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Abstract
We develop a multimodal classifier for the cultural heritage domain using a late fusion approach and introduce a novel data-
set. The three modalities are Image, Text, and Tabular data. We based the image classifier on a ResNet convolutional neural 
network architecture and the text classifier on a multilingual transformer architecture (XML-Roberta). Both are trained as 
multitask classifiers. Tabular data and late fusion are handled by Gradient Tree Boosting. We also show how we leveraged 
a specific data model and taxonomy in a Knowledge Graph to create the dataset and to store classification results.

Keywords Cultural heritage · Multimodal · Deep learning · Text classification · Multilingual · Image classification · 
Transformer · Convolutional neural networks

1 Introduction

1.1  Motivation

Some domains within cultural heritage domains deal with 
knowledge that is not broadly known by the public, but 
only by domain experts. Despite many objects having been 
digitized, even those experts still struggle to find in online 
catalogs what they are looking for. Thus, they are forced 
to return to the cumbersome manual consultation of pub-
lished catalogs, or even card files. If such is the situation 
for experts, the broader public is still more removed from 
access to that information. The European production of silk 

fabrics is an example of one such domain. It is witness to 
an essential field of European and global history, linked to 
world trade routes, the production of luxury goods of enor-
mous symbolic importance, technological developments and 
the very advent of the Industrial Revolution. However, the 
material vulnerability of these objects and the institutional 
fragility of many local heritage organizations has rendered 
it relatively hidden to the public. As regards the informa-
tion about that heritage, many descriptions, and images of 
objects exist within in-house databases that are only avail-
able as local files. In other cases, those records are uploaded 
by many museums across the globe, in siloed repositories 
and heterogeneous, often incompatible formats. A few of 
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them give public access to the images and metadata of such 
silk objects through APIs, many more through their web-
sites, but harmonization and integration efforts have been 
very scarce. Therefore, it is very hard for general audiences, 
historical experts, and industry (e.g., fashion designers) to 
access this knowledge.

One possible application for a cultural heritage domain 
such as European silk fabrics are Exploratory search 
engines, which help users to explore a topic of interest [46]. 
They enable serendipitous discovery of items, and they are 
especially appropriate when these items come with rich 
structured metadata. ADASilk 1, named after Ada Lovelace, 
is such an exploratory search engine, based on a knowledge 
graph (KG), that enables to search and browse silk fabrics 
objects for both domain experts and users not necessarily 
familiar with this topic. Thus, not only historians or scholars, 
but also designers or simply fans of fashion can access such 
a significant and little-known part of our heritage.

Some records have essential information, like the produc-
tion year or the weaving techniques, semantically annotated, 
others include it only in rich textual descriptions, and for 
some objects it is not available at all. These missing meta-
data can be considered as gaps that potentially could be filled 
in. Thanks to the progress in natural language processing, 
information extraction, and image processing, there are now 
techniques that can help to address such problems. Digiti-
zation of culturally significant assets is a time-consuming 
process that requires experts and funding. This often forces 
a cultural institution to make a trade-off between the number 
of objects digitized and the effort per object. Less effort per 
object often implies a smaller number of details captured, 
less strict guidelines, and sometimes mistakes. Neverthe-
less, this area could benefit from automated aids for collec-
tion caretakers, that often must catalog similar or identical 
objects scattered across the world. Obtaining predictions 
or suggestions for their description and possible match-
ing pieces would be a great help for that task, taking also 
into account the many objects still waiting to be properly 
cataloged.

This paper presents methods that enable further annota-
tion of these museum objects through a multimodal classi-
fication approach that trains models to predict such missing 
metadata from images, text descriptions and other (availa-
ble) metadata. The outcome is then further used to enrich an 
underlying knowledge graph that feeds the ADASilk explor-
atory search engine. Domain experts can easily assess the 
quality of the automatically generated annotations through 
rich visualization and connections between the items.

1.2  Hypothesis

Our first hypothesis is that we can predict, fairly accurately, a 
set of domain-relevant properties of cultural heritage objects 
(silk fabrics) from images and text descriptions. Our sec-
ond hypothesis is that a multimodal approach involving both 
images, text descriptions and additional knowledge about 
other properties than those to be predicted will produce bet-
ter results than any method relying on a single modality. In 
this context, the term “better” refers to both, the quality of 
the results and the number of objects for which this informa-
tion is inferred. That is, we expect the multimodal approach 
to result in more correct predictions and in predictions for a 
larger number of objects than the single modality methods. 
These hypotheses will be evaluated in the context of digi-
tized metadata of silk fabric artifacts with data originating 
in multiple museums.

1.3  Contributions

The main scientific contributions of this paper are related 
to our research hypotheses. We introduce a multimodal 
machine learning approach, adapted to the cultural heritage 
domain, for predicting properties of digitized artifacts. We 
perform an in-depth analysis of the performance of our clas-
sification models, i.e., models based on individual modali-
ties and the multimodal classifier. Additionally, we intro-
duce a novel dataset2 to the cultural heritage and multimodal 
analysis domains that includes data for four different tasks 
and three different modalities. It consists of harmonized text 
and image data from heterogeneous, multilingual sources 
that went through different stages of preprocessing, clean-
ing, and enrichment like domain expert-guided entity linking 
and grouping.

Finally, we show how our metadata predictions can be 
properly represented through classes and properties in our 
data model, which includes using information about a.o. 
their time stamp and or the used algorithm, and consequently 
integrated into existing Knowledge Graphs.

1.4  Challenges

The challenges faced in this work can be split broadly into 
those pertaining to the creation of the dataset and those 
related to the automated annotation. The latter ones can be 
further categorized according to the modality that is used for 
predicting the properties of the objects.

1 https:// ada. silkn ow. org/. 2 https:// zenodo. org/ record/ 65909 57.

https://ada.silknow.org/
https://zenodo.org/record/6590957
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1.4.1  Data and labels

The data used in this work belongs to the cultural heritage 
domain. More specifically, it is related to silk textiles pro-
duced in Europe, primarily in the period between the 15th 
and the 19th centuries. In the domain of cultural heritage, we 
cannot expect all class labels to be equally likely or equally 
correlated. For example, in some locations, more silk fabric 
objects were produced than in others. Similarly, we know 
that the production of silk fabric objects in a given loca-
tion likely started after a certain point in time and possibly 
subsided after a certain date. We also know that catalogs are 
curated by humans and often have strong thematic biases. 
For example, certain museums focus almost exclusively on 
objects created within one location. The data we use in this 
work was aggregated from different sources. That is, it was 
crawled from 12 different museum or collection websites. 
Each museum may have different standards for how it col-
lected the underlying objects and how it digitized the infor-
mation related to these objects. Importantly, this gives each 
museum its own standards for how to write text descrip-
tions, how to create images, and how to annotate properties. 
Regarding these properties of digitized artifacts, accurately 
representing them requires adequate data modelling capabil-
ities and considerable domain expert collaboration. This col-
laboration is also important in creating a dataset for machine 
learning. Labels need to be mapped from annotations made 
in different languages and grouped into domain relevant 
classes. Due to the partially automated nature required to 
create the dataset, challenges arise that are common in such 
processes: label text requires normalization such as correct-
ing typos, unifying the styles of dates, and matching dif-
ferent locations to specific countries. Errors made in this 
process can often be systematic, for example, a failure to 
link a specific value of a property due to the form of writing 
it particular to that catalog will likely result in that value 
not being present in all records originating in that catalog.

1.4.2  Image classification

In the context of this paper, the classification of images aims 
to predict abstract properties of the silk fabrics depicted in 
the images. Whereas it may be relatively straightforward to 
learn to classify the material of a depicted piece of fabric, the 
prediction of semantic information such as the production 
place of the fabric, the period of time in which the fabric was 
produced or the technique used to manufacture the fabric is 
assumed to be much more challenging. Furthermore, it is 
assumed that there are interdependencies between the these 
properties of silk fabrics, e.g. a certain production technique 
may only have been used in a certain period of time. This is 
why multi-task learning is investigated for image classifica-
tion. However, standard multi-task classification frameworks 

require one reference label for every task to be learned dur-
ing training for every training sample; The challenge we 
have to face is that in real world data, as they were collected 
for the dataset presented in this paper, there may be many 
training samples for which annotations are unavailable for 
some of the target variables to be predicted. Accordingly, 
this fact must be taken into account in the training of a multi-
task classifier. Additionally, the available number of class 
labels constituting the class distribution of a variable is often 
imbalanced for real-world datasets. This constitutes a fur-
ther challenge to supervised learning, which is addressed 
by utilizing a suitable training strategy for the image clas-
sification method.

1.4.3  Text classification

Supervised approaches are often challenging to perform with 
data from the cultural heritage domain for several reasons. 
Text descriptions are not present for the majority of objects 
in an archive. Many of the text descriptions that are avail-
able, in most museums, tend to be short sentences, almost 
title-like. In specific domains, such as the cultural heritage 
of silk production, many of the terms used in the text are 
very domain specific. Each museum has their own standard 
of how and what to write in a text description: some may 
focus on the history of the objects and write very grammati-
cal paragraph-length descriptions meant to be read by the 
public, others may focus on the properties of the object and 
write a single enumerating sentence, and others still, may 
focus solely on the depictions or visual patterns of an object. 
Finally, museums are spread geographically, and thus we can 
expect to deal with multiple languages, making our problem 
multilingual and cross-lingual. To summarize, we end up 
with a small collection of domain specific texts, written in 
different languages, with different content both semantically 
and syntactically, and wildly varying lengths. These texts are 
then associated with labels, based on the provided properties 
of the object. As already discussed, these labels are not all 
equally likely or correlated, and many of these accidental 
regularities are likely to interact with the language and the 
particularities of the text style of the museum.

