advantage of manual labeling is its efficiency for 
domain-dependent tasks, while limitation occurs in execu-
tion time. The authors trained a supervised machine learn-
ing text classifier and used human-annotated data from the 
Twitter dataset to train and test the classifiers [72]. [72] The 
Bayesian logistic regression model is used to classify twitter 
data into hateful and antagonistic labels. Authors [73] focus 
on South Asian Languages for evaluating and comparing 
the effectiveness of various supervised techniques for hate 
speech detection. Semi-supervised learning algorithms are 
prepared to utilize both labeled and unlabeled information. 
Labeling information related to unlabeled information can 
viably upgrade efficiency. [74] Analyzed that unsupervised 
learning has a limited capacity to deal with limited-scale 
events, whereas supervised learning can adequately catch 
small-scale events; however, manually labeling the informa-
tional collection lowers the model scalability. [75] Utilized 
several choices of machine learning classifiers with various 
vector representations like TF-IDF, Count Vectorizer, and 
Word2vec as baselines with their own created Urdu dataset. 
KNN is the most widely used choice when a classification 
task is considered in a supervised learning approach [76], 
[77]. [78] Build an ensemble system utilizing various tradi-
tional machine learning (LR, SVM, RF, MNB, and XGB) 
for detecting sentiments.

When working with a particular language, the task can be 
considered an area-dependent task. The first racial-oriented 

research was carried out by [34], who carried out a super-
vised model to distinguish bigoted tweets [72]. Trained a 
supervised machine learning text classifier and used human-
annotated data from Twitter to train and test the classifiers. 
[50] Proposed an approach for distinguishing hate speech for 
the Italian language on Facebook.

Authors [79] explored the capacity to recognize hate 
in the Indonesian language. The best outcomes from [48] 
were acquired when they consolidated semantic hate and 
theme-based components. SVM outperformed CNN and the 
ensemble approach in all subtasks of HaSpeeDe [80], using 
hate-rich embeddings [81]. Due to the many users available 
worldwide, multilingual hate speeches are spreading across 
the continent in different forms.

3.2  Deep learning approach to hate speech 
detection

Deep learning architectures (Table 6) represent a promising 
future in text analysis tasks. It relies totally upon artificial 
neural networks to investigate the patterns in the text with 
extra depth. In a couple of years, deep learning methods 
have outperformed machine learning methods in terms of 
performance due to the availability of large datasets. From 
the previous works, RNN and CNN are the most generally 
utilized deep learning models for NLP tasks. The execution 
of these two profound neural networks is a bit troublesome 
because of their intricate architectures. RNN has two sorts: 
LSTM and GRU, which upholds sequential architectures 
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Table 5  Recent state-of-the-artwork for detecting hate speech in various languages using machine learning models

Machine learning

Methods Ref Models/Algorithms Classification Dataset

Supervised Methods General (English)
[82]  Fasttext __ Youtube

Myspace

Slashdot

[83]  SVM __ Twitter

Wikipedia

Usenet

[58]  SVM (Sexuality, Race, Intelligence) YouTube

[84]  Multinomial- Naïve Bayes __ Formspring

 Stochastic gradient descent

[72]  Bayesian logistic regression (Hateful, Antagonistic) Twitter

[85]  Logistic regression (Hateful, Clean) Yahoo

[86]  Logistic regression (Hate, Not Hate) Twitter

[87]  SVM (Hate, Offensive, OK) Twitter

[18]  NLP (clean, hate, derogatory, profanity) Amazon

[12]  SVM (Hate, Offensive, and Neither) Twitter

Naïve Bayes

 Decision tree

 Random forest

[88]  SVM (Benevolent, Hostile, and others) Twitter

 Fasttext

General (Roman-Urdu)

[75]  Logistic regression (Hate, Offensive, and Neutral) Twitter

 SVM

 Random forest

General (Hindi-EnglisH Coded Mixed)

[89] BoW (Hate and Non-Hate) Twitter

Character n-grams

Word n-grams

Negation words

Punctuation Marks

Cyberbullying (Turkish)

[90]  Multinomial- Naïve Bayes __ Twitter

Instagram

Radicalisation (English)

[91]  SVM (Pro-ISIs, Non-Pro-ISIs, both, None) Twitter

Racial (English)

