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Abstract
Pedestrian attribute recognition is widely used in pedestrian tracking and pedestrian re-identification. This task confronts 
two fundamental challenges. One comes from its multi-label nature; the other one comes from the characteristics of data 
samples, such as the class imbalance and the partial occlusion. In this work, we propose a Cross Attribute and Feature 
Network (CAFN) that fully exploits the correlations between any pair of attributes for the pedestrian attribute recognition 
to tackle these challenges. Concretely, CAFN contains two modules: Cross-attribute Attention Module (C2AM) and Cross-
feature Attention Module (CFAM). C2AM enables the network to automatically learn the relation matrix during the training 
process which can quantify the correlations between any pair of attributes in the attribute set, and CFAM is introduced to 
fuse different attribute features to generate more accurate and robust attribute features. Extensive experiments demonstrate 
that the proposed CAFN performs favorably compared with state-of-the-art approaches.

Keywords Pedestrian attribute recognition · Attention mechanism · Multi-label classification · Attribute correlation · Visual 
feature correlation

1  Introduction

Pedestrian attribute recognition, which aims to predict a 
label set of semantic pedestrian attributes for each given 
image, has been widely used in various computer vision 
tasks, such as pedestrian detection, pedestrian retrieval [1] 
and pedestrian re-identification [2, 3].

Previous works in this field can be roughly categorized 
into two groups: studies which focus on feature learning and 
studies that value the attribute correlations. The first group 
of methods has shifted the research focus from global fea-
tures to local features and attention-based features. Early 
studies [4, 5] utilize standard convolutional neural network 
to extract fully connected features as global features, which 
is shown in Fig. 1a. Concerning this kind of global features 
possess less discriminative capacity, there emerge a series 
of approaches that put emphasis on local features on equally 
partitioned or learned human parts. For example, Zhu et al. 
[6] divided the image into 15 overlapping patches and 
adopted corresponding local parts for the classification of 
specific attribute classification. Works [7–9] introduced clus-
tering method to further refine the obtained part information. 
Studies [10, 11] applied poselet [12] to obtain the key points 
of the pedestrian and transform these key points into part 
information. Yang et al. [13] proposed a specific key point 
localization network and an adaptive generator of bound-
ing box for each part. Li et al. [14] added human-centric 
and scene-level contexts to bounding box regions; Liu et al. 
[15] took advantage of EdgeBoxes to create regions pro-
posals and obtain local features from the input. Nowadays, 
attention-based methods have become popular. Some works 
[16, 17] capture attention from multiple layers and Sarfraz 
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et al. [18] captured attention from visual cues. Guo et al. [19] 
stressed the importance of refining attention heat map for 
each attribute. However, all the methods mentioned above 
pay less attention to the correlations between attributes, 
which plays a crucial role in alleviating the common sample 
imbalance and partial occlusion issues in this area. Here the 
sample imbalance means that there exist several attributes 
with only a small amount of training samples. And partial 
occlusion means that several pedestrian attributes are par-
tially or completely blocked by other objects in the image. It 
is difficult for the network to learn distinguishable features 
to describe and recognize such attributes. However, with the 
help of the correlation information between attributes, the 
network can identify these attributes more accurately.

To better leverage the attribute correlations, current 
studies normally concentrate on two aspects: multi-stage 
prediction and sequential prediction. Multi-stage based 
methods [20] often involve multiple recognition and pre-
diction stages, where the classifiers need to be trained 
separately. In contrast, sequence-based methods [21–24] 
employed time series model to capture the interdepend-
ence and correlation among attributes, among which a typ-
ical group information related to attributes is introduced in 
[22, 24] to give a boost to intra-group feature sharing and 
inter-group feature competition, as shown in Fig. 1b. How-
ever, the group information requires much manual annota-
tion and the model can be easily affected by the prediction 
order of attributes. Moreover, these methods only consider 

Fig. 1  Illustration of different 
methods
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the correlations between a partial set of attributes instead 
of the whole set of attributes.

Motivated by the aforementioned observations, we con-
sider investigating the attribute correlations more sufficiently 
by modeling the relationships between any pair of attributes 
in the attribute set. Towards this end, we propose a Cross 
Attribute and Feature Network (CAFN), which extracts 
multi-scale features and learns the attribute correlations 
via two newly proposed modules: Cross-attribute Atten-
tion Module (C2AM) and Cross-feature Attention Module 
(CFAM). The former one aims to deeply mine the correla-
tions among attributes by automatically learning a relation 
matrix of attributes, as shown in Fig. 1c. In addition, the lat-
ter one is introduced on top of C2AM to fuse multiple matri-
ces of attribute features, aiming to obtain a feature matrix 
with higher generalization capacity. Through these two mod-
ules, the abstract relationship information among attributes 
can be fully explored and exploited, which improves the sta-
bility and effectiveness of the network. The experiments on 
three common data sets (PETA [25], RAP [26], PA-100K 
[16]) have verified the effectiveness of our method. Our con-
tributions are summarized as follows.