1.4.4  Multimodal classification

One of the challenges in this work is that we want to inte-
grate predictions made from images and text. Most work 
done in the literature, is exclusive to depictions or type 
of object: the image shows a scene or object and the text 
describes it. In our case, there may be no scene depicted 
in an object, and we do not consider describing the object 
beyond certain properties. For example, if we have a fabric 
that shows a certain pattern, describing the visual shapes 
of the pattern (e.g., triangles) is not a goal. Rather, we 
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need to deduce, from the image, properties of how, when, 
where, and with what the object was made. Similarly, with 
text descriptions, there may be a good amount of words 
that describe visual patterns, scenes depicted, and histori-
cal facts associated with the object, but the goal is, again, 
to determine those same intrinsic properties of the object’s 
making. Another challenge that is uncommon is the reduced 
and variable overlap between images and text descriptions. 
Not only is our work subject to a comparatively small data-
set, restricted by historical reality and difficulties of data 
collection, but we must also deal with the fact that for most 
archives of culturally relevant objects, many objects that 
have been photographed have no corresponding textual 
description. In fact, we’ll see that less than half of all objects 
have both these modalities. Another challenge, uncommon 
outside of retrieval scenarios, is that we can have multiple 
different images, with different angles and focus, per each 
individual object while it makes no sense to talk about mul-
tiple text descriptions per object. Yet another challenge we 
need to deal with, common to many real world applications 
but not to research datasets, is that we do not have all prop-
erties for all objects. For example, for a given object, we 
might know what material and techniques were used but not 
when or where it was made. Finally, our dataset, although 
drawn from several museums, contains under 30k objects 
and approximately 11k text descriptions. Effectively making 
it small compared to general datasets, but not uncommonly 
so for a dataset in the cultural heritage domain.

2  Related work

2.1  Cultural heritage domain

Since the development of the web, many Cultural Herit-
age (CH) organizations provide metadata on their items 
through some search engine, APIs or aggregators. Unfortu-
nately, there has been little unity in the data formats, which 
makes data integration a complex task. One solution to this 
problem is in the case of museum data is the use of Seman-
tic Web technology and more specifically the development 
of Knowledge Graphs based on ontologies that follow the 
open CIDOC Conceptual Reference Model (CRM). CIDOC-
CRM was developed for this purpose, i.e., to facilitate inter-
museum data integration. It provides many relevant classes 
and properties to represent domain-specific CH objects and 
is easily extendable. It is the outcome of more than 20 years 
of development by ICOM’s International Committee for 
Documentation (CIDOC) [19]. CIDOC-CRM can, how-
ever, only be considered a starting point for ontologies that 
deal with museum data, such as in our case. The fact that it 
can be easily extended makes it, however, easy to add more 

domain-specific classes and properties as they are needed in 
projects such as ours.

There are more and more efforts of different CH organiza-
tions to integrate their data with Semantic Web technology 
and building knowledge graphs: CultureSampo is the result 
of integrating heterogeneous cultural content [28]. The chal-
lenges consisted amongst others of converting legacy data 
into linked data and making it heterogeneous. Getty ULAN 
was used as structured vocabulary to find connections 
between two referenced persons, for example. One similar 
example is ArchOnto [34], which specifically addresses the 
challenges of CH data from and for national archives. Both 
can be an inspiration for work such as ours in this paper, but 
given how fine-grained the vocabularies in Cultural Heritage 
domains, such as ours, can be, it is still necessary to deal 
with the languages and domain specific vocabulary differ-
ently in each case.

The training data used for the experiment in this paper is 
fully extracted from the SILKNOW Knowledge Graph that 
relies on classes and properties defined by CIDOC-CRM and 
its direct extensions CRMsci (Scientific Observation Model) 
and CRMdig (Model for provenance metadata). All our data 
is therefore part of the specific CH domain of “silk fabrics” 
and accordingly semantically annotated and enriched, for 
example through linking and normalization of properties, 
such as used materials and weaving techniques.

2.2  Knowledge graphs and culture AI

Knowledge graphs allow the representation of multi-source 
information about many entities and their relationships to 
each other. The data stored in a Knowledge graph can then 
be used for many other tasks, especially when structured 
knowledge of a specific domain is relevant, e.g. the devel-
opment of product designs [37]. Other common domain-
specific fields are Medicine, Cyber Security and Finance, 
but Knowledge graphs are also used a lot to aid product 
development and research for language-based tasks such 
as question answering systems, recommender systems and 
information retrieval [23, 64]. A knowledge graph can also 
help with textual metadata-aided visual pattern extraction 
and recognition [11], which is very relevant for this paper. 
Lastly, as we deal not only with images, but also textual 
metadata, the SemArt project can be considered related: it is 
a multi-modal dataset for semantic art understanding. Unlike 
in this study, they did, however, not work towards metadata 
completion, but focused only on retrieval [24] .

2.3  Image classification

Applying and adapting machine learning techniques to sup-
port solving tasks in the context of preserving the cultural 
heritage is a growing field of research. Many works address 
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image-based classification of artworks by training an image 
classifier on the basis of images with known class labels 
to make predictions for images with unknown properties 
[21]. First works investigate classical machine learning 
approaches aiming to predict characteristics of a depicted 
painting [3]. In [7], one-versus-all Support Vector Machines 
are trained based on HOG features (histograms of oriented 
gradients, [16]) of images showing paintings, with the goal 
to predict the artist of the painting.

Instead of training a classifier to predict variables based 
on handcrafted image features, Convolutional Neural Net-
works (CNNs) allow for simultaneously learning features 
from given input images as well as learning a mapping 
of these features to class scores based on labeled training 
images [35, 36]. Thus, a trained CNN can be used to predict 
a class label for an object with unknown properties from an 
image depicting that object. CNN-based classifiers are also 
applied in many works addressing attribute prediction for 
depicted objects in the context of cultural heritage, where the 
focus is on making predictions for images showing paintings 
[11, 52]. In [58], the artist, the genre as well as the style of a 
painting are learned by means of a variant of AlexNet [35], 
achieving on average 68.3% correctly classified images for 
the three variables using the WikiArt dataset (http:// www. 
wikia rt. org/). Investigating the prediction of a painting’s art-
ist, Sur and Blaine [57] obtain 82.5% overall accuracy on the 
Rijksmuseum dataset [44] utilizing a ResNet18 [26]. In both 
cases, there is one CNN per classification task, and network 
weights pre-trained on a variant of the ImageNet dataset [17] 
are used to improve the classification performance.

Instead of training a separate CNN per task to be learned, 
the concept of multitask learning aims to exploit interde-
pendencies between related tasks by means of jointly learn-
ing them in one network and, thus, to improve the network’s 
performance in solving the individual tasks [10]. Multi-task 
learning for CNNs is addressed in many recent works [15] 
investigating different strategies for combining the training 
of several tasks. In the domain of cultural heritage, the most 
frequently used strategy applies a feature extraction network 
producing a high-level image representation that is shared 
among all tasks and which is processed by additional task-
specific layers designed to solve the individual classification 
tasks, e.g., [5, 25, 56]. These works do not only perform 
multitask learning for predicting characteristics of paintings 
on the basis of images, they also make use of pre-trained 
CNNs for the shared feature extraction network.

In contrast to all works cited so far, which are dedicated 
to the classification of paintings, we address the CNN-
based classification of images of silk fabrics. Even though 
there are papers dealing with the CNN-based classification 
of images of textiles, e.g. [29, 43, 48, 61], distinguishing 
different textile patterns, no work could be found address-
ing the classification of images of fabrics in the context of 

cultural heritage except for our previous one. The image 
classification network presented in this paper can be seen as 
an expansion of [20], aiming to predict different properties 
of silk fabrics; the network takes images of silk fabrics as 
input, where a high-level image representation produced by 
a fine-tuned ResNet [27] is shared among all task-specific 
classification branches that deliver the predictions. In con-
trast to [20] as well as [5, 25, 56], we adapt the training of 
the network weights such that hard training examples get a 
higher impact on the weight updates. In this way we want 
to deal with the problem of class imbalance in the training 
data, aiming to improve the classification performance for 
underrepresented classes. For that purpose, we combine a 
variant of the focal loss [38] with the multi-task softmax 
cross entropy loss used in [20], leading to a training strat-
egy that focuses on hard training examples in a multi-task 
scenario while allowing for missing class labels at training 
time for some of the tasks to be learned. Furthermore, we 
investigate the prediction of four variables instead of three 
like in [20] and evaluate our methodology on a much larger 
dataset consisting of images from several museum collec-
tions instead of one collection only.

2.4  Text classification

Much of the recent work in natural language processing has 
focused on fine-tuning large transformer neural networks 
[59] pretrained as language models such as BERT [18] and 
RoBERTA [41]. The most common approach is to add a 
task-specific head to the pretrained transformer to create the 
final model architecture. The full model is then trained on 
the task specific data. This is the process that is called fine-
tuning. On most natural language processing (NLP) tasks, 
some variation of this approach provides the best results. 
Previously, many multilingual and cross-lingual artificial 
intelligence approaches to text used pretrained and aligned 
word-embeddings, such as the aligned fastText embeddings 
[8, 30]. But similarly to the overall trend in NLP, recent 
approaches have also moved towards using fine-tuning of 
pretrained transformers. Our work follows this trend, we 
fine-tune the pretrained XLM-R [14]. Multitask models are 
often very desirable from a practical perspective: a single 
model is easier to deploy and maintain, offers faster infer-
ence and occupies less space in memory when compared to 
multiple models. Further, multitask learning can often result 
in measurable improvements [9]. [40] showed that multitask 
training of BERT improved results across several tasks.

The use of Natural Language Processing, especially text 
classification, in the cultural heritage domain isn’t very 
widespread. This is a consequence of the fact that the digiti-
zation of artifacts usually includes images and some labels 
or tags, but text descriptions are far less common. The high-
light is the work of [51] on text descriptions of paintings 

http://www.wikiart.org/
http://www.wikiart.org/
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from the Rijksmuseum Amsterdam. They used an Informa-
tion Extraction approach rather than classification. Their 
pipeline included Named Entity Recognition, Part-of-Speech 
tagging and dependency parsing to extract concepts from the 
text, those concepts were then matched to an ontology and 
finally classified according to a role. These roles included 
all the properties we use: Technique, Material, Date, Place, 
plus others such as “Creator” of the artwork, style, and the 
subject depicted. Their data, although limited to a total of 
250 text descriptions, was manually annotated and each text 
contained a concept-role pairing. They reported an average 
F1 of 61.2% compared to non-expert human average of 
65.1%. Our work differs from this in several key areas. First, 
our classification approach is more generalizable, as it does 
not necessarily require information to be directly present in 
the text and more resilient to misspellings and non-standard 
grammar. In fact, even correctly linking information known 
to represent a certain label (e.g. material) from tables can be 
challenging in the presence of spelling issues. Second, we 
work with multilingual data from multiple sources, which 
presents additional challenges. Finally, our dataset contains 
many more samples and uses automatic labelling based 
on information present in catalogs rather than externally 
annotated.

