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Abstract
With the advent of Internet, images and videos are the most vulnerable media that can be exploited by criminals to manipu-
late for hiding the evidence of the crime. This is now easier with the advent of powerful and easily available manipulation 
tools over the Internet and thus poses a huge threat to the authenticity of images and videos. There is no guarantee that the 
evidences in the form of images and videos are from an authentic source and also without manipulation and hence cannot be 
considered as strong evidence in the court of law. Also, it is difficult to detect such forgeries with the conventional forgery 
detection tools. Although many researchers have proposed advance forensic tools, to detect forgeries done using various 
manipulation tools, there has always been a race between researchers to develop more efficient forgery detection tools and 
the forgers to come up with more powerful manipulation techniques. Thus, it is a challenging task for researchers to develop 
h a generic tool to detect different types of forgeries efficiently. This paper provides the detailed, comprehensive and sys-
tematic survey of current trends in the field of image and video forensics, the applications of image/video forensics and the 
existing datasets. With an in-depth literature review and comparative study, the survey also provides the future directions 
for researchers, pointing out the challenges in the field of image and video forensics, which are the focus of attention in the 
future, thus providing ideas for researchers to conduct future research.
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1 � Introduction to image/video forensics 
and its importance

Compared to text, visual media has proved to be an efficient 
way of communication. Visual media includes images and 
videos which provide information very effectively. Various 
devices are used to capture this type of information. This 
information is regarded as certification to truthfulness. Also, 

CCTV footage is presented in a court of law as explora-
tory evidence. There are so many other fields that need 
visual material as key information. This increases the need 
for authenticity and integrity of images. In this era of the 
digital world, it is almost in every field that we require the 
authenticity and integrity of images and videos. But there 
are various easily available tools that can be used to manip-
ulate these images and videos. This poses threat to their 
authenticity and integrity. It can, therefore, be concluded 
that “seeing is no longer believing” [1–3]. For example, 
the forgers can take advantage of image manipulation tools 
to hide the crime evidences, or to impersonate s to defame 
well-known and reputed persons, an organization or some 
political party. Thus, it is more important to have a robust 
and highly efficient tool that can cope up with this problem. 
Although there is easy availability of powerful manipulation 
tools, researchers have proposed many techniques to detect 
these forgeries accurately and efficiently and thus contribute 
to society in crime and corruption control.
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1.1 � Novelty of this article

This survey presents a systematic and detailed study in 
the field of image and video forensics. It was found that 
many of the researchers have come up with survey articles 
in this field. However, they have carried out their survey 
either in image forensics or video forensics and not cover-
ing all the topics. And there are very few survey papers 
that have presented both the domains under one roof. Still 
there exist no such survey paper that has carried out the 
survey in all the related categories of both image and video 
forensics. Thus, we have come up with the latest combined 
systematic survey on both image and video forensics with 
the detailed literature review along with the simplified 
comparative study that can prove to be the backbone of 
all the future research in these fields. At the end of this 
survey article, some common challenges are also discussed 
based on the comprehensive survey carried out in these 
fields. From these challenges, the future directions can be 
proposed. The main goal of carrying out this survey has 
been to provide extensive information about the related 
research work carried out in these fields. In order to make 
this possible, the survey was carried out in a systematic 
manner to analyze and investigate different digital image 
and video forensic techniques. This paper also provides 
the quality evaluation that was carried out to ensure that 
the papers selected for carrying out the survey are of high 
quality. After quality evaluation, the selected papers were 
surveyed to answer the formulated research questions. The 
important points to notice about this survey are as follows:

1.	 This survey uses the quality assessment approach for 
identifying the quality papers for study in the concerned 
fields.

2.	 This survey provides a systematic and well-organized 
review with each topic being extensively surveyed.

3.	 This survey provides an extensive review of image and 
video forgery detection methods.

4.	 This survey also suggests the researchers the future 
research directions by providing the research gaps and 
challenges of existing studies.

5.	 This survey aims at providing the review of both image 
and video forensics under one roof.

This survey is carried out in an organized way and is 
divided into six main sectionsAs follows: Sect. 1 is an 
introductory section with first sub-section discussing about 
the novelty of this article; the second sub-section is about 
design constraints for this survey with five sub-sub-sec-
tions discussing about background, inclusion and exclu-
sion criteria, quality evaluation, research questions and 
motivation for the readers; the third subsection discusses 

general structure for image forgery detection;  the fourth 
subsection discusses about general structure for video 
forgery detection, and the fifth subsection discusses the 
applications of forensic techniques, and the final subsec-
tion summarizes the existing datasets for image and video 
forensics. In Sect. 2 the literature review of various cat-
egories of image forensic approaches are discussed, and 
in Sect. 3, the literature review of various categories of 
video forensic approaches have been discussed. In Sect. 4 
the various deep learning approaches to image and video 
forensics are discussed. In Sect. 5 the future directions 
are discussed and finally in Sect. 6 the conclusions drawn 
from the survey have been discussed. Figure 1 shows the 
pictorial representation of various sections of this survey 
article.

1.2 � Design constraints for this survey

In this section, we have discussed the design constraints 
for this survey. The survey was conducted stepwise which 
includes survey protocol development, carrying out the 
survey, experimental results analysis, results reporting, and 
research finding discussion.

1.2.1 � Background

Digital forensic techniques provide a way to authenticate 
images or videos and check whether they are forged or not. 
It has been a long way back that this field has come into 
existence. Since then, it has been a common practice and has 
been practiced worldwide due to the advent of very powerful 
and freely available forgery tools like Adobe Photoshop, etc. 
However, in parallel, researchers are in a queue to develop 
the powerful forgery detection techniques, also called as 
forensic techniques. The image forensic techniques are of 
either active or passive type, whereas the video forensic 
techniques are of either inter-frame or intra-frame types. 
The active methods use the information that is hidden in 
an image at the time of their acquisition or before being 
publicly published. This hidden information is then used 
to detect the source and hence forgery. The active forensic 
methods make the use of watermarking, Digital signatures, 
and steganography for image authenticity confirmation. 
Passive-forensic-techniques do.not use acquisition time 
information for a forensic purpose that is inserted into the 
image. They use the traces that are left during the image pro-
cessing steps which may include image acquisition phases 
or during their storage phase. The passive techniques have 
been further categorized into tempering operation-based 
and source identification-based. Tempering operation-based 
techniques are either of the type-dependent or of the type-
independent technique. Each technique has been discussed 
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in the upcoming sections with a detailed literature review 
and comparative study.

1.2.2 � Inclusion and exclusion criteria

The set of rules that determine the research boundaries has 
been adopted in order to conclude a systematic review on 
two forensic types of images and video. Moreover, research 
manuscripts published in top journals like SCI and E-SCI, 
the research work carried out by proficient scientists, and 
also those published in top conferences have been included 
in the survey, whereas the irrelevant manuscripts that were 
not concerned with the field of our interest have been 
excluded. This standard has been set only after defining 
the research question. The main aim of this survey was the 
qualitative and quantitative research that includes the latest 
research studies and the other much older research has been 
excluded.

1.2.3 � Quality evaluation

After the inclusion and exclusion criteria were set, the 
appropriate high-quality papers were selected to carry out 
the survey. The research topic under consideration is a 
vast area having many sub-areas with a large high-quality 
research paper available so far. Thus it was a must to have 
some rules for the selection of quality papers to carry out 
this study and according to these rules our survey must 
have included:

1.	 High-quality research papers.
2.	 Research carried out on high-quality dataset
3.	 High-quality survey articles.
4.	 Most cited research papers.
5.	 Must have included sufficient data for analysis.

1.2.4 � Research questions

This survey has been carried out to find and categorize var-
ious existing literature on forensic approaches in images 
and videos so as to provide the researchers of these fields 
with handy information about the work carried out in this 

Fig. 1   Various sections of this survey article
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field. To carry out this survey, a set of research questions 
were kept into account and these have been tabulated in 
the Table 1 given below.

1.2.5 � Motivation for the readers

The word forgery means manipulation or modification of 
contents for fraudulent purposes or to deceive some proof. 
Forgeries may be done to either images or videos and hence 
the name image forgery and video forgery, respectively. For-
gery has been a custom since old ages and thus is not new 
to this world. In earlier times, the two or more images were 
combined using the photomontage process. In this process, 
the images are overlapped, glued or pasted, or sometimes 
reordered so as to obtain a single photocopy. But with time, 
many researchers and developers have come up with for-
gery tools that are more powerful and easily available over 

the internet. Thus, it has now become a common custom to 
manipulate images and videos using these tools. Research-
ers are racing to develop such a tool that can efficiently and 
accurately detect forgery. Many researchers have developed 
many tools for forgery detection, but lack high efficiency and 
high accuracy. This survey aims at helping the researchers 
to provide them with the handful of information of research 
carried in this field so far.

1.3 � General structure for image forgery detection

The process of image forgery detection requires a systematic 
approach in a step-by-step manner as shown in Fig. 2 below.

Step 1: Acquisition The noise is introduced during the 
acquisition of images or videos due to irregularities in the 
camera imaging sensors and optical lenses [4]. Color Filter 
Array (CFA) is used to filter this noise [5]. After that, some 

Table 1   Research questions

S. No Research question Remarks

1. What is the present status of topic under study? This helps to understand techniques associated with the related 
problem

2. What are various categories of digital forensic techniques? Reporting of various techniques that have been used in digital 
forensics

3. Which techniques have been used for feature extraction and what 
type of scripts do they took into consideration?

Different types of techniques/tools that have been developed for 
digital forensics till date are mentioned along with their applica-
tion

4. Which studies have used which tool and what results have they 
achieved?

The research question explores the studies which evaluated/com-
pared different word recognition techniques. The number of stud-
ies for each type of script is also reported

5. What are the main areas associated with image and video forensics 
and the number of studies carried out in each area along with 
their findings?

It is important to understand the number of studies for each sub-area 
which helps in identifying key areas for future research

6. What is the size of the database used in forensic techniques? It is necessary create the database on which the research on digital 
forensics can be processed

7. Which type of system is this, Is it open source or commercial? It helps in creating benchmark and standardizes the comparative 
analysis studies

Fig. 2   Block diagram of image 
forgery detection process
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Image enhancement process is done before actually stor-
ing it in the memory, which results in the addition of more 
noise. Nowadays we have high-quality acquisition devices 
which result in lesser noise. Some recent image de-noising 
techniques include [6–12].

Step 2: Color to grayscale conversion and dimensionality 
reduction This process is used to reduce the computational 
complexity [13].

