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Abstract
Preserving edges while denoising an image is a crucial and challenging necessity. In this paper, a noise-aided edge-preserving 
denoising algorithm is proposed by extending the classical patch-based Non Local Means (NLM) algorithm. The classical 
NLM algorithm uses similarity weights to ensure edge preservation. In the proposed algorithm, these similarity weights 
are enhanced by processing the similarity distances using stochastic resonance (SR). SR refers to a phenomenon where the 
performance metric in a nonlinear system counterintuitively increases to a peak and then decreases (like a bell curve) in 
the presence of a controlled amount of noise. The similarity weights derived from NLM are iteratively processed using the 
discretized SR equation. For the iteratively reconstructed images, the local maxima of the corresponding quality metric, 
PSNR, is selected as the optimal output. The iterative processing results in a nonlinear scaling of the similarity distances. 
This processing, in effect, ensures that similarity weights of similar patches are high and those of dissimilar patches are low, 
thereby producing enhanced edge preservation. The performance of the proposed algorithm is demonstrated by presenting 
the comparative results for a variety of images corrupted by a wide range of AWGN noise. The proposed algorithm is found 
to handle the spurious artifacts near the edges more efficiently. Moreover, the obtained edges are sharper and better preserved 
even in the presence of high noise deviation. Benchmarking results on SET12 and BSD68 datasets show an improvement of 
14.5% and 12.1% respectively over that of NLM for high noise.
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1  Introduction

In the current world, digital multimedia has emerged more 
prominently than it was a few years ago. However, an image 
could undergo degradation in the forms of perturbation at 
the image sensor level, ill-focusing, motion of the imag-
ing device, unfavorable environmental conditions, or limi-
tations of the communication channel, etc. The challenge 
with denoising is that information is lost in the form of edges 
at the cost of removing noise. In an effort to remove noise, 
the edge details become blurred or some new artifacts inad-
vertently get introduced during the process of denoising. In 
the purview of this paper, the image-denoising problem is 
formulated using the equation below:

where at each 2-dimensional pixel location i, the pristine 
image u is corrupted by an i.i.d. Additive White Gaussian 
Noise (AWGN) of zero mean and standard deviation (s.d.) � 
(i.e. n ∼ N(0, �)) , to generate the noisy image v. The pur-
pose of a denoising algorithm is to obtain the best possible 
estimate û of the pristine image u, when provided with the 
noisy image v.

Buades et al. [1] presented a seminal image denoising 
algorithm called Non-Local Means (NLM) that denoises an 
image based on neighborhood similarity and uses pixels that 
are not even adjacent. NLM has two versions—pixel-based 
[1] and patch-based  [2]. There are various developments on 
the pixel-based version of NLM, but comparatively, fewer 
algorithms have been developed on the patch-based ver-
sion (the proposed algorithm is patch-based). Wang et al. 
[35] sped up the NLM (pixel-based) by using FFT. Dabov 

(1)v(i) = u(i) + n(i)
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et al. [8] stacked similar patches and did shrinkage using 
the Weiner filter to improve the denoising performance. 
Khmag et al. [24] used representations in dictionary learn-
ing to denoise an image. Zhang et al. [38] used local-pixel-
grouping (LPG) with principal-component-analysis (PCA). 
Khamag [20] used collaborative patches and shrinkage in 
the SVD domain to improve denoising. Deledalle et al. 
[9] increased the number of candidate patches in NLM 
by including arbitrary-shaped patches. Chaudhury and 
Singer [4] modified the NLM by replacing the mean with 
the median, based on the view that the median has better 
robustness against the outliers. Chen et al. [5] increased the 
number of candidate patches by expanding the sample space 
to not just the current image but multiple images. Fedorov 
and Ballester [15] improved the NLM by including the affine 
transformed patches (scaled, rotated, etc.). Huang et al. [17] 
sped up the NLM by developing a parallel implementation. 
DnCNN [36] is an end-to-end residual-learning-based deep 
network designed to predict residual images for denois-
ing. Liu et al. [25] created a recurrent NN for denoising 
using the concept of NLM. Recently, Khmag et al. [22] [21] 
improved the quality as well as the speed of the NLM by first 
clustering using K-means, followed by NLM in the wavelet 
domain, and then using a Hidden Markov Model (HMM). 
Another recent development with pixel-based NLM includes 
the work by D’Elia et al. [13] that uses bilevel optimization 
to estimate the parameters in non-local image denoising. 
Regarding the patch-based NLM, recently, Frosio and Kautz 
[16] sped up the NLM by allowing only those patches whose 
euclidean distance with the reference patch is close to the 
expectation. Shi et al. [30] reconstructed the low-frequency 
part using SVD and the high-frequency part using sparse 
representation. Valsesia et al. [34] used graph convolution 
to learn self-similarities. Khmag [19] developed a wavelet-
assisted GAN network that can generate better-denoised 
images.

Patch-based Non-local means (NLM) [2] algorithm 
is an elegant way of performing denoising in the spatial 
domain. NLM deviates from the concept of classical aver-
aging that uses pixels only from the adjacent local neigh-
borhood around the concerned pixel. Instead, NLM uses 
pixels that are not adjacent and can be present anywhere in 
a larger area denoted by the research window. The resem-
bling (similar) pixel neighborhoods are searched from the 
whole research window even if those pixels are non-local 
to the target pixel. As compared to traditional local filters 
like box filter/gaussian filter/median filter, etc., the NLM 
has proven to be a better edge-preserving algorithm for 
AWGN-corrupted images [2]. In this paper, we have pro-
posed an algorithm that improves the factor that play the 
most crucial role in the NLM algorithm—the similarity 
weights. The similarity distances (and consequently the 
similarity weights) are enhanced by iteratively processing 

the original similarity distances using a noise-aided itera-
tive process based on the counter-intuitive phenomenon of 
Stochastic Resonance where noise is ‘utilized’ to enhance 
a non-linear system. The proposed hypothesis is that 
enhancing the similarity distances using SR-based iterative 
processing would enhance the edge-preserving capability 
of the patch-based NLM algorithm  [2]. The hypothesis is 
validated in this paper through both qualitative and quan-
titative evaluations.

Stochastic Resonance (SR) is a phenomenon observed 
only in non-linear systems, whereby a feeble signal is ampli-
fied with the assistance of noise [3]. Noise is not always 
detrimental for the system and can enhance the effect of a 
weak signal when present in a controlled and properly-tuned 
quantities [3]. In the realm of image processing, SR has been 
successfully utilized in wavelet-based image restoration [6], 
image enhancement [7], watermark extraction [18], and edge 
detection [11, 12]. There are mainly two manifestations of 
SR—one by externally adding noise to the system and con-
trolling the amount that gives the best performance; sec-
ond is by tuning the system parameters without the addition 
of external noise and maximizing the performance metric 
when the process is translated into an iterative equation. This 
paper uses the second approach where the peak in the per-
formance metric w.r.t. iteration curve is used to determine 
the optimal output.