[34]  Naïve Bayes (Racist, Non-Racist) Twitter
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Table 5  (continued)

Machine learning

Methods Ref Models/Algorithms Classification Dataset

Religious (English)
[65]  SVM (Anti-Semitic, Not Anti-Semitic) Yahoo news group

General (Italian)

[50]  SVM (Hate, Non-Hate) Face Book

General (Indonesian)

[79]  Random forest (Hate, Non-Hate) Twitter

 Decision tree

Abusive (Arabic)

[92]  Naïve Bayes (Abusive, Normal) Twitter

[93]  SVM (Abusive, Non- Abusive) Twitter

[94, 95]  SVM (Offensive, In-Offensive) Youtube

Adult (Arabic)

[96]  SVM (Adult, Normal) Twitter

Cyberbullying (Arabic)

[97]  SVM (Hate, Non-Hate) Facebook

Twitter

Terrorism (Arabic)

[98]  SVM (Pro-ISIs, Anti-ISIs) Twitter

Semi-Supervised General (Spanish)
[64]  Logistic regression (Hate and non-Hate) HaterNet and HatEval

 SVM
 LSTM
 Bi- LSTM
 Transfer learning

General (English)
[99]  Logistic regression (Profane, Non-Profane) Twitter
[48]  Rule-based (No Hate, Weak Hate, Strong Hate) Blog
Cyberbullying (English)
[100]  Fuzzy SVM __ MySpace

Slashdot
Radicalisation (EnglisH)
[101]  LibSVM (Hate, Extremism Promoting) Twitter
Terrorism (Arabic)
[102]  AdaBoost (Jihadism, Anti-Jihadism) Twitter

Unsupervised General (English)
[15]  Match Rules (Pejorative/ Profanities, Obscenities) YouTube
Cyberbullying (English)
[103] K-Means __ YouTube

Formspring
Twitter

ViolenT (Arabic)
[104] K-Means (Violence, Non-Violence) Twitter
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though CNN has a hierarchical architecture. The efficacy of 
deep learning methods is directly based on the right choice 
of algorithms, the number of hidden layers, feature represen-
tation techniques, and learning high-level features from the 
data. Due to the exclusive performance factors, deep learn-
ing approaches are not better in every case than conventional 
methods. For hate speech identification,

[105] Utilized RNN model with word frequency and 
their outcomes beat the present state-of-the-art deep 
learning methods for hate speech identification. Deep 
learning techniques like automatic prediction, sentiment 
analysis, and classification are now being used to process 
hate images. [106] is a collection of memes from vari-
ous social media platforms like Reddit, Facebook, Twit-
ter and Instagram. The dataset is prepared from the 2016 
U.S. Presidential Election Event, a collection of manually 
annotated image URLs and text embedded in the images, 
resulted in 743 memes. With respect to the classifica-
tion of hateful memes, [107–109] presents various deep 
learning models to classify on memes dataset. Out of the 
researches done so far, [109] presents a visio-linguistic 
model (VILIO) for hateful memes detection and yields 
benchmark results. Deep learning strategies are recently 
being utilized in message characterization and sentiment 

analysis with maximum exactness [110]. Authors [78] used 
deep learning and transfer-based models (DNN, DNN with 
Embedding, CNN, LSTM, Bi-LSTM, m-BERT, distil-
BERT, XML-RoBERTa, MuRIL) to reduce misclassifica-
tion rate and to improve prediction rate for understanding 
code-mixed Dravidian languages. Table 7 shows the recent 
state-of-the-art for identifying hate speech using deep and 
hybrid learning methods while considering multiple lan-
guages like English, Italian, Arabic, Spanish, etc. As seen 
in Table 7, deep and hybrid learning models are evolv-
ing for classification tasks. Most works have been done on 
the Twitter dataset in the general English language using 
supervised approaches ([41, 105, 111–113]). Authors [114] 
show that LSTM is the most effective machine learning 
method for hate speech identification. [115] uses rule-
based clustering methods which outperform the other 
baseline and state-of-the-art methods like Naive Bayes, 
BERT, Logistic Regression, RNN, LSTM, CNN-Glove, 
GRU-3-CNN in terms of AUC, Accuracy, Precision, Recall 
and F1-Score. [54] Performs semi-supervised multi-task 
learning utilizing a fuzzy ensemble approach in which they 
generated sequential and constructive rules to be added to 
the rule set and Latent Dirichlet Allocation [55] for imple-
menting topic extraction and identifying hate speech forms 

