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Abstract

Social media is a more common and powerful platform for communication to share views about any topic or article, which
consequently leads to unstructured toxic, and hateful conversations. Curbing hate speeches has emerged as a critical chal-
lenge globally. In this regard, Social media platforms are using modern statistical tools of Al technologies to process and
eliminate toxic data to minimize hate crimes globally. Demanding the dire need, machine and deep learning-based techniques
are getting more attention in analyzing these kinds of data. This survey presents a comprehensive analysis of hate speech
definitions along with the motivation for detection and standard textual analysis methods that play a crucial role in identifying
hate speech. State-of-the-art hate speech identification methods are also discussed, highlighting handcrafted feature-based
and deep learning-based algorithms by considering multimodal and multilingual inputs and stating the pros and cons of each.
Survey also presents popular benchmark datasets of hate speech/offensive language detection specifying their challenges,
the methods for achieving top classification scores, and dataset characteristics such as the number of samples, modalities,
language(s), number of classes, etc. Additionally, performance metrics are described, and classification scores of popular
hate speech methods are mentioned. The conclusion and future research directions are presented at the end of the survey.
Compared with earlier surveys, this paper gives a better presentation of multimodal and multilingual hate speech detection
through well-organized comparisons, challenges, and the latest evaluation techniques, along with their best performances.

Keywords Hate speech - Multilingual - Multimodal - Machine learning - Deep learning - Online social media

1 Introduction

With the growing internet and technology, a large amount
of information content is present on online community net-
works as multimodal data (Text, Pictures, and videos). If we
look at the statistics, we can visualize that a large number of
people using social media is escalating at a very great speed,
and people can easily present their views to each other via
various social media platforms. The type of content on the
online social media stages contributes to the propagation of
hate speech and misleading people. Right now, controlling
this kind of media information is very important. Therefore,
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hate speeches harm individuals and impact society by raising
hostility, terrorist attacks, child pornography, etc. Figure 1
shows a portion of hate speech and offensive expressions
posted on social media or the web. Figure 1(a) shows a
clear example of encouraging violence during huge fights
against CAA, NRC, and NPR across India in Jan 2020 [1].
Figure 1(b) shows the tweet released under #putsouthafri-
cansfirst, a person openly tweeting to attack the foreigners
working in South Africa. Figure 1(c) shows a tweet posted
in 2014 advocating killing Jewish people for fun after the
synagogue shooting in Pittsburg [2]. Figure 1(d) shows a
post posted in Jan 2018 that a supreme leader is giving a
genuine threat statement to the US for war [3].

The recent instances of high-profile politicians making
speeches were an apparent attempt at inciting violence,
which led to large-scale violence. These instances are yet to
be dealt with by law enforcement agencies. Hence, the integ-
rity of identifying hate instances is one of the most signifi-
cant challenges in social media stages, and research-based
analysis of this type of content is necessary. The following
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LEST YOU FORGET, HERE'S WHAT THEY SAID

“If you don't mend your ways, tumhe
thok denge. At a time when we want.”

- Amitabh Sinha, BJP spokesperson
to Kanhaiya Kumar on a TV debate

Later tried to justify the comment by saying, "Thok dene
ka matlab hai nyayik prakriya mein usko dandit karna
(to punish someone using legal means).”

HAMAS PALESTINE
f ] @bang_yus

Letskill jews and kill them for fun
#killlews

/14 806 AM

©
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4 @SANEEDSAWALL

Replying to @Julius_S_Malema and @CyrilRamaphosa

We will do the same when foreigners work in jobs South
Africans can do. We will attack those foreigners and the
companies employing them.

We will defend the poor and our country from being colonized
by foreigners, especially African foreigners.

Atrack South Africans, attack.

8:34 AM - Oct 7, 2020 - Twitter Web App

4 Retweets 1 Quote Tweet 27 Likes

QO 2 m s QO 27 i

% Tweet your reply

(b)

The United States
must choose! It's
up to you whether

the nation called
the United States
exists on this
planet or not.”

(d

Fig. 1 Examples of hate speech and offensive expressions present over social media

section describes the definition analysis of hate speech from
various sources.

1.1 Hate speech: definition perspective
and analysis

There is a general agreement among researchers to define
hate speech, and researchers have described it as a language
that attacks an individual or a society dependent on charac-
teristics like race, shading, nationality, sex, or religion [4].
This section provides some state-of-the-art definitions of
hate speech (Table 1). Although many authors and social
media platforms have given their purposes for hate speech,
researchers are following them to understand the forms and
classifications of hate speech. The definitions from the vari-
ous sources are as follows:

e Some of the scientific definitions include the commu-
nity's perspective.

e Major social networking sites like Facebook, YouTube,
and Twitter are the most used platforms where hate
speech occurs regularly.
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The definition analysis (Table 2) mainly relies on vari-
ous sources like multiple definitions from scientific papers
and powerful social media platforms. The dimensions used
for analysis are “violence,” “attack,” “specific targets,” and
“status.”

After a thorough definition analysis, we have also por-
trayed the definition of Hate Speech as follows:

“Hate Speech is a toxic speech attack on a person’s
individuality and likely to result in violence when tar-
geted against groups based on specific grounds like
religion, race, place of birth, language, residence,
caste, community, etc.”

1.2 Hate speech: forms and related words

Figure 2 shows significant hate forms of speech like Cyber-
bullying, Toxicity, Flaming, Abusive Language, Profanity,
Discrimination, etc., and Table 3 presents the definitions of
the above forms of hate speech found in the literature with
their distinction from hate speech.
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Tab

le1 Some of the prominent definitions by some state-of-the-art

References  Hate speech definitions

(]

(6]

(7]

(8]

[9]

[10]

(11]

[12]
[13]
[14]

An antagonistic, malevolent speech focused on an individual or a social event of people taking into account a part of their genuine
or intrinsic qualities. It communicates unfair, scary, objecting, hostile, or potentially biased perspectives toward those attributes,
including sex, race, religion, identity, shading, public beginning, incapacity, or sexual direction

Hate speech is a conscious and hardheaded public assertion expected to slander a gathering of individuals

Hate speech is a quick attack on individuals subject to race, identity, sex, character, and veritable sickness or impediment. We
portray assail as horrible or dehumanizing talk, clarifications of deficiency, or calls for dismissal or seclusion

Hate speech alludes to content that advances viciousness or scorn against the public dependent on specific ascribes, like ethnic or
race beginning, religion, inability, sex, age, veteran reputation, and sexual direction/sex personality

Content that attacks people based on actual or perceptual race, ethnicity, country of origin, religion, gender, sexual orientation,
disability, or illness is not permitted. It is considered a potential threat or attack for the content that many people find offensive