2.5  Tabular classification

Gradient Boosted Decision Trees (GBDT) [22] has long 
been the state of the art and the common choice for handling 
tabular data. Concurrently with our work, Neural Network 
based alternatives have been proposed which can outper-
form GBDT in certain situations [2, 31]. To the best of our 
knowledge, there has been no work published on tabular 
classification in the cultural heritage domain that we can 
provide an overview of.

2.6  Multimodal classification in cultural heritage

[4] presented a joint image-text neural network architecture 
for classifying images of paintings by artist and year. Their 
text input consisted of a limited set of labels (style, media, 
and genre) rather than text descriptions. Conceptually, this is 
similar to CLIP-Art [13], an application of CLIP [49] to the 
retrieval of artwork images. CLIP learns to associate a small 
text vocabulary akin to labels with images through joint con-
trastive pre-training. This was applied to The iMet Collec-
tion dataset [63], possibly the most similar dataset to our 
own, it includes images of artworks associated with labels 
(also called “tags”) that describe what is visually depicted 
in the object (e.g. “Dragons”), its visible properties (dimen-
sions, medium) as well as other culturally relevant properties 
(e.g., country of origin). Another very relevant dataset is in 
this context is Artpedia [55], a dataset of images of paintings 

associated with textual descriptions tagged as either “visual 
sentences” that describe the scene depicted in the painting or 
as “contextual sentences” that describe other aspects of the 
painting such as its historical context. The tasks for which 
this dataset was created consist of separating visual from 
contextual sentences and the retrieval of the correct image 
for a given text. The differences between the related work 
and our work are clear. We propose to handle images, mul-
tilingual text, and tabular data as equal modalities. We also 
propose to handle data from multiple collections.

3  Data

3.1  Knowledge graph

The SILKNOW Knowledge Graph3 lies at the center of 
all efforts to create a unified representation of the meta-
data of European silk textiles, particularly from the 15th 
to the 19th century. All the data used in our experiments 
was downloaded from 16 sources, most of them are public 
online museum records, for which we built crawling and 
harvesting software. In addition to that, we have data from 
the SILKNOW4 project partners Garin and the University 
of Palermo (Sicily Cultural Heritage). The dataset used in 
the experiments was created from a full export of all objects 
in the knowledge graph, which consists of the metadata of 
38,873 unique silk objects before any preprocessing steps. 
This export includes in total 74,527 unique image files.

To model this heterogeneous data from so many sources, 
we chose and relied strongly on the CIDOC Conceptual 
Reference Model (CRM). We also developed our own SIL-
KNOW ontology5 to extend CIDOC-CRM with further 
classes and properties for cases where it did not cover some 
specifics of the silk textile domain and also for some extra 
information. For example, the confidence score for metadata 
predictions, once we started integrating the results of those 
predictions back to the KG.

To develop a converter6 that could unify all the original 
data with all these classes and properties into one knowledge 
base, mappings have been created by domain experts. And 
on a technical level, all museum records had to be harvested 
and were first converted into a common JSON file format 
through our crawler software7 but each array inside this 
format still had the original field labels from the museums 
before the final conversion. For example: the majority of 

3 https:// zenodo. org/ record/ 57430 90.
4 https:// silkn ow. eu/.
5 https:// ontome. net/ names pace/ 36.
6 https:// github. com/ silkn ow/ conve rter/.
7 https:// github. com/ silkn ow/ crawl er/.

https://zenodo.org/record/5743090
https://silknow.eu/
https://ontome.net/namespace/36
https://github.com/silknow/converter/
https://github.com/silknow/crawler/
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museums have a field for describing the production time of 
a silk object, but in most cases museums use different names 
for their field. Moreover, the museums are from all over the 
world and we are facing different languages for both the 
field names and their values. This is why we created a map-
ping for, e.g, a field named “Date” (Metropolitan Museum 
of Arts) and the class E12_Production with the prop-
erty P4_has_time-span and another class E52_Time-
Span. Likewise, a mapping rule will be written for the field 
named “date_text” (API of the Victoria and Albert Museum) 
and for the (Spanish) field named “Datación” (Red Digital 
de Colecciones de Museos de España).

Another very central part of our knowledge representation 
is the SILKNOW Thesaurus8, a controlled vocabulary which 
contains many explicit and multilingual concept definitions 
for materials, techniques, and motif depictions relevant for 
these silk textiles. Thanks to this thesaurus, a lot of infor-
mation and entities from very explicit categorical fields of 
the original museum records could be linked, without any 
advanced machine learning techniques - the string literal 
could just be matched with the (multilingual) labels of the 
thesaurus and then replaced with a unique concept link. 
This explicit representation of knowledge forms the core of 
the dataset used to predict missing metadata. This includes 
cases where a categorical value is either not given at all or 
“hidden” in longer textual descriptions and not explicitly 
semantically annotated.

Once all the modelling, download, conversion and enrich-
ment steps were taken, the final knowledge graph was 
uploaded onto a SPARQL endpoint from where all the data 
across languages and museums can be queried the same way. 
To make access easier, we also developed a RESTful API, 

so it is not necessary for web developers to write SPARQL 
queries, and an aforementioned exploratory search engine 
on top of this API, called ADASilk. It is aimed at users 
with only little technical background or little background 
knowledge about the domain of silk, to make them able 
to discover a lot of the data in the KG. ADASilk offers an 
advanced search with many filters, some topic suggestions, 
and in general a clean visual interface that shows all objects 
with their images and metadata.

3.2  Extracting and normalizing labels

The development of the SILKNOW Knowledge Graph is 
a combined effort of data processing that relies on a data 
modelling and annotation process created in collaboration 
with domain experts. This is especially true for the SIL-
KNOW Thesaurus. The group labels used in the experiments 
in this paper are based on the hierarchy and relations of 
concepts of the silk textile domain described in this con-
trolled vocabulary. As described in Sect. 3.1, a big part of 
categorical property values could be easily extracted, linked 
and through the string replacement indirectly automatically 
normalized thanks to the SILKNOW Thesaurus. This means 
that many concepts are accessible even though there were 
originally different strings, including typos in some cases, 
synonyms, or translations. An example would be a weav-
ing technique like “Damask”, which would be “Damas” in 
French and “Damasco” in Spanish and Italian: for all these, 
we replace the string literal with one link to the same con-
cept. In addition to the SILKNOW Thesaurus, we also use 
linked open data like such as GeoNames9 to normalize and 
link place names.

Fig. 1  A record from the MET 
museum with a missing prop-
erty represented in the knowl-
edge graph using our ontology 
and controlled vocabularies

8 https:// skosm os. silkn ow. org/ thesa urus/. 9 https:// www. geona mes. org/.

https://skosmos.silknow.org/thesaurus/
https://www.geonames.org/
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Matching strings with such thesaurus or other controlled 
vocabularies was not without challenges. As will be also 
explained in more detail in Sect. 6, misspellings or unique 
punctuation could still cause the matching process not to 
work properly. To give an example: If the string value of 
a record was “silk; gold thread” the latter would not have 
been linked, due to a bug that did not properly consider a 
semicolon as a separator. Other such cases existed as well, 
as the development of the SILKNOW Knowledge Graph 
is an ongoing process and concurrent with this work. See 
Fig. 1 for an illustration of a museum record in the knowl-
edge graph.

The aforementioned hierarchy defined in the SILKNOW 
Thesaurus can be used to select specific types or subtypes of 
properties. To refer back to the previous example, we could 
select only objects with the weaving technique “Damask”, 
but also only objects made with “Two-coloured damask” 
which is even more specific. Based on the Thesaurus, we 
can also make sure that we only choose objects based on 
equivalent levels of this hierarchy.

Based on these enrichments and the linking process, we 
created a pipeline to extract the dataset based on pre-speci-
fied criteria. We first developed a comprehensive SPARQL 
query that outputs all museum objects described in the 
Knowledge Graph (KG) and includes, if available, the most 
relevant properties: the identifier of the object in the knowl-
edge graph, the museum where the description comes from, 
the text description, and URL links to the images that illus-
trate the object. The results of this query were exported as 
a CSV file, which we then post-processed to make sure that 
we have a format of one row per object. In this final format, 
the CSV is used as the basis for all experiments.

3.3  Label grouping

In principle, the Knowledge Graph contents can be used 
to generate training and test samples for the classifiers 
described in Sect. 4. One would just have to associate the 
images and/or the text given for a record with the annota-
tions in the categorical variables of interest. The available 
annotations can be easily converted into class labels. How-
ever, a statistical analysis of these annotations revealed that 
most of them occur very rarely in the data, while for all cate-
gorical variables there were one or a few classes which were 
dominant in the sense that many records belonged to them. 
Supervised classifiers have problems with imbalanced train-
ing data sets, and it would seem very difficult for a classifier 
to successfully differentiate classes for which it has seen 
only a very small number of training samples, if on the other 
hand there are thousands of samples for some other classes. 
To still be able to extract meaningful information from the 
available modalities using supervised methods while at the 
same time having the chance of achieving a reasonably good 

classification performance, a simplified class structure was 
defined. Domain experts analyzed the class distributions and 
aggregated classes corresponding to different categories into 
compound classes. Care was taken for the aggregated classes 
to be consistent with the Thesaurus, and aggregated only if 
they were considered to be related according to the domain 
experts. At the same time, the aggregation was guided by the 
frequency of occurrence of class labels so that the compound 
classes would occur frequently enough to be used for train-
ing the supervised classifiers described in Sect. 4.