Table 6  Generic deep learning architectures

Architectures Key features Merits Demerits

Multi- layer Perceptron (MLP) It consists of more than 2- hidden 
layers

Widely applicable for classifica-
tion and regression

High success rate The learning process is deficient

Recurrent neural networks (RNN) Useful where output depends on 
previous results

Share the same weight for each 
step

Mainly used for sequence learning 
problems

The capability of analyzing the 
data stream

Good response
Can memorize sequential events

Learning issue due to gradient 
problem

Convolution Neural Networks 
(CNN)

Highly applicable to visual data
Every hidden layer filter trans-

forms the inputs to the 3D output 
volume

Few neuron connections required Requires large labeled datasets

Auto-encoder The exact number of Input/output 
nodes

Mainly used for feature extrac-
tion and space dimensionality 
reduction

No need for labeled data Error-prone training

Deep belief network (DBN) The hidden layer of each network 
is visible to the next layer

Allows supervised and unsuper-
vised learning

Use a greedy learning approach to 
initialize the stack

Maximizing the likelihood infer-
ences directly

Expensive training due to the 
sampling process

Deep boltzmann machine (DBM) Uses Stochastic MAX likelihood 
method to maximize the lower 
bound of likelihood

Robust interface for indefinite 
output

Interfacing demands high-time 
complexity

Parameter optimization is tedious 
for large datasets
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for four classes from the Twitter dataset. The authors also 
proved that the fuzzy-based approach [54], metaheuristic 
approaches ([116, 117]) and Interpretable approach [118] 
had outperformed other techniques with high detection 
rate. [119] performs a supervised hybrid learning approach 
for classifying hate speech into two labels, specifically in 
the Arabic dialect. Moreover, Baysian attention networks, 
which follow the architecture of transformer models, are 
implemented for multilingual (English, Croatian and Slo-
vene) contexts [120].

3.3  Merits and demerits of various models

Hate speech identification is a very much prevalent 
research field now a day. Researchers worldwide are 
experimenting with various models for specific field 
detection with numerous advantages and disadvantages. 
[121] implemented CNN and BERT models and proved 
efficient accuracy with intra-domain and cross-domain 
datasets. ([122, 123]) used FCM, SCM, and TKM for 
concatenating/combining features extracted from CNN 
and R-CNN, respectively, on textual and visual Twitter 
data, giving an advantage resulting in good accuracy com-
pared to other baseline models. [124] used ELMO, BERT, 
and CNN to improve classification results but with higher 

time complexity. [125] also have a limitation of higher 
computational complexity, yet they created their detec-
tion system and implemented a deep belief network on 
labeled and unlabeled data. [116] presents two metaheuris-
tic optimization algorithms (Ant Lion Optimization and 
Moth Flame Optimization) for the first time to solve Hate 
Speech Detection Problem with an efficient accuracy of 
above 90%. [117] implemented enhanced seagull optimi-
zation algorithm on CrowdFlower and StormFront datasets 
claiming the outperforming scores of above 98%. The pros 
and cons of the latest state-of-the-art works on hate speech 
detection are shown in Table 8.

4  Hate speech datasets

Social media platforms are prevalent nowadays, and users 
are increasing tremendously. Due to this, hate speech con-
tents in various forms are at its peak. The presence of a 
massive amount of data on the web and collecting a good 
and relevant amount of data is challenging for researchers. 
Social media stages provide simple and easy approaches to 
gathering data using their APIs [21]. However, data assort-
ment is not confined to APIs only. Figure 9 shows various 
ways of accessing data from social media.