(jokes, Stand-up comedy, lyrics of popular songs, etc
heading, or sex character

illness

Hate speech attacks an individual or get-together depending on characteristics like religion, race, ethnicity, insufficiency, sexual
Hate speech attack others dependent on racism, ethnicity, public start, sexual bearing, sex, character, age, handicap, or genuine

The language used to convey hate speech towards a selected bunch
Hate Speech is a purposeful attack on a specific social occasion of people motivated by the pieces of the group's character
Hate Speech assails or prompts malignance against gatherings in light of explicit qualities like actual looks, religion, ethnicity,

sexism, and many more. Moreover, individuals with diverse phonetic styles in unobtrusive construction can happen

Table 2 Definition Analysis
Ref Dimensions

Specific targets Status Violence Attack
[5] Yes No Yes No
[6] Yes No Yes No
[7] Yes Yes No Yes
[8] Yes No Yes No
[9] Yes Yes Yes No
[10] Yes No No Yes
[11] Yes No No Yes
[12] Yes No Yes No
[13] Yes Yes Yes Yes
[14] Yes Yes Yes No

Hence, analyzing hate speech on the web is one of the
critical areas to study due to the following reasons:

Reduce conflicts and disputes created among human
beings due to toxic language and offensive expressions.
The broad availability and notoriety of online web-based
media, like Facebook, Twitter, Instagram, web journals,
microblogs, assessment sharing sites, and YouTube,
boost communication and allow people to freely share
information in the form of their thoughts, emotions, and
feelings among strangers.

Moreover, click baiting takes massive attention and
encourages visitors to click on the link, harming readers'
emotions.

Cyberbullying

Toxic
comments

Hate Speech on Social

Media Networks

Abusive
Language

Fig.2 Forms of Hate speech

¢ Hate speeches can incite violence and cause irreparable
loss of life and money.

e The latest incident was triggered by online hate speech
in the Philippines, citing the example of the Christchurch
mosque shooting in 2019 [20].

e To forestall bigot and xenophobic viciousness and sepa-
ration spread among Asians and individuals of Asian
drop uniquely in this pandemic. As per the report dis-
tributed by US Today in May 2021, more than 6600 hate
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Table 3 Comparison between Hate speech and its various forms

Forms Definitions of forms

Distinction from hate speech

Cyberbullying

Discrimination
of unreasonable treatment [16]

Flaming

Interaction via a distinction and afterward utilized as the premise

Flaming describes antagonistic, profane, and threatening remarks

Characterized as a deliberate demonstration completed by a social Hate speech is abusive speech explicitly directed toward
occasion or individual using electronic stages [15]

a unique, non-controllable attribute of a group of
people
Hate speech is a virulent form of discrimination

Unlike flaming, hate speech can occur in any context

that can upset and offend other members of the forums, gener-

ally called trolls [17]

Abusive Language The term abusive language seeks to diminish or humiliate some

person or group [18]
Profanity Hostile or indecent words or expressions

Toxic language
harmful [19]

Conveying content that is disrespectful, abusive, unpleasant, and

Hate Speech is a type of abusive language

Hate speech can use profane words but not always

Not all toxic comments contain hate speech

and offensive incidences against Asian- Americans and
Asians have been accounted for [6].
e To save our society from being gravely damaged.

From the points mentioned above, it has been observed
that detecting and restraining hate speech at an initial stage
is very crucial and, indeed, a challenging task. Major online
media stages like Facebook, Twitter, and YouTube are trying
to eliminate hate speeches and other harmful content at an
initial step as part of their ongoing projects, using advanced
Al techniques. However, keeping an eye on an individual is
vital to have hate off platforms. Social media platforms and
an individual can adopt the following suggestions:

e The most significant source of hate speech on the internet
is trolls. A person should block, mute, or report these
trolls instead of giving recognition.

e A person should do a proper data analysis and facts
before forwarding the posts.

e Social media firms should follow strong policy rules
against abusive behavior.

The following section describes the general framework of
hate speech detection adopted by several researchers.

1.3 Motivation

Recently, it has been observed that the number of users are
actively involving on social media in the forms of What-
sApp post, Facebook posts, YouTube shorts, reviews, com-
ments etc. on various topics. People are sharing their views
resulting in tremendous amount of data on the web. The data
should be analyzed for further research. Giving the vari-
ous hate form definitions, their analysis and to highlight the
motivation behind the hate content detection in every aspect,
we briefly discuss the recent works in this area in terms of
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various methodologies, modalities, performances, bench-
marks etc. The further future trends are also highlighted giv-
ing the motivation to researchers for detecting hate content.

1.4 General framework of hate speech detection

Figure 3 provides a framework for the process of hate speech
identification. The foremost step is to search the powerful
source platform where most hate speech/ offensive languages
occur. Most state-of-the-art adopted significant social media
firms like Facebook and Twitter. The second step is to col-
lect data either in the form of posts or tweets. Gathering a
great measure of information from web-based media stages
nowadays is one of the significant research challenges for
researchers and academia. The platforms provide a simple
and quick approach to gathering and storing information
through inbuilt APIs [21]. Figure 4 shows the types of data
accessible and non-accessible via social media, respectively.

A large amount of hate speech data collection is from
two powerful social media platforms: Twitter, Instagram,
Facebook, and these two platforms are actively working on
combating hate speeches. The next phase includes data nor-
malization and feature extraction for training a model, and
the last step performs classification to classify the problem.

Most literature surveys ([14, 25-27, 4, 28-31]) have been
published till now. Table 4 compares our survey with related
surveys in various aspects like definition analysis, compari-
son with other hate forms, NLP aspect in terms of modali-
ties, and explanation of models and datasets. This paper also
gives an itemized portrayal of hate speech identification in
multimodal information by considering major phases like
data collection, text mining approaches in automatic hate
speech detection, and different machine and deep learning
approaches. This paper is a more detailed and systematic
survey considering various parameters in terms of datasets,
methods, etc. as follows:
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Fig.3 General framework of hate speech detection

Fig.4 a Type of data accessible
via some social media networks
and b Type of data not acces-
sible via some social media
networks [22-24]
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Table 4 Comparison table of related surveys
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(@} Private Messages
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Ref Definition ~ Comparison with  Feature Extraction Modality (text-T, Linguistic aspect ~ Models aspect ~ Datasets
analysis other hate forms (NLP Aspect) images- I, videos — V)
[4] T Monolingual
[14] T Monolingual
[25] T Multilingual
[26] T Multilingual
[27] T Multilingual
[28] T Monolingual
[29] T Multilingual
[30] T Multilingual
[31] T Monolingual
Our survey T+I+V Multilingual

e The study of detecting online hate content has been grow-
ing only in the last few years, and machine learning is

more prominent. This survey covers the job done in deep
and hybrid architectures to determine the issue of recog-
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nizing hate speech. This survey also covers the feature
extraction methods used in automatic hate speech detec-
tion.

e The beauty of this literature covers possible identified
merits and demerits of the recent state-of-the-art works,
their fundamental aspects, and techniques used in tabular
form.

e Another beauty of this survey is that it covers publicly
available datasets, dataset challenges, and benchmark
models.

e Most previous surveys are on textual data, and limited
literature is particularly for detecting hate speech in mul-
timodal information. Therefore, this review paper also
considers multimedia data (such as text, images, and vid-
eos) to highlight the detection process and the previous
works on multilingual hate speech detection. However,
this survey incorporates some famous works done for
multilingual and multimodal data in this field.

e The survey also considers the current challenges and pos-
sible future directions; which researchers can view as
further work in this area.

