
Vol.:(0123456789)1 3

Multimedia Systems (2023) 29:129–138 
https://doi.org/10.1007/s00530-022-00973-z

REGULAR PAPER

A lightweight CNN‑based algorithm and implementation 
on embedded system for real‑time face recognition

Zhongyue Chen1   · Jiangqi Chen1 · Guangliu Ding1 · He Huang1

Received: 31 May 2021 / Accepted: 24 June 2022 / Published online: 10 August 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Deep learning has become the main solution for face recognition applications due to its high accuracy and robustness. In 
recent years, a batch of research on lightweight convolutional neural networks (CNNs) has emerged, bringing new ideas to 
the economic application of face recognition systems. In this paper, a lightweight face recognition algorithm is proposed 
to reduce the number of parameters and calculations of the face feature extraction network. The most important part of our 
approach lies in designing a novel inverted residual shuffle unit (IR-Shuffle). After being trained by ArcFace loss on a GPU 
workstation, our model built on improved IR-Shuffle blocks of size 1.45 MB achieves an accuracy of 98.65%. In terms 
of running time, our model is 5 ms faster than the current fastest MobileFaceNet, with only about 0.5% drop in accuracy. 
The proposed algorithm is implemented and optimized on the Jetson Nano embedded platform, and accurate and real-time 
deployment of the face recognition system is realized. The system takes 37 ms to perform the complete face detection and 
recognition and is robust to complex backgrounds and ambient light changes. Experimental results show that our system is 
of practical application value.

Keywords  Lightweight convolutional neural networks · Face recognition · Embedded systems · Shuffle block

1  Introduction

With social informatization development, face recognition 
has been widely applied in various fields such as access 
control, public security, consumer entertainment, etc. Face 
recognition algorithms can be divided into two categories: 
traditional methods and deep learning based approaches. 
Convolutional neural networks (CNNs) [1] have become 
one of the most successful deep learning models for image 
processing due to their good feature extraction ability since 
AlexNet [2] winning the ImageNet Challenge (ILSVRC 
2012 [3]). Compared with the traditional methods, such 
as template matching and subspace analysis, deep learning 

based face recognition algorithms are more robust to envi-
ronmental variation [4].

By building deeper and larger CNN models, it is possi-
ble to aggregate adequate spatial information within a face 
image and achieve accurate recognition. However, high-
accuracy face recognition based on big CNN models would 
inevitably lead to high computational resources and storage 
requirements. For applications on embedded platforms with 
limited resources, lightweight design is necessary.

Several computation-efficient basic architectures such as 
MobileNet [5, 6] and ShuffleNet [7, 8] have been proposed 
for general visual tasks. However, these common lightweight 
CNNs become less accurate in face recognition compared 
with other state-of-the-art results with big models. Face 
recognition is more effective when the MobileNet model is 
larger. However, when the model needs to be compressed 
further, the drawback of no communication among channels 
starts to be highlighted and the feature extraction ability of 
the network is reduced. The ShuffleNet with enhanced chan-
nel communication can improve this, but for small models 
with limited convolutional kernels, the traditional residual 
structure of feature extraction cannot achieve satisfactory 
recognition results.

Communicated by F. Wu.

Zhongyue Chen and Jiangqi Chen contributed equally to this work.

 *	 Zhongyue Chen 
	 chenzy@suda.edu.cn

1	 School of Electronic and Information Engineering, Soochow 
University, Suzhou 215006, Jiangsu, China

http://orcid.org/0000-0001-5097-0812
http://crossmark.crossref.org/dialog/?doi=10.1007/s00530-022-00973-z&domain=pdf


130	 Z. Chen et al.

1 3

In this paper, we carefully design a lightweight CNN struc-
ture for feature extraction from face images. To overcome the 
memory and computational limitations of embedded systems, 
we first compress the model size and reduce the computa-
tional complexity. Face images are usually RGB images, and 
the color of skin, texture, shape of key parts, and the interre-
lationship among key parts are important features that affect 
the recognition performance. Therefore, when designing 
the face feature extraction network, both spatially correlated 
and channel correlated features are important. Based on the 
above considerations, we use channel shuffle to improve the 
extraction ability of channel correlated features and present a 
novel inverted residual shuffle (IR-Shuffle) unit with enhanced 
feature comprehension to compensate for insufficient model 
depth. Inspired by ShuffleNet, we introduce deep separable 
convolution with channel shuffle to achieve inter-channel 
feature communication. However, for the embedded system 
deployment, the model size is further compressed. As a result, 
the number of kernels in each layer is limited, whereas there is 
rich feature information in faces, and using Shuffle units with 
conventional residual structures will extract insufficient special 
information and degrade the recognition performance. There-
fore, we replace the conventional shuffle units with improved 
IR-shuffle units, in which an inverted residual structure is 
incorporated. The number of channels is first expanded and 
then compressed, which further improves the expression of 
face features. Constructing networks using IR-Shuffle units 
can reduce the number of parameters required for comparable 
recognition accuracy.