Table 7  Recent state-of-the-art for detecting hate speech in various languages via deep and hybrid learning models

Deep and Hybrid Learning

Methods Ref Models/Algorithms Classification Dataset

Supervised methods General (English)
[111]  CNN (Hate, Non-Hate, Racism, Sexism) Twitter
[41]  LSTM (Sexism, Racism, None) Twitter

 GBDT
[105]  LSTM (Sexism, Racism, None) Twitter

 RNN
[113]  CNN + GRU (Sexism, Racism, Both, Non-Hate, and Hate) Twitter
Religious (Arabic)
[119]  GRU based RNN (Hate and Non-Hate) Twitter
Roman Urdu
[73]  Naive Bayes (Neutral-Hostile, Simple-Complex, Offensive- Hate Speech) Twitter

 Logistic regression
Random forest
 SVM
 CNN

Semi-Supervised Methods [54]  Fuzzy ensemble approach (Religious, Race, Disability, Sexual Orientation) Twitter
 CNN
 LSTM
 GBT
 SVM

Naive Bayes
Decision Tree
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4.1  Dataset description

Hate speech identification has become a crucial task in many 
languages and fields. Recordings play a fundamental role 
in disseminating content as they can contact a vast crowd, 
including little youngsters. Appraisals say that 1 billion 
hours of videos are observed every day on YouTube alone. 
Detecting hate speech is important to give youngsters a pro-
tected climate and a healthy environment for clients in gen-
eral. Until now, the text has been the most famous configu-
ration utilized by researchers working on it. Subsequently, 
most current works summarize recognizing hate speech in 
the text (social platform posts, news remarks, tweets, and 
so on). While hate speech detection methods primarily use 
textual inputs, few research contributions exist toward multi-
modal hate speech detection. Several authors have generated 
multi-class/ multi-label datasets in various languages for 
curbing hate content on social media. Hate speech detection 
(HaSpeeDe) is the prevalent shared task organized within 
Evalita 2018 [80] and consists of manually annotating Italian 
messages taken from Twitter and Facebook. This shared task 
was further categorized into three sub-tasks: HaSpeeDe-FB, 
HaSpeeDe-TW, and Cross-HaSpeeDe.

4.2  Datasets challenges

• The available and widely used datasets ([38, 140]) have 
issues in their subjectiveness which introduces bias in the 
performances. Hate Speech datasets are affected mainly 
by social, behavioral, racial, temporal, and content pro-
duction biases [141]. Data imbalance due to bias may 
lead to misclassification [142].

• One of the significant issues is the unlabeled non-English 
datasets. Few manually annotated labeled datasets were 
released for detecting offensive language and hate speech 
[78]. Moreover, Multilingual hate speech datasets can 
also share the writing of other languages. For example, a 
dataset can contain Farsi and Arabic tweets while creat-
ing an Urdu hate speech and offensive language dataset 
[75]

• The problem also arises when the web address of datasets 
changes [143]. Authors who create a new dataset do not 
publish those [73].
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• Twitter (Lenient data usage policies) is the most preva-
lent platform. However, the Twitter resources are sig-
nificant because of the exceptional classification of the 
Twitter posts, which is limited to short text. Henceforth, 
contents from other media stages are longer and can be a 
piece of more extensive conversation in hate speech.

• Datasets differ in their size, degree, and features of the 
data annotated, which prompts the issue of irregularity 
in the quantity of hate and non-hate texts within data-
sets. For example, on a social stage like Twitter, hate 
speech occurs at a shallow rate contrasted to non-hate. 
Therefore, researchers can gather data from social media 
platforms with no character length limit.

Given the above challenges, making data available in 
a superior arrangement for demand research is essential. 
Table 9 represents various benchmark models on multiple 
datasets. Commonly used datasets ([12, 38], Gomez et al., 
2020)) benchmarks are also shown in the table.

The overall description of datasets regarding modalities 
(T-Text, I-Images, V-Videos), classes/ labels, languages, etc., 
are tabulated in Table 10.

5  Evaluation and performance measures

As datasets play a significant role in testing the performance 
of hate speech detection. The better-normalized dataset is 
the best performance an algorithm will give. In this sec-
tion, metrics for evaluation of machine and deep learning 
techniques used are  F1-Score, Recall, and Precision, and 
performance measurement metrics are accuracy and AUC 
(Area under Curve).

5.1  Evaluation metrics

Most state-of-the-art have utilized accuracy,  F1-Score, Pre-
cision, Recall Metrics, and ROC to assess performance 

metrics. [132] represents several loss functions like mean 
MSE, cross-entropy, and likelihood loss to anticipate hate 
speech in the most used dataset, such as Twitter. The loss 
function is the difference between the predicted value 
denoted by y ̂ and labeled value denoted by y. [143] use four 
different strong performances indicators (KPIs), which are 
the percentage of True Positive, the precision, the recall, & 
 F1- Score defined using Eq. 1: 

[132] uses several loss functions such as Mean Square 
Error Rate (MSE) [163], given in Eq. 2, Cross-Entropy 
Loss (CEL) [164] as in Eq. 3, and Likelihood Loss (L) 
[165] in Eq. 4 to approximate the accuracy of the proposed 
model in identifying hate speech on the Twitter dataset.