1.5 Review technique

However, various investigations have been distributed in
earlier years identifying hate speech, yet this survey con-
tains some noticeable works in this field. We considered
influential journals, conferences, and workshops from vari-
ous online databases such as IEEE Xplore, Science Direct,
Springer, ACM Digital Library, MDPI, CEUR Proceed-
ings, etc. The comprehensive survey contains a review of
more than 120 articles based on keywords like “hate speech
detection,” “offensive language detection,” “multilingual,”
“images,” “videos,” etc. It has been observed from Fig. 5
that the number of articles published on hate speech detec-
tion seemed to increase yearly in the last five years.
20

28
26
22
18
16 w7 16

15
10

5
Till 2016 2017 2018 2019 2020 2021 2022

Years

EEINT3

30

25

No. of Papers

Fig.5 Year-wise contribution of a research article on Hate Speech
Detection over the last five years
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This survey presents a comprehensive analysis of hate
speech detection research arena as shown in Fig. 6. It breaks
down the hate speech detection into several meaningful cate-
gorizations such as types of hate speeches, approaches, data-
sets, feature extraction methodologies etc. Special attention
has been paid in the exploration of multimodal and multi-
lingual approaches of better classification capabilities. Spe-
cifically, feature extraction methods such as Bag-of-Words,
N-grams, Lexicon & Sentiment based features, TF-IDF, part
of speech, word references and rule based are analyzed and
also presented visually in Fig. 7. Next, hate speech detec-
tion methods are discussed in great detail categorizing them
into traditional machine learning based and deep learning
based approaches. A separate section elaborates the merits
and demerits of the same. Special analysis of publicly avail-
able multimodal hate speech datasets is also presented that
dives into the challenges posed by each of the multimodal
hate speech datasets. Evaluation metrics and performance
benchmarks are presented to highlight the effectiveness of
current state-of-the-art approaches for hate speech detection.

This survey is organized as follows. The introduction is
discussed in Sect. 1, whereas Sect. 2 describes possible fea-
ture extraction techniques in context with NLP Aspect for
automatic hate speech detection. Section 3 covers the most
vital work using different methodologies like machine and
deep learning and the conversation on multilingual work.
Section 4 highlights the challenges related to hate speech
datasets and their benchmark models. In contrast, Sect. 5
depicts the various evaluation metrics and performance
measures. Finally, Sects. 6 and 7 portrays the conclusion
and further future directions respectively.

2 Feature extraction techniques
in automatic hate speech detection

A feature is the closed characteristics of an entity or a phe-
nomenon. [32] Focus on natural language processing (NLP)
to explore the automation of understanding human emotions
from texts. This section provides various text features used
to extract hate content (Fig. 7). Word references and lexi-
cons are the most straightforward and basic approaches for
feature extraction in text analysis. Identifying the appropri-
ate features for classification is more tedious when using
machine learning. The fundamental step in traditional and
deep learning models is tokenization, in which the primary
and straightforward approach is dictionaries/ lexicons.
Dictionary is a method that generates a set of words to be
looked at and included in the text. Frequencies of terms are
used directly as features. Features play an essential role in
machine learning models. Machine learning approaches
cannot work on raw data, so feature extraction techniques
are needed to convert text into vectors of features. Many
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A Literature Review on Multimodal and Multilingual Automatic Hate Speech Detection
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2.1.8 Rule Based
Fig.6 Organization of the survey
basic features like BOW, Term Frequency- inverted Term 2.2 N-grams

Frequency, Word references, etc., are used.
2.1 Bag-of-words (BOW)

BOW is an approach like word references extensively used
for document classification ([ 14, 33-35]). The frequency of
each word is used as a characteristic for training a classifier
after gathering all the words. The burden of this technique
is that the sequencing of words is disregarded, whether it is
syntactic or semantic information. Both pieces of informa-
tion are crucial in detecting hate content. [36] Used BOW to
represent Arabic hate features as text pre-processing before
applying various machine learning classifiers. [37] Derived a
method for detecting Arabic religious hate speech using dif-
ferent features with the machine and deep learning models.
Consequently, it can prompt misclassification of whether
the terms are utilized in multiple contexts. N-grams were
executed to overcome the issue.

The N-grams approach is the most utilized procedure in
identifying hate speech and offensive language ([12, 18, 33,
38-41]). The most widely recognized N-grams approach
combines the words in sequence into size N records. The
objective is to enumerate all size N expressions and check
their events. It further increases the performance of all clas-
sifiers since it incorporates each word context [42]. Rather
than utilizing words, it is additionally conceivable to use
the N-grams approach along with characters. [43] Proved
character N-gram features are more predictive in detecting
hate speech than token N-gram features, whereas it is not
valid in the case of identifying offensive language. Although
N-grams also have limitations, like all the related words have
maximum distance in a sentence [33], an answer for this
issue lies in incrementing the N value. However, it lowers
the processing speed [15]. [39] Proved that greater N values
perform better than lower N-values (unigrams and trigrams).
The authors [4, 38] observed that character N-gram features
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Feature Extraction Techniques

Fig.7 Common feature extraction techniques

perform better when combined with extra-linguistic features.
The authors generated one hot N-gram and N-gram embed-
ding feature to train the model and analyzed better perfor-
mance by N-gram embedding [44].

2.3 Lexicon-based and sentiment based

Lexical features use unigrams, and bigrams of the target
word, whereas syntactic features include POS tags and vari-
ous components from a parse tree. The parser used in NLP,
proposed by the Stanford NLP Group [45], was used to catch
the linguistic conditions inside a sentence [15]. Lexicon-
based methods are crucial in identifying the sentiments of
speech. For example, nigga is an offensive word and must
be prohibited in ordinary language [46]. Hateful speech on
a social stage cannot be a positive polarity because awful
grammar provides a negative inclination by the speaker to
the listeners and readers. Authors in ([12, 39, 47-50]) [51])
consider sentiments as a characteristic for identifying hate
speech. Some authors [39] used the sentiment features in
combination with others, which proved in result enhance-
ment. [52] Presents metaheuristic approach for sentiment
analysis and proved that the optimization methods can be
alternatively used against machine leaning models with
promising results.
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2.4 Topic modeling

This method is also famous for topic classification, which
focuses on extracting topics that occur in a corpus. Topic
modeling is also used for detecting hateful comments from
central social media platforms like Youtube [53]. [54]) used
the Latent Dirichlet Allocation model ([55]) to discover
abstract topics and use them in classifying multimodal data.
[56] Derived text clusters from LDA for multilingual hate
speech detection and proved that topic modeling is not giv-
ing any major incite for classification.