• We propose an effective network CAFN to sufficiently 
explore the attribute correlations for resolving the prob-
lem of pedestrian attribute recognition.

• We further propose two modules: Cross-attribute Atten-
tion Module and Cross-feature Attention Module to 
automatically learn the relation matrix and fuse multiple 
matrices of attribute features, respectively.

• Extensive experiments on three common data sets dem-
onstrate the effectiveness of the proposed CAFN.

We introduce the related work of pedestrian attribute recog-
nition in Sect. 2, our proposed method and the experiments 
are introduced in Sects. 3 and 4, respectively. In Sect. 5, we 
summarize the content of the paper.

2  Related work

In this section, we present a brief review of approaches about 
pedestrian attribute recognition in Sect. 2.1, and then intro-
duce studies of feature pyramid architecture and attention 
mechanisms that are closely related to this work in Sects. 
2.2 and 2.3, respectively.

2.1  Pedestrian attribute recognition

In practical applications, it is necessary to identify a series 
of attributes for the task of pedestrian attribute recognition. 
It is an intuitive idea to let the network to learn and identify 
each attribute independently, but it will bring redundancy 

and inefficiency to the network. Moreover, the learning of 
one attribute may relies on or constrain the others. Process 
single attribute independently is prone to be influenced by 
the multi-label nature of the pedestrian attribute recogni-
tion task. Therefore, most research methods integrate rec-
ognition tasks of different attributes into one model. These 
approaches could be categorized into two groups: methods 
without considering attribute correlation and methods con-
sidering attribute correlation.

2.1.1  Methods without considering attribute correlation

Some methods pay more attention to how to extract more 
accurate features and do not explore the correlation informa-
tion between attributes in the process of recognition. Li et al. 
[4] and Sudowe et al. [5] focus on the global feature and 
proposes multi-task learning algorithms. These networks 
are relatively simple in which all attribute features share 
network parameters, resulting in a poor effect. Some works 
[6–11, 13–15] put forward different strategies to extract or 
generate local features. Zhu et al. [6] divide the image into 
15 overlapping patches to extract local features and the spa-
tial location information of attributes is used to identify each 
patch; Joo et al. [7] extracts features from selected windows 
in the image, and then K-means is conducted to cluster these 
features, to train the attribute detector; Some works [10, 11] 
apply poselet [12] to obtain the key points of the pedes-
trian and transform these key points into part information 
to obtain local features. Some works [15–19] add attention 
mechanism to improve utilization of visual feature informa-
tion. Some works [15, 19] put forward the application of 
CAM (class activation map) network [27] which is used as 
guidance to assess the importance of local features to differ-
ent attributes and locate attributes from the global feature. 
Liu et al. [16] proposes a multi-directional attention mecha-
nism module (MDA) to fuse the multi-layer features in the 
attention area according to the semantics of different layers. 
Each layer in MDA generates an attention graph, which not 
only maps back to the original layer features but also applies 
to adjacent layers, so as to mine multi-scale attention fea-
tures. The view predictor is introduced in method [18] to 
estimate the weight of the view, to fuse the features of dif-
ferent views. In method [17], it is suggested that the attention 
graph should be learned by weak supervision, and the clas-
sification performance can be improved through guiding the 
network to pay more attention on the spatial part containing 
relevant information. In method [28], the human posture key 
points are generated and then be used as auxiliary informa-
tion to obtain the regional position information of specific 
attributes. However, these models only add attention to the 
network structure or focus on specific attributes, without 
considering the dependence of attributes.