Step 3: Block division In this step, the resultant image 
from step 2 is divided into blocks that may be either overlap-
ping or non-overlapping [14]. The nature of block division 
depends on the constraints like complexity and accuracy.

Step 4: Feature extraction This process includes the 
extraction of features, also called as descriptors, from the 
image which may be local or global [15, 16]. Local descrip-
tors denote the texture in blobs, color, patches, corners, and 
other parameters which are mainly used for image identi-
fication and image recognition. Global descriptors denote 
counter, the shape of the image and are used for object clas-
sification and identification in an image and also used from 
image retrieval.

There are many existing algorithms used for feature 
extraction so far. Among the existing techniques of feature 
extraction, we apply the most the most important and effi-
cient algorithms like Mirror-reflection Invariant Feature 
Transformation (MIFT) [17], Scale Invariant Feature Trans-
formation (SIFT) [18], Discrete Cosine Transform (DCT) 
and Discrete Wavelet Transform (DWT) [19], Affine SIFT 
[20], Speeded up Robust Features (SURF) [21], and Singular 
Value Decomposition (SVD) [22]. Deep learning has also 
been a prominent technique for feature extraction. There also 
exist various deep learning based techniques [23–30] for 
image retrieval.

Step 5: Feature Sorting and matching After feature 
extraction is done, the resultant feature matrices are sorted 
so as to bring the identical ones closer to each other using 
sorting algorithms like KD-Tree sorting, Radix sorting, 
best bin (BFS) first Sorting, etc. These sorted feature blocks 
are then matched with every other block using various 

algorithms [15, 31, 32]. This is achieved by calculating cer-
tain parameters which include Euclidean distance, hamming 
distance, K-nearest neighbor (KNN), shift vectors, pattern 
entropy, probabilistic matching, clustering, etc.

Step 6: Forgery localization and MMO: After matching, a 
similarity score obtained is used to locate the forged region. 
To improve the localization, various mathematical morpho-
logical operations are performed.

1.4 � General structure for video forgery detection

The video forgery detection also requires a step-by-step pro-
cess in a systematic approach as shown in Fig. 3 below.

Video is the collection of images also called as frames 
that vary with time [33, 34]. Thus the process of forgery 
detection starts from frame extraction from the video and 
saves them in any image format like jpeg, etc. After the 
frame extraction, the process for forgery detection remains 
the same as image forgery detection. For a colored image, 
the conversion to greyscale is done. After that, the dimen-
sionality reduction algorithm is applied to each image for 
the purpose of reducing the computational complexity. 
The resultant images obtained are then divided into blocks. 
These blocks may be either overlapping or may be non-over-
lapping blocks. Afterward, the feature extraction is done so 
as to extract the feature matrices of an image. These fea-
ture matrices are then sorted and the sorted feature matrices 
are then matched with every other feature matrix to obtain 
the similarity score, which is then used to locate the actual 
forged region. Once the forged region is located, the last step 
is attacking for robustness test, in which some attacks are 
added explicitly to check the optimization and efficiency of 
the video forgery detection algorithm. These attacks create 
the forged part in a video which is very tough to detect.

Fig. 3   Block diagram of video 
forgery detection process
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1.5 � Applications of forensic techniques

The crime investigating agencies use the forgery detection 
techniques to get the clue about criminal behind the scene. 
Without these techniques it would have not been possible 
to serve the justice to the innocent people who never had 
done that crime. The major applications of forgery detec-
tion techniques are as follows:

I. Crime detection The modification of digital evidences 
like videos, images by using various tools in order to hide 
or eliminate the evidence of crime is considered to be the 
serious crime in the court of law.

a.	 These crimes include the following:
b.	 The creation of fake digital documents for defaming any 

community, industry, any political party or any person.
c.	 Alteration of property documents in order to imperson-

ate as an owner of that property.
d.	 Alteration of academic records to falsely make oneself 

eligible for the job post, promotion to higher post or for 
achieving admission in some prestigious college without 
actually being eligible.

e.	 Alteration of CCTV surveillance images or videos in 
order to hide or even destroy the evidence of crime.

f.	 Alteration of medical records to hide the cause of death.
g.	 Alteration of DNA reports to hide the identity of dead 

body for political or personal reasons.
h.	 Alteration of social media videos or images to defame 

someone, some industry or some political party. The 
other reason may be to hide the actual source of crime.

i.	 These crimes can prove to be varying hazardous/danger-
ous to the society. But using the digital forensic tech-
niques, these crimes can be detected well on time and 
the culprit may be sent behind the bars.

II. Crime prevention If the forgery and the culprit are 
detected well in time and the actual criminal gets pun-
ished, it can thwart other criminals to do this crime in 
future and can thus help in prevention of crime. Also the 
consequences of the crime can be stopped if the forensic 
analysis is done properly and well on time.

III. Authentication The authentication of digital docu-
ment is done through digital signatures, watermarks and 
steganography techniques. If the documents are compro-
mised in any form then the forensic techniques can detect 
them and hence can find that if they are from authentic 
source or not.

1.6 � Data sources

The datasets available for image forgery detection tech-
niques have been summarized in the Table 2 given below.

The datasets available for video forgery detection have 
been tabulated in the Table 3 given below.

2 � Image forensic approaches

There are two main categories of image forgery techniques, 
namely active and passive [65]. Active approaches include 
Steganography, Digital Signatures, and Watermarking. The 
passive digital image forgery methods are categorized into 
two main categories viz. tempering operation based and 
source camera identification based. Further, the tempering 
operation-based techniques are categorized into tempering 
operation-dependent and tempering operation independently. 
The dependent techniques include image slicing or image 
composites and copy-move methods. On the other hand, the 
independent ones include resampling, retouching, sharpen-
ing and blurring, brightness and contrast, image filtering, 
compression, image processing operations, image crop-
ping and interpolation, and geometric transformations. The 
source camera identification-based methods include lens 
aberration, color filter array interpolation, sensor irregulari-
ties, and image feature-based techniques. Figure 4 shows the 
classification graphically. Some of the survey papers related 
to image forensics are tabularized in Table 4 given below.

2.1 � Active approaches

Active forensic approaches rely on trustworthy image acqui-
sition sources like cameras for forensic purposes [74, 75]. 
At the time of image acquisition, the digital signature [76, 
77] and digital watermarking [78–80] are computed from 
the image, which can later be used for modification detection 
by simply verifying their values. The limitation of active 
approaches is that the authentication of images takes place at 
the very moment of their acquisition before actually storing 
in the memory card, making the use of specially designed 
digital signature and watermarking chips in the cameras. 
This limits their applications to very few situations. In con-
trast to these active approaches, passive approaches do not 
require prior information of image acquisition. Each of the 
active techniques has been explained below with the related 
work.

2.2 � Steganography

Steganography refers to the hiding of information in the 
carrier using the key known as the steganography key. The 
sender hides the secret information in image pixels using a 
stego-key which is later read by the receiver using the shared 
key. Figure 5 shows an example of steganography.

There are two types of techniques, based on domains in 
which they work; these may be either spatial or frequency 
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Table 2   Dataset available for image forgery detection

References Dataset (Year) Number of images in a dataset Size of image Description

[35] Columbia gray (2004) Nine hundred thirty-three (933) 
(Original)

128 × 128 pixels This dataset includes
 1. Splicing
 2. BMP format gray imagesNine hundred Twelve (912) 

(Modified)
[36] Columbia color (2006) One hundred eighty-three (183) 

(Original)
757 × 568–1152 × 768 pixels This dataset includes

 1. Splicing
 2. TIFF format color imagesOne hundred eighty (180)

 (Modified)
[37] INRIA-Copy days (2008) Sixteen hundred forty-two 

(1642) images
Multiple variations This dataset includes

 1. Cropped images
 2. Scaling
 3. JPEG compression
 4. Combined strong attacks

[38] Dresden (2010) Twenty-five thousand one 
hundred thirty-seven (25,130) 
images

Multiple variations This dataset includes
 1. Images that have been taken 

from multiple cameras of vari-
ous model

 2. Images of multiple file format 
and different visual quality

[39] MICC-F220 (2011) One hundred ten (110) (origi-
nal)

722 × 480–800 × 600 pixels This dataset includes
 1. Colored images
 2. Copy Move forged images
 3. JPEG formatted images
 4. Images with no mask
 5. Lacks post processing

One hundred ten (110) (modi-
fied)

[39] MICC-F2000 (2011) Thirteen hundred (1300) 
(original)

2048 × 1536 pixels This dataset includes
 1. Colored images
 2. Copy Move forged images
 3. JPEG formatted images

Seven hundred (700) (Modi-
fied)

[40] BOSSBases v0.93 (2011) Nine thousand seventy-four 
(9074) images

512 × 512 pixels This dataset includes
 1. Greyscale images
 2. Image are of the format 

PGM and taken from multiple 
camera-models and appropriate 
raw EIF

[41] Bianchi (2012) One Hundred (100) images 1024 × 1024 pixels This dataset includes
 1. JPEG and TIFF formatted

[42] CMEN (2012) Three hundred thirty-six (336) 
images

800 × 533–3872 × 2592 pixels This dataset includes
 1. Forty-eight copy moved 

images
 2. One hundred forty-four 

rotated images
 3. One hundred forty-four 

resized images
[43] Copy-Move-Forgery-Detection 

(CoMoFoD) (2013)
Five thousand two hundred 

(5200) images
512 × 512 This dataset includes

 1. Colored PNG and JPEG 
formatted images

 2. Copy Move forged images
[44] CASIAv1.0 (2013) Eight hundred (800) (original) 374 × 256 pixels This dataset includes

 1. JPEG formatted and spliced 
(at preprocessing) images

Nine hundred twenty-one (921) 
(Modified)

[44] CASIAv2.0 (2013) Seven thousand two hundred 
(7200) (original)

320 × 240–800 × 600 pixels This dataset includes

Five thousand twenty-three 
(modified)

 1. JPEG, TIFF and BMP 
formatted and spliced (at 
post-processing) images
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Table 2   (continued)

References Dataset (Year) Number of images in a dataset Size of image Description

[45] MICC-F600 (2013) One hundred and sixty (160) 
images

800 × 533–3888 × 2592 pixels This dataset contains
Colored PNG and JPEG format-

ted images
 1. Copy Move forged images

[46] Copy-Move-Forgery-Detec-
tion-database (CMFDdb) grip

 (2014)

Three thousand four hundred 
forty (1440) images

Multiple variations This dataset includes
 1. Rotation
 2. Scaling
 3. JPEG compression

[47] Computer Vision and Image 
Processing (CVIP) (2015)