We evaluate the proposed network on the challenging 
labeled faces in the wild (LFW) benchmark [9]. After being 
trained on the large-scale face dataset CASIA WebFace [10] 
containing massive noise data, our 1.45 MB size model 
achieves 98.65% accuracy on LFW in 13.4 ms. We also build a 
face recognition system to examine our model on an embedded 
platform. Optimized by both software and hardware accelera-
tion, the system takes 14∼ 16 ms to extract face features for 
identification and is robust to changes in complex backgrounds 
and ambient light.

An overview of the rest of the paper is as follows: Sect. 2 
reviews the related field literature. Section 3 describes our 
novel IR-Shuffle unit and demonstrates the feature extraction 
network structure. In Sect. 4, we present some experimental 
results of our design. Finally, we implement the proposed face 
recognition method on the embedded platform in Sect. 5.

2 � Related work

2.1 � Model design

Compared with the traditional methods, such as template 
matching and subspace analysis, deep learning based face 

recognition algorithms are more robust to environmental 
variation [4]. With the intensive study of neural networks, 
a series of deep learning models have been proposed for 
face recognition. For example, the DeepFace network pro-
posed by Facebook [11] has achieved a 95.9% recogni-
tion rate on LFW. The VGG network proposed in [12] 
greatly improved face recognition accuracy by increasing 
the number of layers in the network and using small-scale 
convolutional kernels. As reported, the recognition rate on 
the LFW dataset was 98.9%. GoogleNets [13–16] utilizes 
an inception structure to allow the fusion of features at 
different scales. The DeepID network [17] integrates the 
local and global features and employs Bayes’ theorem to 
complete face recognition. In many real-world scenarios, 
face images are of low quality due to the limitations of 
imaging systems and conditions. Deep learning methods 
are also used for face hallucination to improve the sub-
sequent processing by recovering high-resolution face 
images [18–20].

The metric and loss function design for training will 
also gravely affect face recognition accuracy. Face rec-
ognition involves thresholding the distance between 
extracted face features [21]. To this end, distance met-
rics, such as Euclidean distance, cosine distance, and joint 
Bayesian distance, are considered in loss function design. 
Note that a good loss function, such as contrastive loss 
of DeepID [17, 22, 23], triplet loss of FaceNet [21], and 
center loss [24], benefits generalization, and makes the 
system more robust. To increase the inter-class distance 
and decrease the intra-class distance, Sphereface [25] uti-
lizes an A-softmax loss function, which makes the learned 
features discriminatively span on a hypersphere manifold 
as prior. Variations of the A-softmax function, including 
AM-softmax [26] and CosFace [27], can further enhance 
face recognition.

The increasing demands to run high-quality deep neu-
ral networks on embedded devices inspire lightweight 
model designs. MobileNetV1 [5] presents a streamlined 
architecture that uses depthwise separable convolutions 
and achieves good performance on ImageNet compared 
to other networks at about the same size. MobileNetV2 
[6] introduces an inverted residual structure with a linear 
bottleneck and improve the mobile model performance on 
various tasks. ShuffleNet [7, 8] uses pointwise group con-
volution to reduce computation cost and utilizes channel 
shuffle to maintain accuracy. Channel shuffle turns out to 
be important for achieving good performance in terms of 
speed and accuracy tradeoff. This paper presents a novel 
shuffle unit with an inverted residual structure inside. We 
use such new units rather than conventional shuffle units in 
the feature extraction networks to explore the rich details 
in face images sufficiently.



131A lightweight CNN‑based algorithm and implementation on embedded system for real‑time face…

1 3

2.2 � System implementation

The current mainstream solution is to deploy the well-
trained CNN model on the cloud platform or utilize a high-
performance computing host (HPC) at the back end of image 
acquisition [28]. In this situation, local images are transmit-
ted to the cloud, and then the recognition results are returned 
to the edge device. Although the cloud provides efficient 
computing power for complex tasks, recognition would be 
so affected by network conditions that long transmission 
delays may degrade the user experience. The cloud HPC 
is also expensive and difficult to configure. Moreover, the 
local edge devices remain idle most of the time, wasting 
significant amounts of computational resources. Increased 
edge devices produce huge amounts of data that uploading 
all the data is neither pragmatic nor feasible. Edge com-
puting [29–31] on embedded devices is necessary for real-
time processing, requiring the localization of deep learning 
algorithms. In recent years, several dedicated chip design 
solutions for face recognition based on neural networks have 
become available [32–34] at the expense of additional hard-
ware costs. System implementations on general local devices 
are still necessary.

Built on the novel shuffle unit, we propose a lightweight 
face feature learning network with a smaller model and 
lower computation, suitable for edge computing. We also 
build a complete face recognition system with the proposed 
network on a general embedded device fit for edge com-
puting. The system performs well in terms of accuracy and 
latency tradeoff and takes up less storage space at the same 
time.

3 � Lightweight feature extraction network

3.1 � The inverted residual shuffle unit

This section proposes a novel shuffle unit called IR-Shuffle 
to alleviate performance degradation in small models and 
accelerate the convergence. Taking IR-Shuffle as the build-
ing blocks, we design a compact feature extraction model 
for face recognition.