1072 R. Zhao et al.

1 3

2.1.2  Methods considering attribute correlation

Other methods take into account the attribute correlation 
information to assist attribute recognition. Bourdev et al. 
[20] trains SVM classifiers at poselet [12] level, person 
level and context level. When they trained classifiers for 
each attribute at the context level, they applied the scores of 
all person-level attribute classifiers to make use of the cor-
relations among attributes. However, these classifiers need 
to be trained separately. Wang et al. [21] manually divide 
the given image into several horizontal regions, extracts 
attribute features with LSTM which could be able to capture 
higher order correlations between attributes. Based on [21], 
Zhao et al. [22] divided the whole attribute list into several 
groups, and LSTM was used to simulate spatial and seman-
tic correlation in attribute groups. Some methods [21, 22] 
are based on sequence prediction, which is easily affected 
by manual partition and attribute order. The network [23] 
is capable of predicting multiple attributes simultaneously, 
which applied Transformer [29] as an attention module to 
model the correlation between attributes and align the long 
attribute sequences. Zhao et al. [24] proposed two models: 
circular convolution model (RC) and cyclic attention model 
(RA). These two models focused on the correlation between 
different attribute groups and the spatial correlation within 
groups, respectively. The MTA-Net [30] is constructed based 
on the LSTM who employs the information of the next time 
step, and mines deeper relations between images and attrib-
utes. However, dividing attributes into different groups only 
considers the rough correlation between partial attributes 
and does not accurately quantify the correlation between all 
attribute pairs. An attribute relationship attention module is 
designed in [31] to capture the latent relations among differ-
ent attributes. However, this method combines two learning 
tasks: coarse attribute localization and fine attribute recogni-
tion, which is too complex.

2.2  Feature pyramid architecture

To make better use of the correlation between attributes, it 
is necessary to obtain an accurate feature description of each 
attribute. However, in a deep convolution network, lower 
layers can capture small-scale attribute information and the 
deep network has a larger receptive field which can capture 
more abstract information. Owing to different and comple-
mentary concerns of different layers, it is meaningful to add 
feature fusion operation in the network. The feature pyramid 
structure integrates the different features of the low layers 
and high layers. First, multiple features of different scales are 
extracted from the bottom up, and then the feature is upsam-
pled from the top down. The features of the same scale are 
fused in the horizontal direction. This idea has been reflected 
in many previous works, such as [32, 33].

2.3  Attention mechanism

The attention mechanism enables the model to focus on a 
small part of useful information from a large amount of input 
information while ignoring other information. At present, 
the mainstream attention mechanisms can be divided into 
the following three types: channel attention, spatial attention 
and self attention. Channel-attention based methods [34–36] 
could automatically obtain the importance of different chan-
nels in the feature, so as to strengthen the important features 
and suppress the non important features. Spatial-attention 
based methods [37] aims to improve the feature expression 
of key regions. These methods generate a mask and assign 
weight for each position, so as to enhance the specific target 
regions of interest and weaken the irrelevant background 
regions. The self-attention based methods [29, 38] reduce 
the dependence on external information and have a better 
ability of capturing the internal correlation of features. The 
self-attention mechanism can be viewed as a mapping opera-
tion from a query to a series of key-value pairs. In general, 
the input data could be set as a series of key-value data pairs. 
Giving a query of an element in the target data, the weight 
coefficient of each key can be obtained by calculating the 
similarity or correlation between the query and each key. 
After normalization by the softmax operation, the weight 
and corresponding value are weighted and summed to get 
the final attention value.

3  Methodology

In this section, we first present the overall architecture of the 
proposed network in Sect. 3.1. Then we give a detailed intro-
duction to the Cross-attribute Attention Module and Cross-
feature Attention Module in Sects. 3.2 and 3.3, respectively. 
Finally, we describe the loss function in Sect. 3.4.

3.1  Overall architecture

Figure 2 shows the overall pipeline of the proposed Cross 
Attribute and Feature Network (CAFN). Motivated by FPN 
[33], we construct CAFN with a three-layer feature pyra-
mid structure. Specifically, we adopt inception-v2 as the 
backbone network and build feature pyramid architecture 
with three different levels: the inception_3b, inception_4d, 
and inception_5b. The feature pyramid architecture mainly 
contains three horizontal connection operations and two top-
down connection operations. For horizontal connections, we 
use a 1 × 1 convolution kernel to reduce the channel dimen-
sion uniformity to 256. For top-down connections, we per-
form an up-sampling operation. Given the input pedestrian 
image as I, we denote the top-down features in the three 
layer as �j(I), j ∈ {1, 2, 3} , respectively. The input images 
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are resized to 256 × 128 and sent into the multilayer convo-
lution network, and the feature maps of 32 × 16 , 16 × 8 and 
8 × 4 are obtained successively. The number of channels is 
320, 608 and 1024 respectively. In the process of building 
the feature pyramid, to reduce the network parameters, 256 
channels are integrated and extracted from the three feature 
maps to obtain �j(I), j ∈ {1, 2, 3} . Where �1(I) is obtained 
directly from P1(I) , and the size is 8 × 4 × 256 . After an 
upsampling operation, �1(I) is concatenated with P2(I) and 
�2(I) is obtained with size of 16 × 8 × 512 . Similarly, after 
an upsampling operation, �2(I) is concatenated with P3(I) 
and �3(I) is obtained with size of 32 × 16 × 768.

