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Abstract
Recently, single-image super-resolution (SISR) methods based on deep learning have demonstrated great superiority by 
deepening or widening the network. However, excessive network layers will not only weaken the information flow during 
training process, but also increase the storage load and computation cost in practical application. To achieve a better trade-
off between model efficiency and accuracy, we propose a lightweight feature separation, fusion and optimization network 
(SFON) for SISR. For the architecture, we design an efficient feature separation, fusion and optimization block (SFOB) 
to effectively capture the local cross-level features through successive channel splitting and concatenation first, and then 
refine them with an improved channel attention mechanism. We also adopt a MAE pooling-based feature optimization and 
fusion block (MAE-FOFB) to enhance the distinction and utilization of global multi-level features extracted from every 
SFOB. For the loss function, except for L1 loss, the structural similarity (SSIM) loss is additionally introduced to fine-tune 
the network, which helps to bring a slight improvement in accuracy. Moreover, we develop a variant of SFON (SFON-P) 
by applying progressive reconstruction strategy to further boost performance. Extensive experiments show that both SFON 
and SFON-P achieve favorable reconstruction accuracy against other state-of-the-art lightweight models with relatively low 
model complexity.

Keywords Single-image super-resolution · Lightweight network · Channel attention · Progressive reconstruction

1 Introduction

Single-image super-resolution (SISR) is a challenging ill-
posed problem aiming to reconstruct a high-resolution (HR) 
image from the corresponding low-resolution (LR) one. 
Since it plays an increasingly important role in many fields 
such as remote sensing imaging, medical imaging, and video 
monitoring, plenty of SISR methods have been developed, 
which can be classified into three categories: interpolation-
based, reconstruction-based, and learning-based. Recently, 

deep-learning algorithms have been applied to SISR task and 
have made significant progress.

In [6] first applied convolutional neural network (CNN) 
to the SISR field, which has shown vast superiority to the 
traditional methods. Since [16] proposed a 20 layers network 
by applying the global residual learning and gave the proof 
that deepening the network can achieve promising perfor-
mance, a series of deeper CNN-based models have emerged 
in SR tasks. Some [22, 26] are based on Resnet [8] structure 
and some [34, 36, 43] are based on Densenet [12] structure. 
In [42] even built a very deep SR model with more than 
400 layers for superior accuracy. Instead of increasing the 
network depth, a few works [11, 24] focused on extending 
the network width to capture multi-scale features. Although 
deepening or widening the network can significantly boost 
performance, this usually results in high storage load and 
computation cost, and further restricts the application of 
deep learning-based SR methods in real world. There-
fore, research on building a lightweight model has become 
increasingly important.
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One simple way is to adopt shallow network structures [7, 
31], but too small model size will limit the feature extrac-
tion ability. Some models such as DRCN [17], DRRN [33] 
and MemNet [34] employ recursive learning scheme to 
reduce the number of parameters. However, they have to 
compensate for performance degradation by constructing 
very deep networks and still require extensive calculation. 
More works focus on the architecture design to reduce the 
number of parameters and operations while maintaining sat-
isfying performance. In [20] proposed a Laplacian pyramid 
framework for fast and accurate SR. In [2] utilized a cascad-
ing mechanism upon a residual network to achieve efficient 
reconstruction. Some [4, 5] are based on neural architecture 
search mechanism and some [14, 15, 28] are based on infor-
mation distillation structure. In addition, there exist many 
lightweight SR models based on multi-scale or multi-level 
feature fusion structure, in which the way to reduce model 
complexity is also considered, such as adopting group or 
depthwise separable convolution operations [21, 23, 27, 32] 
and utilizing channel grouping schemes [21, 37]. What’s 
more, some of these models introduce attention mechanism 
[25, 27] to further improve the representational power. It can 
be observed that all these models try to appropriately balance 
between model complexity and reconstruction accuracy, but 
there is still much room for improvement. In addition, this 
motivates us to build SR models which can achieve favora-
ble performance against other lightweight ones whereas the 
model complexity remains similar or lower.