One thousand and one hundred 
sixty (1160) images

1000 × 700 700 × 1000
 pixels

This dataset includes
 1. Translation
 2. Copy-move
 3. rotation
 4. Scaling

[48] RAISE (2015) Eight thousand one hundred 
fifty-six (8156) images

Multiple variations This dataset includes
 1. High luminance images
 2. Uncompressed images
 3. Camera native images

[49] Wattanachote (2015) Not mentioned clearly Multiple variations This dataset includes
Seam-carved and seam-inserted 

images at various quality 
factors

[50] Copy Move Hard (CMH) 
(2015)

One hundred and eight (108) 
images

845 × 634–1296 × 972 pixels This dataset includes
 1. Twenty-three copy moved 

images
 2. Twenty-five rotated images
 3. Twenty-five resized images
 4. Thirty-five both rotated and 

resized images
[51] WildWEB (2015) Ten thousand six hundred 

forty-six (10,646) images
Multiple variations This dataset includes

 1. Cut paste forged images
 2. Copy moves forged images
 3. Erase fill forged images

[52] COVERAGE (2016) One Hundred (100) (original) 400 × 486 pixels This dataset contains
 1. Copy moved images along 

with interpretations
One Hundred (100) (modified)

[53] Nimble challenge (NC) (2016) Ten thousand (10,000) images Multiple variations This dataset contains:
 1. The Splice detection and also 

localization
 2. The Provenance modification

[54] Realistic tempered dataset 2.0 
(RTD 2.0) (2017)

Two hundred twenty (220) 
handmade modifications

1920 × 1080 pixels This dataset contains
 1. Modifications such as object 

addition and deletion
 2. PRNU signatures
 3. TIFF and PNG Formatted 

images
 4. Ground Truth Maps of 3-level

[55] Media Forensic Challenge 
(MFC) (2018)

Over one lakh (100,000) 
images

Multiple variations This dataset includes five evalu-
ation tasks

 1. Detects-Splice-forgery 
and-also-localization

 2. Investigates-processing-events
 3. Detects-source-modification
 4. Creates-e- source-graph
And two challenges
 1. Camera-verification
 2. Detects-modifications based-

on-Generative-Adversarial-
Network (GAN)
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domain. Some of the spatial domain techniques include 
Least Significant Bit (LSB) [81], Pixel Mapping Method 
(PMM) [82], Random Pixel Selection (RPS) [83], Histo-
gram based [84], and Grey Level Modification (GLM) [85]. 
LSB techniques use LSBs of image pixels to replace them 
with some secret information and this technique was able 
to reduce the system payload by 62.5%. PMM uses some 
mathematical function to map some image pixels with secret 
information bits. Similarly, RPS replaces randomly selected 
bits with the secret information to be hidden. Histogram-
based technique hides the secret information in the image 
histogram and-GLM-technique-hides the information by 
simply modifying the image grey level. The frequency 
domain-based techniques are based on Discrete-Wavelet-
Transform (DWT) [86], Discrete-Cosine-Transform (DCT) 
[87], Discrete-Fourier-Transform (DFT) [88], Discrete-
Curve-Transform (DCVT) [89] and integer-wavelet- trans-
form- (IWT) [90]. In these methods, the pixels are selected 
using corresponding transform functions. These pixels are 
then replaced by the secret information bits. Table 5 given 
below provides a brief description of various steganography 
techniques.

2.2.1 � Digital signature

The digital signature provides a way to authenticate the 
document source. It uses the concept of two keys viz. pri-
vate-and-public. Private-Key is known-to-its-owner whereas 
public-key-is-known to all. In a digital signature, the hash 
value is calculated using some hash function and then the 
hash value is encrypted using the sender's private key. This 
becomes the digitally signed document. At the receiver side, 
this document is first decrypted using the public key and 
then the hash value of this decrypted document is calculated 
using the same hash function and afterward, these hash val-
ues are compared.

If the hash values do not match, then it indicates that 
the document is modified in between source and destination 
and if matched, the document is verified to be authentic. 
The whole process of digital signature is shown in Fig. 6. 
The digital signature ensures that the content is authen-
tic, reliable, and from an authentic source [91, 92]. There 
exist various other techniques which use digital signature 

concept. One of the techniques [93] uses digital-signature 
for improving Genetic-algorithm (GA) and Particle-swarm-
optimization (PSO)-based-watermarking system. Another 
technique [94] used a digital-signature formed by com-
bining Rivest–Shamir–Adleman (RSA), Vigenere–Cipher 
and Message-Digest-5 (MD-5), which proved to be robust 
against different image-forgery-attacks. Another technique 
[95] developed an improved-digital-signature-technique for 
improved data-integrity and authentication of biomedical-
images in cloud. One more technique [96] was used to keep 
digital-signature-image-information invisible in cover-image 
for message-authenticity, integrity and non-repudiation. 
Another technique [97] combined digital-signature with 
LBP-LSB-Steganography-Techniques in order to enhance 
security of medical-images.

2.2.2 � Digital watermarking

Digital watermarking involves the insertion of a certain code 
called as digest into the image right at its acquisition time. 
This is later used for an image authentication process which 
includes comparing extracted digest with the original digest 
[98–100]. If this extracted digest and original digest do not 
match then it means that some modification has happened 
to the image. Figure 7 shows a brief process of watermark 
embedding and its extraction. Watermark embedding is 
done by embedding algorithm which uses embedding key 
to embed watermark and the watermark extraction algorithm 
does the reverse process.

For example, in a technique [101] proposed recently, the 
division of an image into blocks is done based on similarity 
measurement. Then after blocking, some statistical measures 
are computed like mean, mode, median, and range of pixel 
values followed by encryption which encrypted values are 
then embedded in the image. This encrypted information is 
later used for forgery detection. Although the watermark-
ing technique is very vigorous, still there are some limita-
tions also. One of these limitations is that not all the devices 
come up with an inbuilt watermarking mechanism and some 
of the devices come up with the very expensive embedded 
watermarking features. The other drawback is that if some 
modifications are done for image enhancement, the water-
marking mechanism is unable to recognize this legitimate 

Table 2   (continued)

References Dataset (Year) Number of images in a dataset Size of image Description

[56] IMD (2020) Seventy-thousand (70,000) 
images {35,000-original and 
35,000-forged)

480 × 480 pixels This dataset contains
 1. Multiple-forged-and-

advanced-GAN-and-in 
painting-forged-images

 2. Images-from-2322-camera-
models
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Table 3   Dataset available for video forgery detection

References Dataset (Year) Video source Camera type Description

[57] Surrey University Library for 
Forensic Analysis (SULFA) 
(2012)

Canon SX220
Nikon S3000
Fujifilm S2800HD

Static This dataset includes
 1. Copy-Move forged videos
 2. 150 videos
 3. MOV & AVI (codec H.264 

MJPEG) formatted videos
 4. Video speed = 30 FPS
 5. Video resolution 320 × 240

[58] REWIND (2013) SULFA static This dataset includes
 1. Copy-Move forged videos
 2. 10 videos
 3. MOV and AVI (codec H.264, 

MJPEG) formatted
 4. 30 FPS speed
 5. Video resolution = 320 × 240

[47] Hybrid dataset (2015) SULFA&CANTATA​ Static and Dynamic This dataset includes
 1. Copy-Move
 2. 160 videos
 3. AVI and MP4 formatted
 4. 20–30 FPS speed
 5. Video resolution = 960 × 540
640 × 360
320 × 240

[59] Video Tempering Detection 
(VTD) (2016)

Internet Static and Dynamic This dataset includes
 1. Splicing forgery, Copy-Move 

forgery and swapping-fames 
forged videos

 2. 33 videos
 3. AVI formatted
 4. 30 FPS speed
 5. Video resolution = 1280 × 720

[60] SYSU-OBJFORG (2016) Commercial Surveillance Cameras Static This dataset includes
 1. Object based forgery (Adding or 

removing the moving object)
 2. 110 videos
 3. H.264/MPEG-4 encoded videos
 4. Video speed = 25 FPS
 5. Video resolution = 1280 × 720

[61] GRIP dataset (2017) YouTube & Internet Static This dataset includes
 1. Splicing forged videos
 2. 10 videos
 3. AVI (codec H.264) formatted
 4. 30 FPS speed
 5. Video resolution = 720 × 1280

[62] Test Database (2018) SULFA & Different movie scene Static and Dynamic This dataset includes
 1. Frame Duplication forged videos
 2. 31 videos
 3. MPEG-4 formatted
 4. Video resolution = variable

[63] GRIP dataset (2018) Internet Static This dataset includes
 1. Copy-Move (Additive & occlu-

sive) forged videos
 2. 15 videos
 3. AVI formatted
 4. 30 FPS speed
 5. Video resolution = variable
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modification. One another limitation is that there remains a 
requirement of an embedded system that can embed digest in 
an image. The watermark approaches may be Spatial-or-fre-
quency domain. The spatial domain works on Least Signifi-
cant Bit (LSB) [102, 103], Random Insertion in File (RIF) 
[104], and Spread Spectrum (SS) [105]. The technique [102] 
chains LSB and an inverse bit to determine the region to 
insert the watermark. Frequency domain techniques include 
discreet-fourier-transform (DFT) [106, 107], discrete-
cosine-transform (DCT) [107, 108], singular-value-decom-
position (SVD) [109, 110] and discrete-wavelet-transform 

(DWT) [111] depending upon the transform function used 
to determine the region in the image for embedding water-
mark. These techniques along with their brief description 
are tabulated in the Table 6 given below.

2.2.2.1  Fragile watermarking  These types of watermarks 
are used for the detection of tampering as they are highly 
sensitive to any sort of tampering. This makes it intolera-
ble to any change even to only one bit. This type of water-
marking is used for complete authentication purpose and 
any sort of watermark exposure designates the intentional 

Table 3   (continued)

References Dataset (Year) Video source Camera type Description

[64] Temporal Domain Tampered 
Video Dataset (TDTVD) (2020)

Sixteen videos of SULFA (origi-
nal)

Twenty-four videos of VTD 
(Original)

Static and Dynamic This dataset includes:
 1. All-temporal-domain-tempering-

videos
 2. One hundred twenty (120) videos 

with Event-or-object-or-person 
(EOP) removal tempering. Ninety 
(90) videos with Multiple-tem-
pering (Within a Single-Video) 
including ten (10)-frames-mod-
ified at three-different-locations, 
Thirty-frames-tempered-at-three-
different-locations and 20-frames-
modified at-3-different-locations-
in-a-video

 3. Video-length = 6–18 s
 4. Video resolu-

tion = 320 × 240/640 × 360

Fig. 4   Classification of image forgery detection techniques
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or unintentional modifications to the image [114–127]. 
There exist various fragile watermarking techniques. 
Among these techniques, the robust and invisible tech-
nique [128] uses Spread Spectrum, Quantization DWT, 
and HVM. Another color image watermarking technique 
[129] used Hierarchical and BFW-SR¬ approaches. A 
reconstruction rate of 80% has been achieved. Another 
technique proposed [130] is based on Logistic map-based 
chaotic cryptography and histogram. The results obtained 
show that this Watermarking technique is secure and also 
a feasible technique for outsourced data. One another 
technique proposed related to fragile watermark [131] is 
based on LWT, DWT, and Amold-Transform (AT). The 
results obtained in this technique show that this technique 
is both robust and also secure watermarking technique 
and is thus best for copyright protection. It supports high 
capacity and has the capability of detecting any type of 
forgery attempt. One more imperceptible, secure, and 
robust technique proposed [132] is based on chaotic amp 
and Chi-Square test. The results show that this technique 
offers less complexity than other techniques like SVD 

based Watermarking and has an optimal watermark pay-
load. These techniques have been summarized in Table 7.