Where,
N denoted the quantity of information relative to the 

predicted value y ̂ and labeled y.

where,
M represents classes and related features,
O denotes the observed value of the particular class-

related feature,
P represents the prediction probability value relevant 

to O,
Log is the logarithmic function, and.
Y gives the output value as binary values of a specific 

class.

(1)F1 − Score = 2 ×
P − R

P + R

(2)MSE =
1

N

N
∑

i=1

(

yi − ŷi
)

2

(3)CEL =

M
∑

c=1

yo,cLog
(

Po,c

)

Table 9  Benchmark models on datasets

Dataset Refs Benchmark models F1-score Accuracy Precision AUC- ROC

Ethos_binary [144] Bi-LSTM + Static BE 0.7971 0.8015 0.8037 _
Maha-Hate [145] BERT _ 0.909 _ _
HateXplain [146] BERT + HateXplain [Attn] 0.687 0.698 _ 0.851
APEACH [147] BERT 0.8424 _ _ _
Told-Br [148] Multilingual BERT 0.75 _ _ _
Hateful memes [109] Vilio _ _ _ 0.825
OffVidPT-2/ OffVidPT-3 [149] M-CNN 0.74 _ _ 0.78
MMHS150K [122] TKM 0.70 68.2 _ 0.731
t-Davidson [12] BERTbase + CNN 0.92 _ 0.92 _
WaseemHavoy [38] BERTbase + CNN 0.88 _ 0.89 _
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Table 10  Dataset description in terms of size, labels, languages, and modalities

Source Name of the dataset Refs Size Classes/ labels Language Modality

Youtube and Reddit 
comments

Multi-labEl haTe 
speecH detectiOn 
dataSet (ETHOS)

[144] 998 Ethos_Binary
● Hate
● Non-Hate
Ethos_Multi-Label
● Violence
● Non-Violence
● Gender
● Race
● National origin
● Disability
● Religion
● Sexual Orientation

English T

Line today Hate speech [46]  ~ 12 K and ~ 1 M ● Hate
● Offensive
● Normal

Taiwan T

Twitter ToxiGen [150]  ~ 2 M ● Toxic
● Benign

English T

Twitter Slovenian twitter Data-
set 2018–2020 1.0

[151]  ~ 12 M ● Acceptable
● Inappropriate
● Offensive
● Violent

Slovenian T

Crowd sourcing plat-
forms

APEACH [147]  ~ 11 K ● Hate
● Non-Hate

Korean T

Twitter Maha-Hate [145] 25 K ● Hate
● Offensive
● Profane
● Not

Marathi T

Twitter Urdu hate speech and 
offensive language

[75]  ~ 11 K ● Hate
● Offensive
● Neutral

Roman-Urdu T

Twitter and GAB HateXplain [146] 9055 twitter posts, 
11,093 GAB posts

● Hate
● Offensive
● Normal

English T

Handcrafted HatemojiCheck [152]  ~ 4 K Test cases ● Hateful
● Not Hateful

English I

Youtube and Facebook HS-BAN [153] 50 K ● Hate
● Non-Hate

Bangla T

Twitter ToLD-Br [148] 21 K ● Toxic
● Non- Toxic

Portuguese T

Facebook Hateful Memes [108] 10 K ● Hateful
● Not Hateful

English I + T

Youtube OffVidPT-2/ 
OffVidPT-3

[149] 400 ● Offensive
● Non- offensive

Portuguese V

Twitter MMHS150K [122] 150 K ● No attack
● Racism
● Sexism
● Homophobic
● Religion-based 

attacks
● Any community 

attacks to other 
attacks

English I + T

Bengali wikipedia 
dump and Bengali 
news articles

Bengali_hate_speech 
v1.0

[154] 3418 Samples ● Personal hate
● Political hate
● Religious hate
● Geopolitical hate
● Gender Abusive 

hate

Bengali T
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where,
n gives the number of classes.
y denotes the output.