To achieve the goal, we first propose a lightweight fea-
ture separation, fusion, and optimization network (SFON). 
Specifically, there are two key components of SFON. One 
is feature separation, fusion and optimization block (SFOB) 
which consists of two successive feature separation and 
fusion units (SFUs) and an improved channel attention unit 
(ICAU), the other is feature optimization and fusion block 
based on MAE pooling (MAE-FOFB).Compared with other 
models, our improvement mainly lies in three aspects.

In terms of architecture, SFU combines the advantage 
of both dense connected structure [34, 39, 43] in extracting 
multi-level features and channel grouping scheme [21, 37] 
in reducing model complexity. However, the skip connec-
tions are not as dense as that in [34, 39, 43] and our network 
is not widened like [21, 37] after channel splitting, which 
makes our SFU more lightweight. In terms of channel atten-
tion mechanism, by introducing a softmax layer, the feature 
maps obtained after standard deviation pooling and average 
pooling can be combined using adaptive weighted addition. 
Since the weight is learned in a self-adaptive manner, the 
feature discriminability of our ICAU is better than other 
channel attention modules in [15, 18, 25, 38, 42]. What’s 
more, we also employ a channel attention unit (MAE-CAU) 
based on a novel pooling mode, named MAE pooling in 
MAE-FOFB. Note that ICAU will first refine the feature 

maps within SFOB in a local level and MAE-CAU will fur-
ther optimize the output of every SFOB in a global level, 
contributing to more powerful representational ability. In 
terms of loss function, unlike most models [2, 7, 16, 34, 37] 
only using MAE or MSE loss as the loss function, we add 
SSIM loss on the basis of MAE loss to train the network 
together which can constrain the smoothness of the recon-
structed image to a certain extent and help to bring a higher 
SSIM value.

In summary, our main contributions are as follows:

– We propose SFON and its variant model SFON-P for fast 
and accurate SISR. Experiments show that both SFON 
and SFON-P can achieve competitive or superior per-
formance with a relatively smaller model size compared 
with other leading lightweight SR models.

– We propose the core block SFOB to be parameter-
efficient, in which the local cross-level features can be 
extracted via successive channel splitting and concatena-
tion, as well as be refined via an improved channel atten-
tion unit.

– We propose an effective block MAE-FOFB to boost 
feature discriminability, in which the global multi-level 
features will be first optimized with a new MAE pooling-
based channel attention mechanism before they are fused 
together.

– We propose SSIM loss to fine tune the network during 
training process for better reconstruction accuracy. The 
experimental results demonstrate that the introduction of 
SSIM loss is feasible.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related deep learning-based SISR works. 
In Sect. 3, we introduce our proposed methods in detail. 
Model analysis and experimental comparison against other 
methods are demonstrated in Sect. 4. Finally, we conclude 
our work in Sect. 5.

2  Related works

Single-image super-resolution has been extensively studied 
recently. In this section, we first present an overview about 
those advanced SR models based on deep learning. Then, we 
will give a brief introduction about studies concentrating on 
lightweight architectures for efficient SISR.

2.1  Advanced SR models based on deep learning

Since the first deep learning-based model SRCNN [6] was 
applied to SR tasks, many innovative architectures have been 
designed. Early in the development, because of the diffi-
culty to train a deep network, there exist some models [7, 
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31] with shallow network layers and their training ability 
is constrained. Inspired by the great success of very deep 
networks in other computer vision (CV) tasks [8, 12], some 
deep models based on residual learning such as VDSR [16], 
SRResnet [22], and EDSR [26] have sprung up to reduce 
learning difficulty and improve representational ability while 
some deep models based on hierarchical feature fusion such 
as SRDenseNet [36] and RDN [43] utilize dense skip con-
nections to obtain as much feature information as possible. 
To achieve better performance, the networks become deeper 
and deeper. However, more parameters and calculations also 
come. Recently, attention mechanism has been successfully 
applied to different CV fields [38, 40, 42]. As one kind of it, 
channel attention mechanism [10] is proposed to concentrate 
on more useful information with an extra small number of 
parameters and are widely used in SR tasks [15, 18, 42]. Due 
to its effectiveness, we also adopt this technique in our mod-
els with some modification for performance improvement.