Our earlier work [10] was the first instance where the 
application of SR was reported for improving the edge-
preserving nature of pixel-based NLM denoising algorithm 
[1]. Conventionally, to induce SR in any image processing 
related application, a specific feature would be iteratively 
processed. The design of the proposed framework follows 
this strategy by iteratively processing the NLM-based simi-
larity distances. In the current work, we attempt to further 
improve the denoising performance of the patch-based NLM 
using the iterative processing of SR. Although both pixel-
based NLM [1] and patch-based NLM [2] share a very simi-
lar formulation for finding the resemblance weights, both 
algorithms follow different toolchains and are different 
from each other in the following aspects: In the pixel-based 
approach, weights for a single pixel is estimated, while in 
the patch-based approach, the weights for the entire patch 
is estimated. There is no final aggregation step in the pixel-
based NLM, which the patch-based NLM, in contrast, claims 
as the primary cause of its own performance in reducing 
spurious oscillations around the edges. Further, the proposed 
patch-based NLM algorithm introduces a tolerance of 2�2 in 
the distance calculation while omitting the need of gaussian 
weighting of neighborhood. Both algorithms use a differ-
ent set of values of filtering parameter h for different noise 
values. With all these differences between pixel-based NLM 
and patch-based NLM, it does not remain obvious that SR 
can indeed be used to enhance the similarity weights (the 
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most crucial step in NLM), and needs experimentation and 
analysis as presented in this manuscript.

1.1 � Key contribution

The primary contribution of this work is the improvement in 
edge-preserving image denoising performance of the patch-
based NLM using SR-based iterative processing. Similarity 
weights are the most crucial part of the NLM algorithm. The 
proposed algorithm successfully enhances these similarity 
weights by inducing stochastic resonance. Whenever SR is 
established in a non-linear system in the presence of a weak 
signal and noise, the performance metric always manifests 
itself in a bell-shaped curve. Since the images in question 
are noisy images, the similarity weights can be considered 
a continuum of signal and noise in the image, and are itera-
tively processed using the discretized Duffing equation. The 
iteration is terminated at the peak of the metric PSNR, thus 
resulting in the ‘optimal state’ of the weights.

When tested on the complete BSD68 dataset for 
AWGN∼ N(0, 50) , a similarity weight ( w ∈ [0, 1] ), on aver-
age, is updated by about 0.0001, but the cumulative effect is 
reflected as an improvement of 12.1% in the image quality 
along with sharper edges. As per the authors’ knowledge, the 
proposed algorithm is the first reporting of improving patch-
based NLM with SR, and the second reporting of using SR 
with any version of the NLM (the first being authors’ work 
[10] on pixel-based NLM). Regarding image processing, SR 
has mainly been used for image enhancement, and there are 
only a few works using SR for denoising.

The results showcase that the proposed algorithm handles 
the spurious artifacts near the edges much more efficiently, 
and the edges are sharper and better preserved even at high 
levels of noise. The establishment of the SR curve with the 
performance metric validates the authors’ hypothesis along 
with empirical results and comparisons.

2 � Proposed analogy for double well 
for image denoising application

In the analogy proposed by Chouhan et al. [7] for image 
enhancement, the double-well represents the contrast of 
the image where one stable state represents a low-contrast 
image, and the other stable state represents an enhanced 
image. Here, the transition from low to high contrast is 
effected by iteratively processing the frequency coefficients 
or intensity values of the input image. The authors propose a 
similar analogy for the current application of image denois-
ing (Fig. 1). The ‘state’ of the NLM similarity distance 
is analogous to the position of the particle in the bistable 
potential well. As similar patches have smaller similarity 
distances, the similarity distances represent the weak signal 

here, and the AWGN inherently present in the image plays 
the role of noise. Since the signal and noise are a continuum, 
the term signal + noise from the Duffing’s equation (with 
signal present) [29] can be replaced by the noisy similarity 
distances as discussed in Sect. 3.2.

The initial state of the patches is represented by one stable 
state, whereas the other stable state represents the enhanced 
state of the patches. The SR-induced iterations non-linearly 
scale the similarity distances in accordance with the inher-
ent noise, thus shifting the patches’ state to an ‘enhanced’ 
state. This goes in line with our hypothesis that enhancing 
the similarity distances using SR-based iterative processing 
would enhance the edge-preserving capability of the patch-
based NLM algorithm [2]. The hypothesis is validated in this 
paper through both qualitative and quantitative evaluations. 
For more details on the double well analogy, readers may 
refer to Chouhan et al. [7].

3 � Proposed framework for SR‑based 
edge‑preserving denoising

Figure 2 presents a high-level block diagram of the proposed 
framework. First, the similarity distances are calculated from 
the given noisy image using classical NLM. Then, these 
similarity distances are enhanced using SR-based iterative 
processing, thus obtaining the ‘enhanced’ similarity weights. 
These new weights are used to estimate the patches. Pixels 
from these estimated patches are then aggregated to con-
struct a denoised estimation at pixel locations.

Like in traditional SR-based algorithms, denoising perfor-
mance (in terms of quantitative metric) is noted for images 
obtained after each iteration. Of all the iterated images, the 
one with the best (maximum) performance, corresponding 
to iteration count, nopt , is chosen as the final denoised output.

(2)
dx(t)

dt
= −

dU(x)

dx
+
�

signal +
√

D �(t)
�

Noisy image Edge-preserved
denoised image

Fig. 1   Proposed double-well analogy of image denoising and SR
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Enhancing the similarity distances (and thus similarity 
weights) of the patch-based NLM  [2] using the iterative 
SR-based processing to obtain better denoising with bet-
ter edge preservation capability, and developing a working 
algorithm around this construct is the main contribution of 
the proposed algorithm. As per the authors’ knowledge, the 
proposed algorithm is the first reporting of improving patch-
based NLM with SR, and second reporting of using SR with 
any version of the NLM (the first being authors’ work [10] 
on pixel-based NLM).

Figure 3 presents the detailed block diagram, and the 
following subsections present the proposed algorithm 
in details. In addition, the pseudocode, including all the 
parameter values, is presented for a better understanding and 
reproducibility of the proposed algorithm. The authors have 

used Matlab R2020b software to implement the proposed 
algorithm.

Parameter values of the proposed algorithm are determined 
using the noise standard deviation (sd). Parameters like patch 
window size, research window size, and double-well param-
eters a ( a = 2�2

0
 ) and b ( b = 0.01 ∗ (4∕27) a3 ), increase 

with increasing noise sd, whereas the filtering parameter that 
maneuvers the decreasing exponential kernel decreases with 
increasing noise sd. These parameters (elaborated in Table 1, 
pseudocode) and their usage are explained in detail in the 
subsequent sections. Since the noisy images are generated as 
phantom images from pristine images, the value of noise sd 
is used directly (without estimation). Using a preprocessing 
module to estimate the AWGN noise from the noisy image is 
part of the future work of the proposed algorithm.