5.2  Performance of popular hate speech detection 
methods

Most state-of-the-art on hate speech detection used pre-
cision, recall, and  F1-score for evaluation; others used 

(4)L = −
1

n
Σn
i=1

log (Ŷ(i))
AUC and accuracy for performance measures due to some 
imbalanced datasets. Table 11 gives evaluation and perfor-
mance measures from some state-of-the-art works based 
on accuracy, precision, recall,  F1 score, and AUC. As seen 
in Table 11, Precision, Recall, and  F1-score are the met-
rics used by most authors as they provide better insights 
into the prediction than accuracy and AUC. Deep-learning 
models have outperformed machine-learning models with 
high-performance metrics, as presented in Table 11.

Table 10  (continued)

Source Name of the dataset Refs Size Classes/ labels Language Modality

Youtube Hate_speech_data-
set_videos

[155] 300 ● Normal
● Hateful (Racist, 

Sexist)

English V

Wikipedia com-
ments + Civil com-
ments

Detoxify _  ~ 55 K ● Very toxic
● Toxic
● Hard to say
● Non- toxic

English, French, 
Spanish, Italian, 
Portuguese, Turkish, 
Russian

T

Twitter OffensEval2020 [156]  ~ 9 M ● Offensive
● Non-Offensive

Arabic, Danish, 
English, Greek, and 
Turkish

T

Twitter OffensEval2019 [157]  ~ 14 K ● Offensive
● Non-Offensive

English T

Facebook and YouTube T-HSAB [158]  ~ 6 K ● Normal
● Abusive
● Hate

Tunisian Arabic T

Twitter L-HSAB [159]  ~ 6 K ● Normal
● Abusive
● Hate

Levantine Arabic T

Twitter HatEval19 [140] 19 K ● Hate
● Non-Hate

Spanish, English T

Twitter Peer-to-Peer Hate [160] 28 K ● Hate
● Non-Hate

English T

Twitter and Facebook Evalita2018 [80] 4 K posts ● No-Hate
● Weak- Hate
● Strong- Hate

Italian T

Twitter Twitter Abusive Behav-
iour

[161] 80 K ● Normal
● Spam

English T

Twitter t-Davidson [12] 25 K ● Hate
● Offensive
● Neither

English T

News articles BEEP [161] 9381 Human Labeled 
comments & 
2,033,893 Unlabeled 
comments

● Hate
● Offensive but not 

hate
● None

Korean T

Twitter Arabic offensive [162] 1.1 K and 32 K ● Obscene
● Offensive
● Clean

Modern Standard 
Arabic

T

Twitter WaseemHavoy [38]  ~ 17 K ● Racist
● Sexist
● Neither

English T
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6  Discussion

Hate speech is an emerging issue in social media sites now 
days. The identification of hate content is one of the major 
concern and challenge for the researchers. The proposed arti-
cle shows a systematic order of state-of-the-art works done 
so far. Feature extraction methods such as distance metric 
and multimodal information, especially related to hate con-
tent detection, are not used to the best of my knowledge. 
Both directional models such as RNN and LSTM, and non- 
directional models such as Transformers ad BERT are uti-
lized in identifying hate content. Although machine learning 
has shown its growth in the last decade, but NLP has also 
shown the steepest growth by including the evolutionary 
models such as BERT and Transformers. The variants of 
BERT like ALBERT, RoBERTa, DistilBERT etc. are used 
increasingly in solving real life problems because of their 
self-attention mechanism. The researchers also use LSTM 
model as it yields subsequently higher results than BERT 
on small datasets does. The pros and cons of various models 
are described in detail in the Sect. 3.3. From the last two 
years, the metaheuristic optimization algorithms such as Ant 
Lion optimization, Flame Moth optimization, Seagull opti-
mization are also considered in this area with the promising 
results.

7  Findings and conclusion

Hate speech attempts to marginalize different classes and 
groups of persons already in the minority due to their race, 
language and religion. This article reviewed the most out-
standing work on automatic hate speech identification. 
Firstly, we introduced some state-of-the-art hate speech 
definitions and analysis on the basis of some specific dimen-
sions. This survey also highlights some of the NLP aspects 
in this area. There is also a good comparison between hate 
speech definition and definitions of various hate forms. 
Then, we presented a taxonomy of automatic hate speech 
detection, including sub-domains of AI approaches. 
Metaheuristic algorithms which are very new with context 
of hate speech detection are also mentioned in this manu-
script. Paper also covers various works done in multilingual 
and multimodal hate speech detection along with various 
datasets description.