The resultant simplified class structure was integrated 
into the Knowledge Graph in the form of so-called group 
fields, which were made available for all semantic properties 
of interest, principally, the ones corresponding to the dif-
ferent tasks in this work. Such grouping was applied to the 
following properties: Material, Technique, production place 
(with a country granularity), production time (with the cen-
tury granularity) and the object type or object domain group, 
to be able to filter out non-textiles that use silk. Grouping 
was not an easy task, domain experts had to deal with more 
than 200 concepts that had to be grouped according to the 
aforementioned categories. Techniques were the most com-
plex to group. To do so, domain experts grouped the con-
cepts according to two fundamental criteria: (1) whether 
they belonged to the same hierarchy, for example, velvet 
and its types. In fact, there are many types of velvet, clas-
sified depending on the nature of the pile such as broderie 
velvet, ciselè velvet, cut velvet, pile-on-pile velvet, uncut 
velvet, etc. (2) If they were somehow related to a certain 
technique, for example, the effects obtained of applying dif-
ferently warp and weft, that is, whenever a yarn is introduced 
into a fabric to produce an effect or pattern. On the other 
hand, materials were not complex as they were made in large 
groups according to their origin, that means according to the 
product obtained from the processing of one or more raw 
materials, in the course of which their structure has been 
chemically modified, e.g. animal fibres are distinguished 
from vegetable fibres. Using a conversion table for aggre-
gation prepared by the domain experts, the contents of the 
group fields could be derived automatically from the original 
semantic annotations. Having thus expanded the Knowledge 
Graph, training, and test samples could be easily generated 
from it by appropriate SPARQL queries that would export 
the contents of the group fields associated with each record.

3.4  Dataset preparation and properties

The goal of the dataset preparation is the conversion of the 
knowledge graph data with normalized and grouped labels 
described, respectively, in Sects. 3.1, 3.2, and 3.3, into a 
dataset for the experiments in Sect. 6 using the classification 
methods described in Sect. 4.
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The first step was to select the records in the knowledge 
graph that were relevant to the domain.

The second step as to select only records that contained 
a value for one of the variables to be predicted, i.e., labeled 
samples. Uncommon labels, with a total frequency below 
150, were discarded. The final step was to randomly split 
the records into disjoint sets:

• A training set consisting of 60% of the data for super-
vised learning;

• A validation (or development) set, consisting of 20% 
of the data for hyperparameter tuning and multimodal 
supervised learning;

• A test set, consisting of 20% of the data, for evaluation 
of the proposed method.

Given that the objective is to train and evaluate a mul-
timodal multitask approach on records, that regularities 
exist within each collection (i.e., museum) that comprises 
the data, that the text modality is also multilingual, and 
that both modalities and task specific labels may be miss-
ing from a record, we believe the most reasonable way to 
split the dataset is a random split of records. The distribu-
tion of the data per each set and class label can be seen 
in Table 1.

The distribution of samples over the museums can be 
found in Table 2 and an overview of the modalities can be 
found in Table 3. We can see how 27,120 or 96.60% of the 
28,077 records about annotated fabric objects contain at 
least one image, but only 11,034 or 39.29% of them con-
tains a text description. The overlap consists of 10,664 or 
37.98%. The proportion between training validation and test 
sets in each case corresponds roughly to the aforementioned 
60-20-20 split.

Text data in our dataset consists of descriptions of fab-
rics or objects made mostly of fabrics. These descriptions 
range in length from a short sentences to multi-sentence 

Table 1  Class structure and class distribution of the records

Variable name Class name Total Training Validation Test

Timespan 19th century 5849 3492 1180 1177
18th century 4397 2576 901 920
20th century 2483 1520 483 480
17th century 1134 689 231 214
16th century 880 542 180 158

Place FR 5265 3156 1037 1072
IT 3205 1853 687 665
GB 2837 1721 562 554
ES 2630 1605 521 504
IN 1190 735 231 224
CN 699 426 127 146
IR 671 409 142 120
JP 533 325 92 116
TR 331 205 57 69

Technique Embroidery 3123 1814 657 652
Velvet 2193 1273 454 466
Damask 1685 1004 333 348
Other tech-

nique
1150 722 219 209

Material Animal fibre 17,382 10,387 3445 3550
Vegetal fibre 2051 1255 396 400
Metal thread 2046 1223 422 401

Table 2  Names of the museums contributing to the dataset with their 
identifiers (ID) used in this paper, and distribution of the 28,077 
records over the museums for the training (train.), validation (val.) 
and test sets

Museum name ID Total train. val. Test

Metropolitan Museum of 
Arts

met 6524 3835 1325 1364

CDMT Terrassa imatex 6119 3690 1204 1225
Victoria and Albert 

Museum
vam 5527 3300 1133 1094

Rhode Island school of 
design

risd 3226 1913 634 679

Boston Museum of fine 
arts

mfa 2610 1579 517 514

Garín 1820 garin 1558 972 300 286
Collection du Mobilier 

National
mobilier 1293 796 267 241

Red Digital de Colecci-
ones de

Museos de España cer 781 490 142 149
Joconde Database of 

French
Museum collections joconde 375 224 78 73
Smithsonian Museum smithsonian 38 29 14 14
Versailles versailles 18 8 5 5
Art Institute of Chicago artic 8 4 2 2

Table 3  Modality statistics of all records in the dataset that provide a 
class label for at least one of the variables

The values are given for the training (train.), validation (val.) and test 
sets as well as for the total dataset

Dataset Total With With With image Without images
image text and text and text

train. 16,840 16,260 6717 6495 358
val. 5602 5419 2184 2101 100
Test 5635 5441 2133 2068 129
Total 28,077 27,120 11,034 10,664 587

100.0% 96.6% 39.3% 38.0% 2.1%
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paragraphs to multi-paragraph texts with thousands of 
words. Some descriptions focus primarily on a single aspect, 
such as a scene depicted or the history of the object, while 
others focus on various properties of the object. Table 4 
shows some examples of these descriptions. To eliminate 
some errors present in the data, we removed any text descrip-
tions smaller than 60 characters. The resulting distribution of 
lengths is summarized in Table 5. These descriptions are in 4 
different languages: English, Spanish, French, and Catalan. 
The counts for each are shown in Table 6.

4  Methods

4.1  Image classification

The goal of the image classification is to predict one class 
label per classification task, i.e., the prediction of a class 
label for each of the target variables technique, timespan, 
material and place, for an image that illustrates an object. 
For that purpose, an image classifier is trained using all 
images of all records contributing to the dataset described 
in Sect. 3.4. We propose to use a convolutional neural net-
works (CNN) for that purpose, motivated by the success 
of CNN in image classification. As there are many records 
with annotations for more than one of these variables, we 
propose to train the classifier to predict all classes simulta-
neously in a multitask framework, exploiting the inherent 
relations between the variables to learn a joint representation 
that is used by task-specific classification heads. A detailed 
description of the chosen network architectures can be found 

in Sect. 4.1.1, whereas the strategies used for training are 
presented in Sect. 4.1.2.

4.1.1  Network architecture

Figure 2 shows the structure of the CNN for multitask learn-
ing for the prediction of the four target variables. Its input 
consists of an RGB image scaled to a size of 224 x 224 pix-
els. This image is presented to the ResNet 152 network of 
[27] pre-trained on ImageNet [17], which serves as a generic 
feature extractor for the image [53] and produces a feature 
vector of 2048 dimensions. We apply dropout with a proba-
bility of 10% after this layer [54]. This is followed by Lfc = 2 
fully connected layers, the first one having 1024 and the 
second one having 128 nodes, which are shared by all tasks. 

Table 4  Examples of text descriptions present in our dataset

Text description

White and silver striped fabric with supplementary weft of flat silver strips whose floats form vertical stripes with leaves at intervals. White 
floats of the weft form outlines for serpentine floral sprays spread over the striped areas.

Furnishing fabric, woven, British, c. 1895, Alexander Morton & Co., red/brown plain silk weave
Dibujo Palma en color azul grisáceo Urdimbre: Trama: 36 pasadas Rapport: 65 cm ancho y 104 cm alto (incompleto)

Table 5  Text length in 
characters and space delimited 
tokens

Min Q1 Median Mean Q3 95th percentile Max

Characters 60 173 343 693 856 2367 16,333
Tokens 7 28 56 115 142 392 2826

Table 6  Language distribution of text descriptions based on language 
of the museum

English Spanish French Catalan

Records 7271 1975 1126 680

Fig. 2  Network architecture of the CNN for multitask image classi-
fication. The input image scaled to 224 x 224 pixels is presented to a 
pre-trained ResNet-152 (grey) to extract generic features. The result-
ing 2048-dimensional feature vector is mapped to a domain-specific 
joint representation of 128 dimensions by two fully connected layers 
(blue). The task-specific classification branches consist of one soft-
max layer each (orange) that delivers the class scores for the corre-
sponding variable. Kmat , Kts , Kp , and Kte denote the number of class 
labels for the tasks material, timespan, place, and technique, respec-
tively
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Rectified linear units [45] are used as nonlinearities in both 
of these joint layers. They produce a joint representation 
of the image of Nr = 128 dimensions. This representation 
is processed by four task-specific classification branches, 
each consisting of one additional softmax layer only, which 
delivers the class scores ykm(�,�) for the input image � to 
belong to class k for variable m. The number of nodes of 
the softmax layer corresponds to the number of classes to 
be differentiated for a specific task. The CNN architecture 
is shown in Fig. 2.

The CNN predicts one class label per task for every 
image. In case of multiple images per record, one such class 
label is predicted for each one of the images and the pre-
diction with the highest softmax score is chosen to be the 
prediction for the record.

4.1.2  Training

In training, the parameters � of the CNN described in 
Sect. 4.1.1 are learned by minimizing a loss function E(�) . 
The parameters of our network consist of the parameters �R 
of ResNet-152, which are initialized from a pre-trained 
model published by [27], and the parameters �FC of the fully 
connected and softmax layers, which are initialized ran-
domly by a variant of the Xavier initialization also described 
in [27]. In the training procedure, we determine the param-
eters �Rt of the last NLRT layers of ResNet-152 considering 
exclusively entire residual blocks and the parameters �FC of 
the fully connected layers, whereas the parameters �Rf  of the 
first 152 − NLRT ResNet-152 layers are frozen [62]. Thus, the 
parameter  vector  cons is ts  of  three  subsets : 
� =

(

�
T
Rf
,�T

Rt
,�T

FC

)T

 . NLRT  is a hyperparameter to be 
tuned.