2.2  Lightweight and efficient SR models

Recently, there has been rising much interest in designing 
lightweight and efficient SR models. DRCN [17], DRRN 
[33] and MemNet [34] adopt recursive learning to share 
parameters. In this way, the number of parameters can be 
controlled with the increasing of network depth. LapSRN 
[20] achieves fast and accurate SR by progressively recon-
structing the high-frequency residuals at multiple pyramid 
levels. CARN-M [2] employs cascading residual-E blocks 
by combining recursive learning scheme and group convolu-
tions to slim the network. MoreMNA-S [4] and FALSR [5] 
introduce neural architecture search [44] to SR field, which 
can automatically design efficient networks. Inspired by the 
information distillation mechanism in IDN [14] and IMDN 
[15], RFDN [28] adopts feature distillation connections 
(FDC) to be much more lightweight and flexible. Moreover, 
many SR models [9, 21, 23, 25, 27, 32, 35, 37, 39] delicate 
to extract multi-scale or multi-level features with an efficient 
structure. For example, the multi-scale modules in LFFN 
[37] and MADnet [21] are based on several convolutional 
branches and rely on channel splitting strategy to reduce 

the number of parameters. Based on the symmetric archi-
tecture, S-LWSR [23] utilizes an information pool to mix 
multi-level information and a compression module borrowed 
from MobileNet V2 [30] to decrease the number of param-
eters. WMRN [32] employs the modified residual structure 
and depthwise separable convolutions to improve operation 
efficiency. In AMSRN [27], a spatial and channel-wise atten-
tion residual block is constructed and group convolution is 
introduced to further reduce the parameters. In this paper, 
we also focus on designing more efficient architectures to 
achieve better performance.

3  Method

In this section, we first introduce the overall architecture of 
SFON, and then describe SFOB and MAE-FOFB in detail, 
which are the core of the proposed method. After that, we 
illustrate the improved loss function used to improve SR 
accuracy. Besides, we present SFON-P to further boost 
performance by introducing the progressive reconstruction 
scheme into SFON. Finally, we make comparison between 
our proposed method and other related works.

3.1  Framework

As shown in Fig. 1, the proposed SFON can be roughly 
divided into four parts: a shallow feature extraction block 
(SFEB), multiple stacked SFOBs, a MAE pooling-based 
feature optimization and fusion block (MAE-FOFB) and a 
reconstruction block (RB). Here, we denote ILR and ISR as 
the input and output of SFON, respectively.

We first use a 3 × 3 convolutional layer to simply extract 
low-level features from the original LR image:

where F0 represents the shallow feature extraction function 
and B0 denotes the extracted feature maps that will pass to 
the following stage.

(1)B0 = F0(ILR),

Fig. 1  The architecture of our 
proposed SFON. It can be 
roughly divided into four parts: 
SFEB, multiple stacked SFOBs, 
MAE-FOFB and RB
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The next part is composed of multiple stacked SFOBs 
to exploit and recalibrate the local hierarchical features. 
This procedure can be expressed as

where Fk denotes the kth SFOB function, Bk−1 and Bk indi-
cate the input and output of the kth SFOB, respectively.

Then, MAE-FOFB is required to first globally optimize 
the hierarchical features extracted from every SFOB with 
a MAE pooling based channel attention unit (MAE-CAU) 
and then assemble them with a 1 × 1 convolutional layer 
followed by a Leaky ReLU activation function. We also 
introduce global residual learning scheme to make deep 
network training easier. This process can be formulated as

where B0 , Bk(k = 1,… ,N) and BR represent the output fea-
ture maps of the SFEB, the kth SFOB, and the MAE-FOFB, 
respectively. FM denotes the MAE-based feature optimiza-
tion and fusion function.

Finally, we utilize a 3 × 3 convolutional layer and a 
pixel-shuffle layer to generate the HR image:

where Fup denotes the up-sampling operation.