Fig. 2   High-level block diagram 
of the proposed framework Noisy

Image
Denoised

image

Enhance similarity distances 
using 

SR-based processing

Similarity distance 
calculation

Estimate patches 
and 

aggregate pixels

enhanced
weights

Research Window

Es�mated Patch

Noisy Image 

Op�mal enhanced  
output image

Denoised value at  
(Aggrega�on Process)  Weight calcula�on

Itera�on, Pe
rf

or
m

an
ce

m
et

ric

Noise-enhanced  
SR-tuned  

weight matrices

For all  in image 

Classical  
Patch-based NLM

Reconstructed image  
for each itera�on

Compu�ng performance metric

Fig. 3   Proposed algorithm
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Pseudocode: SR-NLM Image Denoising

SR-NLM(noisyimage, sd, refimage)
if sd > 0 & sd ≤ 15 then

f ← 1, r ← 10, k ← 0.4, niter ← 30 � f sets patch window, r sets
research window, k sets filtering parameter, niter sets the SR iterations
else if sd > 15 & sd ≤ 30 then

f ← 2, r ← 10, k ← 0.4, niter ← 40
else if sd > 30 & sd ≤ 45 then

f ← 3, r ← 17, k ← 0.35, niter ← 50
else if sd > 45 & sd ≤ 75 then

f ← 4, r ← 17, k ← 0.35, niter ← 60
else if sd > 75 & sd ≤ 100 then

f ← 5, r ← 17, k ← 0.30, niter ← 70
end if
h ← k ∗ sd � filtering parameter
for each pixel p in noisyimage do

for each pixel q in research window do
Bp ← (2f + 1)× (2f + 1) patch around pixel p
Bq ← (2f + 1)× (2f + 1) patch around pixel q
d2 ← 1

(2f+1)2
∑

(Bp −Bq)2

Wp ← max(d2−2(sd)2, 0)
h2 � similarity distance

array Wp[ ] ← Wp

end for
� SR iterative processing

a ← 2 ∗ (sd/100)2
b ← 0.01 ∗ (4/27) ∗ a3
∆t ← 0.02
V [ ] ← 0
for iter = 1 to niter do

V [iter + 1] ← V [iter] + ∆t
[
a ∗ V [iter]− b ∗ V [iter]3 + array Wp[ ]

]

matrix V [ ] ← V [iter + 1]
end for
matrix V [ ] ← exp{−matrix V [ ]}
matrix wp[ ] ← normalize{matrix V [ ]} � similarity weight
B̂p[ ] ← matrix wp[ ] ∗Bq � patch estimation
for iter = 1 to niter do

denoisedimage[p, iter] ← avg{corr. pxl from est. patches}
end for

end for
denoisedimage ← denoisedimage[..., iter]

∣
∣
∣
iter=iter(psnrmaxima)

return denoisedimage

3.1 � Initial similarity calculation

To denoise a pixel p in the noisy image v(i) (where both p 
and i are respectively the 2-dimensional locations of these 
pixels; and v(i) denotes image intensity at pixel location i); 
first, all the squared patches that contain p are estimated. 
Following the classical patch-based NLM, to estimate a 
low-noise version of a patch B(p, f)—a square neighbor-
hood of pixels centered at p and sized (2f + 1) × (2f + 1) (as 

Table 1   Parameters

� Patch window Research window h (σ)

0 < 𝜎 ≤ 15 3 × 3 21 × 21 0.40�

15 < 𝜎 ≤ 30 5 × 5 21 × 21 0.40�

30 < 𝜎 ≤ 45 7 × 7 35 × 35 0.35�

45 < 𝜎 ≤ 75 9 × 9 35 × 35 0.35�

75 < 𝜎 ≤ 100 11 × 11 35 × 35 0.30�
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shown in Figure 3)—all the squared patches Q(q, f) that fall 
within the research window B(p, r) are utilized. The research 
window B(p, r) is a (2r + 1) × (2r + 1) square window with 
the centre at pixel p, as shown in Fig. 3. A research window 
is used instead of the entire image to reduce the computa-
tions involved. For example, for an AWGN of s.d. 25, the 
patches are 5 × 5 , and the research window is 21 × 21 . It 
should be noted that this example is only for illustration as 
the proposed algorithm does not include AWGN estimation.

The estimated low-noise version of a patch, B̂(p, f ) or B̂ , 
is a weighted linear combination of all the noisy patches 
Q(q, f) or Q, whose center q falls within the research window 
( (2r + 1) × (2r + 1) ), as shown in Equation 3, where C is a 
weight normalization constant, and v(Q) represents intensity 
of the noisy image for all the square patches falling within 
the research window.

Similarity distance ( Wp ) between the two patches B(p, f) (a 
square patch with center at pixel p) and Q(q, f) (a square 
patch with center at pixel q) is a function of (i) Euclidean 
distance (d) between the two patches, (ii) standard devia-
tion ( � ) of the noise, and (iii) the filtering parameter (h), 
as shown in Eq. 5. The similarity weight w(B, Q) and the 
similarity distance Wp are monotonically related, though 
inversely, as shown in Eq.  6. Similarity weight is the 
decreasing exponential of the similarity distance. Thus, as 
the similarity distance decreases, similarity weight increases 
monotonically.

All the patches whose Euclidean distance is less than 2�2 
are weighed maximally, the weight being the same as the 
weight for the patch at p itself. For the remaining patches, 
weight decreases monotonically with the increasing dis-
tance, thus providing an auto cut-off for the larger distances.

The curve of the decreasing exponential kernel is further 
maneuvered using a filtering parameter h, which is a func-
tion of noise standard deviation � as shown in Table 1.

(3)B̂ =
1

C

∑

Q=Q(q,f )∣q∈B(p,r)

v(Q)w(B,Q)

(4)C =
∑

Q=Q(q,f )∣q∈B(p,r)

w(B,Q)

(5)Wp =
max(d2 − 2�2, 0)

h2

(6)w(B,Q) = e−Wp

(7)

d2(B(p, f ),Q(q, f )) =
1

(2f + 1)2

∑

j∈B(0,f )