Two loss functions can be used for training the network. 
The first one, originally proposed in [20], is an extension of 
the standard softmax cross-entropy loss with weight decay 
[6]:

In Eq. 1, ykm
(

�n,�
)

 is the softmax score for the nth training 
image �n to belong to class k for variable m. The indicator 
variable tnmk is one if the class label of sample n for variable 
m is k and zero otherwise. The sum is taken over all N train-
ing samples and Km classes for task m. Mn is the set of tasks 
for which the true class label is known for the training sam-
ple n, so that the loss in Eq. 1 considers exclusively samples 
xn with tnmk = 1 for learning task m. In this way, the fact that 
the annotations for most samples are incomplete, i.e. that 
annotations are only available for a subset of the variables 

(1)
ESCE(�) = −

N
∑

n=1

(

∑

m∈Mn

Km
∑

k=1

tnmk ⋅ ln
(

ykm
(

�n,�
))

)

+�R ⋅ R
(

�Rt,�FC

)

to be predicted, can be considered. If multiple annotations 
are available, the corresponding classification losses will 
be backpropagated to the joint layers from multiple clas-
sification branches, thus supporting the learning of a joint 
representation for all variables. The outputs for variables 
for which the true class label is unknown will not contribute 
to the loss and to the parameter update. Finally, the term 
R
(

�Rt,�FC

)

 corresponds to regularization by weight decay, 
which is only applied to the parameters to be updated in 
training; �R is a hyperparameter defining the influence of 
this term on the result.

One problem of the data described in Sect. 3.4 is its 
imbalanced class distribution. In this case, minimizing the 
cross-entropy loss in Eq. 1 will favor the dominant classes, 
resulting in a poor performance for the underrepresented 
ones. To mitigate these problems, a multi-class extension 
of the focal loss [38, 39] with regularization is utilized for 
training:

The only difference between the loss functions in Eqs. 1 
and 2 is the penalty term 

(

1 − ykm
(

xn,�
))� , where � is a 

hyperparameter modulating the influence of this term on the 
result. This penalty term forces the loss to put more empha-
sis on samples that are difficult to classify (having a small 
score ykm for the correct class). Assuming the samples of 
underrepresented classes to be hard to classify by the CNN, 
this loss is expected to improve the results for these classes.

Starting from initial values derived in the way described 
earlier, stochastic minibatch gradient descent based on 
the ADAM optimizer [32] is applied to determine the 
CNN parameters, using the default parameters ( �1 = 0.9 , 
�2 = 0.999 , � = 10−8 ) and a minibatch size of 300. The base 
learning rate � is another hyperparameter to be tuned. We 
use early stopping and use the model parameters leading to 
the lowest loss on the validation set.

4.2  Text classification

Our problem is defined as value prediction for certain prop-
erties of an object, a silk fabric, given its text description, 
which can be written in any one of the four languages listed 
in Table 6. We have 4 tasks, each denominated according to 
the property of the underlying fabric object we want to pre-
dict: the technique and material used to create it, the times-
pan or time period when it created, and the place where 
it was created. While some descriptions directly contain 
some of this information, as seen in Table 4, this is suffi-
ciently uncommon to prevent a purely extractive approach 

(2)

EF(�) = −
∑

m∈Mn

(

N
∑

n=1

Km
∑

k=1

(

1 − ykm
(

xn,�
))�

⋅ tnmk ⋅ ln
(

ykm
(

xn,�
))

)

+�R ⋅ R
(

�Rt,�FC

)
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from yielding good results. For example, of the 3 texts we 
showed, only one gives any indication as to where it was 
produced (“British”). We instead rely on regularities pre-
sent in the text descriptions to make informed guesses. More 
technically, we frame our problem as a multiclass, multitask, 
multilingual text classification problem. That is, given a text 
description of a fabric, written in any language, we want to 
assign exactly one label out of a set of mutually exclusive 
class labels for each of the properties we wish to predict, 
i.e., the tasks.

The text classifier uses a hard parameter sharing based 
multitask architecture [50], shown in Fig. 3. It consists of 
a shared encoder followed by task-specific classification 
heads. The encoder is the multilingual large pretrained 

transformer, XML-R [14]. Following the method outlined 
in [18], a special classification token, CLS, is prepended 
to all inputs. The final hidden state corresponding to this 
token is used as the aggregate sequence representation. It 
is the only transformer output forwarded to the classifica-
tion heads. All classification heads are identical except for 
the output dimension of the last layer, the output projection 
layer, which equals the number of classes of the task. A dia-
gram of a classification head is shown in Fig. 4. A softmax 
function can convert the output logits of the last layer to 
normalized probabilities.

To finetune our transformer-based classifier, at each step, 
a task is randomly selected using proportional sampling. 
A batch of examples for this task is then created and fed 
to the classifier. The cross entropy loss is then calculated 
and weights adjusted through backpropagation. Adam [33] 
is used as the optimizer with weight decay [42].

4.3  Tabular classification

When considering Knowledge Graph records of objects, 
we can represent them as structured data. That is, a table 
where each row represents an object and each column a 
property. We use four separate task-specific classifiers to 
perform tabular classification. These all use the same learn-
ing algorithm, Gradient Boosted Decision Trees (GBDT) 
[22], implemented in XGBoost [12]. The input to the tabu-
lar classifier consists of the categorical values of non-target 
variables plus the identifier for the museum, as shown in 
Table 7. We replace missing values for a feature with a 
predefined value, represented by the symbol “[NA]” (“Not 
Available”) in the table. The output of the classifier, for each 
example, consists of N-dimensional logit vector. It is used 
with the softmax function to predict a target class out of N 
possible classes. This classifier trained by gradient descent 
to minimize the cross-entropy loss.

4.3.1  Hyperparameters

While a detailed explanation of each hyperparameter that 
control the resulting model and learning of GBTs is beyond 
the scope of this work, we believe some contextualization 

Fig. 3  Multitask architecture: a shared XLM-R based encoder fol-
lowed by task specific classification heads. The input to each classi-
fication head is the ouput of the transformer “C” corresponding to the 
input token “[CLS]”

Fig. 4  Task specific classifica-
tion head: a fully connected 
(FC) layer followed by a tanh 
activation, followed by the 
output projection FC layer. 
Dropout is applied before both 
FC layers

Table 7  Tabular Classification, 
one example input row per task

Note: time label format changed to roman numbers for ease of readability

Target Target Feature

variable value Museum Place Timpespan Technique Material

Place FR risd – [NA] [NA] Animal fibre
Timespan XVIII met [NA] – Embroidery Animal fibre
Technique Other technique garin ES XX – Vegetal fibre
Material Vegetable fibre vam GB XIX Embroidery –
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is required. This is due to the relatively larger number of 
hyperparameters tuned for GBTs in Sect. 5.3 compared to 
the Neural Network based methods used for the other modal-
ities, and for the convenience of the reader.

The hyperparameters max_depth (maximum depth of a 
tree), min_child_weight (minimum weight for tree partition-
ing), and gamma (minimum loss reduction for tree partition) 
all directly control model complexity, which in turn can have 
significant consequences in terms of fitting. The hyperpa-
rameters subsample (the percentage of data sampled per iter-
ation) and colsample_bytree (the ratio of features sampled 
per iteration) can reduce overfitting by adding random noise 
to the iterative tree building process. Finally, the learning 
rate and number of rounds control, respectively, the amount 
of learning per round and the total amount of learning (i.e., 
the total number of trees).

4.4  Multimodal classification

Our approach to multimodal classification, shown in Fig. 5, 
follows a decision level late fusion approach, in which the 
decision (prediction) from each of the 3 modalities serves as 
the input to a classifier that takes the final decision on which 
label to assign to the record. We choose the GBDT algorithm 
for the multimodal classifier. The input is just one column 
for each of the three modalities, each column containing 
the class labels predicted by the corresponding classifier for 
all of the tasks. If a modality is missing, the values in the 
corresponding column are set to the missing value indicator 
[NA], just in the way missing class labels are considered by 
the tabular classifier. Thus, the multimodal classifier can 
cope with incomplete records (i.e. records with missing 
modalities) by design. We created a separate multimodal 
classifier for each task, i.e. no multitask learning is applied 
in multimodal classification. .

There are several advantages to late fusion over early or 
intermediate level fusion in our case. Firstly, each record 
may have multiple images but a single text description. 
Effectively, the input dimensionality is different. With late 
fusion, we allow the image classifier to deal with it inde-
pendently, e.g., by classifying multiple images for the same 
object and picking the decision with the highest confidence. 
Secondly, the decisions, represented by a one-hot class vec-
tor, have a smaller dimensionality than intermediate repre-
sentations and thus are more appropriate for scenarios with 
few samples, which is a common problem in the context of 
our domain (cultural heritage).

5  Experiments and results

5.1  Image classification

For all experiments in the frame of image classification, 
we use the split of the dataset described in Sect. 3.4 in 
order to train the CNN for image classification presented 
in Sect. 4.1.1 by means of the training strategy described in 
Sect. 4.1.2. We use all images that are assigned to a record 
for training and classification, assigning the class labels of 
the corresponding records to all images associated with it. 
As pointed out in Sect. 4.1.1, for records associated with 
multiple images, all images are classified by the CNN at 
test time, and the image-based prediction having the highest 
class score is chosen to be the final result.

Experimental setup The workflow of our experiments is 
as follows: The training dataset is used to update the weights 
(

�
T
Rt
,�T

FC

)T of the CNN with early stopping. The model 
parametrization and hyperparameters leading to the lowest 
loss are calculated on the validation set. In this context, we 
tuned the hyperparameters listed in Table 8 and described in 
Sect. 4.1, choosing the values achieving the highest average 
F1 scores on the validation set. Table 8 also presents the 
selected hyperparameter values. Finally, all test set records 
for which at least one image is available are used for an 

Fig. 5  Architecture of the multimodal classifier. Each classifier based 
on a single modality takes its own independent decision, Dc , which 
serves as input to the multimodal classifier. The final decision D is 
taken by the multimodal classifier, predicting a task-specific label and 
assigning it to the record

Table 8  Hyperparameters tuned (image classification)

An optimal variant is obtained with �=1e-4, �
R
=1e-3, NL

RT
=30 (i.e., 

10 residual blocks), with the focal loss E
F
(�)

Hyperparameter Range Best

Learning rate � [1e-5, 1e-3] 1e-4
Weight decay �

R
[0.0, 1e-5] 1e-3

Degree of fine-tuning NL
RT

[0, 36] 30 ( E
F
)

15 ( E
SCE

)
Loss E(�) {E

SCE
(�) (Eq. 1), 

E
F
(�) (Eq. 2)}

Focal
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independent evaluation, using the hyperparameters values 
tuned on the validation set.