3.2  Feature separation, fusion and optimization 
block (SFOB)

To make better use of cross-level features with fewer 
parameters, we propose an efficient block SFOB which 
is constructed by two successive feature separation and 
fusion units (SFUs), an improved channel attention unit 
(ICAU) and the local residual structure. Here, we will pro-
vide a detailed description.

(2)Bk = Fk(Bk−1), k = 1,… ,N,

(3)BR = FM(B1,… ,Bk,… ,BN) + B0,

(4)ISR = Fup(BR),

3.2.1  SFUs

As shown in Fig. 2, the SFUs consists of two identical suc-
cessive units. In the jth (j = 1, 2) convolutional layer of the 
ith (i = 1, 2) SFU (including Leaky ReLU), let us denote 
the output as Mj

i
 and the number of filters as Nj

i
 . Take the 

first SFU as illustration, we first adopt a 3 × 3 convolutional 
layer with N1

1
= 48 filters followed by a Leaky ReLU activa-

tion function to extract input features as well as reduce the 
number of output feature maps for smaller model size. Then, 
given the separation rate s = 3 , we separate M1

1
 into two parts 

with different number of feature maps by channel splitting, 
which are N1

1
∕s = 16 and N1

1
− N1

1
∕s = 32 , respectively. The 

part with 32 feature maps will be fed into subsequent 3 × 3 
convolutional layer with N2

1
= 48 filters. The other part with 

16 feature maps will fuse with M2
1
 by channel concatena-

tion for better utilization of richer cross-level features. The 
same process is repeated for the second SFU, which can be 
described as 

where Fj
si
 (i, j = 1, 2) denotes the operation of the jth convo-

lutional layer (including Leaky ReLU) in the ith SFU, S and 
F indicate feature separation and feature fusion operation, 
respectively, and Bin

i
 and Bout

i
 represent the input and output 

of ith SFU, respectively.
In each SFU, on the one hand, output feature separation 

can reduce the number of feature maps that will be sent to 
the next layer, leading to fewer parameters and computa-
tions. On the other hand, input feature fusion can introduce 
previous information into the current one, helping to inte-
grate and exploit hierarchical features.

(5a)M1
i
= F1

si
(Bin

i
),

(5b)M2
i
= F2

si
(S(M1

i
, 1 − 1∕s)),

(5c)Bout
i

= F(M2
i
, S(M1

i
, 1∕s)),

Fig. 2  The architecture of 
SFOB
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3.2.2  ICAU 

To focus on more important feature maps, we utilize an 
improved channel attention mechanism for feature recalibra-
tion among different channels and levels in a local manner. 
As shown in Fig. 3, the channel attention module in RCAB 
[42] and CBAM [38] is based on global average or maxi-
mum pooling to achieve high PSNR value while in MAMB 
[18] is based on variance pooling to restore high-frequency 
details. By combining their advantages, IMDB [15] utilizes 
both the standard deviation pooling and average pooling to 
achieve better SR performance. However, it ignores that dif-
ferent pooling modes have different importance to the fea-
ture maps by simple summation. To solve this problem, we 
introduce a softmax layer so that the feature maps obtained 
from standard deviation pooling and average pooling can be 
weighted adaptively.

Let us denote BIin
k
∈ RH×W×C as the input of ICAU in the 

kth SFOB, where C and H ×W  represent the number and 
the spatial shape of feature maps, respectively. As shown 
in Fig. 3e, we first use average pooling and standard devia-
tion pooling to squeeze BIin

k
 into two types of feature maps 

M1
I
,M2

I
∈ R1×1×C . Then, we utilize concatenation operation, 

softmax activation and split operation to adaptively balance 
the importance between the two pooling modes and produce 
the weight maps Wi

I
∈ R1×1×C, (i = 1, 2) . This process can be 

expressed as 

where Wi
I
=
[
wi1
I
,… ,w

ij

I
,… ,wiC

I

]
 . It should be noted that the 

softmax function will make the formula 
∑2

i=1
w
ij

I
= 1 work-

able. Further, we can obtain the weighted feature map 
MI ∈ R1×1×C:

Afterwards, based on previous work [10], we exploit dimen-
sion reduction, ReLU activation, dimension increasing and 
sigmoid activation to obtain the target scalar sI ∈ R1×1×C for 
reweighting the input BIin

k
:

where ⊗ refers to the channel-wise multiplication between 
B
Iin
k

 and sI . B
Io
k
 represents the recalibrated feature maps.