Channel shuffle affords to reduce the accuracy degrada-
tion caused by the limited number of channels in tiny mod-
els. We first review the standard shuffle unit illustrated in 
Fig. 1a [8]. At the beginning of each unit, feature channels 
are divided into C and C′ channels. The main branch with 
C channels consists of three convolutions with consistent 
channel numbers. Both pointwise convolution ( 1 × 1 Conv 
or PWConv) and depthwise convolution (DWConv) operate 
only on identical channel groups and significantly reduce 
computation cost. The other C′ channel part (side branch) 
remains an identity and is concatenated directly with the 

convolution output to reduce the degree of fragmentation. 
After concatenation, channel shuffle operation is used. The 
feature map channels are rearranged for the subsequent con-
volutions to enable information flow between different chan-
nels and strengthen the representation.

For very deep networks with over 100 layers, adding a 
residual path, as shown in Fig. 1b, turns out to be impor-
tant for training convergence acceleration [8]. However, 
if we apply the usual residual structure in the shuffle 
unit conducting PWConv and DWConv, problems arise. 
If PWConv is performed to reduce the dimensionality 
before the standard convolution as the traditional residual 

1×1 C
onv

B
N

 R
eLU

C
hannel Split

3×3 D
W

C
onv

BN

1×1 C
onv

B
N

 R
eLU

C
oncat

C
hannel Shuffle

(a)

1×1 C
onv

BN
 R

eLU

C
hannel Split

3×3 D
W

C
onv

BN

1×1 C
onv

BN
 R

eLU C
oncat

C
hannel Shuffle

R
eLU

(b)

2C

1×1 C
onv

BN
 PR

eLU

C
hannel Split

3×3 D
W

C
onv

BN
 PR

eLU

1×1 C
onv

BN

C
oncat

C
hannel Shuffle

C 2C C

(c)

1×1 C
onv

BN
 PR

eLU

3×3 D
W

C
onv

(stride = 2)

BN
 PR

eLU

1×1 C
onv

BN

C
oncat

C
hannel Shuffle

3×3 D
W

C
onv

(stride = 2)

BN
 PR

eLU

1×1 C
onv

BN

(d)

Fig. 1   Shuffle units. a the standard shuffle unit; b the shuffle unit 
with residual (Res-Shuffle); c our shuffle unit incorporating inverted 
residual (IR-Shuffle); d IR-Shuffle for spatial downsampling (2× ). 
DWConv: depthwise convolution. BN: batch normalization



132	 Z. Chen et al.

1 3

module did, we will obtain few features due to the channel 
number limitation. In processing face images with rich 
details, these features are far from enough.

We incorporate the inverted residual with channel 
shuffle to form a novel IR-Shuffle unit for the above 
reasons. Figure 1c shows that the proposed IR-Shuffle 
unit first uses PWConv to expand channels (for example, 
increase from C to 2C), perform DWConv to extract fea-
tures (C remains unchanged), and finally use PWConv 
again to compress the dimensionality (reduce from 2C to 
C). Such spindle structure enhances the feature extraction 
capability for economic tiny models.

As the spindle-shaped convolutions generate com-
pressed features, ReLU transformation will further dam-
age these features. Therefore, we delete the ReLU layer 
before the channel shuffle operation and adopt a structure 
like the linear bottleneck in our IR-shuffle. To prevent 
model streamline from increasing the over-fitting risk, 
we use the PReLU activation function [35] after convo-
lution rather than ReLU, at the cost of a tiny increase in 
parameters. Like the original shuffle unit, the IR-shuffle 
is slightly modified for spatial downsampling. As illus-
trated in Fig. 1d, the channel split operator is removed to 
double the output channels. Additional convolutions are 
performed on the side branch before concatenation.

3.2 � Network architecture

Several IR-shuffle blocks are stacked to construct the feature 
extraction network for face recognition. The overall struc-
ture is summarized in Table 1. The network first boosts the 
feature map dimensionality through a standard convolution 
layer, then uses 8 IR-shuffle units for feature extraction, 
and finally outputs a face feature vector of 128 dimensions 
through PWConv and DWConv. For simplicity, we always 
split the channels in half. In the stage of extracting features 
using IR-Shuffle units, we perform spatial downsampling 
(IR-Shuffle, stride = 2) three times followed by dimension 
invariant IR-Shuffle units (stride = 1) for high level feature 
extraction. To obtain highly discriminative features for face 
recognition, we use ArcFace loss [36] to train our model. 
Distributing the embedding features on the hypersphere, the 
loss function is defined by

where �j is the angle between the weight Wj and the feature 
xi . Wj ∈ ℝ

d denotes the j-th column of the weight W ∈ ℝ
d×n 

and xi ∈ ℝ
d denotes the deep feature of the i-th sample 

belonging to the yi-th class. N and n are the batch size and 
the class number, respectively. m is the additive angular mar-
gin penalty between xi and Wyi

 to enhance the intra-class 
compactness and inter-class discrepancy. s is a feature scale 