For the learning of correlation between attributes, we 
perform convolution and pooling operations on features 
�1(I) , �2(I) and �3(I) to extract the features of each attrib-
ute, getting the initial rough feature matrix F. And then, 
use the Cross-attribute Attention Module (C2AM) to learn 
the relation matrix between attributes. According to the 

weight information in the relation matrix, each attribute 
feature in the feature matrix F will be fused with all other 
attribute features using different weights, so as to get the 
feature matrix F̃ which contain more rich semantics. In 
the Cross-feature Attention Module (CFAM), we convert 
the input feature matrix F to different F̃p by constructing 
h different C2AM modules, and perform weighted fusion 
on these F̃p ( p ∈ {1, 2,… , h} , h denotes the number of 
C2AM contained in CFAM). The output of CFAM is one 
feature matrix F̂ , which will be sent to fully connect lay-
ers to obtain the recognition results of attributes.

As illustrated in Fig. 2, four individual prediction vec-
tors are obtained from one global branch and three pyra-
mid layers. During inference, four prediction vectors are 
aggregated and the final prediction output value of each 
attribute uses the maximum value of the corresponding 
result in the four vectors.

Fig. 2  Overview of the proposed Cross Attribute and Feature Network (CAFN). a is the overall pipeline of CAFN. b and c are the illustration of 
Cross-attribute Attention Module (C2AM) and Cross-feature Attention Module (CFAM), respectively
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3.2  Cross‑attribute attention module

To model the relationships between any pair of attributes 
in the attribute set, we propose a Cross-attribute Attention 
Module(C2AM), as illustrated in Fig. 2b. We input each 
feature �j(I) , ( j ∈ {1, 2, 3} ) into m different convolutional 
layers and global average pooling layers, respectively, and 
obtain features fi , ( i ∈ {1, 2,… ,m} ), which is corresponding 
to m different attributes. These fi construct the attribute fea-
ture matrix F with size of m × c (c is the feature dimension 
of each attribute). To mine the attribute correlation informa-
tion based on such features, we utilize self-attention mecha-
nism to learn a relation matrix between attributes, which is 
denoted as R , with a shape of m × m (m is the number of 
attributes). Specifically, each fi is input into different fully 
connect layers to obtain the corresponding vector ki and vec-
tor qi , respectively. In addition, the dimension of vector ki 
and vector qi is reduced to c′(c’=c/8). After concatenation 
of all the ki and qi , the matrix K and matrix Q are obtained. 
The matrix Q is transposed and multiplied by the matrix K, 
and the relationship matrix R of m × m size is obtained after 
softmax operation, formulated as

where s refers to the softmax operation for each row vector 
of the matrix. Specifically, the ith row of matrix K is learned 
from the ith attribute feature in matrix F through the fully 
connect operation. As a result, the ith row of matrix K con-
tains the information of the ith attribute. Therefore, is the 
matrix Q. Therefore, in the matrix of m × m size obtained 
by multiplying the K and Q⊤ , the value of row i and column 
j is obtained by multiplying the ith attribute feature in K and 
the jth attribute feature in Q. After normalizing the matrix 
of m × m size with softmax operation, matrix R is obtained 
which can represent the relationship between attributes. 
Moreover, the value of the element in row i and column j of 
the relationship matrix R represents the correlation between 
the ith attribute and the jth attribute. Multiplied R with the 
attribute feature matrix F, the output feature F̃ of the module 
is obtained: formulated as:

In the process of this operation, for each fi ( i ∈ {1, 2,… ,m} ) 
in F, we consider the relationship between fi and all other 
fv , ( v ∈ {1, 2,… ,m} and v ≠ i ), and fuse them according 
to the corresponding value in the relationship matrix R, 
respectively. After this operation, we get the attribute feature 
matrix F̃ which is further refined.

(1)
R = s(K × Q⊤),

R ∈ ℝ
m×m,K ∈ ℝ

m×c� ,Q ∈ ℝ
m×c� .

(2)
F̃ = R × F,

F̃ ∈ ℝ
m×c,R ∈ ℝ

m×m,F ∈ ℝ
m×c.