In the end, we utilize a 1 × 1 convolutional layer to fur-
ther refine image features and obtain BIout

k
 , which denotes 

the output of ICAU.

(6a)W1
I
,W2

I
= Split(Softmax(Concat[M1

I
,M2

I
])),

(6b)Wi
I
=

C∑
j=1

w
ij

I
,

(7)MI =

2∑
i=1

Mi
I
⋅Wi

I
.

(8)B
Io
k
= B

Iin
k
⊗ sI ,

(a) CA in RCAB [42] (b) CA in CBAM [38] (c) CA in MAMB [18]

(d) CA in IMDB [15] (e) ICAU

Fig. 3  Different channel attention mechanisms. CA channel attention
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3.2.3  Local residual structure

To reduce learning difficulty and speed up convergence dur-
ing the training process, we adopt residual learning scheme 
in each SFOB. Therefore, the final output of the kth SFOB 
can be formulated as

3.3  MAE pooling‑based feature optimization 
and fusion block (MAE‑FOFB)

To make full use of the global multi-level features, we will 
apply a bottleneck layer ( 1 × 1 convolution) to concatenate 
the output of every SFOB as well as reduce the number of 
output feature maps as most previous works do. However, it 
is not enough to enhance discriminability of features from 
different levels only by feature fusion. Therefor, before the 
bottleneck layer, we add a MAE pooling based channel 
attention unit (MAE-CAU) for optimization. The structure 
is shown in Fig. 4.

Let us denote the output of the kth SFOB as [
Bk1,… ,Bkc,… ,BkC

]
 , which has C feature maps with spa-

tial size H ×W  . The cth map Mkc after MAE pooling can 
be calculated by 

Noting that the loss function of SFON is mainly based on 
MAE (see Sect. 3.4), MAE-CAU will help to minimize the 
reconstruction error and favor a high PSNR value. What’s 
more, the output feature maps of every SFOB have been 
refined by ICAU using adaptive weighted average and stand-
ard deviation pooling in a local manner. Here, they will be 
further optimized by another simple but effective squeeze 

(9)Bk = B
Iout
k

+ Bk−1.

(10a)�kc =
1

H ×W

H∑
i=1

W∑
j=1

Bkc(i, j),

(10b)Mkc =
1

H ×W

H∑
i=1

W∑
j=1

||Bkc(i, j) − �kc(i, j)
||.

strategy, MAE pooling, in a global manner, contributing to 
more powerful representational ability.

3.4  Loss function

Mean square error (MSE) and mean absolute error (MAE) 
are two types of loss functions that have been widely used in 
SR tasks. However, the paper [26] shows that MSE loss, also 
called L2 loss, performs poorly to generate clear images. 
Therefore, we choose MAE, also called L1 loss, as our first 
loss function. By denoting the SR image and its correspond-
ing ground truth as ISR and IHR , respectively, we can give the 
formulation as follows:

Since the model using L1 or L2 loss tends to gener-
ate smooth images, we introduce the SSIM loss LSSIM to 
improve the image quality. Our goal is to minimize LSSIM 
between ISR and IHR:

where SSIM(∗) defines the calculation of structural similar-
ity and � = 0.01 works well.

In the training process, we first train the network with L1 
loss and then fine-tune it with SSIM loss, which can achieve 
better performance.

3.5  The progressive version of SFON: SFON‑P

To obtain a higher quality image, we slightly modify the 
original SFON by adopting progressive image reconstruc-
tion strategy, which can predict HR image from coarse to 
fine with the scale factor r = 2 as the base. As shown in 
Fig. 5, SFON-P contains two-level sub-networks for ×4 SR 
and each sub-network has the same architecture with SFON. 
The motivation for progressive reconstruction is similar to 
LapSRN [20]. However, there are two main differences.