2.2.2.2  Semi‑fragile Watermarking  These types of water-
marks are capable of being used for forensic purposes. In 
these techniques, the Authenticator can distinguish between 
the images whose content is intentionally modified and 
the authentic images which are intentionally modified 
with some modification approach that preserves the con-
tent of an image. These approaches may include compres-
sion technique (JPEG) with a reasonable compression rate 
[133–139]. There exist various semi-fragile techniques. 
The technique [140] uses the Discrete-Fourier-Transform 
(DFT). This technique makes the use of Substitution-box 
(S-box) and randomly selects the cover which is decided by 
the random number that is produced using the chaotic map. 
Results offered by this technique show that the technique 
is a secure and robust watermarking technique from all 
types of forgery attacks. However, its computational com-
plexity is higher. One more technique proposed related to 
fragile and adaptive watermarking [141] is based on DWT 

Table 4   Survey papers available for image forensics

Reference Contribution Research gap

[66] Reviewed-various-passive image-forensic-methods For minor areas to be copy-moved, the existing forensic techniques 
do not perform better and need to be addressed for increasing their 
performance

Also, these techniques prove to be complex computationally and 
result in high FPR

[67] Survey on various-forensic approaches-to image forgery Lack-of-advanced forensic tools currently that would have been able 
to-detect high-level forgery

[68] Reviewed different blind forgery detection techniques Techniques based on DCT and PCA have low accuracy and high 
computational complexity and when taking into account small 
forged and highly textured regions, DCT-based techniques prove 
not to be effective which can be addressed in the future

[69] Survey on pixel-based-forensic-methods Some techniques have less accuracy and some have high time 
complexity

[70] Survey on digital camera image forensics techniques Compared to other forgery detection techniques, Camera identifica-
tion techniques perform better

Compared to techniques based on camera software parts like scene 
content such as lighting and image statistics, techniques-based-on 
intrinsic features of camera hardware like an aberration and CRF 
show better accuracy and are more reliable

[71] Surveyed-Blind-forensic techniques Some of the techniques result in high FPR and thus require develop-
ing more robust and reliable techniques

Existing techniques require more human involvement and thus 
require automation in the future

[72] Reviewed block-based and key point based CMFD techniques Techniques like PCA, SVD and DWT have been suggested for 
dimensionality reduction to increase the performance

SIFT and SURF prove to be more reliable techniques in the case of 
geometrical transformation

Real-world big-data problems cannot be solved using existing tech-
niques and hence need to be addressed

[73] Survey on copy-move-approaches of-image-forensics Compared to the forensic tools that are-block-based, the time-com-
plexity of key-point based is less and hence more performance but 
in terms of accuracy block based techniques perform better
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and Set-Partitioning-In-Hierarchical-Tree (SPIHT) struc-
ture. After applying DWT on various sub-bands, the coeffi-
cients obtained from selected sub-bands are combined using 
SPHIT-algorithm. The partitioned image is further parti-
tioned into bit-plane images and the selected bit planes of 
DWT coefficients receive the binary watermark. The results 
obtained in this technique show that this technique offers 
high accuracy and is adaptive in nature. One more proposed 
technique [142] is based on Singular-Value Decomposition 
(SVD) and-chaotic-permutation. This permutation is used 
to portion the watermark image into a number of fixed-sized 
blocks. These blocks are then transformed using SVD and 
the singular values of the cover receive the watermark using 
codebook techniques [143, 144]. The results show that this 
technique is a secure and robust watermarking scheme. 
Another Watermarking scheme for self-detection of JPEG-
compression-forgery [36] embeds a watermark at the time 
of JPEG2000-compression. In order to generate the water-
mark, Perceptual-Hash-Function (PHF) has been applied 
on DWT-coefficients of the image. Another technique was 
proposed [145] that explores discrete-cosine-transform 
(DCT)-and-spread-spectrum (SS) to achieve the water-
marking. DCT is- applied-on-the cover-image to transform 

it and-the-DCT-coefficients obtained receive the watermark. 
This technique is a secure and robust watermarking scheme 
and offers resistance against various forgery attacks. Table 8 
given below summarizes the comparative study of semi-
fragile watermarking techniques.

2.2.2.3  Robust watermarking  This type of watermarking 
algorithm can survive content preserving modification like 
compression, noise addition, filtering, and also geometric 
modifications like scaling translation, rotation, shearing, 
and many more. It is used for ownership authentication [146, 
147]. Various robust watermarking techniques have been 
proposed so far. Recently the robust watermarking tech-
nique [148] was proposed which uses lifting wavelet- trans-
form (LWT), singular value decomposition (SVD), multi-
objective  artificial bee colony optimization (MOABC), 
and logistic chaotic encryption (LCE) algorithms to create 
an encrypted watermarking scheme for grayscale images 
and showed robustness against multiple image processing 
attacks. Another technique [149] is based on the false posi-
tive problem (FPP) of SVD. This technique aims at resolv-
ing the FPP problem in previously existed transform domain 
techniques like DWT-SVD, RDWT-SVD, and IWT-SVD. It 

Fig. 5   Original image followed by LSB steganography
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can be concluded from the simulation results of this work 
that if for the watermark embedding, instead of S vector, U 
vector is used, the problem of FPP can be resolved, and also 
the maximum values of robustness and imperceptibility can 
be obtained with the sacrifice of stability reduction which is 
obtained from S-vector singular values. Another technique 
[150] is based on DWT and encryption. This watermark-
ing technique is applicable for the protection of image cop-
yright. The technique makes use of Euclidean distance to 
identify those pixels of DWT-decomposed image that are 
supposed to receive the watermark. The simulation results 
obtained from this technique show that this technique is 
robust against various modifications which include com-
pression, salt and pepper noise, and rotation. However, this 
technique has not been evaluated against geometric attacks. 
One more technique [151] is a content-based watermark-
ing scheme for color images based on the local invariant 
significant bit-plane histogram. The results obtained proved 
that this technique is robust and shows resistance against 
the desynchronization attacks, and offers good visual qual-
ity and improved detection rates. This method has, however, 

high computation complexity and also offers less embed-
ding capacity which needs to be taken care of. Another 
technique [152] is an adaptive watermarking scheme. The 
scaling factor has been evaluated using Bhattacharyya and 
Kurtoris technique. The simulation results depicted that it 
offers a high PSNR than the techniques [153, 154] which 
are in the same domain. However, the technique offers lower 
values for NCC, which makes it prone to attacks. Table 9 
given below summarizes all these techniques.

2.3 � Passive approaches

Passive approaches use intrinsic information and do not 
require prior information of an acquisition. They detect the 
image forgery when the watermark or digital signature is 
unavailable and also, they do not require the original image 
at the time of comparison. The passive digital image forgery 
methods are categorized into two main categories: temper-
ing operation based and source camera identification based. 
Further, the tempering operation-based techniques are cat-
egorized into tempering operation-dependent and tempering 

Table 5   Steganography techniques with brief description

Category Reference Technique Description

Spatial based 
Steganog-
raphy 
techniques

[81] LSB The pixel Least-Significant-Bits (LSBs) are replaced with some secret information bits
Embedding and decoding process here is simple
Have good payload capacity and visual quality
Lacks security and has a poor defense against some attacks like statistical, geometric and com-

pression attacks
[82] PMM Uses some mathematical functions to map some image pixels with secret information bits

Produces better quality stego-images than LSB techniques, result in less distortion and good 
imperceptibility

Has lower payload capacity and has a poor defense against noise attacks
[83] RPS Replaces randomly selected bits with the secret information to be hidden
[84] Histogram Based The secret information is embedded within an image histogram

The technique retains good visual quality and supports the reversible hiding of data
Limited payload capacity and is poor defensive against attacks

[85] GLM The secret information is hidden in the gray-level-of-an-image
Frequency 

based Steg-
anography 
techniques

[86] DWT The wavelet decomposition is applied to select the pixels in an image that will store the secret 
information

Provides more security than DCT and is also robust
Has moderate capacity for payload embedding
Requires large supplementary data so as to achieve reversibility

[87] DCT The Discrete Cosine transformation is applied to select the pixels in an image that will store the 
secret information

[88] DFT The Discrete Fourier transformation is applied to select the pixels in an image that will store the 
secret information

Simple to implement
Has poor embedding capacity, low visual quality and lacks of security

[89] DCvT The discrete curve transformation is applied to select the pixels in an image that will store the 
secret information

[90] IWT The integer wavelet transformation is applied to select the pixels in an image that will store the 
secret information

Supports reversible data hiding and provides better security
Has low embedding capacity
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operation-independent. The dependent techniques include 
image slicing or image composites and copy-move methods. 
On the other hand, the independent ones include resampling, 
retouching, sharpening and blurring, brightness and contrast, 
image filtering, compression, image processing operations, 
image cropping and interpolation, and geometric transfor-
mations. The source camera identification-based methods 
include lens aberration, color filter array interpolation, sen-
sor irregularities, and image feature-based techniques. Each 

of these has been discussed below along with the compara-
tive study.

2.3.1 � Image splicing

Image splicing means to cut some object from one image 
and paste it on some other image [74]. Image splicing for-
gery is hard to detect than copy-move forgery because, in 
case of image splicing, different image object with different 

Fig. 6   The process of image authentication through digital signature

Fig. 7   Image Watermarking Process
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features and texture are pasted in a different environment. 
Figure 8 below shows an example of image-splicing.