3.3  Cross‑feature attention module

To generate more accurate and robust attribute features, 
we propose a Cross-feature attention module(CFAM), as 
illustrated in Fig. 2c. For each feature �j(I) , ( j ∈ {1, 2, 3} ), 
we can get an initial rough feature matrix F. In CFAM, we 
construct multiple C2AM modules. By setting the number 
of C2AM as h, we will get h different F̃p , ( p ∈ {1, 2,… , h} ) 
after inputting F to each C2AM. Although the F input to 
multiple C2AM modules is the same, the parameters of fully 
connect layer in each C2AM module are different. Therefore, 
the obtained matrix K and Q are different in different C2AM, 
and different relationship matrix R will be obtained. Finally, 
different F̃p are obtained.

In Fig. 2c, we set h as 4. In addition, CFAM can learn 
different weights for different F̃p and fuse them more effi-
ciently. After concatenation of each input feature F̃p , we 
input them to two fully connect layers and set the output 
dimension of the last fully connect layer as h, so as to map 
the feature information to weight information. In addition, 
the last fully connect layer will output h weight parameters 
wp , ( p ∈ {1, 2,… , h} ). Through the continuous learning and 
updating of the parameters in the fully connect layers, the 
network can directionally learn h parameters to represent the 
importance of h attribute features F̃p according to the fusion 
information of h attribute features. The wp corresponding to 
each F̃p represents the importance of F̃p to the feature matrix 
F̂ . We multiply the weight wp by the corresponding F̃p and 
sum to get the output features of Cross-feature Attention 
Module, which are denoted as F̂ . Each row of feature matrix 
F̂ represents a feature that belongs to an attribute after fea-
ture fusion which is formulated as

The CFAM makes use of the interior information of features 
and makes it easier for the network to learn a more reason-
able combination of features. Moreover, CFAM contains 
multiple C2AM, which can alleviate the deviation caused 
by a single relation matrix.

3.4  Loss function

For the four individual prediction vectors obtained in the 
network, each of them is compared to the ground-truth labels 
and is involved in the calculation of loss function to update 
the gradient of each branch in the network more reasonably. 
Given the input pedestrian image as I, and the corresponding 
label is represented as y = [y1, y2,… , ym]

T , where m and yi 

(3)
F̂ =

h
∑

p=1

wp × F̃p,

F̂ ∈ ℝ
m×n,wp ∈ ℝ, F̃p ∈ ℝ

m×n.
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denote the number of pedestrian attributes and the label of 
the ith attribute, respectively. In particular, when I has the 
ith attribute, yi = 1 , otherwise yi = 0, (i ∈ {1, 2,… ,m}) . We 
denote the predictions generated from the jth branch on ith 
attribute as ỹj

i
 , j ∈ {1, 2, 3, 4} . Then the final output of the 

network ỹ = [ỹ1, ỹ2,… , ỹm]
T , where ỹi = max (ỹ1

i
, ỹ2

i
, ỹ3

i
, ỹ4

i
) . 

This paper uses the weighted binary cross entropy loss func-
tion in [4], which is formulated as

where � i = e−ai , and ai is the loss weight value of the ith 
attribute; ai is the prior class distribution of the ith attribute; 
� is the sigmoid activation function; j is the loss function of 
jth branch, j ∈ {1, 2, 3, 4} . The final loss function consists of 
the sum of the loss functions of backbone and three pyramid 
layers:

4  Experiments

4.1  Settings

4.1.1  Data set

To verify the effectiveness of the proposed model, we con-
duct experiments on three public data sets, PETA, RAP and 
PA-100K, respectively.

The PETA data set [25] contains 8705 pedestrians with 
a total of 19,000 images (resolution span range from 17 × 39 
to 169 × 365 ). Each pedestrian is labeled with 61 binary and 
four multi-class attributes. However, some attributes will not 
be used according to the established protocol. We only use 
35 attributes with a positive label ratio higher than 5%. In 
addition, using the same method as [18] to divide the PETA 
data set, the number of images in the training, verification, 
and test sets are 9500, 1900, and 7600, respectively.

The RAP data set [26] is collected from the real indoor 
environment. A total of 26 cameras were used to collect 
images of the surveillance scene, including 41,585 samples, 
with a resolution ranging from 36 × 92 to 344 × 554 . Specifi-
cally, there are 33,268 training images and 8317 test images. 
Each image sample contains 72 fine-grained attributes (69 
binary attributes and 3 multi-class attributes). However, we 
only make use of 51 attributes whose positive label ratio is 
higher than 1%.