First, in LapSRN [20], each sub-network structure is iden-
tical, which means the number of convolutional layers is 
also exactly the same. But in our SFON-P, we stack different 
number of SFOB at each level, denoted as m, n, respectively, 
s.t. m > n . After up-sampling at level one, both the height 
and width of feature maps will be doubled, leading to the 
increase of calculations in the subsequent layers. Thus, we 
reduce the number of SFOB in the level two by setting n < m 
to control the computational complexity to a certain extent.

Second, LapSRN has two branches at each level that both 
require up-sampling, while our SFON-P just up-sample the 
feature maps once at each level to ease the information prop-
agation. What’s more, for full use of shallow and deep fea-
tures, we introduce a residual up-sampling branch from the 
output of SFEB at level one to the input of RB at level two. 

(11)L1 =
‖‖ISR − IHR

‖‖1.

(12)LSSIM = �
[
1 − SSIM(ISR, IHR)

]
,

Fig. 4  The structure of MAE-CAU 
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It should be noted that the kernel size of the convolutional 
layer in the residual up-sampling branch is 1 × 1 instead of 
3 × 3 , which helps to control the model parameters.

4  Experiments

4.1  Datasets and metrics

For training, we use DIV2K [1] dataset, which contains 800 
high-quality images and are widely used in SR tasks. For 
testing, we use four standard benchmark datasets: Set5 [3], 
Set14 [41], B100 [29] and Urban100 [13]. The LR image is 
obtained by down-sampling corresponding HR one using 
bicubic interpolation.

For fair comparison with existing methods, we evaluate 
the performance of generated images using two metrics, 
peak signal-to-noise-ratio (PSNR) and structure similarity 
(SSIM), which are calculated on the Y channel of the trans-
formed YCbCr color space. In this paper, all experiments are 
only performed for the ×4 SR task.

4.2  Implementation details

During the training process, we first randomly crop the RGB 
color patches with a size of 48 × 48 from LR images as the 
input and set the minibatch size to 16. Then, we augment 

the training images with random horizontal flips and 90◦ 
rotation. Considering the good balance between model com-
plexity and SR accuracy, we set the number of SFOBs to 
N = 6 in SFON, and m = 4 , n = 2 in each level of SFON-
P. Both SFON and SFON-P are trained with the ADAM 
[19] optimizer with �1 = 0.9 , �2 = 0.999 . The learning rate 
is initialized as 5e − 4 , and then reduced by half every 105 
iterations. We implement our models on Pytorch with a GTX 
1080 Ti GPU.

4.3  Analysis of SFON

To have a clear understanding of how SFON achieves better 
performance with an efficient architecture, we design the 
ablation experiments. To shorten the training time, we con-
struct a small model (SFON-s, as shown in Fig. 6) by adopt-
ing 4 SFOBs to conduct ablation studies from the following 
three aspects: SFOB, MAE-CAU and loss function.

(1) Study of SFOB: As illustrated in Fig. 7, we first choose 
the plain structure with four cascaded 3 × 3 convolutional 
layers (64 channels) as the baseline, and then replace it with 
two successive SFUs. Afterwards, ICAU and residual struc-
ture will be gradually added, which finally constitute the 
whole SFOB.

Results are shown in Table 1. We can see that from the 
baseline to SFUs, the number of parameters has a significant 
drop from 637 to 379 K, which is approximately reduced 

Fig. 5  The architecture of our 
proposed SFON-P

Fig. 6  The architecture of 
SFON-s
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by 40% at a slight cost of performance. After adding ICAU, 
the PSNR will improve a lot on Set5, while the number of 
parameters has merely increased by 5%, which is still far 
fewer than that of the baseline. Afterwards, The addition 
of residual structure can lead to performance improvement 
without increasing parameters. Finally, comparing with the 
baseline, our SFOB can achieve higher PSNR with much 
smaller model size.

(2) Study of MAE-CAU: To validate the effectiveness 
of MAE-CAU, we remove it from SFON-s and keep other 
parts unchanged. Observing the results shown in Table 2, 
the MAE-CAU can make PSNR value improve by 0.03 dB 
on Set5 with extra 1 K parameters, which is only an increase 
of 0.25%. This demonstrates that the introduction of MAE-
CAU can further optimize multi-level features, contributing 
to performance improvement.