(1)L = −
1

N

N
�

i=1

log
e
s(cos(�yi

+m))

e
s(cos(�yi

+m))
+
∑n

j=1,j≠yi
es cos �j

Table 1   Overall structure of the 
face feature extraction network

1 Main branch channels illustrate the channel change on the main branch. “24-48-48-24” means that we 
allocate 24 channels for the main branch, and the output channel number of the three sequential convolu-
tion blocks are 48, 48, and 24, respectively
2 Side branch channels demonstrate the channel change on the side branch. For direct connections, “24” is 
the number of channels assigned. In the IR-Shuffle units for spatial downsampling (stride = 2), “32-64-32” 
implies side branch channel change (see Fig. 1(d))

Layer Output Size Kernel Size Stride Main Branch Channels1 Side Branch 
Channels2

Output 
Chan-
nels

Face Image 112 × 96 – – – – 3
Conv 56 × 48 3 × 3 2 – – 32
IR-Shuffle1 28 × 24 – 2 32-96-96-16 32-64-32 48
IR-Shuffle2 28 × 24 – 1 24-48-48-24 24 48
IR-Shuffle3 14 × 12 – 2 48-192-192-48 48-96-48 96
IR-Shuffle4 14 × 12 – 1 48-96-96-48 48 96
IR-Shuffle5 14 × 12 – 1 48-96-96-48 48 96
IR-Shuffle6 14 × 12 – 1 48-96-96-48 48 96
IR-Shuffle7 7 × 6 – 2 96-192-192-96 96-192-96 192
IR-Shuffle8 7 × 6 – 1 96-192-192-96 96 192
PWConv1 7 × 6 – 1 – – 512
DWConv 1 7 × 6 1 – – 512
PWConv2 1 – 1 – – 128



133A lightweight CNN‑based algorithm and implementation on embedded system for real‑time face…

1 3

factor. Training face recognition models by ArcFace loss 
greatly alleviates the long-tail data class imbalance and the 
“lazy learning” of simple-difficult samples.

4 � Performance evaluation

The face feature extraction network proposed in this paper 
uses the CASIA WebFace [10] as the training set, a lar-
gescale face dataset containing 10,575 identity objects and 
494,414 images published by the Chinese Academy of Sci-
ences. Data are preprocessed before training. The face area 
and landmarks are obtained using an elegant detection net-
work, RetinaFace [37, 38]. Then the face is cropped and 
aligned to 112 × 96 as inputs. Data enhancement is applied 
to the processed data. The stochastic gradient descent algo-
rithm is employed to update the parameters, where the 
weight decay and the momentum are respectively taken as 
5 and 0.9. The learning rate is 0.1, which is reduced by a 
factor of 0.1 after training 36 epochs and 52 epochs. After 
training, we conduct the face recognition experiments and 
compute the recognition accuracy to examine the effect of 
the trained feature extraction network.

Face recognition is to determine who this person is by 
comparing the degree of similarity between the feature vec-
tor extracted from the input image and those registered in the 
database. Every comparison, in this case, is a face verifica-
tion. Face verification is a binary classification problem that 
only requires to determine whether two face feature vectors 
are similar or not. Therefore, after the feature extraction net-
work, the distance between feature vectors (e.g., Euclidean 
distance, cosine similarity, etc.) is calculated in the feature 
space. In our experiments, the cosine similarity is adopted. 
In the feature space, two vectors are similar if they coincide 
infinitely, which means that the angle between them tends to 
zero. The cosine similarity between the two feature vectors 
can be calculated by

where Ai and Bi denote the element of the two vectors, 
respectively. If the angle is larger, cos � is smaller, which 
means that the faces are different. It is possible to determine 
whether two images belong to the same person by compar-
ing the cosine similarity to a pre-defined threshold.

The test set used in the experiment is the LFW dataset, 
which has 13,233 face images with 6000 face pairs and con-
tains 5,749 individuals. The database is designed specifically 
for the face verification task. Pairs of two face images are 
labeled as either “matched” or “mismatched” depending upon 
whether the images are the same person or not. The images 

(2)cos � =

∑n

i=1
Ai × Bi

�

∑n

i=1
A2
i
×

�

∑n

i=1
B2
i

in this dataset are taken from various natural scenes, such as 
different postures, lighting changes, and background changes. 
Our method is implemented in PyTorch [39]. All the experi-
ments in this section are conducted on a workstation with 
4GHz CPU, 32 G RAM and RTX 2080Ti GPU.

The number of parameters, calculations, and model size of 
the proposed face recognition network are shown in Table 2. 
Table 3 compares the recognition accuracy achieved by several 
state-of-the-art face recognition networks on the LFW. Our 
model built on improved IR-Shuffle blocks of size 1.45 MB 
achieves an accuracy of 98.65%. We find that FaceNet con-
structs a large model and achieves the best accuracy of 99.63%. 
MobileFaceNet of 3.95 MB achieves 99.20%, compared to 
which our network reduces the parameter size by more than 
1.5× , with only about 0.5% drop of accuracy. Compared to 
ShuffleFaceNet, we also obtain a smaller model with a drop 
of accuracy within 0.5%. Our method is also superior to the 
ShiftFaceNet in terms of both accuracy and model size. Using 
latency as the direct metric to measure the computation com-
plexity, our model is 5 ms faster than the fastest MobileFace-
Net. Although the proposed algorithm is slightly less accurate 
than some other face recognition algorithms, both the number 
of parameters and the model size of our model are much lower. 
We also compare the accuracy of the face recognition network 
based on the original shuffle unit and the proposed IR-shuffle 
unit on the LFW dataset. Results show that using the proposed 
IR-Shuffle blocks to build the network is 1% more accurate 
than utilizing the original ones.