(v(p + j) − v(q + j))2

3.2 � SR‑based iterative processing of similarity 
matrix

A weight matrix for a patch B(p, f) is a matrix encompass-
ing similarity weights, w(B, Q), for all the patches that 
lie within the corresponding research window. Weight 
matrix calculation is the most crucial step of the classical 
patch-based NLM algorithm. These weights are the attrib-
utes that decides the resemblance between two patches 
to assess which patches are more similar out of the pool 
from the research window. Higher the similarity between 
two patches, higher the weight. More the number of similar 
patches found, more would be the capability to reduce the 
noise variance (and consequently better denoising). In this 
work, SR-based iterative processing is used to enhance this 
very ingredient of the classical NLM algorithm—the simi-
larity weight matrix. As mentioned, the similarity weight 
(w(B, Q)) is simply a function of similarity distance ( Wp ) 
and both are monotonically and inversely related. Patched 
neighborhoods that are more similar have smaller similarity 
distances and thus higher similarity weights. Considering 
the Duffing’s equation,

where x(t) denotes the state of a particle in a bistable (or 
multistable) quartic potential U(x) in presence of an addi-
tive stochastic force �(t) of intensity D. Based on this, an 
SR-based discrete model for enhancement of low-contrast 
images was developed by Chouhan et al. [7], which was fur-
ther utilized in Dhillon and Chouhan [10] for enhancing the 
weight matrix of the pixel-based NLM algorithm [1]. The 
SR-based enhanced similarity matrices generated [10] were:

where Wp denotes the initial similarity distance matrix 
for a pixel p corresponding to its research window, and 
Ŵp(n) denotes the SR-tuned similarity distance after n 
iterations. Parameters a = 2�2

0
 and b = 0.01 ∗ (4∕27) a3 

(should be < (4∕27) a3 ) were deduced by SNR maximiza-
tion [7], where �0 is the normalized noise standard devia-
tion. The discretization step-size, Δt , was chosen experi-
mentally to be 0.02 [10]. This formulation of SR-based 
weight enhancement [10] has been extended in this paper 
for patch estimation in a patch-based NLM algorithm. 
Tuning the similarity distance matrix (using SR) would 
enhance the similarity value between the patches and help 
preserve the edges better since similar patches would be 
assigned higher weights, and dissimilar patches would be 
assigned the lower weights.

(8)
dx(t)

dt
= −

dU(x)

dx
+
√

D �(t)

(9)Ŵp(n + 1) = Ŵp(n) + Δt
[

aŴp(n) − bŴp(n)
3 +Wp

]
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3.3 � Final aggregation process

While computing the distance d2(B(p, f ),B(q, f )) (Eq. 7) or 
similarity distance (Eq. 5) or similarity weights (Eq. 6), no 
special importance is given to different pixels and all the 
pixels in a patch window are treated equally. This leads to 
the idea that d2(B,Q) should be used to denoise all the pixels 
present in patch B(p, f) and not just pixel p. For a single SR 
iteration number, each pixel p falls within N2 = (2f + 1)2 
patches, and thus can be estimated using the aggregation:

where Q̂(p) represents intensity at pixel location p extracted 
from the estimated low-noise square patch Q̂ , and q rep-
resents center of such a patch that includes pixel p. This 
aggregation step defines how the pixel-level estimates are 

(10)û(p) =
1

N2

∑

Q=Q(q,f )∣q∈B(p,f )

�Q(p)

generated from the patch-level estimates. Using N2 estimates 
for a single pixel also adds to the noise-handling capability 
of the algorithm.

3.4 � Finding the optimally‑denoised output image

Like in the traditional SR-based algorithms, the output is 
taken at an optimal iteration count based on the maximiza-
tion of a performance metric. In the case of denoising, a 
maximized image quality assessment (IQA) metric would 
serve as a good choice. In this work, since noisy images 
are generated as phantom images from pristine images that 
are available for comparison, the simple PSNR metric has 
been used to decide the optimal iteration count for the output 
denoised image. Thus, nopt is chosen to be the n at which 
PSNR(n) is maximum, and û(nopt) is the final denoised ver-
sion of the noisy image v.
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Fig. 4   Order of growth of running time of SR-NLM
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3.5 � Computational complexity

The asymptotic time complexity of SR-NLM is observed 
to be the same as that of NLM: ONLM = OSR−NLM . While 
enhancing the similarity matrices, only a fixed number of 
iterations are computed (say 40). The number of iterations 
are independent of the input image size, and does not grow 
with the increasing image size (number of pixels). In this 
paper, various images of different sizes (from different 

datasets) have been taken, but the number of iterations is 
fixed and does not change with image size.

Specifically, in terms of the array notation, the running 
time (rate of growth) T(n) of the proposed algorithm (SR-
NLM) is linear in terms of the number of pixels in the image:

(11)T(n) ∼ O(niter.R
2.P2 n)

(12)T(n) ∼ O(n)

Fig. 5   NLM vs SR-NLM on 
BSD68 dataset for AWGN of 
s.d. 50

Pris�ne Noisy NLM SR-NLM

PSNR/ SSIM/ FOM: 22.44/ 0.70/ 0.35 29.00/ 0.77/ 0.52

23.63/ 0.72/ 0.72

24.91/ 0.62/ 0.68

24.98/ 0.70/ 0.79

19.76/ 0.62/ 0.28 24.31/ 0.74/ 0.76

19.32/ 0.48/ 0.14 22.58/ 0.64/ 0.75

22.67/ 0.68/ 0.65 28.47/ 0.83/ 0.84

20.26/ 0.59/ 0.06

21.55/ 0.55/ 0.23

21.16/ 0.64/ 0.23
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where, niter is the no. of SR iterations, R × R is the research 
window size, and P × P is the patch window size. Often, the 
notation used in image processing for N × N sized images is 
in terms of N, and not in terms of the total number of pixels 
n ( n = N2 ). Accordingly, the running time of SR-NLM is 
quadratic in terms of N (for N × N image):

(13)T(n) ∼ O(niter.R
2.P2 N2)

(14)T(n) ∼ O(N2)

Since the parameters of the SR-NLM are a function of noise 
standard deviation (s.d.), the running time also depends upon 
noise s.d. in a staircase manner. The order of growth of the 
running time of SR-NLM w.r.t. total no. of pixels, or image 
height/width N, or noise s.d. is shown in Fig. 4 for better 
visualization.

The running time of NLM (and thus SR-NLM) is con-
sidered a demerit and that is why many researchers have 
focused solely on improving the speed of NLM, as discussed 
in the Introduction section.

Fig. 6   NLM vs SR-NLM on 
SET12 dataset for AWGN of 
s.d. 50

Pris�ne Noisy NLM SR-NLM

PSNR/ SSIM/ FOM: 21.63/ 0.67/ 0.56 25.27/ 0.73/ 0.79

20.83/ 0.67/ 0.48 24.45/ 0.74/ 0.80

21.31/ 0.64/ 0.34 25.28/ 0.72/ 0.85

27.88/ 0.74/ 0.65

23.52/ 0.65/ 0.6620.45/ 0.54/ 0.05

23.87/ 0.71/ 0.12
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4 � Results and discussions

The experiments were conducted on grayscale images 
derived from standard datasets—LIVE [26], TID2013 
[33], BSD68 [28] and SET12 [36]. The images were cor-
rupted with a wide range of Additive White Gaussian Noise 
(AWGN) of zero mean and ten different standard deviations 
(�) : 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. Since the pro-
posed algorithm is not learning-based, So, all the images 
work as the testing images (no training data) i.e., the com-
plete dataset of BSD68 [28] and SET12 [36] are used as the 
testing dataset with no image used for training purposes.