(3) Study of loss function: To examine the effect of loss 
functions, we first train SFON-s with L1 loss only, and then 
introduce SSIM loss to it. As shown in Table 3, using SSIM 

loss can bring a slight SSIM increase on both datasets. 
What’s more, the PSNR value improves by 0.01 dB on Set5.

Noting that the above all studies are conducted based on 
the smaller model (SFON-s), it can be inferred that SFON 
which has more SFOBs will show more obvious perfor-
mance superiority.

4.4  Analysis of SFON‑P

To further analyze the performance behavior of SFON-P, we 
develop investigations from the following two aspects: the 
allocation of SFOB and the effect of residual up-sampling 
branch.

(1) The allocation of SFOB: We will train two models 
with different allocation schemes of SFOB by keeping the 
number of SFOB at level one larger than that at level two in 
the case of a fixed total number, which means the relations 
m > n and m + n = 6 should hold. We set m = 5, n = 1 in the 
first model while m = 4, n = 2 in the second model, namely 
our SFON-P. It can be observed from Table 4 that our 
SFON-P leads to an increase of PSNR by 0.05 dB and 0.02 
dB on Set5 and B100, respectively. Thus, we can conclude 
that based on the above restrictive conditions, the smaller 
the difference between m and n, the better the performance 
can be achieved.

(2) The effect of residual up-sampling branch: To verify 
the necessity of adding the residual up-sampling branch, 
we construct an extra model by removing it from SFON-P 
and conduct the comparing experiment. From Table 5, we 
can see that the introduction of residual up-sampling branch 
can bring absolute performance improvement. By increas-
ing 17K parameters, which is a little increase of 2.98%, the 
PSNR value improves by 0.1 dB and 0.02 dB on Set5 and 
B100, respectively, indicating that this structure can effec-
tively fuse the shallow and deep feature information from 
both levels, thus improving the performance.

Fig. 7  The plain structure with four cascaded convolutional layers

Table 1  The ablation study of SFOB in SFON-s. RL means residual 
learning

Scale SFUs ICAU RL Params (K) Set5 PSNR (dB)

×4 × × × 637 31.91
✓ × × 379 31.87
✓ ✓ × 398 31.95
✓ ✓ ✓ 398 31.98

Table 2  The ablation study of MAE-CAU in SFON-s

Scale MAE-CAU Params (K) Set5 PSNR (dB)

×4 × 397 31.95
✓ 398 31.98

Table 3  The ablation study of loss function when training SFON-s

Scale L
SSIM

Params PSNR (dB)/SSIM

(K) Set5 B100

×4 × 398 31.97/0.8908 27.45/0.7311
✓ 398 31.98/0.8912 27.45/0.7324

Table 4  Results of the allocation of SFOB in SFON-P

Scale m + n Params (K) PSNR (dB)

Set5 B100

×4 5 + 1 587 32.11 27.51
4 + 2 587 32.16 27.53

Table 5  The effect of the residual up-sampling branch (RUB) in 
SFON-P

Scale RUB Params (K) PSNR (dB)

Set5 B100

×4 × 571 32.06 27.51
✓ 587 32.16 27.53
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4.5  Comparisons with state‑of‑the‑arts

We compare the proposed SFON and SFON-P with several 
state-of-the-art lightweight SR methods, including FSRCNN 
[7], VDSR [16], LapSRN [20], MemNet [34], IDN [14], 
CARN-M [2], MADNet-LF [21] and s-LWSR32 [23] on 
aspect of reconstruction accuracy. We also compare the stor-
age and computation efficiency of each method which are 
measured by parameter consumption and computation cost 
(multi-adds), respectively. The multi-adds is the number of 
multiply-accumulate operations and is calculated by assum-
ing that the desired SR image size is 1280 × 720.