2.5 TF-IDF

TF-IDF is a scoring measure broadly used in informa-
tion retrieval and is planned to reflect how important a
term is in a given record. TF-IDF is the most common
feature extraction technique used by traditional classi-
fication methods for hate speech identification ([35, 57,
58]). TF-IDF differs from a bag of words technique or
N-gram technique because the word recurrence offsets the
frequency of each term in the corpus, which clarifies that a
few words show up more often than expected (for example,
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stop words). [59] Used N-grams and TF-IDF values to
perform a comparative analysis of the machine learning
models to detect hate speech and offensive language and
claimed that the L2 normalization of TF-IDF outperforms
the baseline results.

2.6 Part-of-speech

POS tagging is a well-known task in NLP. This approach
refers to the technique of classifying words into their parts
of speech. Moreover, it improves the value of the context
and identifies the word's role in the context of a sentence
[60]. Some authors [40] used this approach to classify rac-
ist text. PoS tagging with TF-IDF gives a better result in
Indonesian Hate Speech Detection [61].

2.7 Word embedding

The most widely recognized technique in text analysis
of hate content is the utilization of word references. This
methodology comprises all words (the word reference)
that are looked at and included in the message. The fre-
quencies are utilized straightforwardly as features and
for calculating scores. In NLP, Word embedding is used
for representing of words while performing text analysis
[62]. Uses word2vec embedding for extracting hate con-
tent features for grouping the semantically related words.
[63] Applies attention based neural networks and word
embedding feature extraction methods for classification.
Hate speech detection in Spanish language [64] uses word
embedding methods like Word2Vec, Glove, FasText for
feature extraction.

Another procedure used in text analysis of hate con-
tent is the distance metric, which can be used to supple-
ment word reference-based methodologies. A few inves-
tigations have called attention when the negative words
are obscured with a purposeful incorrect spelling [65].
Instances of these terms are @ss, shlt [18], nagger, or
homophones, for example, joo [65].

2.8 Rule-based approach

Text analysis uses a rule-based feature selection technique
for finding the regularities in data, for example, IF-THEN
clauses. [66] Proves that rule-based methods do not include
learning but depends on word reference of subjectivity
pieces of information. This particular approach is used to
extract subjective sentences to generate hate content classi-
fiers for unlabeled corpus [48]. [67] works on the combina-
tion of dictionary-based classifiers along with rule-based
classifiers to generate the semantic features for hate speech
classification.

3 Automatic hate speech identification
approaches

This segment describes the research on hate speech iden-
tification using various models by establishing a thorough
subjective and quantitative examination of what specifies
multilingual hate speech. This section compares differ-
ent machine and deep learning models for detecting hate
speech in multiple languages, along with the labels/clas-
sification and datasets used. Authors also compares the
deep learning based models with shallow based [68] learn-
ing models. Figure 8 shows various traditional and deep
learning models used to identify hate speeches. It has also
been observed that in the past few years, most work has
been done on the general English language using various
machine-learning models. It has also been seen that the
results of deep learning and hybrid learning models out-
performed using precision and recall. Following two Sects.
3.1 and 3.2, describes the sub-domain Al approaches to
multilingual data.

3.1 Machine learning approaches to hate speech
detection

Several machine learning models are being created to per-
form tasks like classification, prediction, clustering, etc.
Machine learning models are also able to take advantage of
data availability. Labeled data, which is utilized for train-
ing the model to achieve reliable accuracy, comes under the
classification task. The machine learning algorithms per-
formance directly depends on how accurately the features
are identified or extracted. Classification algorithms perform
detection tasks after normalizing the text. The efficacy of a
model on a combination of several datasets is always better
than training on a specific dataset [69]. Machine-learning
algorithms are categorized as supervised, semi-supervised,
and unsupervised methods. Researchers used these methods
to detect online hate data in various languages. Out of differ-
ent machine learning models, researchers primarily use SVM
to classify social media data as hate or non-hate. Random
Forest holds the second position, and so forth [70]. From
Table 5, it has been clearly seen that most research is being
conducted on the general English language using supervised
machine learning methods. Some authors investigated the
impact of pre-processing techniques [36] to improve text
quality and mainly to retain the features without losing infor-
mation [71] for better performance. A piece of research on
multi-class classification on some datasets [18] carried out
a machine learning-based approach for classifying online
user comments into four classes (Clean, Hate, Derogatory,
and Profanity) on the Amazon dataset. As Supervised, the
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Fig. 8 Taxonomy of Hate Speech Detection considering various models

learning approach is area subordinate since it depends on
manually marking a massive volume of information.

The advantage of manual labeling is its efficiency for
domain-dependent tasks, while limitation occurs in execu-
tion time. The authors trained a supervised machine learn-
ing text classifier and used human-annotated data from the
Twitter dataset to train and test the classifiers [72]. [72] The
Bayesian logistic regression model is used to classify twitter
data into hateful and antagonistic labels. Authors [73] focus
on South Asian Languages for evaluating and comparing
the effectiveness of various supervised techniques for hate
speech detection. Semi-supervised learning algorithms are
prepared to utilize both labeled and unlabeled information.
Labeling information related to unlabeled information can
viably upgrade efficiency. [74] Analyzed that unsupervised
learning has a limited capacity to deal with limited-scale
events, whereas supervised learning can adequately catch
small-scale events; however, manually labeling the informa-
tional collection lowers the model scalability. [75] Utilized
several choices of machine learning classifiers with various
vector representations like TF-IDF, Count Vectorizer, and
Word2vec as baselines with their own created Urdu dataset.
KNN is the most widely used choice when a classification
task is considered in a supervised learning approach [76],
[77]. [78] Build an ensemble system utilizing various tradi-
tional machine learning (LR, SVM, RF, MNB, and XGB)
for detecting sentiments.

When working with a particular language, the task can be
considered an area-dependent task. The first racial-oriented
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research was carried out by [34], who carried out a super-
vised model to distinguish bigoted tweets [72]. Trained a
supervised machine learning text classifier and used human-
annotated data from Twitter to train and test the classifiers.
[50] Proposed an approach for distinguishing hate speech for
the Italian language on Facebook.

Authors [79] explored the capacity to recognize hate
in the Indonesian language. The best outcomes from [48]
were acquired when they consolidated semantic hate and
theme-based components. SVM outperformed CNN and the
ensemble approach in all subtasks of HaSpeeDe [80], using
hate-rich embeddings [81]. Due to the many users available
worldwide, multilingual hate speeches are spreading across
the continent in different forms.