There do currently exist a number of image-splicing 
techniques. One of such techniques [155] uses deep learn-
ing networks like ResNet-Conv, Mask-RCNN, ResNet101, 
and ResNet50 to detect the splicing forgery in an image 
and this technique has the ability to learn to detect the dis-
criminative artifacts from forged regions. The dataset for the 
training model was a computer-generated- image-splicing 
dataset from COCO-dataset and set-of-random-objects with 
transparent backgrounds. The results reported are AUC-
value = 0.967. Another technique [156] uses block-based 
partitioning to explore the Partial blur type inconsistency 
over the dataset of 800-natural-blurred-photos. This tech-
nique has been able to achieve different accuracies at vari-
ous Spliced-Region-Sizes (SRS). Another technique [157] 
has used CNN which is a deep learning algorithm to extract 
the features and the SVM classifier over the CASIAv1.0-
and-CASIAv2.0-datasets. The detection accuracy achieved 
was 96.38%. One more approach [158] has used the auto-
encoder-based anomaly feature and SVM. The detection 
accuracy obtained varies for various datasets viz. 91.88% 
for Columbia, 98% for CASIAv1.0, and 97% for CASIAv2.0. 
Another technique [159] explores block-based techniques, 
Otsu-Based-Enhanced-Local-Ternary-Pattern (OELTP), 
and SVM as a classifier over the CASIAv1.0, CASIAv2.0, 
CUISDE, and CISDE datasets, and this technique achieved 
detection accuracies of 98.25% using CASIAv1.0, 96.59% 
using CASIAv2.0, and 96.66% using CUISDE-datasets. 

These techniques along with some other important tech-
niques have been summarized in in Table 10.

2.3.2 � Copy move forgery

It is a process in which a certain image object is cut and 
pasted within an image [50, 166]. This type of forgery is 
done so as to hide some object in an image and this forgery 
is easy to get detected because of similar outlines of the 
object in the same image with similar features like texture, 
size, lines, curves, and others. Figure 9 given below shows 
an example of copy-move forgery.

Based on how this forgery is done, copy-move forgery is 
divided into the following four types:

 (1) Plain copy-move-forgery In this forgery, the process 
is as follows: copy from one region and paste in another 
region within an image with no additional modifications (see 
Fig. 10).

 (2) Copy-move with reflection attacks Copy-paste with 
180° rotation to create an image with an object of different 
orientation (see Fig. 11).

 (3) Copy-move with image inpainting This includes 
reconstruction of depreciated regions of an image with its 
corresponding neighboring regions so that it can look like 
real image. The modification is done in such a way that it 
becomes undetectable (see Fig. 12).

 (4) Multiple copy-move forgery This type of forgery 
includes copying multiple regions or objects and pasting 
them in different regions (see Fig. 13).

Table 6   Digital watermarking techniques with description

Category References Technique used Description with pros and cons

Spatial based 
Water-
marking 
techniques

[102, 103] LSB This technique uses the LSBs of image pixels for embedding of watermark
This technique withstands various attacks like cropping and compression transformations
The watermark can easily be modified once it is known to the attacker

[104] RIF In this technique, the watermark embedded in an image is the random code or text
Used for digital forensics and security purpose

[105] SS This technique uses spectral scattering to embed the watermark in the image
[112, 113] hardware-based 

watermarking
In this type of watermarking technique, the watermark in an image is embedded using custom-

designed circuitry
These techniques consume less power and less area
The disadvantage of these techniques is that there remains the requirement of the original image 

for watermark detection
Frequency 

based water-
marking 
techniques

[111] DWT In this technique, the region in which the watermark is to be embedded is found by wavelet 
transform. The temporal information is reserved during the process of transformation that is 
unlike the DFT

[107, 108] DCT The DCT is applied on image blocks to get high, low, and mid-frequency-sub-bands. The coef-
ficients of the mid-frequency sub-band are then modified to embed the watermark. This is 
done so that it does not affect the visibility of an image and the watermark becomes immune to 
compression attack

[106, 107] DFT These techniques select the region by applying DFT so as to embed a watermark in it
[109, 110] SVD Regions that will receive watermark are found by decomposition of singular values

This technique is an optimal decomposition technique that packs maximum signal energy into 
least possible coefficients
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Currently, there exist many copy-move forgery detec-
tion techniques. Some of these recent techniques have been 
highlighted below. An Adaptive CMFD-SIFT based tech-
nique [167] was proposed for copy-move image-forgery 
detection. This approach offers improvement to invariance 
to mirror transformation over a CoMoFoD dataset and also 
provides the F score value greater than 90%. Another recent 
technique [168] is based on Tetrolet-transform and Lexi-
cographic-sorting. This technique offers high localization 
and detection accuracy and uses two datasets CoMoFoD and 

GRIP. The technique [169] is based on scaled ORB fea-
tures. In this technique, first the Gaussian scale is created 
and afterward, the FAST and ORB features are extracted in 
each scale-space followed by removal of mismatched key 
points using the RANSAC algorithm. This technique has 
been found to be robust for geometric transformations. How-
ever, it suffers high time complexity when dealing with high-
resolution images. Another copy-move detection technique 
[170] is based on FFT, SVD, and PCA. This technique offers 
high detection accuracy of around 98%. One more recent 

Table 7   Comparative study about fragile watermarking techniques

Ref Technique Description Experimental results

[128] Spread Spectrum This technique is imperceptible and Robust 
dual watermarking scheme

The Maximum Bit-Error-Rate (BER) = 7.06 
at-PSNR-of = 42 dB and at a Message-
length of 256bits and cover size = 768 × 512

Quantization DWT
HVM And this technique uses 1000 images from 

Corel-database
[129] BFW-SR (Designed technique) This technique is robust against the-temper-

ing-coincidence-problem
Reconstruction rate = 80%
Good visual quality for reconstructed-images
1. For F-16
 PSNR = 33.82
 SSIM = 0.9637
 PSNR-HVS-M (dB) = 32.15
 2. For House
 PSNR = 26.90
 SSIM = 0.8480
 PSNR-HVS-M (dB) = 23.43
 3. For Pepper
 PSNR = 32.83
 SSIM = 0.9074
 PSNR-HVS-M (dB) = 30.25
 4. For Sailboat
 PSNR = 22.22
 SSIM = 0.6654
 PSNR-HVS-M (dB) = 19.77

Hierarchical-tamper detection-algorithm This watermarking-technique is for color-
image authentication and self-recovery

Inpainting-algorithm High quality of the resultant watermarked 
image

Bilateral altering
[130] Logistic map based chaotic cryptography This Watermarking technique is secure and 

also a feasible technique for an outsourced 
data

MSE = 0

Histogram Payload = 8234 @ 0.0314 bpp and cover 
size = 512 × 512

[131] LWT This technique is both robust and also a 
secure watermarking technique and is thus 
best for copyright protection

PSNR = 50.01 dB for dual-watermarking
cover size = 512 × 512

DWT It supports high capacity
Arnold Transform This technique has the capability of detecting 

any type of forgery attempt
[132] Chaotic map This technique is imperceptible, secure and 

robust dual watermarking scheme
Embedding Efficiency = 2 0.107 s and

Chi-square test Offers less complexity than other techniques 
like SVD based watermarking and has an 
optimal watermark payloads

Extraction efficiency = 1.086
Maximum-PSNR-obtained = 44.94 dB at-a-

Quality-of-index-value = 0.9989 (Maxi-
mum) and at a maximum Payload = 1.73
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technique [171] is based on DOA-GAN. Three datasets have 
been used CASIA-CMFD, USC-ISI-CMFD, and CoMoFoD 
datasets and offer different accuracies on different datasets. 
One more technique [172] uses adaptive-attention and resid-
ual-refinement-network (RRN) over CASIA-CMFD, USC-
ISI-CMFD, and CoMoFoD-datasets and achieves distinct 
accuracies on each dataset. Another technique [173] is based 
on interest point detector. This detector is first used to detect 
all the points of interest. Then afterwards the description of 
features has been done using Polar Cosine Transform. This 
technique can be employed in scene recognition or image 
retrieval and many others. This technique is, however, prone 
to resizing attacks. These techniques along with some other 
techniques have been summarized in the Table 11.

2.3.3 � Resampling

Resampling means the transformation of image sample into 
another sample done by increasing or decreasing the pixel 
numbers of an image [185]. Resampling is done in different 
ways as follows:

 (1) Up-sampling: In this method the number of image 
pixels is increased as shown in the Fig. 14.

 (2) Down-sampling: In this method the number of image 
pixels is decreased as shown in the Fig. 15.

 (3) Mirroring/flipping: In this method, the flipping of 
an entire image is done either vertically or horizontally as 
shown in Fig. 16.

 (4) Scaling: In this method, the corner points of an image 
are dragged using various image editing tools like Photoshop 
(See Fig. 16).

 (5) Rotation: In this method, image is rotated across its 
axis as shown in Fig. 16.

There exist multiple resampling detection techniques. 
One such technique [186] used two techniques, the A-Con-
trario-analysis algorithm, and a Deep-Neural-Network. The 
dataset used was NIST-Nimble (2017) and Nimble (2018). 
The technique reported an accuracy Area-under-Curve 
(AUC) = 0.73 and False alarm rate (FAR) = 1. Another 
technique [187] is based on random matrix theory (RMT). 
The technique offers a very low computational complexity. 
One more technique [188] makes the use of probability of 
residues noise and LRT detector for the detection of resa-
mpling forgery. This technique performs better with both 
compressed and uncompressed images. Another technique 
[189] is based used multiple algorithms over the UCID data-
set and was able to achieve an accuracy of 90% for a high 
scaling factor. Another CNN-based technique [190] achieved 
91.22% accuracy for all Quality Factors and 84.08% for a 
Quality-factor (QF) = 50. One more technique [191] is 
deep learning networks like iterative pooling network and 
branched network (BN) and the performance accuracy was 
96.6% and 98.7% for IPN and BN, respectively. Another 
technique [192] used the Auto-Regressive model and FD 
detector and achieved true positive rate (TPR) = 98.3% and 
false positive rate (FPR) = 1% which is considered to be a 

Table 8   Comparative study of semi-fragile watermarking techniques

Ref Technique Description Experimental results

[140] Chaotic fractional Rossler system This technique is robust and secure watermark-
ing scheme

MSE = 4.8876 (Min)

S-box, DFT The watermark embedding is performed through 
chaos

PSNR value = 91.4512 dB (Max)
Cover size = 256 × 256

[141] DWT, SPIHT This Watermarking technique is adaptive in 
nature and

WPSNR < 0.9405 dB

Uses different databases for experimental 
purpose

PSNR = 48.1476 dB (Average)

This technique offers high accuracy Cover size = 512 × 512

[142] Chaotic mixing, SVD This technique is both robust and also a secure 
watermarking technique

PSNR = 50.01 dB for dual watermarking

The watermark embedding is performed through 
chaotic permutation

Cover size = 256 × 256

[36] Perceptual-Hash-Function (PHF) This is a Watermarking-scheme for self-detection 
of JPEG compression. In order to generate the 
watermark, Perceptual-Hash-Function (PHF) 
has been applied on DWT coefficients

At bit rates 0.1 and 1 difference between the SSIM 
for max and minimum bit rates are between 
0.0361 and-0.0074 for-Lena, 0.103 and 0.204for 
pepper, 0.0063 and 0.0033 for Boat, 0.0028 and-
0.0048 for Bike

[145] DCT, spread spectrum This technique is secure and Robust watermark-
ing scheme

BER = 0.0213

Offers resistance against various forgery attacks  PSNR > 37 dB
 Cover size = 512 × 512



957A comprehensive survey of image and video forgery techniques: variants, challenges, and future…

1 3

better accuracy rate. The above-mentioned techniques have 
been summarized in Table 12 given below.