(4)
Lj(ỹj, y) = −

1

m

m
∑

i=1

𝛾 i(yi log(𝜎(ỹj
i))

+(1 − yi) log(1 − 𝜎(ỹj
i))),

(5)L =

4
∑

j=1

Lj(ỹj, y).

The PA-100K data set [16] is composed of pictures cap-
tured from 598 real outdoor surveillance cameras. There are 
100,000 samples in total, and the resolution of each sample 
image is between 50 × 100 and 758 × 454 . The PA-100K data 
set is by far the largest pedestrian attribute recognition data set. 
The whole data set is randomly divided into the training set, 
validation set, and test set at the ratio of 8:1:1. Each image in 
the data set is labeled with 26 attributes.

4.1.2  Implementation details

In the entire process of the experiment, we use the adam [39] 
optimizer with initial learning rate of 1 × 10−4 , momentum 
of 0.9, and weight decay of 5 × 10−4 . The batch size is set to 
8 and the initial learning rate equals 0.0001 which decays by 
0.1 every 10 epochs. The training samples are augmented by 
random horizontal flipping. In both training and testing phases, 
input images are resized to 256 × 128 . We use Inception-v2 as 
the backbone, whose parameters are initialized with the cor-
responding model pre-trained on ImageNet [40].

4.1.3  Evaluation metrics

For the evaluation of PETA, RAP, and PA-100K, we rely 
on two types of indicators: label-based and example-based 
metrics.

For the label-based evaluation, we adopt the mean accu-
racy (mA). For each attribute, we calculate the accuracy of all 
samples, regardless of positive or negative. Then we calculate 
the average value of all attributes to get mA. Therefore, mA 
is not affected by the class imbalance, so the error caused by 
less and more frequent tag values is punished equally strongly. 
The evaluation criterion mA can be calculated by the follow-
ing formula:

where m is the number of attributes and N is the number 
of samples. TPi and TNi are the numbers of positive and 
negative examples that are correctly predicted for the ith 
attribute, respectively. Pi and Ni are the numbers of positive 
and negative examples of the ith attribute, respectively.

To explain the consistent attribute predictions in each per-
son image, we further use four widely used metrics, including: 
accuracy, precision, recall rate and F1 value, which are defined 
as follows:

(6)mA =
1

2N

m
∑

i=1

(

TPi

Pi

+
TNi

Ni

)

,

(7)accuracy =
1

N

N
∑

i=1

∣ Yi ∩ f (xi) ∣

∣ Yi ∪ f (xi) ∣
,
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where Yi means the ground truth positive labels of the ith 
example, and f (xi) returns the predicted positive labels for 
ith example. In addition, ∣ . ∣ is the set cardinality.

4.2  Comparison with state‑of‑the‑arts

We make a comparison of the performance of our pro-
posed network against several state-of-the-art networks, 
such as GAM [41], PGDM [11], GRL [22], RCRA [24], 
MT-CAS [42] , DTM [28], MTMS [31] and so on. The 
experimental results on PETA data set and RAP data set 
are shown in Table 1, and the result of PA-100K is shown 
in Table 2. As for evaluation criteria, mA, accuracy, pre-
cision, recall, and F1 are all listed. Besides, we add the 
number of parameters (#P) and complexity (GFLOPS) for 
the RAP data set. By observing the data in these tables, we 

(8)precision =
1

2N

N
∑

i=1

∣ Yi ∩ f (xi) ∣

∣ f (xi) ∣
,

(9)recall =
1

2N

N
∑

i=1

∣ Yi ∩ f (xi) ∣

∣ Yi ∣
,

(10)F1 =
2 ∗ precision ∗ recall

precision + recall
.

can be informed of the advantages of our model clearly. 
On the PETA data set, both accuracy and F1 score reach 
the optimal level, which are 78.81% and 86.57% , respec-
tively. Although LG-net [15] is the best in precision and 
F1 value and DTM [28] is better in recall value on RAP 
data set, our model is superior to these two models in the 
number of model parameters and computational complex-
ity. MTMS [31] has the best result on mA, but the results 
on accuracy, precision and F1 is far worse than our model. 
Moreover, on the PA-100K data set, our model has the best 
performance in mA and recall and outperforms the sub-
optimal model MT-CAS [42] by 2.56% and 3.48% , respec-
tively. These results show the necessity and effectiveness 
of mining attribute correlation information.