3.2 Deep learning approach to hate speech
detection

Deep learning architectures (Table 6) represent a promising
future in text analysis tasks. It relies totally upon artificial
neural networks to investigate the patterns in the text with
extra depth. In a couple of years, deep learning methods
have outperformed machine learning methods in terms of
performance due to the availability of large datasets. From
the previous works, RNN and CNN are the most generally
utilized deep learning models for NLP tasks. The execution
of these two profound neural networks is a bit troublesome
because of their intricate architectures. RNN has two sorts:
LSTM and GRU, which upholds sequential architectures
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Table 5 Recent state-of-the-artwork for detecting hate speech in various languages using machine learning models

Machine learning

Methods Ref Models/Algorithms Classification Dataset
Supervised Methods General (English)
[82] Fasttext o Youtube
Myspace
Slashdot
[83] SVM _ Twitter
Wikipedia
Usenet
[58] SVM (Sexuality, Race, Intelligence) YouTube
[84] Multinomial- Naive Bayes _ Formspring
Stochastic gradient descent
[72] Bayesian logistic regression (Hateful, Antagonistic) Twitter
[85] Logistic regression (Hateful, Clean) Yahoo
[86] Logistic regression (Hate, Not Hate) Twitter
[87] SVM (Hate, Offensive, OK) Twitter
[18] NLP (clean, hate, derogatory, profanity) Amazon
[12] SVM (Hate, Offensive, and Neither) Twitter
Naive Bayes
Decision tree
Random forest
[88] SVM (Benevolent, Hostile, and others) Twitter
Fasttext
General (Roman-Urdu)
[75] Logistic regression (Hate, Offensive, and Neutral) Twitter
SVM
Random forest
General (Hindi-EnglisH Coded Mixed)
[89] BoW (Hate and Non-Hate) Twitter
Character n-grams
Word n-grams
Negation words
Punctuation Marks
Cyberbullying (Turkish)
[90] Multinomial- Naive Bayes _ Twitter
Instagram
Radicalisation (English)
[91] SVM (Pro-ISIs, Non-Pro-ISIs, both, None) Twitter
Racial (English)
[34] Naive Bayes (Racist, Non-Racist) Twitter

@ Springer



1214

A. Chhabra, D. K. Vishwakarma

Table 5 (continued)

Machine learning

Methods Ref Models/Algorithms Classification Dataset
Religious (English)
[65] SVM (Anti-Semitic, Not Anti-Semitic) Yahoo news group

Semi-Supervised

Unsupervised

General (Italian)

[50] SVM

General (Indonesian)

[79] Random forest

Decision tree

Abusive (Arabic)

[92] Naive Bayes
[93] SVM

[94, 95] SVM

Adult (Arabic)

[96] SVM

Cyberbullying (Arabic)
[97] SVM

Terrorism (Arabic)

[98] SVM

General (Spanish)

[64] Logistic regression
SVM
LSTM
Bi- LSTM

Transfer learning
General (English)

[99] Logistic regression
[48] Rule-based
Cyberbullying (English)

[100] Fuzzy SVM

Radicalisation (EnglisH)

[101] LibSVM
Terrorism (Arabic)

[102] AdaBoost
General (English)

[15] Match Rules
Cyberbullying (English)
[103] K-Means
ViolenT (Arabic)

[104] K-Means

(Hate, Non-Hate)

(Hate, Non-Hate)

(Abusive, Normal)

(Abusive, Non- Abusive)

(Offensive, In-Offensive)

(Adult, Normal)

(Hate, Non-Hate)

(Pro-ISIs, Anti-ISIs)

(Hate and non-Hate)

(Profane, Non-Profane)
(No Hate, Weak Hate, Strong Hate)

(Hate, Extremism Promoting)

(Jihadism, Anti-Jihadism)

(Pejorative/ Profanities, Obscenities)

(Violence, Non-Violence)

Face Book

Twitter

Twitter
Twitter

Youtube

Twitter

Facebook

Twitter

Twitter

HaterNet and HatEval

Twitter
Blog

MySpace
Slashdot

Twitter
Twitter
YouTube
YouTube
Formspring

Twitter

Twitter

@ Springer
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Table 6 Generic deep learning architectures

Architectures Key features

Merits Demerits

It consists of more than 2- hidden
layers

Widely applicable for classifica-
tion and regression

Multi- layer Perceptron (MLP)

Recurrent neural networks (RNN)  Useful where output depends on
previous results

Share the same weight for each
step

Mainly used for sequence learning
problems

The capability of analyzing the
data stream

Convolution Neural Networks
(CNN)

Highly applicable to visual data

Every hidden layer filter trans-
forms the inputs to the 3D output
volume

Auto-encoder The exact number of Input/output
nodes

Mainly used for feature extrac-
tion and space dimensionality

reduction

Deep belief network (DBN) The hidden layer of each network
is visible to the next layer
Allows supervised and unsuper-

vised learning
Uses Stochastic MAX likelihood

method to maximize the lower
bound of likelihood

Deep boltzmann machine (DBM)

High success rate The learning process is deficient

Learning issue due to gradient
problem

Good response
Can memorize sequential events

Few neuron connections required ~ Requires large labeled datasets

No need for labeled data Error-prone training

Expensive training due to the
sampling process

Use a greedy learning approach to
initialize the stack

Maximizing the likelihood infer-
ences directly

Robust interface for indefinite
output

Interfacing demands high-time
complexity

Parameter optimization is tedious
for large datasets

though CNN has a hierarchical architecture. The efficacy of
deep learning methods is directly based on the right choice
of algorithms, the number of hidden layers, feature represen-
tation techniques, and learning high-level features from the
data. Due to the exclusive performance factors, deep learn-
ing approaches are not better in every case than conventional
methods. For hate speech identification,