4.1 � SR‑NLM vs NLM

Figure 5 compares the visual results from the NLM and 
the proposed algorithm (SR-NLM) on images from BSD68 

corrupted with AWGN of s.d. 50. In Fig. 5, the reader may 
observe that the sharpness around the animal Jackal (first 
image), or the Rail Bridge (second image) is better in SR-NLM 
denoised images. The word Castrol (in third image) can be 
better read from that of SR-NLM result. For other images as 
well, it can be observed that the proposed algorithm produces 
images with better image quality and significantly sharper/
crispier edges. The same is reflected by the PSNR, SSIM, and 
FOM written below each image. These metrics, along with a 
no-reference perceptual quality metric, BRISQUE  [27], are 
included in Table 2. Better PSNR denotes less mean square 
error; better SSIM denotes better structural similarity; better 
FOM  [19] denotes better edge retaining/extraction capabili-
ties; and better BRISQUE denotes better naturalness in the 
image. The settings for FOM ( ∈ [0, 1] ) used throughout this 
work are threshold = 0.1 with the Sobel edge detector (includ-
ing thinning). For PSNR, SSIM, and FOM metrics, the higher, 

Table 2   Quantitative comparison for some BSD68 images corrupted 
with ∼ N(0, 50)

Bold values indicate  better values of the respective image quality 
metrics

Image NLM SR-NLM

Jackal PSNR 22.44 29.00
SSIM 0.70 0.77
FOM 0.35 0.52
BRISQUE 40.53 25.61

Rail bridge PSNR 20.26 23.63
SSIM 0.59 0.72
FOM 0.06 0.72
BRISQUE 22.50 21.85

Racing cars PSNR 21.55 24.91
SSIM 0.55 0.62
FOM 0.23 0.68
BRISQUE 24.74 24.94

Cowboy PSNR 21.16 24.98
SSIM 0.64 0.70
FOM 0.23 0.79
BRISQUE 18.71 17.96

Blessings PSNR 19.76 24.31
SSIM 0.62 0.74
FOM 0.28 0.76
BRISQUE 31.17 29.76

Cheetah PSNR 19.32 22.58
SSIM 0.48 0.64
FOM 0.14 0.75
BRISQUE 34.16 26.54

Human face PSNR 22.67 28.47
SSIM 0.68 0.83
FOM 0.65 0.84
BRISQUE 41.03 15.30

Table 3   Quantitative comparison for some SET12 images corrupted 
with ∼ N(0, 50)

Bold values indicate better values of the respective image quality 
metrics

Image NLM SR-NLM

Parrot PSNR 21.63 25.27
SSIM 0.67 0.73
FOM 0.56 0.79
BRISQUE 18.89 17.81

Butterfly PSNR 20.83 24.45
SSIM 0.67 0.74
FOM 0.48 0.80
BRISQUE 42.21 30.83

Cameraman PSNR 21.31 25.28
SSIM 0.64 0.72
FOM 0.34 0.85
BRISQUE 18.76 20.25

House PSNR 23.87 27.88
SSIM 0.71 0.74
FOM 0.12 0.65
BRISQUE 33.38 27.88

Starfish PSNR 20.45 23.52
SSIM 0.54 0.65
FOM 0.05 0.66
BRISQUE 33.36 16.96

Table 4   Weight change analysis of the proposed algorithm on BSD68 
dataset

sd = 15 sd = 25 sd = 50

Average weight change 0.0009 0.0004 0.0001
Maximum weight change 0.45 0.38 0.24
Research window 21 × 21 21 × 21 35 × 35
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the better. For BRISQUE metric, a lower value denotes a bet-
ter image quality. Table 2 shows that the proposed algorithm 
performs better in terms of all the four metrics used.

Similarly, Fig. 6 (with Table 3) compares both the algo-
rithms on images from SET12 corrupted with AWGN of s.d. 
50. The reader can observe that the sharpness around the 
Parrot’s eye (first image), or the Butterfly’s veins (second 
image), or the Cameraman’s camera stand (third image), are 
better in the SR-NLM results.

Compared to the NLM, the images from SR-NLM are 
visually better in terms of visual quality, image quality met-
rics, and sharpness of edges. The same is confirmed by an 
improvement of 14.5% and 12.01% in benchmarking results 
(AWGN s.d. 50) on SET12 and BSD68 datasets, respectively 
(Table 6).

4.1.1 � Subjective analysis

For proper subjective analysis, ten random images from 
Figs. 5 and 6 were tested for visual comparison by human 
observers. For an image, the participants were presented with 
four images—noisy, pristine, NLM denoised, and SR-NLM 
denoised; and were asked to choose (from the NLM and SR-
NLM denoised images) the one which is sharper/crispier and 
better-looking. A screenshot of the same is shown in Fig. 7. 
Both textual as well visual instructions were provided in the 
experiment for a better understanding of the participants. A 
total of 40 people participated in this study (Age group: 20–36 
years, median age: 27 years, 10 females, 30 males). Of the sub-
ject pool, 5 were researchers in the area of image processing. 

Fig. 7   A screenshot from online visual comparison experiment

Table 5   Quantitative 
comparison for images 
corrupted with ∼ N(0, 50)

Bold values indicate better values of the respective image quality metrics.

Image Proposed NLM
 [2]

K-SVD
 [14]

BM3D
 [8]

LPG-PCA
 [38]

DnCNN
 [36]

FFDNet
 [37]

Human Face PSNR 28.47 22.67 28.89 29.28 28.60 25.06 25.27
SSIM 0.83 0.68 0.82 0.85 0.78 0.73 0.74
FOM 0.84 0.65 0.89 0.89 0.86 0.91 0.90
BRISQUE 15.30 41.03 32.20 30.42 24.09 31.83 37.75

House PSNR 27.88 23.87 27.92 29.29 28.35 29.94 30.24
SSIM 0.74 0.71 0.77 0.80 0.72 0.83 0.83
FOM 0.65 0.12 0.70 0.79 0.65 0.84 0.84
BRISQUE 27.88 33.38 41.53 34.36 27.87 32.70 37.48
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From this subjective evaluation, the SR-NLM denoised images 
were selected as the crispier/sharper and better-looking images 
for above 99% of the selections.

4.2 � How exactly does SR help in denoising here?

The denoised version of a patch is estimated as the linear 
combination of weighted patches in the research window 
(Eq. 3). These weights are the decreasing exponential of 

the similarity distance (Eq. 6). Stochastic Resonance (SR) 
enhances exactly these similarity distances, which in turn 
leads to the similarity weight enhancement and thus better 
denoising.