Table 1  Quantitative comparisons against previous methods on PETA and RAP data sets

Best results are in bold

Methods Data set

PETA RAP

mA Accu Prec Recall F1 mA Accu Prec Recall F1 GFLOPS #params

ACN [5] 81.15 73.66 84.06 81.26 82.64 69.66 62.61 80.12 72.26 75.98 – –
DeepMar [4] 82.89 75.07 83.68 83.14 83.41 73.79 62.06 74.92 76.21 75.56 0.72 58.5M
GAM [41] – – – – – 79.73 83.97 76.96 78.72 77.83 – –
PGDM [11] 82.97 78.08 86.86 84.68 85.76 74.31 64.57 78.86 75.9 77.35 1 87.2M
LG-Net [15] – – – – – 78.68 68 80.36 79.82 80.09 >4 >20M
JRL [21] 85.67 – 86.03 85.34 85.42 77.81 - 78.11 78.98 78.58 – –
GRL [22] 86.7 – 84.34 88.82 86.51 81.2 – 77.7 80.9 79.29 >10 >50M
RA [24] 86.11 – 86.03 88.51 86.56 81.16 - 79.45 79.23 79.34 – –
HP-net [16] 81.77 76.13 84.92 83.24 84.07 76.12 65.39 77.33 78.79 78.05 – –
VeSPA [18] 83.45 77.73 86.18 84.81 85.49 77.7 67.35 79.51 79.67 79.59 >3 17.0M
DIAA [17] 84.59 78.56 86.79 86.12 86.46 – – – – – – –
MT-CAS [42] 83.17 78.78 87.49 85.35 86.41 – – – – – – –
MTA-Net [30] 84.62 78.80 85.67 86.42 86.04 77.62 67.17 79.72 78.44 79.07 - -
DTM+AWK [28] 85.79 78.63 85.65  87.17 86.11 82.04 67.42 75.87 84.16  79.80 4.09 23.7
MTMS  [31] 86.23 77.21  84.52 87.22 85.85 82.45 49.10 55.00 80.44 65.33 - -
Ours 85.97 78.81 85.68 88.08 86.57 77.9 66.87 78.65 80.38 79.37 2.31 24.7M

Table 2  Quantitative comparisons on PA-100K data set

Best results are in bold

Methods PA-100K data set

mA Accu Prec Recall F1

DeepMar [4] 72.7 70.39 82.24 80.42 81.32
PGDM [11] 74.95 73.08 84.36 82.24 83.29
LG-Net [15] 76.96 75.55 86.99 83.17 85.04
HP-net [16] 74.21 72.19 82.97 82.09 82.53
VeSPA [18] 76.32 73 84.99 81.49 83.2
MT-CAS [42] 77.2 78.09 88.46 84.86 86.62
Ours 79.76 77.12 86.18 88.34 86.14
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4.3  Ablation studies

To analyze the effectiveness of each key component of the 
CAFN network and the influence of other factors, we con-
duct ablation experiments on the PETA data set.

4.3.1  Effectiveness of cross‑attribute attention module

We first remove the CFAM module in the third pyramid 
layer and add a C2AM module to make the structure of the 
three layers consistent. Then we replace the original C2AM 
with two alternatives. One is merely removing the self-atten-
tion mechanism in C2AM, which means the attribute feature 

matrix F will be sent to the fully connected layer instead 
of the attribute feature matrix F̃ . The other one is directly 
removing C2AM, which means adding corresponding fully 
connected layers directly on each feature �i(I) , i ∈ {1, 2, 3} 
to make recognition. We refer to them as C2AM− and 
C2AM − − . The results are shown in the first three rows of 
Table 3. For C2AM − − , the mA and F1 score are 84.97% 
and 85.82%, respectively. Compared with C2AM − − , the 
mA and F1 score of C2AM− are increased by 0.05% and 
0.13%, which indicates that convolution and global average 
pooling operations are important and can further refine the 
attribute features. Compared with C2AM− , the mA and F1 
score of C2AM are increased by 0.31% and 0.14%, which 
reveals that the self-attention mechanism can improve the 
model discrimination ability by learning attribute correla-
tion. In addition, the increased mA and F1 scores show the 
success of C2AM. The corresponding result of attribute-
wise mA for C2AM− and C2AM is shown in Fig. 3. Com-
pared with C2AM− , C2AM achieves improvement in many 
attributes.