[105] Utilized RNN model with word frequency and
their outcomes beat the present state-of-the-art deep
learning methods for hate speech identification. Deep
learning techniques like automatic prediction, sentiment
analysis, and classification are now being used to process
hate images. [106] is a collection of memes from vari-
ous social media platforms like Reddit, Facebook, Twit-
ter and Instagram. The dataset is prepared from the 2016
U.S. Presidential Election Event, a collection of manually
annotated image URLs and text embedded in the images,
resulted in 743 memes. With respect to the classifica-
tion of hateful memes, [107-109] presents various deep
learning models to classify on memes dataset. Out of the
researches done so far, [109] presents a visio-linguistic
model (VILIO) for hateful memes detection and yields
benchmark results. Deep learning strategies are recently
being utilized in message characterization and sentiment

analysis with maximum exactness [110]. Authors [78] used
deep learning and transfer-based models (DNN, DNN with
Embedding, CNN, LSTM, Bi-LSTM, m-BERT, distil-
BERT, XML-RoBERTa, MuRIL) to reduce misclassifica-
tion rate and to improve prediction rate for understanding
code-mixed Dravidian languages. Table 7 shows the recent
state-of-the-art for identifying hate speech using deep and
hybrid learning methods while considering multiple lan-
guages like English, Italian, Arabic, Spanish, etc. As seen
in Table 7, deep and hybrid learning models are evolv-
ing for classification tasks. Most works have been done on
the Twitter dataset in the general English language using
supervised approaches ([41, 105, 111-113]). Authors [114]
show that LSTM is the most effective machine learning
method for hate speech identification. [115] uses rule-
based clustering methods which outperform the other
baseline and state-of-the-art methods like Naive Bayes,
BERT, Logistic Regression, RNN, LSTM, CNN-Glove,
GRU-3-CNN in terms of AUC, Accuracy, Precision, Recall
and F1-Score. [54] Performs semi-supervised multi-task
learning utilizing a fuzzy ensemble approach in which they
generated sequential and constructive rules to be added to
the rule set and Latent Dirichlet Allocation [55] for imple-
menting topic extraction and identifying hate speech forms
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Table 7 Recent state-of-the-art for detecting hate speech in various languages via deep and hybrid learning models

Deep and Hybrid Learning

Methods Ref Models/Algorithms Classification Dataset
Supervised methods General (English)
[111] CNN (Hate, Non-Hate, Racism, Sexism) Twitter
[41] LSTM (Sexism, Racism, None) Twitter
GBDT
[105] LSTM (Sexism, Racism, None) Twitter
RNN
[113] CNN+GRU (Sexism, Racism, Both, Non-Hate, and Hate) Twitter
Religious (Arabic)
[119] GRU based RNN (Hate and Non-Hate) Twitter
Roman Urdu
[73] Naive Bayes (Neutral-Hostile, Simple-Complex, Offensive- Hate Speech) Twitter
Logistic regression
Random forest
SVM
CNN
Semi-Supervised Methods [54] Fuzzy ensemble approach  (Religious, Race, Disability, Sexual Orientation) Twitter
CNN
LSTM
GBT
SVM

Naive Bayes

Decision Tree

for four classes from the Twitter dataset. The authors also
proved that the fuzzy-based approach [54], metaheuristic
approaches ([116, 117]) and Interpretable approach [118]
had outperformed other techniques with high detection
rate. [119] performs a supervised hybrid learning approach
for classifying hate speech into two labels, specifically in
the Arabic dialect. Moreover, Baysian attention networks,
which follow the architecture of transformer models, are
implemented for multilingual (English, Croatian and Slo-
vene) contexts [120].

3.3 Merits and demerits of various models

Hate speech identification is a very much prevalent
research field now a day. Researchers worldwide are
experimenting with various models for specific field
detection with numerous advantages and disadvantages.
[121] implemented CNN and BERT models and proved
efficient accuracy with intra-domain and cross-domain
datasets. ([122, 123]) used FCM, SCM, and TKM for
concatenating/combining features extracted from CNN
and R-CNN, respectively, on textual and visual Twitter
data, giving an advantage resulting in good accuracy com-
pared to other baseline models. [124] used ELMO, BERT,
and CNN to improve classification results but with higher

@ Springer

time complexity. [125] also have a limitation of higher
computational complexity, yet they created their detec-
tion system and implemented a deep belief network on
labeled and unlabeled data. [116] presents two metaheuris-
tic optimization algorithms (Ant Lion Optimization and
Moth Flame Optimization) for the first time to solve Hate
Speech Detection Problem with an efficient accuracy of
above 90%. [117] implemented enhanced seagull optimi-
zation algorithm on CrowdFlower and StormFront datasets
claiming the outperforming scores of above 98%. The pros
and cons of the latest state-of-the-art works on hate speech
detection are shown in Table 8.

4 Hate speech datasets

Social media platforms are prevalent nowadays, and users
are increasing tremendously. Due to this, hate speech con-
tents in various forms are at its peak. The presence of a
massive amount of data on the web and collecting a good
and relevant amount of data is challenging for researchers.
Social media stages provide simple and easy approaches to
gathering data using their APIs [21]. However, data assort-
ment is not confined to APIs only. Figure 9 shows various
ways of accessing data from social media.
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Access to Social Media
Data

Fig.9 Prominent ways to access data from social media

4.1 Dataset description

Hate speech identification has become a crucial task in many
languages and fields. Recordings play a fundamental role
in disseminating content as they can contact a vast crowd,
including little youngsters. Appraisals say that 1 billion
hours of videos are observed every day on YouTube alone.
Detecting hate speech is important to give youngsters a pro-
tected climate and a healthy environment for clients in gen-
eral. Until now, the text has been the most famous configu-
ration utilized by researchers working on it. Subsequently,
most current works summarize recognizing hate speech in
the text (social platform posts, news remarks, tweets, and
so on). While hate speech detection methods primarily use
textual inputs, few research contributions exist toward multi-
modal hate speech detection. Several authors have generated
multi-class/ multi-label datasets in various languages for
curbing hate content on social media. Hate speech detection
(HaSpeeDe) is the prevalent shared task organized within
Evalita 2018 [80] and consists of manually annotating Italian
messages taken from Twitter and Facebook. This shared task
was further categorized into three sub-tasks: HaSpeeDe-FB,
HaSpeeDe-TW, and Cross-HaSpeeDe.

4.2 Datasets challenges

e The available and widely used datasets ([38, 140]) have
issues in their subjectiveness which introduces bias in the
performances. Hate Speech datasets are affected mainly
by social, behavioral, racial, temporal, and content pro-
duction biases [141]. Data imbalance due to bias may
lead to misclassification [142].

e One of the significant issues is the unlabeled non-English
datasets. Few manually annotated labeled datasets were
released for detecting offensive language and hate speech
[78]. Moreover, Multilingual hate speech datasets can
also share the writing of other languages. For example, a
dataset can contain Farsi and Arabic tweets while creat-
ing an Urdu hate speech and offensive language dataset
[75]

e The problem also arises when the web address of datasets
changes [143]. Authors who create a new dataset do not
publish those [73].
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e Twitter (Lenient data usage policies) is the most preva-
lent platform. However, the Twitter resources are sig-
nificant because of the exceptional classification of the
Twitter posts, which is limited to short text. Henceforth,
contents from other media stages are longer and can be a
piece of more extensive conversation in hate speech.

e Datasets differ in their size, degree, and features of the
data annotated, which prompts the issue of irregularity
in the quantity of hate and non-hate texts within data-
sets. For example, on a social stage like Twitter, hate
speech occurs at a shallow rate contrasted to non-hate.
Therefore, researchers can gather data from social media
platforms with no character length limit.