An illustration of how the similarity weight rearrange-
ment is done by the SR-based processing is shown in Fig. 8. 
For this illustration, consider zooming into a small portion 
of image Ladyliberty. In Fig. 8, the top row shows respec-
tively the corresponding area in the noisy input, output of 

Fig. 8   Illustration: Similarity 
weights (w

1
 and w 

2
 ) rearrange-

ment by SR-based processing

Table 6   Average PSNR (dB) on 
benchmarking datasets

Dataset Noise
�

Proposed NLM
 [2]

K-SVD
 [14]

BM3D
 [8]

DnCNN
 [36]

FFDNet
 [37]

BRDNet
 [32]

ADNet
 [31]

BSD68 15 30.42 30.13 30.89 31.07 31.72 31.62 31.79 31.74
25 27.93 27.10 28.30 28.57 29.23 29.19 29.29 29.25
50 24.72 22.05 25.17 25.62 26.23 26.3 26.36 26.29

SET12 15 31.35 30.95 31.97 32.37 32.86 32.77 33.03 32.98
25 28.98 28.24 29.42 29.97 30.43 30.44 30.61 30.58
50 25.38 22.16 25.81 26.72 27.18 27.32 27.45 27.37
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patch-based NLM, and the output of the proposed SR-NLM, 
in this order. Consider a 5 × 5 sized noisy patch, encom-
passed in the green square in the noisy area, which needs 
to be estimated. The pristine version of this patch is again 
shown in the next row (second row of Fig. 8) as the second 
patch from left, henceforth mentioned as the ‘middle patch’. 
Let us call the patch on the left of the ‘middle patch’ as ‘left 
patch’, and the one on the right of the ‘middle patch’ as 
‘right patch’. To estimate this ‘middle patch’, 441 patches 
(each 5 × 5 sized) from the noisy image, that lie within the 
corresponding research window, are used. The left and the 

right patches are two of those 441 patches. For the purpose 
of clarity, the corresponding pristine version of the patches 
have been shown instead of the noisy ones; however, in the 
algorithm, only the patches from the noisy image are actu-
ally used in the patch estimation process. As clearly vis-
ible, the similarity between the ‘right patch’ and the ‘middle 
patch’ is more as compared to that between the ‘left patch’ 
and the ‘middle patch’. Patch-based NLM [2] has weighted 
these similarities as w2 (right) and w1 (left) respectively, as 
shown in Fig. 8. Here, the primary effect of the SR-based 
processing is to rearrange these similarity weights. SR-based 

Fig. 9   Comparison of SR-
NLM denoised Human Face 
image (s.d. = 50) with existing 
algorithms

SR-NLM
28.47/ 0.83/ 0.84

NLMPris�neNoisy
PSNR/ SSIM/ FOM = 22.67/ 0.68/ 0.65

28.89/ 0.82/ 0.89 29.28/ 0.85/ 0.89

28.60/ 0.78/ 0.86 25.06/ 0.73/ 0.91 25.27/ 0.74/ 0.90

K-SVD BM3D

FFDNetDnCNNLPG-PCA
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processing has increased the weight for the similar patch and 
decreased the weight for the dissimilar patch. This way, the 
contribution of the similar patch (right patch) in estimating 
the required patch (middle patch) has been increased, and 
the contribution from the dissimilar patch (left patch) has 
been reduced.

Table  4 presents the weight change analysis on the 
complete BSD68 dataset. Weight between two patches 
ranges from zero to one ( w ∈ [0, 1] ). SR-NLM induces a 
maximum weight change of about 0.45, 0.38, and 0.24 for 
AWGN noise s.d. of 15, 25, and 50, respectively. For these 
noise levels, although the average change in weights is 
about 0.0009, 0.0004, and 0.0001 respectively, the effects 
cumulate to an improvement of about 12.1% (for s.d. 50) 
in the image quality with better-preserved edges. It is also 
to be noted that the average weight change for noise s.d. 
50 is lower than that of s.d. 25. One of the reasons for 
this change could be the larger research window since the 
weights are shared between all the patches of a research 
window (Table 5).

4.3 � Comparative characterization

It has been demonstrated that the proposed algorithm per-
forms better denoising than the patch-based NLM. In this 
section, the focus will be on how the proposed algorithm 
stands in comparison to various state-of-the-art algorithms. 
Figures 9 and 10 show the denoising results of the SR-NLM 
compared with the NLM [2], K-SVD [14], BM3D [8], LPG-
PCA [38], DnCNN [36], and FFDNet [37] algorithms for the 
image Human Face and House, respectively (corrupted with 
a high AWGN of s.d. 50). For Figs. 9 and 10, the official 
codes provided by the respective authors have been used 
to generate these results. As can be seen in Fig. 9, although 
K-SVD and BM3D have better PSNR, cloudy or stain or 
splash-like artifacts can be observed in the visual images. 
Similarly, LPG-PCA also has better PSNR but certain lines 
or stains-like artifacts are observed in the denoised images. 
DnCNN and FFDNet are DL-based denoising algorithms; 
although they produce smooth-looking images but on many 
instances, they result in false stain-like artifact generation, 

Fig. 10   Comparison of SR-
NLM denoised House image 
(s.d. = 50) with existing 
algorithms

SR-NLM
27.88/ 0.74/ 0.65

NLMNoisy Pris	ne
PSNR/ SSIM/ FOM = 23.87/ 0.71/ 0.12

27.92/ 0.77/ 0.70 29.29/ 0.80/ 0.79
K-SVD BM3D

28.35/ 0.72/ 0.65 29.94/ 0.83/ 0.84 30.24/ 0.83/ 0.84
FFDNetDnCNNLPG-PCA
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like the false nose and lips in Fig. 9. Similarly, in Figure 10, 
K-SVD and BM3D are observed to produce a stain-like 
artifact; LPG-PCA produces a line-like artifact; DnCNN 
also produces some artifacts, but the result of FFDNet is 
appreciable for this image. Therefore, while the results of 
DL-based algorithms (DnCNN and FFDNet) are found to 
significantly vary from image to image, the results of clas-
sical algorithms are uniform across the images. Further, in 
reference to benchmarking, these state-of-the-art algorithms 
fare better in terms of PSNR, SSIM, FOM, BRISQUE, etc.. 
However, many of them produce new unwanted artifacts dur-
ing the denoising process, especially at high noise.

These figures are used for illustration purpose while 
benchmarking results on large datasets are reported in the 
next subsection.

The curve in Fig. 11, PSNR vs iteration count exhibits 
a well-defined resonant-peak at/around the optimal itera-
tion count (e.g. at n = 23 for image Flower). This iteration 
count is an indicator of noise as the inherent noise (in the 
similarity distance) is scaled non-linearly with each itera-
tion. This resonant nature of the curve validates the authors’ 
initial hypothesis that a noise-induced resonance has been 
established with SR-NLM iterative processing for denoising.