Table 2   Face feature extraction network parameters

Parameter Numbers Computation Amount Model Size

431.60 KB 37.712 MB 1.45 MB

Table 3   Comparison of multiple algorithms

Algorithm Accuracy Model size Latency

FaceNet [21] 99.63% 30 MB –
MobileFaceNet [40] 99.20% 3.95 MB 18.3 ms
ShiftFaceNet [41] 96.00% 3.1 MB –
ShuffleFaceNet [42] 99.07% 1.9 MB –
Our model (original shuffle unit) 97.65% 1.8 MB 13.7 ms
Our model (improved IR-Shuffle) 98.65% 1.45 MB 13.4 ms



134	 Z. Chen et al.

1 3

5 � Implementation of embedded face 
recognition system

5.1 � System framework

With the proposed lightweight CNN algorithm, a face recog-
nition system is designed and implemented on an embedded 
platform. An overview of the system framework is presented 
in Fig. 2. Firstly, the target image is captured by a USB cam-
era. Then the image is transmitted to the embedded develop-
ment board for detection and recognition. Finally, the board 
is connected to the display device via HDMI to visualize the 
captured image and the recognition result. The core process-
ing system includes face detection, preprocessing, feature 
extraction, and face identification. The main function of 
the detection module is to find the landmarks of the face. 
Our detection is performed based on RetinaFace [37, 38]. 
In preprocessing, we crop and align the face to be the same 
as training exemplars according to the detected landmarks. 
Then we obtain the feature vectors with the proposed light-
weight model and confirm the identity through repeated face 
verifications. The feature recognition module belongs to the 
application layer and needs to be designed according to the 
application requirements.

5.2 � Embedded implementation and optimization

To achieve better implementation of the algorithm on an 
embedded platform, C++ is used in this paper. The system 
is deployed on an embedded platform while maintaining the 
accuracy of face detection and recognition. The system is 
multi-threaded, where face detection and recognition are 
divided into two separate threads. By setting a semaphore for 
thread communication, face recognition is performed only 
after face detection is completed. After the face recognition 
operation is completed, the result is displayed on the screen.

Firstly, the USB camera captured the target image, and 
then the face detection module is used to detect whether 
a face exists in the image. If there is a face in the image, 
the feature vector is extracted using the face recognition 

module. The extracted result is then matched with the face 
feature vector of the registrant in the database for recogni-
tion. If the recognition is successful, the face is registered, 
then the database returns the identity. Conversely, if the 
recognition is unsuccessful, the face is not registered, the 
database does not return any information.

The face detection module is the basis of face recog-
nition and is realized using a separate thread. The col-
lected images are sent to the face detection network, and 
after computation, the face borders are located. Subse-
quently, the border regression calculation is performed, 
and redundant borders are removed using a non-maximal 
suppression algorithm. Then the confidence level of the 
face existence, the coordinates of the face border and the 
coordinates of the face feature points are obtained. These 
results are fed to the face identification module for further 
processing.

After the face detection thread is completed, the face 
recognition thread will read the semaphore to determine 
whether the face recognition is needed or not. If a face 
recognition operation is required, the face identification 
module processes the image based on the confidence 
level, border coordinates, and landmarks provided by the 
face detection module, aligning and cutting out the posi-
tive face from the image. The features are then extracted 
through the proposed feature extraction network and 
matched with the candidates in the database.

5.3 � Compression of CNN model

In general, due to the model complexity, a great number of 
parameters, and large computation involved in CNNs, it is 
difficult to run on embedded platforms with limited com-
putational and storage resources. Therefore, it is necessary 
to compress the CNN model to facilitate the implemen-
tation on an embedded device. The model compression 
algorithm can effectively reduce parameter amount, stor-
age size, communication bandwidth, and computation and 
benefit the deep network applications. To better enable the 
proposed lightweight CNN-based face recognition system 
to run on the Jetson Nano embedded platform, a weight 
quantization approach is used to compress the model fur-
ther and reduce the storage cost. The weights of CNN 
models are typically stored as 32-bit floating-point num-
bers for training and testing. However, such high accuracy 
is not necessary for practical implementations. It is shown 
in [43] that low precision fixed-point weights can achieve 
competitive results. Thus, weight quantization helps avoid 
costly floating-point operations and reduce the hardware 
costs of storing weights and activating data, which is quite 
important for resource-constrained embedded platforms.