2.3.4 � Retouching

Retouching of an image is done in order to remove the 
errors in an image like scratches, blemishes, etc. and this 

process is done in many ways [193]. Retouching is also 
done to hide the forgery left traces for the illegal attempt 
and some of the widely used techniques for this are con-
trast enhancement, sharpening manipulation. Retouching 
is also used for entertainment media like magazine covers 
etc. Various approaches to image retouching are shown in 
Fig. 17 below.

Table 9   A comparative study on Robust watermarking techniques

Reference Technique Description Experimental results

[148] Lifting wavelet  transform (LWT) Watermarking Scheme for grayscale-
images

Reported results of watermarking images
 NC = 1 for all images and
PSNR{
 = 53.5755 (for Lena)
 = 52.7260 (for Baboon)
 = 53.0909 (for Cameraman)
 = 53.2531 (for Boat)
 = 51.3444 (for Peppers)
 = 48.4382 (for man)}

SVD The technique shows robustness against 
multiple image-processing techniques

Multi-objective artificial bee colony Opti-
mization (MOABC)

Provides encrypted watermarking using 
LCE

Logistic-Chaotic-Encryption (LCE)
[149] DWT-SVD The problem of FPP has been resolved 

and this technique is highly robust and 
imperceptible

Max − PSNR = 54.81

RDWT-SVD The technique however suffers from 
reduced stability due to singular-values 
of singular-vector

NCC = 0.9993

IWT-SVD SSIM = 0.999

Cover − size = 256 × 256

[150] DWT This Watermarking technique embeds the 
watermark in an image using DWT and 
encryption which makes it good Copy-
right Protection

WPSNR < 0.9405 dB
PSNR = 48.1476 dB (Average)

Encryption The technique also offers high robustness 
against most of the image processing 
attacks

This technique is not evaluated against the 
geometric attacks

Cover size = 228 × 228

Watermark image size = 90 × 90

[151] Local invariant significant bit plane 
histogram

This technique is a content-based water-
marking scheme for color images based 
on local invariant significant bit-plane 
histogram

This technique is resistance against the 
desynchronization attacks and offers 
good visual quality

This method has, however, high compu-
tation complexity and also offers less 
embedding capacity which needs to be 
taken care off

Max-PSNR = 49.62 (peppers)
Max-SSIM = 0.9893 (peppers)
Cover-size = 512 × 512 × 24bit (10-color 

images)

[152] DWT
Bhattacharyya and Kurtosis-technique

This technique is an adaptive watermark-
ing scheme

It offers a high-PSNR and has been tested 
on 10 grayscale images

However the technique offers lower values 
for NCC, which makes it prone to attacks

Max-PSNR = 52.07 (for Barbara image)
NCC = 1 (when no attack)
10 cover images of size = 256 × 256

Watermark-image is cameraman 
[size = (256 × 256)]
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Various retouching detection techniques have been pro-
posed so far. Among these techniques, the technique [194] 
uses the multiresolution overshoot artifact analysis (MOAA) 
and non-subsampled contourlet transform (NSCT) classi-
fier for the sharpening detection. Another CE detection 
technique [195] uses the histogram equalization detection 
algorithm (HEDA). The technique [196] used an overshoot 
artifact detector for un-sharp masking sharpening (UMS) 
detection and this technique shows robustness against post-
JPEG compression and Additional Gaussian white noise 
(AGWN). One more technique [197] used histogram gra-
dient aberration and ringing artifacts to detect the image 
sharpening operation. Another image sharpening detection 
technique [198] used edge perpendicular binary coding 
for USM sharpening detection. Another technique [199] 
explored deep learning and used CNN for image sharpen-
ing detection. The technique [200] used Benford’s law for 
the contrast enhancement (CE) detection. Another technique 
[192] used anti-forensics contrast enhancement detection 
(AFCED) for the detection of CE. The technique [201] used 
Modified CNN for CE detection. One more recent technique 
[202] used multi path network (MPN) for the detection of 
contrast enhancement (CE). These techniques along with 
their performance are summarized in Table 13.

2.3.5 � Image forgery detection using JPEG compression 
properties

One of the prominent compression-techniques is JPEG com-
pression and is widely used in many applications. Detection 
of weather an image has undergone any sort of compression 
or not helps in image forensic investigation. Till date, many 
researchers came up with their JPEG-compression detec-
tion techniques. Among these techniques, we have some of 
the recent techniques which are worth noting. One of these 
techniques is [203] which used multi-domain, frequency-
domain, and spatial-domain CNNs to locate the DJPEG 
(Double-JPEG). Another technique [175] is a CNN based 

DJPEG-detection technique which used aligned and non-
aligned JPEG-compression for evaluation purpose. One 
more technique [204] used stack-auto-encoder for image-
forgery-localization for multi-format-images. One more 
recent technique [205] used Modified-Dense-Net to detect 
primary-JPEG-compression and used a special-filtering-
layer in-network for image classification. Another tech-
nique [206] used CNN with preprocessing-layer to detect 
DJPEG-compression. Another recent DJPEG-compression-
detection-technique [207] used 3D-CNN in DCT-domain. 
One more recent technique [208] used Dense-Net for block-
level-DJPEG-detection for image-forgery-localization. 
These techniques along with the description and dataset used 
have been summarized in Table 14.

2.3.6 � Source camera identification

The source camera identification (SCI) involves the extrac-
tion of features that are used during image acquisition using 
an acquisition device (Camera). These characteristic features 
include the following:

 (1) Lens aberration.
 (2) Sensor imperfections.
 (3) Color Filter Array (CFA) interpolation.
 (4) Interpolation & image-features.
Lens aberration or imperfections refers to the artifacts that 

result from optical lens of digital camera. Because of lens 
radial distortion, the straight lines look like the curved lines 
on the output images. This creates different patterns of dif-
ferent camera models which are then used to identify camera 
models. Once the source is known, it then becomes easy to 
detect the forgery. Another type of source camera identifica-
tion is based on sensor imperfections. These imperfections 
can be described with the use of sensor pattern noise and 
pixel artifacts. One of the techniques [210] can detect the 
source camera using sensor pattern noise. The main cause 
of this pattern-noise is irregularities of sensors resulted from 
its manufacturing processes. These patterns are later used 

Fig. 8   An example of image splicing (B is used as background for image A which resulted in spliced image C)
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for the detection of the source camera of an image. Another 
characteristic feature used for SCI is CFA interpolation. One 
of the techniques [211] uses CFA-interpolation. One more 
characteristic feature used for SCI is image features. The 
technique [212] differentiates these features into three main 
categories viz. wavelet-domain statistics, color features and 
image quality metrics in order to identify the source camera 
model. One of the limitations of these techniques is that they 
are not effective for images that are taken from a camera hav-
ing a similar charge coupled device (CCD) and hence fail 
to detect the exact source camera model. Other techniques 
are based on the photo response non uniformity (PRNU), 
feature extraction, and camera response function (CRF). The 
technique [213] provides a counter measure in order to avoid 
the PRNU. Another technique [214] makes the use of the 
texture features of colored images as a left-out fingerprint of 
the camera which was used to capture the image. One more 
technique [215] used to assess the camera response function 
(CRF) from local invariant planar irradiance points (LPIP).

3 � Video forgery approaches

As the videos are the collection of frames or images, any sort 
of modification can be done to these frames and hence to 
the videos. There are two types of video forgery techniques 
which are Inter-frame forgery and Intra-frame-forgery meth-
ods. The classification of video forgery detection techniques 
is shown in Fig. 18 below.

3.1 � Inter‑Frame video forgery

In Inter-frame Video Forgery, we have frame insertion, 
frame deletion, frame replication and frame duplication 
which results in the change of frame sequence in the video. 
This includes frame insertion, deletion and duplication. The 
various inter-frame video forgery approaches are diagram-
matically explained in Fig. 19.

 (1) Frame insertion refers to the insertion of a set of 
frames into the already existing frame sequence in the video.

 (2) Frame deletion refers to the deletion of frames from 
the already existing set of frames in the video.

 (3) Frame duplication refers to the duplication of frames 
or simply copying the set of frames and pastes them in some 
other location in the existing frame sequence of the video.

 (4) Frame replication/shuffling refers to the shuffling or 
modifying the original order of frames in a video that makes 
the video different in meaning from the original one.

There exist various inter-frame video forgery detection 
techniques. These techniques are  summarized in Table 15.

3.2 � Intra‑frame video forgery

In intra-frame video forgery, the alteration of content is 
done within a frame. Many a times, in a whole length of 
the video, the objects are put so as to make the altered 
frame unrecognizable. The intra-frame video forgery is of 
two types which include:

 (1) Splicing Splicing in a video forgery refers to a fresh 
arrangement of video frames created from the original 
sequence by adding or removing some object to or from 
its frames, respectively.

 (2) Upscale crop video forgery This refers to the 
cropping an extreme outer part of a video frame so as 
to remove the incidence proof and later the size of these 
frames is increased so that their inner dimension remains 
unchanged.

 (3) Copy-Move forgery It refers to an insertion or the 
deletion of an object from a video frame take place. It can 
also be sometimes like copy-paste type forgery and hence 
is also called as region manipulation forgery. Removal of 
objects from videos is sometimes compensated by filling 
the vacant area with similar background content. This is 
called as inpainting. Inpainting can be carried out in any 
of the following two ways:

Temporal copy and paste Inpainting (TCP) refers to fill-
ing up the void with similar pixels from the surrounding 
coherent blocks or regions of the same video frame.
Exemplar-based texture synthesis inpainting: refers to 
filling up the void with the use of sample textures.