4.3.1 � Benchmarking

Table 6 shows the denoising benchmarking results on the 
widely-known datasets, BSD68 [28] and SET12 [36]. The 
proposed algorithm is not a learning-based algorithm. 
The complete dataset of BSD68 and SET12 with 68 and 
12 images respectively act as the testing datasets. The pro-
posed algorithm exhibits better results than NLM over the 
complete range of noise, especially at high noise. Although 
SR-based similarity weight enhancement has improved the 

underlying NLM algorithm, the other state-of-the-art algo-
rithms are found to have higher reported PSNR (as conven-
tionally reported in benchmarking data). Though PSNR is 
known to not be suitable metric of visual quality and per-
ceptual attributes, in terms of conventional use, an improve-
ment of 14.5% and 12.1% over NLM is observed for the 
proposed algorithm on SET12 and BSD68 benchmarking, 
respectively, for the noise deviation of 50. This reinforces 
our claim that the proposed algorithm performs better at 
higher noise.

5 � Conclusions and future scope

An edge-preserving image-denoising algorithm was pro-
posed in this paper by utilizing the presence of noise in an 
image using iterative processing of weights of the conven-
tional patch-based NLM. Since noisy images were gener-
ated as phantom images from pristine images, the simple 
metric of PSNR was used to terminate the SR-based itera-
tive processing. Comparative characterization however was 
conducted using both full-reference and no-reference image 
quality metrics. Observations show that the iterative process-
ing nonlinearly enhances these similarity weights, and as a 
result the proposed algorithm handles the spurious artifacts 
near the edges significantly better than the classical NLM 
algorithm. Experiments were conducted on images of differ-
ent sizes, and corrupted with nine different values of AWGN. 
Objective comparison with the popular edge-preserving 
image denoising algorithms—NLM, BM3D, K-SVD, LPG-
PCA, DnCNN, FFDNet, BRDNet, ADNet—was reported 
and the proposed algorithm was found to display noteworthy 
performance, especially in the presence of large noise inten-
sities without generating spurious artifacts.

Due to the dependence of this algorithm on the induction 
of SR, the algorithm performs well in a significantly noisy 
environment but only marginally well in low noise condi-
tions. This counter-intuitive nature of the performance is a 
limitation of the proposed approach which does not include 
the addition of external noise in the SR iterative process-
ing. This could possibly be circumvented by exploring the 
alternate ways of inducing SR (adding controlled amounts 
of external noise in the iterative steps) for low-noise environ-
ments. The proposed algorithm has also inherited a demerit 
from the NLM—its high computational complexity. Various 
researchers have worked on improving the running time of 
NLM, and those works could guide the efforts to reduce the 
time complexity of SR-NLM as a potential future direction 
of this work. Learning (training) from large datasets could 
also be included to improve the performance of the proposed 
algorithm. Another possible future direction includes using 

Fig. 11   Performance metric vs iteration count (n) for six test images 
( � = 25 ), exhibiting a well-defined resonant behaviour in the image 
quality
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the automatic estimation of AWGN noise s.d.  [23], as a 
preprocessing module to streamline the complete algorithm.

The characteristic curve shows a resonant peak, thus 
confirming that stochastic resonance has indeed been estab-
lished. Improved results also validate the proposed hypoth-
esis that enhancing the similarity distances using SR-based 
iterative processing would enhance the edge-preserving 
capability of the patch-based NLM algorithm.

Funding  Funded by the Department of Science and Technol-
ogy, Government of India, under the project titled Noise-enhanced 
Edge-preserving Image Denoising using Stochastic Resonance 
(#ECR/2016/001606).

Data availibility  Publicly available data has been used in this work. 
Image results can be made available on request.

Code availability  This work uses a custom code which is not publicly 
available.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest. This work is supported by Department of Science and Tech-
nology, Government of India (#ECR/2016/001606).

References

	 1.	 Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image 
denoising. In: 2005 IEEE CVPR, pp 60–65 (2005)

	 2.	 Buades, A., Coll, B., Morel, J.M.: Non-local means denoising. 
Image Proces. On Line 1, 208–212 (2011)

	 3.	 Bulsara, A.R.: Tuning in to noise. Phys. Today 49(3), 39–45 
(1996)

	 4.	 Chaudhury, K.N., Singer, A.: Non-local Euclidean medians. IEEE 
Signal Process. Lett. 19(11), 745–748 (2012)

	 5.	 Chen, G., Zhang, P., Wu, Y., et al.: Denoising magnetic resonance 
images using collaborative non-local means. Neurocomputing 
177, 215–227 (2016)

	 6.	 Chouhan, R., Jha, R.K., Biswas, P.K.: (2012) Image denoising 
using dynamic stochastic resonance in wavelet domain. In: Proc, 
pp. 58–63. IEEE ISDA, IEEE (2012)

	 7.	 Chouhan, R., Jha, R.K., Biswas, P.K.: Enhancement of dark and 
low-contrast images using dynamic stochastic resonance. IET 
Image Process. 7(2), 174–184 (2013)

	 8.	 Dabov, K., Foi, A., Katkovnik, V., et al.: Image denoising by 
sparse 3-d transform-domain collaborative filtering. IEEE Trans. 
Image Process. 16(8), 2080–2095 (2007)

	 9.	 Deledalle, C.A., Duval, V., Salmon, J.: Non-local methods with 
shape-adaptive patches (nlm-sap). Journal of Mathematical Imag-
ing and Vision 43(2), 103–120 (2012)

	10.	 Dhillon, D., Chouhan, R.: Noise-aided edge-preserving image 
denoising using non-local means with stochastic resonance. In: 
2018 IEEE GlobalSIP, pp 21–25 (2018)

	11.	 Dhillon, D., Chouhan, R.: Enhanced edge detection using sr-
guided threshold maneuvering and window mapping: Handling 
broken edges and noisy structures in canny edges. IEEE Access 
10(11), 11191–11205 (2022a)

	12.	 Dhillon, D., Chouhan, R.: Exhibition of noise-aided stochastic 
resonance by discontinuity detectors in smartphone images. Fluc-
tuat. Noise Lett. 21(4), 2250038 (2022)

	13.	 D’Elia, M., De Los Reyes, J.C., Miniguano-Trujillo, A.: Bilevel 
parameter learning for nonlocal image denoising models. J. Math. 
Imaging Vision 63(6), 753–775 (2021)

	14.	 Elad, M., Aharon, M.: Image denoising via sparse and redundant 
representations over learned dictionaries. IEEE Trans. Image Pro-
cessing 15(12), 3736–3745 (2006)

	15.	 Fedorov, V., Ballester, C.: Affine non-local means image denois-
ing. IEEE Trans. Image Process. 26(5), 2137–2148 (2017)

	16.	 Frosio, I., Kautz, J.: Statistical nearest neighbors for image denois-
ing. IEEE Trans. Image Process. 28(2), 723–738 (2019)