Given the above challenges, making data available in
a superior arrangement for demand research is essential.
Table 9 represents various benchmark models on multiple
datasets. Commonly used datasets ([12, 38], Gomez et al.,
2020)) benchmarks are also shown in the table.

The overall description of datasets regarding modalities
(T-Text, I-Images, V-Videos), classes/ labels, languages, etc.,
are tabulated in Table 10.

5 Evaluation and performance measures

As datasets play a significant role in testing the performance
of hate speech detection. The better-normalized dataset is
the best performance an algorithm will give. In this sec-
tion, metrics for evaluation of machine and deep learning
techniques used are F;-Score, Recall, and Precision, and
performance measurement metrics are accuracy and AUC
(Area under Curve).

5.1 Evaluation metrics

Most state-of-the-art have utilized accuracy, F,-Score, Pre-
cision, Recall Metrics, and ROC to assess performance

Table 9 Benchmark models on datasets

metrics. [132] represents several loss functions like mean
MSE, cross-entropy, and likelihood loss to anticipate hate
speech in the most used dataset, such as Twitter. The loss
function is the difference between the predicted value
denoted by y and labeled value denoted by y. [143] use four
different strong performances indicators (KPIs), which are
the percentage of True Positive, the precision, the recall, &
F,- Score defined using Eq. 1:

P-R

F, - S =2X
1 core P+R (1)

[132] uses several loss functions such as Mean Square
Error Rate (MSE) [163], given in Eq. 2, Cross-Entropy
Loss (CEL) [164] as in Eq. 3, and Likelihood Loss (L)
[165] in Eq. 4 to approximate the accuracy of the proposed
model in identifying hate speech on the Twitter dataset.

N
1 o2
MSE = — =Y
N 2 i 9) @
Where,
N denoted the quantity of information relative to the
predicted value y and labeled y.

M
CEL =

c=1

YocLog(P,.) 3)

where,

M represents classes and related features,

O denotes the observed value of the particular class-
related feature,

P represents the prediction probability value relevant
to O,

Log is the logarithmic function, and.

Y gives the output value as binary values of a specific
class.

Dataset Refs Benchmark models F1-score Accuracy Precision AUC- ROC
Ethos_binary [144] Bi-LSTM + Static BE 0.7971 0.8015 0.8037 _
Maha-Hate [145] BERT _ 0.909 _ _
HateXplain [146] BERT + HateXplain [Attn] 0.687 0.698 _ 0.851
APEACH [147] BERT 0.8424 _ _
Told-Br [148] Multilingual BERT 0.75 _ _ _
Hateful memes [109] Vilio _ _ _ 0.825
OffVidPT-2/ OftVidPT-3 [149] M-CNN 0.74 _ _ 0.78
MMHS150K [122] TKM 0.70 68.2 _ 0.731
t-Davidson [12] BERTbase + CNN 0.92 _ 0.92 _
WaseemHavoy [38] BERTbase + CNN 0.88 _ 0.89 _

@ Springer
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Table 10 Dataset description in terms of size, labels, languages, and modalities

Source

Name of the dataset

Refs

Size

Classes/ labels Language

Modality

Youtube and Reddit
comments

Line today

Twitter

Twitter

Crowd sourcing plat-
forms

Twitter

Twitter

Twitter and GAB

Handcrafted

Youtube and Facebook
Twitter

Facebook

Youtube

Twitter

Bengali wikipedia
dump and Bengali
news articles

Multi-labEl haTe
speecH detectiOn
dataSet (ETHOS)

Hate speech

ToxiGen

Slovenian twitter Data-
set 2018-2020 1.0

APEACH

Maha-Hate

Urdu hate speech and
offensive language

HateXplain

HatemojiCheck
HS-BAN
ToLD-Br
Hateful Memes
OffVidPT-2/

OffVidPT-3
MMHS150K

Bengali_hate_speech
v1.0

[144]

[150]

[151]

[147]

[145]

[75]

[146]

[152]

[153]

[148]

[108]

[149]

[122]

[154]

998

~12Kand~1M

~2M

~12M

~11K

25K

~11K

9055 twitter posts,
11,093 GAB posts

~4 K Test cases
50K

21K

10K

400

150 K

3418 Samples

Ethos_Binary

@ Hate

@ Non-Hate
Ethos_Multi-Label
@ Violence

@ Non-Violence
@® Gender

@® Race

@ National origin
@ Disability

@ Religion

@ Sexual Orientation
@ Hate

@ Offensive

@ Normal

@® Toxic

@ Benign

@ Acceptable
@ [nappropriate
@ Offensive

@ Violent

@ Hate
@® Non-Hate

@ Hate

@ Offensive
@ Profane
@ Not

@ Hate
@ Offensive
@ Neutral

@ Hate
@ Offensive
@ Normal

@ Hateful

@ Not Hateful
@ Hate

@ Non-Hate
@® Toxic

@® Non- Toxic
@ Hateful

@ Not Hateful

@ Offensive
@ Non- offensive

@ No attack

@ Racism

@ Sexism

@ Homophobic

@ Religion-based
attacks

@ Any community
attacks to other
attacks

@ Personal hate

@ Political hate

@ Religious hate

@ Geopolitical hate

@ Gender Abusive
hate

English

Taiwan

English

Slovenian

Korean

Marathi

Roman-Urdu

English

English
Bangla
Portuguese
English
Portuguese

English

Bengali

T

I+T

I+T
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Table 10 (continued)
Source Name of the dataset Refs  Size Classes/ labels Language Modality
Youtube Hate_speech_data- [155] 300 @ Normal English A\
set_videos @ Hateful (Racist,
Sexist)
Wikipedia com- Detoxify _ ~55K @ Very toxic English, French, T
ments + Civil com- @ Toxic Spanish, Italian,
ments @ Hard to say Portuguese, Turkish,
@ Non- toxic Russian
Twitter OffensEval2020 [156] ~9M @ Offensive Arabic, Danish, T
@ Non-Offensive English, Greek, and
Turkish
Twitter OffensEval2019 [157] ~14K @ Offensive English T
@ Non-Offensive
Facebook and YouTube T-HSAB [158] ~6K @ Normal Tunisian Arabic T
@ Abusive
@ Hate
Twitter L-HSAB [159] ~6K @ Normal Levantine Arabic T
@ Abusive
@ Hate
Twitter HatEvall19 [140] 19K @ Hate Spanish, English T
@ Non-Hate
Twitter Peer-to-Peer Hate [160] 28 K @ Hate English T
@ Non-Hate
Twitter and Facebook Evalita2018 [80] 4 K posts @ No-Hate Italian T
@ Weak- Hate
@ Strong- Hate
Twitter Twitter Abusive Behav- [161] 80 K @ Normal English T
iour @ Spam
Twitter t-Davidson [12] 25K @ Hate English T
@ Offensive
@ Neither
News articles BEEP [161] 9381 Human Labeled @ Hate Korean T
comments & @ Offensive but not
2,033,893 Unlabeled hate
comments @ None
Twitter Arabic offensive [162] 1.1 Kand 32K @ Obscene Modern Standard T
@ Offensive Arabic
@ Clean
Twitter WaseemHavoy [38] ~17K @ Racist English T
@ Sexist
@ Neither

| -
L= _;Zizl log (¥;)) “
where,
n gives the number of classes.
y denotes the output.