We will report the overall accuracies as well as the aver-
age F1 scores of the best CNN variant in terms of the aver-
age F1 score obtained on the test and validation sets for 
two variants: the first CNN variant is trained by minimizing 
the softmax cross-entropy loss (Eq. 1), whereas the second 
variant is trained by minimizing the focal loss (Eq. 2). The 
overall accuracy OA describes the percentage of correctly 
classified images, denoted as true positives TP, among all 
classified images. As the OA is biased towards classes with 
more examples in an imbalanced class distribution, the clas-
sification performance of underrepresented classes is not 
reflected by the OA. In contrast, the class-specific F1 scores, 
being the harmonic means of precision (i.e., the percentage 
of the images assigned to a certain class that actually cor-
responds to that class in the reference) and recall (i.e., the 
percentage of the samples of a class according to the refer-
ence which is also assigned to that class by the CNN) reflect 
the classifier’s ability to predict a certain class. We report 
the average F1 scores (also referred to as macro-averaged 
F1 score) per variable, i.e., the average values of all class-
specific F1 scores of the classes for that variable.

Results 
The quality metrics obtained on the validation and test 

sets are listed in Table 9. These quality metrics are deter-
mined on the basis of the prediction results for records 
(i.e., not on the raw results for individual images in case 
of records having multiple images). In this section, some 
general observations and the conclusions drawn from them 

will be briefly described, where a more detailed analysis of 
the results can be found in Sect. 6.

Comparing the F1 scores as well as the OAs obtained on 
the validation and the test set, respectively, shows that the 
hyperparameter tuning on the validation set did not result in 
overfitting as the order of magnitude of the quality metrics 
on the validation and the test set are en par. Furthermore, the 
average F1 scores and the OAs are higher in case of mini-
mizing the focal loss in training. Accordingly, it can be con-
cluded that the classifier is able to better predict the classes 
of the four tasks by focusing on harder training examples, as 
is realized in the case of the focal loss. In particular, under-
represented classes benefit more from the use of the focal 
loss, which is indicated by the larger improvements in terms 
of the F1 scores compared to the improvements in terms of 
OA. The average F1 scores over all variables is 3.7% higher 
in the evaluation for minimizing the focal loss compared to 
minimizing the softmax cross-entropy, whereas the improve-
ment in terms of OA amounts to 0.9% on average.

5.2  Text classification

Experimental setup In the text classification experiment we 
use the method described in Sect. 4.2, implemented using 
PyTorch [47] and Transformers [60], and the data described 
in Sect. 3.4 split into training, validation, and test subsets as 
described in Sect. 3.4. We used the base XLM-R architec-
ture ( 125M parameters) with 12-layers, 768-hidden-state 
and its respective provided weights. The layers in the clas-
sification heads are initialized using the normal distribution 
N(0.0, 0.02) with bias parameters set to zero.

First, we performed a 50-trial random search hyperparam-
eter tuning implemented using Optuna [1]. During hyper-
parameter tuning, the text classifier is trained on the train 
set, and we chose the hyperparameters that resulted in the 
highest macro F1 score obtained by evaluating on the vali-
dation set. These hyperparameters are detailed in Table 10. 
We then train a model on the train set with the previously 
selected hyperparameters and evaluate it on both the valida-
tion and test sets.

Table 9  F1 scores (F1) and overall accuracies (OA) of the image 
classifier obtained by minimizing the Softmax loss (Eq.  1) and the 
focal loss (Eq. 2) both for the validation and the test sets (evaluated 
per record)

Δ gives the difference between the quality metrics achieved using the 
focal loss and the softmax loss

Variable Validation set Test set

F1 [%] OA [%] F1 [%] OA [%]

Focal loss Place 49.2 62.5 47.0 63.1
Timespan 58.4 63.8 57.5 64.5
Technique 75.5 79.0 77.9 80.2
Material 52.2 80.6 51.2 80.6
Average 58.8 71.5 58.4 72.1

Softmax loss Place 48.2 61.0 47.2 62.2
Timespan 56.0 64.4 54.2 64.9
Technique 72.2 75.8 74.0 76.8
Material 45.0 79.4 43.4 80.7
Average 55.4 70.2 54.7 71.2

Δ Average 3.4 1.3 3.7 0.9

Table 10  Hyperparameter tuning

Hyperparameters, the investigated range, and the value chosen to be 
the best in 50 random trials according to macro-F1 evaluated on the 
validation set

Hyperparameter Range Best

Batch size 4, 8, 32 64 4
Learning rate 1e-6, 1e-5, 3e-5, 5e-5 1e-4 1e-5
Weight decay coefficient 0.0, 0.01, 0.02, 0.04 0.05 0.04
Total epochs 4, 8, 12, 16, 20 16
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Results The results of text classification are shown in 
Table 11, which presents the overall accuracy and the aver-
age F1 scores achieved on all records containing text in the 
validation and test sets. In terms of F1 and overall accura-
cies, these are the best results for any single modality by 
a significant margin. This is offset by the fact that the text 
modality is only present in 39.3% of all records (Table 3).

5.3  Tabular classification

Experimental setup The experiments for tabular classifica-
tion follow a similar protocol as those for the image and 
text classifiers, the main exception being that this classifier 
is not based on multitask learning. Thus, for each task we 
train an individual classifier with different parameters and 
hyperparameters, selected by task-specific hyperparameter 
tuning using grid search. We show the hyperparameters, the 
search space for tuning, and the selected values in Table 12. 
Note that the ranges selected were all within very reasonable 
intervals as an additional guard against overfitting.

Results We show the evaluation results in Table 13. Given 
that it essentially relies on co-occurrences of very coarse 
labels, the results seem reasonable. In fact, in terms of F1 
and accuracy, they almost match the image classifier. We 
also show feature importance by gain in Table 14. For every 
task, the tabular classifier’s most important feature is the 
museum. That could probably be expected, because muse-
ums are not random collections of objects.

5.4  Multimodal classification

Experimental setup For the experiments involving multi-
modal classifiers, we started by training the three classifiers 
based on single modalities (images, text, tabular, respec-
tively) on the training set independently of each other in 
the way described in Sects. 5.1 – 5.3. After that, these clas-
sifiers were used to classify the samples in the validation 
set. Finally, we used these predictions as inputs to train the 
multimodal classifier on the validation set. We used five-fold 
cross-validation on the validation set to perform hyperpa-
rameter tuning using grid search for the same hyperparam-
eters that used in tuning the tabular classifier. The details of 
hyperparameter tuning are shown in Table 15.

Results The results of the experiments are shown in 
Table 16. In this table, we compare the results of the mul-
timodal classifier with and without using the raw tabular 
data as an additional input. As expected, the variant of 

Table 11  F1 scores (F1) and overall accuracies (OA) obtained in the 
multitask experiment both for the validation set and the test set (text 
classification)

Variable Validation set Test set

F1 [%] OA [%] F1 [%] OA [%]

Place 92.2 91.3 93.1 92.6
Timespan 83.8 89.8 82.1 88.0
Technique 87.1 88.2 88.0 89.7
Material 78.5 85.0 78.7 85.4
Average 85.4 88.6 85.5 88.9

Table 12  Hyperparameter 
tuning for the tabular 
classifier: hyperparameters, 
the investigated range of 
values (Range) and interval 
of the search, and best values 
for each task, chosen by grid 
search according to macro-F1 
evaluated on the validation set

Hyperparameter Range Interval Place Timespan Technique Material

colsample_bytree [0.6, 1.0] 0.2 0.8 0.8 0.6 0.8
Gamma [0.0, 0.4] 0.2 0.4 0.2 0.2 0.0
learning_rate [0.1, 0.3] 0.1 0.3 0.3 0.3 0.2
max_depth [2, 8] 2 4 4 4 8
min_child_weight [1, 4] 1 1 2 4 2
n_round [100, 500] 100 100 100 100 500
subsample [0.6, 1.0] 0.2 0.6 1.0 0.6 0.8

Table 13  F1 (F1) and overall accuracies (OA) obtained in the experi-
ment both for the validation set and the test set (tabular classification)

Variable Validation set Test set

F1 [%] OA [%] F1 [%] OA [%]

Place 47.9 62.4 46.2 61.9
Timespan 57.4 65.1 58.6 67.6
Technique 68.6 74.2 68.3 73.0
Material 50.7 82.1 49.4 82.1
Average 55.4 70.0 55.6 71.2

Table 14  Tabular classifier: feature importance per task (information 
gain)

Target Feature

Variable Museum Place Timespan Technique Material

Place 0.49 – 0.20 0.12 0.19
Timespan 0.41 0.31 – 0.16 0.12
Technique 0.40 0.29 0.17 – 0.14
Material 0.39 0.21 0.16 0.24 –
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the classifier using these additional input features pro-
duces slightly better results than the one without these 
features. Table 17 gives the feature importance, measured 
by information gain, of each individual modalitiy. We 
also performed an ablation study to assess the importance 
of the individual modalities for the classification results 
The ablation study was performed by removing one of the 
modalities from the input of the fusion classifier, leaving 
only the other two modalities (Table 19).

The overall accuracy and mean F1 score achieved by 
the multimodal classifier are better than those for the 
image classifier (Table 9) and slightly worse than those 
reported for the text classifier (Table 11), but this compari-
son is inconclusive because the results in Table 11 only 
consider records for which text is available, which is only 
about 39% of the test set, whereas the evaluation of the 
image classifier is based on about 96% of the test set and 
multimodal classification is based on the complete test set.