HDMIUSB
USB 

Camera Display

Core Processing

Face 
Detection

Crop and 
Alignment

Feature 
Extraction

ID 
Recognition

Face Detection 
Module

Face Identification 
Module

Power Module

Fig. 2   An overview of the embedded face recognition system



135A lightweight CNN‑based algorithm and implementation on embedded system for real‑time face…

1 3

5.4 � Software acceleration

In this paper, Neon instructions, an extension of the single 
instruction multiple data (SIMD) with 128 bits, are used to 
accelerate software. This instruction can process multiple 
data in a single instruction cycle, which means that it accel-
erates the progress by processing data in parallel. The Neon 
instruction supports fixed-point and floating-point opera-
tions with different numbers of bits, such as 8-bit fixed-point 
operations, 32-bit floating-point operations, etc. This paral-
lelism is quite useful for accelerating applications requiring 
a lot of computation or data processing, such as multimedia 
processing and neural networks.

5.5 � Network inference acceleration

NCNN is an excellent neural network forward comput-
ing framework deeply optimized for embedded platforms 
such as mobile phones. The underlying NCNN computing 
framework is implemented in C++ and does not rely on 
any third-party libraries such that it is suitable for a variety 
of platforms. The NCNN computing framework supports 
the acceleration of processor multi-core parallel computing, 
such as the optimization of large and small core schedul-
ing on ARM-based CPUs. Also, it supports the use of the 
Vulkan interface to call the image computing module on 
embedded platforms for faster processing. Therefore, the 
lightweight face recognition algorithm proposed in this 
paper is implemented under the NCNN software framework.

5.6 � Performance testing

Figure 3 shows the results achieved by the face recognition 
system. The system first outlines the face with a rectangle 
through face detection, and the number above the box rep-
resents the confidence level. Then the identity verification 
is realized through the face recognition module. The face 
in Fig. 3a is unregistered, and the recognition result shows 
unknown in the image. The face in Fig. 3b is registered, and 
the recognition results show the name of the registered face 
in the image.

To speed up the algorithm as much as possible, we 
employ the Vulkan interface function managing the graph-
ics processing unit that comes with the CPU to speed up 
the algorithm. It can be seen from Table 4 that it takes 
about 19∼ 21 ms to perform face detection and about 
14∼ 16 ms for face identification. Therefore, the embed-
ded system can reach the rate of more than 25 frames per 
second, which illustrates that the lightweight CNN based 
face recognition system can be used for real-time recogni-
tion and is of great practical value.

To verify the robustness of the designed face recogni-
tion system, experiments are conducted to investigate the 
effects of background and illumination on face recogni-
tion. Figure 4 shows the recognition results with different 
backgrounds. For the simple and complex backgrounds 
(i.e., the cases in Fig. 4a, b), our system can accurately 
identify the faces. Figure 5 shows the recognition results 
under different illumination conditions. Figure 5a shows 
a bright lighting environment, and Fig. 5b shows a dark 
lighting environment, both of which can be accurately 
identified.

(a) Unregistered (b) Registered

Fig. 3   Recognition results of the face recognition system

Table 4   Processing time of the embedded face recognition system

Module Processing Time

Face Detection 19∼ 21 ms
Face Identification 14∼ 16ms

(a) Simple background (b) Complex background

Fig. 4   Recognition results in different backgrounds

(a) Bright lighting (b) Dark lighting

Fig. 5   Recognition results at different brightness



136	 Z. Chen et al.

1 3

From the comparative experiments, it is clear that envi-
ronmental complexity has little influence on the face rec-
ognition system. The change of illumination within a cer-
tain degree has little effect on the face recognition system. 
Therefore, the face recognition system realized in this paper 
is robust, which can adapt to changes in background and illu-
mination to make accurate recognition in various scenarios.

To evaluate the performance of the designed face detec-
tion recognition system in diverse scenarios, we conducted 
tests on different humans. We had a total of 31 volunteers 
recruited, including 20 males and 11 females. After we reg-
istered their identities in the system, the system was able to 
recognize each of them. Figure 6 gives several of the typical 
recognition cases. As shown in Fig. 6a–c when different reg-
istered users appeared, the system was able to successfully 
detect faces and recognize them with correct identities. In 
Fig. 6d, two different users appear at the same time, and both 
of them are detected and identified correctly.

6 � Conclusion

The CNN based algorithms have shown remarkable perfor-
mance in face recognition. However, on account of model 
size and computation complexity, these methods need fur-
ther improvement before being applied to low-cost embed-
ded devices. In this paper, a lightweight face recognition 
algorithm along with a novel IR-Shuffle unit has been pro-
posed to reduce the number of parameters and calculations 
of the face feature extraction network. Experimental results 
have shown that the lightweight face recognition system 
designed in this paper greatly reduces the model size and 
computation complexity while maintaining comparable 

accuracy. The proposed algorithm has been implemented 
and optimized on the Jetson Nano embedded platform. 
Model compression and software acceleration have been 
invoked for better system efficiency. System tests have 
shown that it takes 37 ms to complete face recognition, and 
the system implemented is robust to changes in complex 
backgrounds and ambient light. The system designed in this 
paper has met the real-time and stable requirements of prac-
tical face recognition applications.