The techniques related to these types of video forger-
ies along with comparative study are summarized in the 
Table 15.

4 � Deep learning approaches to forensic 
analysis

Deep learning is one of the promising subsets of machine 
learning that offers the automatic feature extraction capa-
bility without external intervention. It provides combined 
service of feature extraction and classification. Deep learn-
ing network is an interconnected multi-layer network. It has 
one input layer to feed input to the network and one output 
layer which provides the actual prediction. In between these 
layers there exist multiple hidden layers. There are two most 
important deep learning algorithms which have gained popu-
larity due to their high accuracy rates for pattern recognition 
from an image.

There are two types of deep learning algorithms:  convo-
lutional neural networks (CNNs) and recurrent neural net-
works (RNNs). CNN is the most prominent deep learning 
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algorithm that uses its convolution layer for the purpose of 
feature extraction. It finds its applications in pattern recogni-
tion and image processing. It has the capability to find the 
content pattern in an image and thus extract the features 
from it. RRNs find their applications in natural language 

processing (NLP) and speech recognition areas due to the 
fact that these networks process sequential and time series 
data.

Because of the high accuracy rate for pattern recognition, 
deep learning has found its application in image and video 

Fig. 9   Copy-move-forgery

Fig. 10   Plain-copy-move for-
gery (A–B)

Fig. 11   Copymove with reflec-
tion (A–B)
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forensic analysis. Till date many researchers have come up 
with the image and video forensic techniques based on deep 
learning algorithms.

4.1 � Deep learning‑based techniques for image 
forgery analysis

Chen et al. [255, 256] proposed a CNN based approach 
which extracts median filtering residuals from image. The 
first layer of CNN is a filter layer which reduces the interfer-
ence that arises due to presence of the edges and textures. 
The removal of interference helps model to investigate the 
traces left by median filtering. The approach was tested on 
a dataset of 15,352 images, obtained by composition of five 
image datasets. A spliced image may consist of traces of 
multiple devices. A CNN based image forgery detection 
technique [256] can detect media filtering and cut-paste for-
geries using the filtering residuals. Using this 9-layer CNN 
framework the accuracy rate achieved was 85.14%. Another 
image forgery detection technique [257] can detect cut-paste 
and copy-move forgeries using the stacked auto-encoders 

(SAE). The technique used CASIA v1.0, CASIA v2.0, and 
Columbia datasets and thus achieved an accuracy of 91.09%. 
One more CNN based technique [258] can detect Gaussian 
blurring, Media filtering and resampling using prediction 
error filters. The dataset used are the images from 12 differ-
ent camera models, thus achieving an accuracy of 99.10%.
Another auto-encoder-based technique [222] can detect the 
cut-paste forgery. The dataset used various images from six 
smart phones and a camera, thus achieving an F1-score of 
0.41 for basic forgery and 0.37 for post-processing forgeries. 
One more CNN based technique [223] can detect the cut-
paste forgery using the hierarchal representation from the 
color images. The datasets used were CASIA v1.0, CASIA 
v2.0, and Columbia gray DVMM and achieved an accuracy 
of 98.04%, 97.83% and 96.38%, respectively. Another CNN 
based image forgery detection and localization technique 
[259] can detect and localize the cut-paste forgery using the 
source camera model features. The datasets used are Dres-
den image database, thus achieving a detection accuracy of 
81% and localization accuracy of 82%.One more temper-
ing localization technique [260] is based on multi-domain 

Fig. 12   Copy-move with image 
inpainting (A–B)

Fig. 13   Multiple copy-move 
forgery (A–B)
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Table 11   A comparative study on copy-move image forgery detection techniques

Reference Technique Description with dataset Performance

[167] Modified-edition of SIFT-technique Dataset used id CoMoFoD Reported results:
 TPR = 95.88%
 FPR = 9.02%

AHC-algorithm This technique shows better performance 
in terms of invariance for mirror-trans-
formation

[168] Tetrolet-Transform Datasets used are CoMoFoD and GRIP For GRIP dataset:
F1 score = 0.9876
CPU-time/image = 37.51 s

Lexicographical-sorting High localization and detection accuracy 
even for most of the post-processing 
operations and is capable of detecting 
very-small duplicated regions and multi-
ple-forgeries even for smooth images

For CoMoFoD-dataset:
 Average-precision = 0.9981
 Average-recall = 0.9603 
 F1 score = 0.9789
 CPU-time/image = 11.63 s

[169] FAST key-points This technique used the 107-original and 
170-forged images as dataset

Reported results running-time: = 270 ms/
image (86 ms for feature-extrac-
tion + 184 ms for matching)

ORB features This technique shows good results for 
geometric-transformations

Hamming distance High computational complexity for for-
gery-detection of high-resolution images

RANSAC-algorithm
[170] FFT, SVD, PCA Dataset used is CASIA v1.0 Reported results accuracy = 98% at 

6%FNR for JPEG-QF = 20 and region-
size = 32 × 32px

Exhaustive-search The technique is fully free from threshold
This technique offers good detection-

accuracy
[171] DOA-GAN Datasets used CASIA-CMFD, USC-ISI-

CMFD and CoMoFoD-datasets
Datasets used for training 80,000 copy-

move forged images from USC-ISI-
dataset and 80, 000 pristine-images and 
for Testing 10,000 forged images and 
10,000 pristine-images (collected from 
COCO-dataset)

Reported results on USC-ISI dataset
Precision = 96.83%
Recall = 96.14%
F1-Score = 96.48%
On CASIA-CMFD dataset (Detection 

-accuracy, Loc-accuracy)
Precision = 63.39,54.70%
Recall = 77.00,39.67%
F1-Score = 69.53,41.44%
CoMoFoD dataset (Det-acc, Loc-acc)
Precision = 60.38,48.42%
Recall = 65.98,37.84%
F1-Score = 63.05,36.92%

[172] Adaptive-attention and residual-refinement-
network (RRN)

Used CASIAII, COVERAGE, and 
CoMoFoD-datasets

Reported Results on CASIAII dataset
Precision = 58.32%
Recall = 37.33%
F1-Score = 45.52%
On COVERAGE
AUC = 0.8488
For CoMoFoD
Precision = 54.21%
Recall = 46.55%
F1-Score = 50.09%

[173] Interest-point detector
Adaptive matching

Dataset used is SBUCM161
Robust technique

Reported Results
CPU time = 436 ms/image

[174] Matching Triangles
Mean-Vertex-Descriptors

Dataset used is CMFDA
The technique performs well for complex-

scenes

Reported Results
CPU time = 10 s/image

[47] Multi-level  Dense Descriptor
Hierarchical Feature Matching

Dataset used is CMFDA
Shows robustness

Reported Results
F score > 91%
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Table 11   (continued)

Reference Technique Description with dataset Performance

[175] Multiscale analysis
SURF
NNDR

Dataset used are CMH and CMEN
developed for forgeries like rotation-and-

resizing
However, this technique does not perform 

well for small or homogeneous region

Reported Results
CPU time = 1.881 s/image

[176] Multiscale feature
Adaptive patch

Dataset used is CMFDA
Performs better for down-sampling and 

multiple copies

Reported Results
F = 95.05%

[177] Particle-swam-optimization plus SIFT
Best bin first

Dataset used is CMFDA
Does not perform well for small regions

Reported results
precision = 99%

[178] SIFT
Morphological operation

Dataset used is CMFDA
Offers good accuracy

Reported results
precision = 96.6%
Recall = 100%

[179] Super-pixels classification
adaptive key-points
Reversed g2NN

Dataset used is CMFDA
This technique performs better for 

geometric-transform
However this technique is computationally 

complex

Reported results
CPU time = 221 s/image

[180] VlFeat software, RANSAC
K nearest neighbors

Datasets used are CMFDA,MICC-F600 
and MICC- F2000

Offers good detection accuracy but slow 
performance

Reported results
precision = 86%

[181] Zernike moments
SIFT
g2NN

Datasets used are CMFDA and CoMoFoD
This technique can detect smooth regions

Reported results
F = 84.91%

[182] SIFT and reduced-LBP-histogram Datasets used are MICC-F220,CMH,D and 
COVERAGE

Reported results on MICC-F220 dataset
TPR = 99.10%
FPR = 5.45%
ACC = 96.82%
On CMH
TPR = 95.68%
FPR = 0.35%
ACC = 97.66%
For COVERAGE
TPR = 78%
FPR = 43%
ACC = 67.5%

[183] Image-blobs and binary-robust-invariant-
scalable-Key points (BRISK) feature

Datasets used are MICC-F8multi, MICC-
F220, and CoMoFoD

Running-time = 6.24 s
Reported results on MICC-F220 dataset
TPR = 93%
FPR = 5.4%
On 220images from MICC-F220 dataset
TPR = 94.49%
FPR = 93.63%
For 400-images from CoMoFoD
Pr% = 96.84
rc = 92%
F1-Score = 94.35%

[184] Block-and-keypoint-based-approaches
adaptive-galactic-swarm-optimization 

(AGSO)
hybrid-wavelet Hadamard-transform 

(HWHT)
random-sample-consensus (RANSAC)
forgery-region-extraction-algorithm 

(FREA)

Datasets used are MICC-F600 and 
Benchmark-dataset

Reported results at pixel level:
For MICC-F600-dataset
Precision = 92.4%
Recall = 93.67% and F1 = 92.75%
For benchmark dataset
precision = 94.5% Recall = 95.32% and 

F1 = 93.56%
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CNN and UCID dataset, thus achieving an accuracy of 
95%. Another image splicing localization technique [261] 
used multi-task fully convolutional network and Columbia, 
CASIA v1.0, and CASIA v2.0, thereby achieving an F1 
score of 0.54 on CASIA v1.0 and 0.61 on Columbia and 
MCC score of 0.52 on CASIA v1.0 and 0.47 on Columbia. 

Another copy-move forgery detection technique [262] with 
source localization used BurstNet, a deep learning network 
and VGG16 features. The datasets used are CASIA v2.0 and 
CoMoFoD datasets thereby offering an overall accuracy of 
78%. One more image splicing detection technique [263] 
used Ringed Residual U-Net (RRU-Net) and the datasets 

Fig. 14   Image Up-sampling

Fig. 15   Image Down-sampling

Fig. 16   Resampling-techniques
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of CASIA and COLUMB datasets, thereby achieving an 
accuracy of 76% and F1 score of 0.84 and 0.91 on CASIA 
and COLUMB datasets, respectively. Another recent image 
tempering localization and detection technique [264] used 
mask regional convolution neural network (Mask R-CNN) 
and the datasets of COVER and Columbia datasets, thereby 
achieving an average accuracy of 93% and 97%, respectively 
(see Figs. 20, 21) (see Table 16).