The quantitative comparisons are listed in Table 6. In 
terms of image accuracy, our SFON-P significantly out-
performs other methods on all datasets both in PSNR and 
SSIM. For scale factor of ×4 , the PSNR value of SFON-P 
is 0.12 dB and 0.15 dB higher than that of s-LWSR32 [23] 
on Set5 and Urban100, respectively, and 0.11 dB higher 
than that of MADNet-LF [21] on Set14. The SSIM value 
of SFON-P is also a bit higher than all the other methods. 
What’s more, our SFON achieves the second-best perfor-
mance result on almost all datasets. Even compared with 
s-LWSR32 [23], it obtains notable PSNR gain of 0.36 dB and 
0.06 dB on Set14 and Urban100, respectively, and achieves 
similar performance on Set5 and B100. In terms of storage 
efficiency, both SFON and SFON-P have a relatively small 
number of parameters in the range of 550K to 600K, which 
is less than the median number and similar to that of IDN 
[14] and s-LWSR32 [23]. In terms of computation efficiency, 
our SFON-P is at the medium level with multi-adds less than 
70G and our SFON further reduce it nearly by half. Espe-
cially, the multi-adds of SFON is about 1.3% of MemNet 
[34] and far less than most other methods.

Figure  8 presents visual results on different testing 
datasets for ×4 SR task. It can be easily observed that the 

proposed method SFON-P can reconstruct SR images 
with much better visualization. For example, for the image 
“comic” from Set14, SFON-P can preserve more details and 
produce fewer artifacts. For the image “160068” from B100 
and “img_076” from Urban100, SFON-P can generate much 
clearer stripes and grid structures. What’s more, our SFON 
can produce almost the same results with a smaller model 
size.

To summarize, SFON shows comparable or even better 
performance against other methods with relatively fewer 
parameters and multi-adds. SFON-P further boosts perfor-
mance and achieves the best result among all methods at a 
slight cost of computation. Both of our proposed models 
can make a better balance between SR accuracy and model 
efficiency.

5  Conclusion

In this paper, we propose a lightweight network SFON and 
its variant SFON-P for accurate single-image super-resolu-
tion. Specifically, we apply multiple SFOBs to capture and 
refine hierarchical features in a local manner with a simple 
but effective structure. Following that, we utilize MAE-
FOFB to optimize and fuse multi-level features in a global 
manner. A novel SSIM loss is also adopted to fine-tune the 
network in the training process. Moreover, we introduce pro-
gressive reconstruction strategy to SFON for further perfor-
mance improvement, allowing the designer to tune trade-off 
between model performance and complexity. Comparing 
with other lightweight models, our SFON-P and SFON won 
the first and second places on all the datasets, respectively, 
in terms of PSNR and SSIM with a moderate number of 
parameters (550K–600K). Besides, the number of opera-
tions in SFON is only about 35G, which is far less than most 
other methods. All the experimental results demonstrate that 

Table 6  Quantitative comparisons with the state-of-the-art lightweight SR models for scale factor ×4 on different benchmarks

Bold/italics text means the best/second-best performance

Model Scale Params (K) Multi-adds (G) PSNR (dB)/SSIM

Set5 Set14 B100 Urban100

FSRCNN [7] ×4 12 4.6 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280
VDSR [16] 665 612.6 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
LapSRN [20] 813 149.4 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560
MemNet [34] 677 2662.4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630
IDN [14] 590 81.87 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632
CARN-M [2] 412 32.5 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.63/0.7688
MADNet-L

F
 [21] 1002 54.1 32.01/0.8925 28.45/0.7781 27.47/0.7327 25.77/0.7751

s-LWSR
32

 [23] 571 32.9 32.04/0.893 28.15/0.776 27.52/0.734 25.87/0.779
SFON (ours) 582 35.5 32.04/0.8920 28.51/0.7799 27.51/0.7345 25.93/0.7808
SFON-P (ours) 587 66.9 32.16/0.8935 28.56/0.7804 27.53/0.7349 26.02/0.7828
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both of our models can make a better balance between SR 
accuracy and model complexity. In the future, we wish our 
models can be applied to the resource-limited devices and 
real-time scenarios.
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