The application scenario considered in this paper focuses 
on indoor environments, however, applications of face rec-
ognition are not limited to this. For outdoor scenarios, the 
variable environmental conditions make it more difficult to 
extract face features and require specific network design to 
achieve satisfying performance. In practical applications, it 
is difficult to collect and label enough samples for innumer-
able real-world scenes. One promising solution is to first 
learn a generic model and then transfer it to application-spe-
cific scenarios. Domain adaptation [44–46] can be applied 
to reduce algorithmic bias in different scenarios. However, 
the design of embedded systems based on these models is 
still an open problem and we will further work on this aspect 
in future research.

Declarations 

Conflict of interest  This study was supported by Natural Sci-
ence Research of Jiangsu Higher Education Institutions of China 
(21KJB510021). The authors have no conflicts of interest to declare 
that are relevant to the content of this article.

References

	 1.	 Bouvrie, J.: Notes on convolutional neural networks (2006)
	 2.	 Krizhevsky, A., Sutskever, I., Hinton GE Imagenet classification 

with deep convolutional neural networks. In: Advances in Neural 
Information Processing Systems, pp 1097–1105 (2012)

	 3.	 Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, 
S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.: Imagenet 
large scale visual recognition challenge. Int. J. Comput. Vis. 
115(3), 211–252 (2015)

	 4.	 Huang, G.B., Lee, H., Learned-Miller, E.: Learning hierarchical 
representations for face verification with convolutional deep belief 
networks. In: IEEE Conference on Computer Vision and Pattern 
Recognition, pp 2518–2525 (2012)

	 5.	 Howard, AG., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., 
Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. (2017) 
arXiv preprint arXiv:​1704.​04861

	 6.	 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, LC.: 
Mobilenetv2: Inverted residuals and linear bottlenecks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp 4510–4520 (2018)

	 7.	 Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely 
efficient convolutional neural network for mobile devices. In: 

(a) User 1 (b) User 2

(c) User 3 (d) Multi-user

Fig. 6   Recognition results of different humans

http://arxiv.org/abs/1704.04861


137A lightweight CNN‑based algorithm and implementation on embedded system for real‑time face…

1 3

Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, pp 6848–6856 (2018)

	 8.	 Ma, N., Zhang, X., Zheng, HT., Sun, J.: Shufflenet v2: Practical 
guidelines for efficient cnn architecture design. In: Proceedings 
of the European Conference on Computer Vision, pp 116–131 
(2018)

	 9.	 Huang, GB., Mattar, M., Berg, T., Learned-Miller, E.: Labeled 
faces in the wild: A database forstudying face recognition in 
unconstrained environments (2008)

	10.	 Yi, D., Lei, Z., Liao, S., Li, SZ.: Learning face representation 
from scratch. (2014) arXiv preprint arXiv:​1411.​7923

	11.	 Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Clos-
ing the gap to human-level performance in face verification. In: 
Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, pp 1701–1708 (2014)

	12.	 Simonyan, K., Zisserman, A.: Very deep convolutional networks 
for large-scale image recognition. (2014) arXiv preprint arXiv:​
1409.​1556

	13.	 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, 
D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper 
with convolutions. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, pp 1–9 (2015)

	14.	 Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep 
network training by reducing internal covariate shift. (2015) 
arXiv preprint arXiv:​1502.​03167

	15.	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: 
Rethinking the inception architecture for computer vision. In: 
Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, pp 2818–2826 (2016a)

	16.	 Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-
v4, inception-resnet and the impact of residual connections on 
learning. (2016b) arXiv preprint arXiv:​1602.​07261

	17.	 Sun, Y., Wang, X., Tang, X.: Deep learning face representation 
from predicting 10,000 classes. In: Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, pp 
1891–1898 (2014)

	18.	 Zhang, Y., Tsang, IW., Luo, Y., Hu, CH., Lu, X., Yu, X.: Copy 
and paste gan: Face hallucination from shaded thumbnails. In: 
Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition, pp 7355–7364 (2020)

	19.	 Zhang, Y., Tsang, I., Luo, Y., Hu, C., Lu, X., Yu, X.: Recursive 
copy and paste gan: Face hallucination from shaded thumbnails. 
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (2021)

	20.	 Gan, Y., Luo, Y., Yu, X., Zhang, B., Yang, Y.: Vidface: A full-
transformer solver for video facehallucination with unaligned 
tiny snapshots. (2021) arXiv preprint arXiv:​2105.​14954

	21.	 Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified 
embedding for face recognition and clustering. In: Proceedings 
of the IEEE Conference on Computer Vision and Pattern Rec-
ognition, pp 815–823 (2015)

	22.	 Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face rep-
resentation by joint identification-verification. In: Advances in 
Neural Information Processing Systems, pp 1988–1996 (2014)

	23.	 Sun, Y., Wang, X., Tang, X.: Deeply learned face representa-
tions are sparse, selective, and robust. In: Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 
pp 2892–2900 (2015)

	24.	 Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature 
learning approach for deep face recognition. In: European Con-
ference on Computer Vision, pp 499–515 (2016)

	25.	 Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: 
Deep hypersphere embedding for face recognition. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp 212–220 (2017)

	26.	 Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax 
for face verification. IEEE Signal Process. Lett. 25(7), 926–930 
(2018)