For the majority of the samples, only images and / or 
tabular information are available, and thus the prediction 
would be based on these modalities. To be able to allow 
for a comparison of the results of all modalities, we car-
ried out an evaluation of all modality-specific classifier 
and the multimodal classifier on the entire test set. In 
this evaluation, a record for which a modality was miss-
ing was considered a wrong prediction for that modality-
specific classifier. For instance, a record without images 

Table 15  Hyperparameter 
tuning for the multimodal 
classifier: hyperparameters, the 
investigated range of values 
(Range) and interval of the 
search, and best values chosen 
by grid search according to 
macro-F1 evaluated on the 
validation set

The hyperparameter space is the same for all experiments reported in this section. The selected hyperpa-
rameters apply to the multimodal classifier using the complete set of input modalities, as shown in Fig. 5 
and correspond to the results shown in Table 16

Hyperparameter Range Interval Place Timespan Technique Material

colsample_bytree [0.6, 1.0] 0.2 0.6 0.6 0.8 0.6
gamma [0.0, 0.4] 0.2 0.2 0.4 0.4 0.4
learning_rate [0.1, 0.3] 0.1 0.1 0.1 0.3 0.3
max_depth [2, 8] 2 4 4 6 4
min_child_weight [1, 4] 1 1 1 4 4
n_round [100, 200] 100 100 100 100 100
subsample [0.6, 1.0] 0.2 0.6 0.6 0.6 0.6

Table 16  F1 scores (F1) and 
overall accuracies (OA) on 
the test set of the multimodal 
classifier

Variable F1 [%] OA [%]

Place 76.7 79.0
Timespan 73.1 80.1
Technique 83.8 85.4
Material 61.3 85.5
Average 73.7 82.5

Table 17  Feature importance, measured by information gain, for the 
multimodal classifier per modality for all tasks

Variable Text Image Tabular

Place 0.47 0.21 0.31
Timespan 0.40 0.23 0.37
Technique 0.20 0.36 0.43
Material 0.46 0.23 0.31

Table 18  Mean F1 scores 
(F1) and overall accuracies 
(OA) of the different classifiers 
evaluated on the entire test set

Samples for which a modality was missing are considered as errors for the corresponding modality-specific 
classifier

Classifier Image Text Tabular Multimodal

Variable F1 OA F1 OA F1 OA F1 OA

Place 38.0 46.8 64.6 42.3 46.2 61.9 76.7 79.0
Timespan 49.2 45.6 54.0 44.7 58.6 67.6 73.1 80.1
Technique 73.5 70.5 40.9 26.1 68.3 73.0 83.8 85.4
Material 46.5 67.5 37.4 21.6 49.4 82.1 61.3 85.5
Average 51.8 57.5 49.2 33.7 55.6 71.2 73.7 82.5

Table 19  Average F1 scores of 
the multimodal classifier using 
input modalities (average over 
all tasks)

Input modality F1 score [%]

Image + text 70.5
Image + tabular 59.8
Text + tabular 69.9
All 73.7
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was considered to be an incorrect prediction for the image 
classifier. The resultant overall accuracy values and mean 
F1 scores are shown in Table 18. In this comparison, the 
multimodal classifier outperforms all the classifiers based 
on a single modality only.

The results of the modality ablation study, shown in 
Table  19, and comparing with the individual modality 
results show in Table 18 confirms the assumption that each 
modality provides meaningful contribution. The results of 
a multimodal classifier that combines any two modalities 
are superior to those of any individual modality. Further, 
combining all three produces the best results.

6  Analysis

6.1  Image classification

Here, we will provide a detailed analysis of the results of the 
CNN-based image classifier in Table 9. The table shows that 
the classification performance strongly varies between tasks. 
Comparing the OAs, one can see that the variable material 
achieves the highest OAs, followed by technique and times-
pan; the worst OA is achieved for the variable place. Taking 
the class structure shown in Table 1 into account, a connec-
tion can be made to the number of classes constituting a 
task’s class structure. The larger the number of classes to be 
distinguished, the lower the achieved percentage of correctly 
classified images in the softmax experiment, where a similar 
behavior can be observed for the focal experiment; material 
having three classes has the highest OA of 80.7%, followed 
by technique having four classes with 76.8% correct predic-
tions and timespan with five classes with a OA of 64.0%, 
whereas place with nine classes has the lowest OA of 62.2%.

An analysis of the task-specific F1 scores in connection 
with the class distributions of the respective task indicates 
a dependency of the F1 score on the degree of class imbal-
ance. Taking the ratio of the number of image examples 
for the majority class, i.e., the class with the most labeled 
examples in the dataset, in relation to the number of image 
examples for the minority class, i.e., the class with the fewest 
examples, a negative correlation between this ratio and the 
achieved task-specific F1 score can be observed for the focal 
loss experiment, where a similar behavior can be observed 
for the softmax experiment. The majority class of technique 
has 2.5 times as many examples as the minority class and 
technique has the highest F1 score of 77.9%, followed by 
timespan with a ratio of 4.9 and a score of 57.5% and mate-
rial with a ratio of 7.7 having a score of 51.2%. The lowest 
F1 score of 47.0% is obtained for place with a ratio of 8.3. 
We attempted to overcome this dependency of the F1 scores 
on the class distributions through focusing on hard training 
examples by means of the presented variant of the focal loss 

in Eq. 2. Analyzing the improvements of the F1 scores by 
utilizing the focal loss instead of the softmax cross-entropy 
loss shows that the focal loss indeed reduces this depend-
ency: except for the variable place, there is an improvement 
of the task-specific F1 scores, and in these cases it is larger 
for tasks with a high class imbalance (indicated by a high 
ratio between the number of examples for the majority class 
and the minority class, respectively). The F1 score of mate-
rial (ratio of 7.7) is improved by 7.8%, whereas the F1 score 
of technique (ratio of 2.5) is improved by 3.9%. The variable 
place with a ratio of 8.3 should have received the largest 
improvement in F1 score according to the general trend, but 
it actually is slightly worse (-0.2%). We assume this to be 
related to the large number of classes to be distinguished for 
place, which might make a correct prediction more compli-
cated for this variable than for the other ones.

In summary, the utilization of the focal loss improves 
the performance of the trained classifier in correctly pre-
dicting the properties of silk based on images. Even though 
the variable-specific F1 score still seems to depend on the 
degree of imbalance of a task’s class distribution, focusing 
on hard examples during training primarily improves the 
task-specific F1 scores of tasks with large class imbalances, 
as long as the number of classes to be differentiated is not 
too large. Solving the remaining challenge of predicting all 
classes of a task equally well may require more data, as not 
all aspects of all silk properties are equally well represented 
in the available images.

6.2  Text classification

The results for the text modality, shown in Table 11, are 
better, in terms of F1 and OA, than the results for the image 
modality (Table 9) or the tabular modality (Table 13). This 
is not surprising, since the properties we are predicting are 
important to domain experts, they, or their taxonomy sub-
classes, are often included in the text descriptions of the 
cultural heritage objects (altough not necessarily using the 
same words). Even when they are not, we can intuitively 
expect some degree of similarity between text descriptions 
of objects with similar underlying values for these proper-
ties, either globally or at least within the same museum.

The biggest disadvantage of the text classifier is that text 
descriptions are present in the dataset far less often than 
images, as shown in Table 3. Once adjusted for missing 
modality, given that more than 60% of the records are miss-
ing this modality, the text classifier actually performs the 
worst of any modality, as shown in Table 18.

We analyzed about 20 misclassified English language test 
set examples for each task. In around half of the cases, there 
was no direct information that could’ve allowed an accurate 
classification. E.g., no location mentioned when attempt-
ing to classify place or no year mentioned when attempting 
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to classify timespan. This forces the classifier to rely on 
other statistical regularities present in the text to provide a 
classification.

The material task is particular. Its most common class, 
“animal fibre”, is a de facto background class. All records 
in the dataset should be of silk fabrics, which means the 
material they are made of is an “animal fibre”. Some have 
other materials too. These other materials can correspond to 
a vegetable fibre (e.g., cotton) or a thread with some metal 
(e.g., gold thread). While the problem of not having label 
specific information in the text is common in the examples 
we analyzed (6/20), obviously incorrectly labeled examples 
were even more common (9/20). This occurs when either 
the original record was missing the correct label or when 
the automatic extraction and linking of the label failed. The 
high prevalence of this type of error within this task in the 
examples we analyzed, combined with its absence in other 
tasks, leads us to suspect that this is the main cause of the 
relatively lower accuracy and F1 scores for this task.

The technique task is also particular in terms of the exam-
ples we analyzed. A significant number of examples (5/19) 
contain information that would imply multiple labels, where 
usually a small part of the object was produced using a dif-
ferent technique from the main part of the object. A similar 
type of error occurs in the timespan task within a similar 
proportion of examples (5/10). In the timespan task, this can 
occur when an object was produced at a certain date but later 
altered or when the estimated date of production within the 
text crossed centuries.

We hypothesize that the somewhat better results for the 
place task are connected to regularities between the museum 
and an object’s place of production. This connection is sug-
gested in Table 14. Text descriptions are very indicative of 
the museum, not just in the language but usually also in 
style, length, and topics.

Finally, we would like to point out at the existing of mis-
leading text examples such as in Table 20 where information 
in the text can correspond to an incorret label. We do this 
to give the reader a better understanding of the challenges 
faced by an algorithm.