5.2 Performance of popular hate speech detection
methods

Most state-of-the-art on hate speech detection used pre-
cision, recall, and F,-score for evaluation; others used

AUC and accuracy for performance measures due to some
imbalanced datasets. Table 11 gives evaluation and perfor-
mance measures from some state-of-the-art works based
on accuracy, precision, recall, F; score, and AUC. As seen
in Table 11, Precision, Recall, and F,-score are the met-
rics used by most authors as they provide better insights
into the prediction than accuracy and AUC. Deep-learning
models have outperformed machine-learning models with
high-performance metrics, as presented in Table 11.

@ Springer
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Table 11 Performance comparison

Ref Algorithms Accuracy Precision Recall F1-Score AUC
[115] Rule-based clustering 0.94 0.92 0.91 0.92 0.96
[64] BERT, XLLM, BETO - - - 0.772 -
[149] BERT, CNN, Random forest, Naive bayes - - - 0.74 0.78
[132] Deep learning 0.9873 - - - -
[166] Linear SVM classifier 0.90 0.88 1.0 0.90 -
Naive bayes classifier 0.92 0.899 0.964 0.924 -
[167] BERT - 0.86 0.94 0.77 -
[143] Random forest, SVM, and J48graft [168] - 0.88 0.87 0.87 -
[41] Logistic regression, SVM, DNN, CNN, Random forest, GBDT - 0.93 0.93 0.93 -
[12] Logistic regression, SVM - 0.91 0.90 0.90 -
[50] SVM, LSTM - 0.83 0.87 0.85 -
[49] One-class classifiers, Decision tree, Naive bayes, Random forest - 0.73 0.86 - -
[18] Skip bigram model - 0.83 0.83 0.83 -
[110] Deep learning 0.91 - - - -
[38] Logistic regression - 0.72 0.77 0.73 -
[33] SVM, Random forest, Decision tree - 0.79 0.59 0.68 -
[169] SVM - 0.49 0.43 0.46 -
[170] Random forest, Decision tree, SVM, Bayesian LR - 0.89 0.69 0.77 -
[85] Logistic regression - - - - 0.80
[39] Naive Bayes - 0.97 0.82 - -
[72] Decision tree, Random Forest, SVM - 0.89 0.69 0.77 -
[34] Naive bayes 0.73 - - - -
[65] SVM 0.94 0.68 0.60 0.63 -

6 Discussion

Hate speech is an emerging issue in social media sites now
days. The identification of hate content is one of the major
concern and challenge for the researchers. The proposed arti-
cle shows a systematic order of state-of-the-art works done
so far. Feature extraction methods such as distance metric
and multimodal information, especially related to hate con-
tent detection, are not used to the best of my knowledge.
Both directional models such as RNN and LSTM, and non-
directional models such as Transformers ad BERT are uti-
lized in identifying hate content. Although machine learning
has shown its growth in the last decade, but NLP has also
shown the steepest growth by including the evolutionary
models such as BERT and Transformers. The variants of
BERT like ALBERT, RoBERTa, DistilBERT etc. are used
increasingly in solving real life problems because of their
self-attention mechanism. The researchers also use LSTM
model as it yields subsequently higher results than BERT
on small datasets does. The pros and cons of various models
are described in detail in the Sect. 3.3. From the last two
years, the metaheuristic optimization algorithms such as Ant
Lion optimization, Flame Moth optimization, Seagull opti-
mization are also considered in this area with the promising
results.

@ Springer

7 Findings and conclusion

Hate speech attempts to marginalize different classes and
groups of persons already in the minority due to their race,
language and religion. This article reviewed the most out-
standing work on automatic hate speech identification.
Firstly, we introduced some state-of-the-art hate speech
definitions and analysis on the basis of some specific dimen-
sions. This survey also highlights some of the NLP aspects
in this area. There is also a good comparison between hate
speech definition and definitions of various hate forms.
Then, we presented a taxonomy of automatic hate speech
detection, including sub-domains of AI approaches.
Metaheuristic algorithms which are very new with context
of hate speech detection are also mentioned in this manu-
script. Paper also covers various works done in multilingual
and multimodal hate speech detection along with various
datasets description.

8 Future trends

Our studies recommend some future trends from the fol-
lowing angles:
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We have explored some standard hate speech datasets
along with their key features, classifications, objec-
tives, and types of data format available. Most datasets
are available in textual form. Very few datasets like
(MultiOFF, MMHS 150K) are found on hateful memes.
No video dataset is found publicly as per the best of my
knowledge. So, creating a new dataset of images and
videos can be further seen as a future task. Moreover,
numerous analysts look at the significant challenge of
the datasets availability as few publicly available data-
sets exist. Authors do not use them, and if they create
a new dataset, they do not publish them, making it too
difficult to compare results and conclusions.
Choosing informative, independent, and discriminat-
ing features are crucial in classification problems. This
paper covers commonly used text analysis features for
hate classification tasks. Hence, automatic feature engi-
neering for generating specific hate features can be a
future aspect.

For the last few years, authors have been focusing on
multilingual hate speech identification by creating their
datasets. But very few labeled datasets are found in
non-English languages. Various benchmark models can
be applied to non-English labeled datasets also.

We have also covered important work for hate speech
identification in various languages. Hence, the mod-
els that understood only the English language are not
efficient in processing the input from different Indian
languages [78]. So, building a system for code-mixed
languages can be considered a future aspect.
Nowadays, emojis are also used to show feelings and
attitudes in users minds [36], and they are vital ele-
ments in delivering hate or offensive content over
social media. Hence, pre-processing emojis text can be
seen as a different area so that there can be an improve-
ment in aggression detection.

There are significantly fewer works on neutral tagged
content [75]. So, devising a new method for handling
neutral tagged contents in multi-label datasets in a bet-
ter way can be considered a future job.

In our systematic survey, we tracked that most work
portrays techniques, separated features, and models
utilized. In any case, it is uncommon to discover jobs
with available public repositories. More sharing of
code, calculations, measures for feature extraction, and
stages can assist the area with advancing rapidly.

In this article, some of the metaheuristic optimiza-
tion approaches are also coined to solve hate speech
detection. Apart from the mentioned metaheuristic
approaches such as ALO and FMO, Parameter Opti-
mization approach can also be implemented in future
for solving the hate content detection.
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