4.3.2  Effectiveness of cross‑feature attention module

To verify the effectiveness of the CFAM and explore the 
optimal structure of the CFAM, we set up four groups of 
experiments. Except for the different number of C2AM 

Table 3  Ablation study for C2AM and CFAM on PETA data set

Method mA F1

C2AM − − 84.97 85.82
C2AM− 85.02 85.95
C2AM 85.33 86.09
CFAM

1 85.33 86.09
CFAM

2 85.52 86.32
CFAM

4 85.97 86.51
CFAM

8 85.77 86.41
Full Module(CFAM4) 85.97 86.51

Fig. 3  Attributewise mA of C2AM− and C2AM − −
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modules included in CFAM, the other conditions of these 
four groups of experiments are the same. We set the number 
of C2AM modules to 1, 2, 4, 8, respectively, and refer to 
them as CFAM1 , CFAM2 , CFAM4 and CFAM8 , respectively. 
It should be noted that setting the number of C2AM modules 
to 1 is equivalent to removing the CFAM module, which 
means CFAM1 is equal to C2AM. Results in Table 3 reveal 
that the CFAM module is instrumental in further improving 
the ability of the model to distinguish attributes. In addi-
tion, when the number of C2AM modules is 4 in CFAM, 
the experimental result is the best. Compared with CFAM1 , 
the mA and F1 score of CFAM4 are increased by 0.64% and 
0.32%, respectively. However, when we add the number 
of CAM modules from 4 to 8, the mA and F1 score are 
reduced by 0.2% and 0.1%, respectively. The reduction of 
performance suggests that when C2AM exceeds a certain 
number, it may cause redundancy of the model and bring 
negative effects. The corresponding result of attributewise 
mA for CFAM1 and CFAM4 is shown in Fig. 4. Compared 
with CFAM1 , CFAM4 achieves improvement on a number 
of attributes.

In addition, three examples of different visual angles from 
the PETA data set are given in Fig. 5 for qualitative analysis. 
As we can see, the proposed C2AM and CFAM4 can success-
fully recognize age, gender, clothing, footwear, and other 
attributes. In the first example, the pedestrian’s clothing is 

unfavorable to the judgment of gender, but the attribute of 
long hair assists the identification of gender attribute. In the 
second example, the lower part of the pedestrian’s cloth-
ing is partially occluded, but the upper part of the clothing 
attributes assists the correct recognition of the lower part 
of the clothing attributes. A failure case is also provided in 
the third example. Because of the correlation between short 
sleeves and shorts, C2AM mistakenly identified trousers as 
shorts. However, the wrong prediction is well corrected in 
CFAM4.

4.3.3  Visualization of the relation matrix among attributes

The relation matrix among attributes is the key learning 
content of the network proposed in this paper. We proposed 
to use the correlation among attributes to assist the detec-
tion and recognition of each attribute. To obtain the cor-
relation information, we let the network lean the relation 
matrix among attributes to quantify each pair of attributes in 
the attribute set. This section visualizes the relation matrix 
learned in the network after convergence, as shown in Fig. 6. 
The brighter the color, the greater the correlation. It can be 
seen that the relation matrix learns more abstract informa-
tion, such as the obvious correlation between male and long 
hair in Fig. 6a. The network CAFN will learn multiple dif-
ferent relation matrices at the same time, and work together 

Fig. 4  Attributewise mA of CFAM1 and CFAM4
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Fig. 5  Qualitative results from 
PETA data set of C2AM and 
CFAM

4 . The top two indicate 
the effective examples. The 
last denotes the failure case in 
C2AM and the wrong prediction 
is well corrected in CFAM4

Fig. 6  Visualization of the relation matrix for three examples. The brighter the color, the greater the correlation
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for the final attribute recognition. Another relation matrix in 
Fig. 6b highlights the correlation between short sleeves and 
shorts, while another relation matrix in Fig. 6c highlights the 
correlation between sneaker and shoes.

5  Conclusion

In this paper, considering how to exploit the correlations 
between any pair of attributes, we presented a novel architec-
ture CAFN for pedestrian attribute recognition. It contains 
two essential modules: Cross-attribute Attention Module and 
Cross-feature Attention Module. As a result of the coopera-
tion between the two modules, the performance of CAFN is 
promoted. We have carried out experiments on three public 
data sets (PETA, RAP, PA-100K) and achieved convinc-
ing results. The experimental results show that the network 
CAFN outperforms the most existing methods. Furthermore, 
extensive experiments verify the effectiveness of the two 
key modules in the network. In the future, it is meaningful 
to focus on how to explore and mine the correlation between 
images and attributes in a multi-modal perspective, which 
can further improve the model’s ability to distinguish dif-
ferent attributes.
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