	17.	 Huang, F., Lan, B., Tao, J., et al.: A parallel nonlocal means algo-
rithm for remote sensing image denoising on an intel xeon phi 
platform. IEEE Access 5, 8559–8567 (2017)

	18.	 Jha, R.K., Chouhan, R.: Dynamic stochastic resonance-based 
grayscale logo extraction in hybrid svd-dct domain. J. Franklin 
Inst. 351(5), 2938–2965 (2014)

	19.	 Khmag, A.: Additive gaussian noise removal based on generative 
adversarial network model and semi-soft thresholding approach. 
Multimedia Tools and Applications pp 1–21 (2022a)

	20.	 Khmag, A.: Digital image noise removal based on collaborative 
filtering approach and singular value decomposition. Multimed. 
Tools Appl. 81(12), 16645–16660 (2022)

	21.	 Khmag, A., Al Haddad, S.A.R., Ramlee, R.A., et al.: Natural 
image noise removal using non local means and hidden Markov 
models in stationary wavelet transform domain. Multimed. Tools 
Appl. 77(15), 20065–20086 (2018)

	22.	 Khmag, A., Al Haddad, S.A.R., Ramlee, R.A., et al.: Natural 
image noise removal using nonlocal means and hidden Markov 
models in transform domain. Vis. Comput. 34(12), 1661–1675 
(2018)

	23.	 Khmag, A., Ramli, A.R., Al-Haddad, S., et al.: Natural image 
noise level estimation based on local statistics for blind noise 
reduction. Vis. Comput. 34(4), 575–587 (2018)

	24.	 Khmag, A., Ramli, A.R., Kamarudin, N.: Clustering-based natural 
image denoising using dictionary learning approach in wavelet 
domain. Soft Comput. 23(17), 8013–8027 (2019)

	25.	 Liu, D., Wen, B., Fan, Y, et al.: Non-local recurrent network for 
image restoration. In: Advances in Neural Information Processing 
Systems 31 (2018)

	26.	 LIVE (2005) http://live.ece.utexas.edu/research/quality
	27.	 Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image qual-

ity assessment in the spatial domain. IEEE Trans. Image Process. 
21(12), 4695–4708 (2012)

	28.	 Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 
205 (2009)

	29.	 Sanjuán, M.A.: Stochastic Resonance. From Suprathreshold 
Stochastic Resonance to Stochastic Signal Quantization, by MD 
McDonnell, NG Stocks, CEM Pearce and D. Abbott: Scope: 
monograph. Level: graduate students and researchers. Taylor & 
Francis (2010)

	30.	 Shi, M., Zhang, F., Wang, S., et al.: Detail preserving image 
denoising with patch-based structure similarity via sparse repre-
sentation and svd. Comput. Vis. Image Understanding 206(103), 
173 (2021)

	31.	 Tian, C., Xu, Y., Li, Z., et al.: Attention-guided cnn for image 
denoising. Neural Netw. 124, 117–129 (2020)

	32.	 Tian, C., Xu, Y., Zuo, W.: Image denoising using deep CNN with 
batch renormalization. Neural Netw. 121, 461–473 (2020)

	33.	 TID 2013 (2013) http://ponomarenko.info/tid2013.htm
	34.	 Valsesia, D., Fracastoro, G., Magli, E.: Deep graph-convolutional 

image denoising. IEEE Trans. Image Process. 29, 8226–8237 
(2020)

	35.	 Wang, J., Guo, Y., Ying, Y., et al.: Fast non-local algorithm for 
image denoising. In: 2006 International Conference on Image 
Processing, pp 1429–1432 (2006)



1041Edge‑preserving image denoising using noise‑enhanced patch‑based non‑local means﻿	

1 3

	36.	 Zhang, K., Zuo, W., Chen, Y., et al.: Beyond a gaussian denoiser: 
residual learning of deep cnn for image denoising. IEEE Trans. 
Image Process. 26(7), 3142–3155 (2017)

	37.	 Zhang, K., Zuo, W., Zhang, L.: Ffdnet: toward a fast and flexible 
solution for cnn-based image denoising. IEEE Trans. Image Pro-
cess. 27(9), 4608–4622 (2018)

	38.	 Zhang, L., Dong, W., Zhang, D., et al.: Two-stage image denoising 
by principal component analysis with local pixel grouping. Pattern 
Recogn. 43(4), 1531–1549 (2010)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

Deepak Dhillon  received the 
bachelor’s degree from Panjab 
University, Chandigarh, in 2011, 
and the master’s degree from 
Thapar University, Patiala, in 
2015. He is currently pursuing 
the Ph.D. degree in image pro-
cessing with the Department of 
Electrical Engineering, IIT Jodh-
pur, India, under the Visves-
varaya Ph.D. Fellowship. From 
2011 to 2012, he worked as a 
Software Analyst at Newgen 
Software Technologies Ltd., 
New Delhi. He has served IEEE 
Student Branch of IIT Jodhpur as 

the Vice-Chair from 2017 to 2020. For two years, he was a member of 
the Rotaract Club of IIT Jodhpur. He received the IEEE Signal Process-
ing Society Travel Grant for presenting his paper at GlobalSIP 2018, 
Anaheim, CA, USA. 

Rajlaxmi Chouhan  is an Assistant 
Professor in the Department of 
Electrical Engineering at Indian 
Institute of Technology Jodhpur. 
She received her PhD from the 
Indian Institute of Technology 
Kharagpur (India) in 2015. Her 
current research interests include 
image quality assessment, noise-
aided image processing applica-
tions, education technology and 
technology-enhanced learning. 
Dr. Chouhan received the IEEE 
Region 10 WIE Student Volun-
teer Award in 2014, and the 
National Award for Best M.Tech. 

Thesis in Electronics and Electrical Engineering in 2012 by Indian 
Society of Technical Education, New Delhi. For her teaching contribu-
tions at IIT Jodhpur, she received the Teaching Excellence Award in 
2019 and the Dr. Vandana Sharma Memorial Award for Teaching Inno-
vation in 2021. Dr. Chouhan is a Senior Member of the IEEE and 
currently serves on the international Subcommittee of IEEE Women 
in Signal Processing (2022–24). 


	Edge-preserving image denoising using noise-enhanced patch-based non-local means
	Abstract
	1 Introduction
	1.1 Key contribution

	2 Proposed analogy for double well for image denoising application
	3 Proposed framework for SR-based edge-preserving denoising
	3.1 Initial similarity calculation
	3.2 SR-based iterative processing of similarity matrix
	3.3 Final aggregation process
	3.4 Finding the optimally-denoised output image
	3.5 Computational complexity

	4 Results and discussions
	4.1 SR-NLM vs NLM
	4.1.1 Subjective analysis

	4.2 How exactly does SR help in denoising here?
	4.3 Comparative characterization
	4.3.1 Benchmarking


	5 Conclusions and future scope
	References