4.2 � Deep learning‑based techniques for video 
forgery analysis

The main task of video forensic analysis is the extraction of 
key-frame from the video scene. There is no better option 
other than deep learning techniques for feature extraction. 

Thus many researchers have come up with the deep learn-
ing-based video analysis techniques. One of such techniques 
[265] is based on ensemble learning for the summarization 
of the video events and named it as event bagging approach. 
Another technique [266] is an interest oriented video event 
summarization approach that represents image information 
using visual features. One more technique [267] was pro-
posed using a nonconvex low-rank kernel sparse subspace 
learning for key-frame extraction and motion segmentation. 
Another event detects and summarization technique [268] 
for Multiview surveillance videos is based on machine learn-
ing technique Ada-Boost approach for the multi-view envi-
ronment. The potential key frames have been selected for 
event summarization using deep learning framework CNN. 
Using these key frames the event boundaries are detected 

Table 12   A comparative study on image re-sampling forgery detection techniques

Ref Technique Description with dataset Performance

[186] A-Contrario-analysis algorithm The dataset used is NIST-Nimble (2017) 
dataset

Reported accuracy:
 AUC = 0.73, False alarm rate (FAR) = 1

Deep neural network Nimble (2016)-dataset
[187] Asymptotic eigenvalue distribution Random 

matrix theory (RMT)
The dataset used is the 1317-raw-images 

from Dresden-image-dataset
This technique offers low computational 

complexity

Reported results:
 For JPEG recompression:
better detection accuracy for F > 95

[188] Probability of residual noise
LRT detector

The dataset includes the 500 uncompressed 
and non-resampled images and 500 
compressed resampled JPEG images at a 
quality factor (QF) between 50 and 90

Effective with uncompressed/ compressed 
resampled images

As reported:
 Detection-accuracy = 100% and Computa-

tional complexity = 0.0996 s at RF = 200%

[189] Inverse filtering process with blind decon-
volution

hierarchical multi-region fusion
Second Difference sparsity (SDS) property
Kernel scale searching (KSS)
content-adaptive method

The dataset used is UCID
This technique does not perform well for 

JPEG blocking artifacts and blurred 
images

Accuracy = 90% for high scaling-factor (f)
Accuracy of both bilinear and bi-cubic 

interpolation image with Gaussian noise 
(SNR = 40)

[190] Convolutional neural network (CNN) This technique used includes 6500 
images with varying size and minimum 
size = 2688 × 1520

This technique can detect resampling in 
recompressed images

Detection accuracies
 > 91.22% for all QF’s
  = 84.08% for 120%upscaled images and 

QF = 50

[191] Iterative pooling network (IPN)
Branched network (BN),

Dataset used is Columbia dataset
The proposed solutions, IPN and BN help 

to regain the lost accuracy

For IPN
Accuracy = 96.6% (at average resampling 

factor (RF))
For BN
Accuracy = 98.7% (at Average-resampling 

factor (RF))
Patch level accuracy (Columbia-dataset)
For Google natural images (NI) = 90%
For personal-NI = 94%
For computer-generated = 78%

[192] Autoregressive (AR) model
Normalized histograms
SVM
FD-detector

This technique used BOSS dataset
Training set includes 3000 unchanged 

images and 3000ALL-images
As reported, with the increase in JPEG-CR 

performance decreases

Without JPEG compression Pe < 0.2%
TPR = 98.3%, FPR = 1% (For Compressed or 

uncompressed)
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for video skimming. This model has been named as deep 
event learning boost-up approach (DELTA). The computa-
tional time reported for a sample rate of 30 frames per sec 
was 97.25 s. Another paper [269] introduces a fast and deep 
event summarization (F-DES) and a local alignment-based 
FASTA approach for the summarization of multi-view video 
events. Also a deep learning model has been used for feature 
extraction which dealt with the problem of variations in illu-
mination and also helped in removing fine texture details to 
detect the objects in a frame. The FASTA algorithm is then 
used to capture the interview dependencies among multiple 
views of the video via local alignment. The computational 
time reported for a sample rate of 30 frames per second was 
91.25 s. Another more related work [270] suggested key 
frame extraction technique based on Eratosthenes Sieve for 
event summarization. It combines all the video frames to 
create an optimal number of clusters using Davies-Bouldin 
index. The cluster head of each cluster is treated as a key-
frame for all summarized frames. The results reported are 
for three variants AVS, EVS and ESVS and offers a maxi-
mum precision rate of 58.5% by ESVS variant, a recall of 
50% and F-measure of 53.9%. Also the computational time 
reported for AVS, EVS, and ESVS are 65 s, 20 s and 20 s, 

respectively. Another similar work [271] proposed a Genetic 
algorithm and secret sharing schemes based genetic uses 
in video encryption with secret sharing (GUESS) model 
to generate sequence of frames with minimum correlation 
between the frames. The computational time reported is 
16.375 s for 125frames and a block size of 25. Also the cor-
relation reported is minimum and is equal to 0.01 for block 
size k = 35. Another paper [272] uses the spatial transformer 
networks (STN) that can efficiently be used for spatial and 
invariant information extraction from input to feed them to 
more plain NNs like artificial neural network (ANN) without 
comprising the performance. The authors suggest that this 
technique can replace the CNN for basic computer vision 
problems. The paper has reported different accuracy meas-
ures of precision, recall, F-measure and time per epoch for 
different models. One more recent work [273] has presented 
local alignment based multi-view summarization for genera-
tion of the event summary in the cloud environment. The 
reported computational time is 65.75 s per video at a sample 
rate of 30 frames per second and the accuracies of precision, 
recall and f-score have also been reported for three datasets 
Office, Lobby and BL-7F.

Fig. 17   Image retouching 
approaches
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Some encryption based techniques are also worth discuss-
ing. One of the encryption related work [274] came up with 
a model named as V ⊕ SEE based on Chinese Remainder 
Theorem and Multi-Secret Sharing scheme for the encryp-
tion of video in order to securely transmit it over the internet. 
The computational time and correlation value between secret 
frames reported are minimum 15.555 s and 0.0126, respec-
tively, for 125 frames. Another recent work [275] proposed 
a model for encryption over cloud. In this the key is gen-
erated dynamically using the original information without 
the involvement of the user in the process which makes it 
hard for an attacker to guess the key. Another work related 
to data encryption in images [276] explored the multimode 
approach of data encryption through quantum steganogra-
phy. Another work [277] have proposed a Polynomial con-
gruence based Multimedia Encryption technique over Cloud 
(P-MEC) for the encryption of transmitting multi-media over 
the cloud by introducing a cubic and polynomial congruence 
that makes it difficult for an attacker to decrypt the encrypted 
content in a reasonable amount of time. The accuracy meas-
ures like MSE, PSNR, and correlation have been reported 
for four types of images.

5 � Future direction

After carrying out the extensive study in a well-organized 
way, it was found that there still exists a lot of research gap 
which needs to be dealt with by the upcoming researchers. 
Furthermore, the forgery detection is now becoming more 
and more challenging because of the advent of more sophis-
ticated and easily available tools.

Some of the most common challenges in image forgeries 
are as follows:

•	 Feature extraction is the most challenging task in forgery 
detection process on which the efficiency of the whole 
process depends. Deep learning is the most preferred 
one. There are a very few forgery detection techniques 
proposed till date based on deep learning. So in future 
deep learning can be explored further.

•	 For watermarking schemes, the common challenges 
include imperceptibility, security, embedding capacity, 
and computational complexity which need a future focus.

•	 Feature dimensionality is another challenge which also 
needs future attention.

•	 Computational complexity of most of the forgery detec-
tion techniques is more and needs to be minimized in the 
future.

•	 Lack of robustness against the post-processing operations 
in the case of many forensic approaches.
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•	 Most of the techniques also show invariance against the 
geometrical transformations and hence also need a future 
focus.

•	 Some techniques show a slow feature learning rate which 
needs to be improved.

•	 Improvisation of localization accuracy for most of the 
forgery detection techniques is also needed.

•	 There is a lack of datasets that can cover all the possible 
attacks.

•	 Most of the techniques show vulnerability to different 
types of forgery-attacks like JPEG Compression and oth-
ers.

•	 The single technique fails to detect all the present forgery 
types in an image which limits its utilization.

These challenges need a focus in future and hence open 
the gates for the researchers to carry out their future research 
in this area.

Furthermore, from the comparative study of video foren-
sics techniques, it was worth noting that although we have 
many forensic tools and techniques that can efficiently detect 
video forgery, due to advancement in forgery tools and their 
easy availability, there still exists a research gap that can be 
dealt with in future. Some of the important and common 
challenges in video forgery include the following:

•	 Computational complexity There exist many techniques 
with high computational complexity for forgery detection 
which need to be dealt with.

•	 Currently we have very few anti-forensic techniques. 
Thus, researchers in the future can develop more such 
tools.

•	 Robustness against post-processing operations requires 
to focus on in future.

•	 Deep-fake detection is another interesting area for future 
research in the domain of video forensics.

•	 Deep learning is gaining huge popularity in every field 
because of its novel feature extraction capability. There 
are very few algorithms existing that have explored 
deep learning techniques. Therefore, it opens a gate for Ta
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Fig. 18   Video forgery approaches
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researchers to explore it further in the domain of video 
forensics.

•	 There also exist some machine learning-based video for-
gery detection techniques. These machine learning algo-
rithms also prove to be very efficient with high detection 
accuracy and can hence be explored with other video 
forgery detection techniques in the future.

•	 Many existing techniques fail to work for moving back-
ground and variable GOP structure videos, which again 
prove to be the hot topic to focus on in future.

6 � Conclusion

With a systematic and well-organized research approach, 
a detailed and high-quality survey article has been pre-
sented. This review article not only provides a compara-
tive study of various existing technologies, but also pro-
vides future directions and challenges in the field of image 
and video forensics. The first section of this article pro-
vides the brief introduction of image and video forensics 
along with their applications and the existing datasets. 

Fig. 19   Inter-frame video forgery approaches
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The following section presented the literature review of 
various sub categories of image and video forensics. The 
deep learning-based approaches to both image and video 
forensics have also been discussed in the separate sec-
tion keeping in view its importance in the future research. 
After an in-depth literature review and comparative study, 

the survey finally provided future directions for research-
ers, pointing out the challenges in the field of image and 
video forensics, which are the focus of attention in the 
future, thus providing ideas for researchers to conduct 
future research.

Fig. 20   Deep learning vs 
Machine learning

Fig. 21   Framework of convolu-
tional neural network (CNN)
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