8  Future trends

Our studies recommend some future trends from the fol-
lowing angles:

Table 11  Performance comparison

Ref Algorithms Accuracy Precision Recall F1-Score AUC 

[115] Rule-based clustering 0.94 0.92 0.91 0.92 0.96
[64] BERT, XLM, BETO – – – 0.772 –
[149] BERT, CNN, Random forest, Naive bayes – – – 0.74 0.78
[132] Deep learning 0.9873 – – – –
[166] Linear SVM classifier 0.90 0.88 1.0 0.90 –

Naive bayes classifier 0.92 0.899 0.964 0.924 –
[167] BERT – 0.86 0.94 0.77 –
[143] Random forest, SVM, and J48graft [168] – 0.88 0.87 0.87 –
[41] Logistic regression, SVM, DNN, CNN, Random forest, GBDT – 0.93 0.93 0.93 –
[12] Logistic regression, SVM – 0.91 0.90 0.90 –
[50] SVM, LSTM - 0.83 0.87 0.85 –
[49] One-class classifiers, Decision tree, Naïve bayes, Random forest – 0.73 0.86 – –
[18] Skip bigram model – 0.83 0.83 0.83 –
[110] Deep learning 0.91 – – – –
[38] Logistic regression – 0.72 0.77 0.73 –
[33] SVM, Random forest, Decision tree – 0.79 0.59 0.68 –
[169] SVM – 0.49 0.43 0.46 –
[170] Random forest, Decision tree, SVM, Bayesian LR – 0.89 0.69 0.77 –
[85] Logistic regression – – – – 0.80
[39] Naïve Bayes – 0.97 0.82 – –
[72] Decision tree, Random Forest, SVM – 0.89 0.69 0.77 –
[34] Naïve bayes 0.73 – – – –
[65] SVM 0.94 0.68 0.60 0.63 –
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• We have explored some standard hate speech datasets 
along with their key features, classifications, objec-
tives, and types of data format available. Most datasets 
are available in textual form. Very few datasets like 
(MultiOFF, MMHS150K) are found on hateful memes. 
No video dataset is found publicly as per the best of my 
knowledge. So, creating a new dataset of images and 
videos can be further seen as a future task. Moreover, 
numerous analysts look at the significant challenge of 
the datasets availability as few publicly available data-
sets exist. Authors do not use them, and if they create 
a new dataset, they do not publish them, making it too 
difficult to compare results and conclusions.

• Choosing informative, independent, and discriminat-
ing features are crucial in classification problems. This 
paper covers commonly used text analysis features for 
hate classification tasks. Hence, automatic feature engi-
neering for generating specific hate features can be a 
future aspect.

• For the last few years, authors have been focusing on 
multilingual hate speech identification by creating their 
datasets. But very few labeled datasets are found in 
non-English languages. Various benchmark models can 
be applied to non-English labeled datasets also.

• We have also covered important work for hate speech 
identification in various languages. Hence, the mod-
els that understood only the English language are not 
efficient in processing the input from different Indian 
languages [78]. So, building a system for code-mixed 
languages can be considered a future aspect.

• Nowadays, emojis are also used to show feelings and 
attitudes in users minds [36], and they are vital ele-
ments in delivering hate or offensive content over 
social media. Hence, pre-processing emojis text can be 
seen as a different area so that there can be an improve-
ment in aggression detection.

• There are significantly fewer works on neutral tagged 
content [75]. So, devising a new method for handling 
neutral tagged contents in multi-label datasets in a bet-
ter way can be considered a future job.

• In our systematic survey, we tracked that most work 
portrays techniques, separated features, and models 
utilized. In any case, it is uncommon to discover jobs 
with available public repositories. More sharing of 
code, calculations, measures for feature extraction, and 
stages can assist the area with advancing rapidly.

• In this article, some of the metaheuristic optimiza-
tion approaches are also coined to solve hate speech 
detection. Apart from the mentioned metaheuristic 
approaches such as ALO and FMO, Parameter Opti-
mization approach can also be implemented in future 
for solving the hate content detection.
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