6.3  Tabular classification

When compare to the other modalities, the tabular classifier 
performs (Table 13) slightly worse than the image classi-
fier (Table 9) in terms of average F1 score, respectively, 
55.6% versus 58.4%. However, this situation is reversed 
when accounting for missing modality (Table 18), with 
the tabular classifier outperforming the image classifier 
with F1 scores of 55.6% versus 51.8%. Intuitively, from a 
domain perspective, we can expect that these variables to 
be associated. For example, a certain country is more active 
in the textile industries during a certain timespan than dur-
ing others. Further, museums are typically curated and not 
random collections. However, given the limited number of 
features and the coarseness of the labels, we should not over-
estimate the strength of the association between variables, 
which we calculated as Cramer’s V in Fig. 6. Cramers’ V 
is a symmetric measure that gives a value between 0 and 
1 for the association between two nominal variables. We 
see that the values are, by themselves, relatively low, with 

Table 20  Examples of misleading text descriptions

Emphasis added to highlight the misleading text snippets

Text description (Snippet) Predicted True

Motifs found on seventeenth-century coverlets but must have been made in the early eighteenth century (...) 
Embroidery of Gujerat [sic] in the Seventeenth Century

XVII XVIII

Derived from engravings after Maarten de Vos which first appeared in Gerard de Jode’s 1579 illustrated bible XVI XVII
Center text reads ”Vole vole mon coeur! FR GB
Depiction from the Italian poem IT GB

Fig. 6  Association between features of the tabular classifier (Cram-
er’s V)
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only material and museum having a value above 0.5. The 
association between museum and the other properties was 
the highest (first column or row) which again reinforces the 
belief that the curated nature of museum collections and its 
impact on the other properties is learnable from this dataset. 
The strength of the association does not directly translate 
into feature importance as measured by information gain 
(Table 14). Rather, it seems, a particular combination of 
these associations is being learned by the tree boosting 
algorithm in such a way that results in a relatively effective 
classifier.

6.4  Multimodal classification

As pointed out in Sect. 5.4, the comparison of the classifica-
tion accuracies indicates that the text classifier achieves the 
best performance of all modalities (Table 11), but of course 
it is only applicable when text is available, which is only the 
case for a relatively low number of records, (cf. Table 3). 
This confirms our hypothesis that multimodal classification 
results in a better classification performance if one of the 
aspects under consideration is to obtain correct predictions 
for a number of records that is as large as possible. When 
evaluated on samples having text, the text classifier might 
achieve higher accuracy metrics; however, a considerable 
percentage of samples cannot be classified in that way, and 
the total number of correct classifications is largest when 
using multimodal classification (cf. Table 18).

As Tables 17,  18 and 19 imply, each modality contrib-
utes significantly to the multimodal classifier. Looking at the 
feature importance of the multimodal classifier in Table 17, 
we can see that the output of the text classifier is the most 
important feature, except when it comes to predicting tech-
nique, almost certainly due to the relatively small number of 
records with an annotation for technique in the validation set 
for which text is available (487 records as opposed to about 
1100-1600 for the other tasks). Most errors in the times-
pan task occur between chronologically similar dates. Most 
errors in the place task occur between countries that are 
geographically close to each other, e.g., Italy (IT) and France 
(FR). As far as material is concerned, errors occur primarily 
between animal fiber and the other labels, because all objects 
are made of silk and due to the label imbalance. No clear 
trend can be observed for the prediction of technique.

7  Integrating and visualizing 
the predictions

To model the predictions as part of the SILKNOW Knowl-
edge Graph ontology we use classes and properties of the 
Provenance Data Model (Prov-DM), more specifically the 
PROV ontology (PROV-O)10, an OWL2 ontology. It makes 

it possible to map PROV-DM to RDF. It allows the expres-
sion of important elements of the predictions for each 
modality. These different predictions can be represented 
using different prov:activity classes each. The image, 
text description, or categories each prediction is based on 
are represented with the property prov:used. The exact 
date of the prediction is represented with prov:atTime and 
prov:wasAssociatedWith connects the activity class to the 
prov:SoftwareAgent class, which is used to describe 
the particular algorithm and model used. The predicted 
metadata value is represented with rdf:Statement, connected 
to prov:activity via a prov:wasGeneratedBy property. 
The confidence score of the prediction is expressed through 
the property L18 (“has confidence score”) from our own 
SILKNOW Ontology. The predicted value is expressed in 
form of a URI with rdf:object, the type of the predicted 
property through rdf:predicate and its fitting CIDOC-CRM 
property type. The property rdf:subject connects the 
statement to the production class (E12) of the object in the 
Knowledge Graph. Every prediction is inserted in the appro-
priate part of the existing KG. For example, if a material 
value gets predicted, it gets inserted with the CIDOC-CRM 
property P126_employed at the production class of the 
object. See Fig. 7 for an illustration of the data model.

The prediction models were only trained on group labels 
(Sect. 3.3), and thus can only predict those. It is sometimes 
necessary to map them back to a more concrete concept of 
the SILKNOW Thesaurus. If, for example, “Damask” is pre-
dicted in form of its facet link http:// data. silkn ow. org/ vocab 
ulary/ facet/ damask it will be automatically converted into 
http:// data. silkn ow. org/ vocab ulary/ 168, as facet links are 
too general for concrete category values. All predictions are 
converted one after another using the described data model 
and saved as a turtle file format which is uploaded and stored 
as its own graph identified by http:// data. silkn ow. org/ predi 
ctions. This makes it possible to always identify and eventu-
ally separate predictions from original values obtained from 
the museums. In total, 98,379 predictions were made for 
19,248 distinct objects. These were uploaded into the SIL-
KNOW Knowledge Graph.

In our exploratory search engine ADASilk, the predic-
tions are displayed differently from values that come origi-
nally from the museums: They are shown in blue together 
with their confidence score as a percentage next to them. A 
tooltip is available to explain how this value was predicted, 
including the modality, algorithm, model identifier, etc. To 
display predictions like this on ADASilk, the respective 
SPARQL query was updated and new subqueries are used 
to take into account the aforementioned new properties. See 
Fig. 8 for a screenshot.

10 https:// www. w3. org/ TR/ prov- dm/.

http://data.silknow.org/vocabulary/facet/damask
http://data.silknow.org/vocabulary/facet/damask
http://data.silknow.org/vocabulary/168
http://data.silknow.org/predictions
http://data.silknow.org/predictions
https://www.w3.org/TR/prov-dm/
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8  Conclusions

We presented results for three individual modality classi-
fiers, as well as multimodal results. In terms of our original 
hypothesis, presented in Sect. 1.2, we showed that we were 
in fact able to accurately predict missing properties in the 
digitized silk fabric artifacts that made up our dataset. While 
the quality of predictions varied between individual modali-
ties, we showed that the multimodal approach provided the 
best results. To recapitulate, our contributions included the 
already mentioned multimodal approach tailored specifi-
cally to the challenges we faced in the multimodal scenario, 
including the incomplete overlap of data across modalities. 
The individual approaches of each modality-specific clas-
sifier also provide a useful contribution to the automated 
classification of cultural heritage objects. The image and text 
classifier offer the possibility of being applied to data outside 
a Knowledge Graph (KG) or database, possibly even directly 
submitted by the user of a system. The tabular classifier, on 
the other hand, offers the possibility of classifying data in 
a KG or database when no text descriptions or images are 
present by relying on other properties. It is also important to 
remember that in most practical situations, including inside 
a KG or other knowledge bases, images are more common 
than text descriptions of objects in the cultural heritage 
domain.

The data we used in our work originally comes from 
many museum sources and is from a very specific Cultural 
Heritage domain: historical, European silk fabrics. We 

Fig. 7  Graph showing the prediction of the production technique (damask) with a high confidence score (0.9173) using the textual analysis soft-
ware

Fig. 8  UI Screenshot showing the prediction of the production tech-
nique (damask) with a high confidence score (0.9173) using the 
image analysis software
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applied common methods to process such data and devel-
oped an ontology and a Knowledge Graph out of the original 
museum texts and images. Such an effort comes typically 
with challenges, which in our case consisted mostly of a 
small amount of (training) data, domain specificity, differ-
ent styles of writing texts and capturing images of objects, 
different languages (in the case of texts) and finally simply 
annotation errors, typos, and other errors that happened dur-
ing the original digitization. Not all of these challenges can 
be completely overcome and some of them, like the meta-
data gaps, even constitute part of the motivation to conduct 
this research work. As some data imperfection could still 
not be totally excluded, some removal of data was necessary 
to ensure sufficiently clean and class balanced data for our 
supervised approaches. This could, however, be very much 
alleviated through the grouping of certain labels, which was 
also possible through our domain expert-designed thesau-
rus about silk fabric concepts. In the end we can present a 
cultural heritage dataset that can be used for automated clas-
sification or even multimodal approaches. In this work, we 
also provide the data modelling of how metadata predictions 
for data such as our can be represented within knowledge 
graphs or other knowledge bases.

We have shown that properties of silk fabrics can be pre-
dicted from images of these fabrics. In this context, we pro-
posed to use the focal loss for training to compensate for the 
effects of class imbalance in the training set, a problem that 
is quite common in the cultural heritage domain. Our results 
indicate that the proposed strategy can mitigate this problem 
to a certain degree, in particular improving the classifica-
tion performance for the underrepresented classes in terms 
of the F1 score. Image classification performs particularly 
well for the task to predict the technique used for producing 
a fabric. Nevertheless, there is still room for improvement, 
as indicated by the performance metrics for all variables.

When text descriptions are present, the text classifier 
provides the best results of any single modality. It seems, 
thus, that the text classifier was able to overcome the pri-
mary challenges it faced: small dataset, domain specificity, 
cross-linguality, and museum specific text styles. This was 
primarily achieved by the choice of XLM-R as the basis of 
the text classifier. Misleading text descriptions stand out as 
a challenge for text classification.

When all data is considered, we have shown that the 
multimodal approach is the best according to the macro F1 
metric. While most records contain images, not all do (3.4%) 
and a smaller number of records contain neither text nor 
images (2.1%). On the other hand, if we had tried to imple-
ment a classifier using the text modality alone, we could only 
classify 40% of the records. While we can say that a multi-
modal approach does allow us to classify a greater number 
of records than using images alone, the primary practical 
benefit of the multimodal approach over performing just 

image classification is probably the qualitative improvement 
in classification results demonstrated.

In terms of the dataset, a perhaps a better approach could 
be found for dealing with noisy labels, as well as finding 
better ways to deal with fine-grained labels and label ontol-
ogy mismatches.

Future work on image classification could concentrate 
on improving the performance for underrepresented classes 
even more, e.g., by using methods for few-shot learning. 
Furthermore, as some experimental results indicated that 
some training labels might be incorrect, training methods 
that are robust against such errors (“label noise”) could be 
investigated.

The code and data used to perform the experiments 
reported in this work is available online at https:// github. 
com/ silkn ow/ multi modal_ cultu ral_ herit age and https:// 
zenodo. org/ record/ 65909 57, respectively.
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