	27.	 Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., 
Liu, W.: Cosface: Large margin cosine loss for deep face recogni-
tion. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp 5265–5274 (2018b)

	28.	 Potluri, S., Fasih, A., Vutukuru, LK., Al Machot, F., Kyamakya, 
K.: CNN based high performance computing for real time image 
processing on GPU. In: Proceedings of the Joint INDS’11 & 
ISTET’11, IEEE, pp 1–7 (2011)

	29.	 Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: 
A survey on mobile edge networks: Convergence of computing, 
caching and communications. IEEE Access 5, 6757–6779 (2017)

	30.	 Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile 
edge computing-a key technology towards 5G. ETSI White Paper 
11(11), 1–16 (2015)

	31.	 Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., Kol-
dehofe, B.: Mobile fog: A programming model for large-scale 
applications on the internet of things. In: Proceedings of the Sec-
ond ACM SIGCOMM Workshop on Mobile Cloud Computing, 
pp 15–20 (2013)

	32.	 Kim, S., Howe, P., Moreau, T., Alaghi, A., Ceze, L., Sathe, V.S.: 
Energy-efficient neural network acceleration in the presence of 
bit-level memory errors. IEEE Trans. Circuits Syst. I Regul. Pap. 
65(12), 4285–4298 (2018)

	33.	 Jo, J., Kim, S., Park, I.C.: Energy-efficient convolution architec-
ture based on rescheduled dataflow. IEEE Trans. Circuits Syst. I 
Regul. Pap. 65(12), 4196–4207 (2018)

	34.	 Kim, S., Lee, J., Kang, S., Lee, J., Yoo, H.J.: A power-efficient 
CNN accelerator with similar feature skipping for face recognition 
in mobile devices. IEEE Trans. Circuits Syst. I Regul. Pap. 67(4), 
1181–1193 (2020)

	35.	 He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: 
Surpassing human-level performance on imagenet classification. 
In: Proceedings of the IEEE international conference on computer 
vision, pp 1026–1034 (2015)

	36.	 Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angu-
lar margin loss for deep face recognition. In: Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 
pp 4690–4699 (2019)

	37.	 Lin, TY., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for 
dense object detection. In: Proceedings of the IEEE International 
Conference on Computer Vision, pp 2980–2988 (2017)

	38.	 Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., Zafeiriou, S.: Reti-
naface: Single-stage dense face localisation in the wild. (2019) 
arXiv preprint arXiv:​1905.​00641

	39.	 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, 
Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic dif-
ferentiation in pytorch. In: 31st Conference on Neural Information 
Processing Systems (2017)

	40.	 Chen, S., Liu, Y., Gao, X., Han, Z.: Mobilefacenets: Efficient 
CNNs for accurate real-time face verification on mobile devices. 
In: Chinese Conference on Biometric Recognition, pp 428–438 
(2018)

	41.	 Wu, B., Wan, A., Yue, X., Jin, P., Zhao, S., Golmant, N., Ghola-
minejad, A., Gonzalez, J., Keutzer, K.: Shift: A zero flop, zero 
parameter alternative to spatial convolutions. In: Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp 9127–9135 (2018)

	42.	 Martindez-Diaz, Y., Luevano, LS., Mendez-Vazquez, H., Nicolas-
Diaz, M., Chang, L., Gonzalez-Mendoza, M.: Shufflefacenet: A 
lightweight face architecture for efficient and highly-accurate face 
recognition. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision Workshops, pp 0–0 (2019)

http://arxiv.org/abs/1411.7923
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/2105.14954
http://arxiv.org/abs/1905.00641


138	 Z. Chen et al.

1 3

	43.	 Lai, L., Suda, N., Chandra, V.: Deep convolutional neural network 
inference with floating-point weights and fixed-point activations. 
(2017) arXiv preprint arXiv:​1703.​03073

	44.	 Wang, M., Deng, W.: Deep visual domain adaptation: A survey. 
Neurocomputing 312, 135–153 (2018)

	45.	 Luo, Y., Liu, P., Guan, T., Yu, J., Yang, Y.: Significance-aware 
information bottleneck for domain adaptive semantic segmenta-
tion. In: Proceedings of the IEEE/CVF International Conference 
on Computer Vision, pp 6778–6787 (2019)

	46.	 Luo, Y., Liu, P., Zheng, L., Guan, T., Yu, J., Yang, Y.: Category-
level adversarial adaptation for semantic segmentation using puri-
fied features. IEEE Transactions on Pattern Analysis and Machine 
Intelligence(2021)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.

http://arxiv.org/abs/1703.03073

	A lightweight CNN-based algorithm and implementation on embedded system for real-time face recognition
	Abstract
	1 Introduction
	2 Related work
	2.1 Model design
	2.2 System implementation

	3 Lightweight feature extraction network
	3.1 The inverted residual shuffle unit
	3.2 Network architecture

	4 Performance evaluation
	5 Implementation of embedded face recognition system
	5.1 System framework
	5.2 Embedded implementation and optimization
	5.3 Compression of CNN model
	5.4 Software acceleration
	5.5 Network inference acceleration
	5.6 Performance testing

	6 Conclusion
	References




