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Abstract
Underwater explorations and probes have now become frequent for marine discovery and endangered resources protection. 
The decrease in natural light with an increase in water depth and the characteristic of the medium to absorb and scatter light 
pose crucial challenges to underwater vision systems. Autonomous Underwater Vehicles (AUVs) depend upon their imaging 
systems for navigation and environmental resource exploration. This paper proposes DeepRecog—an integrated underwater 
image deblurring and object recognition framework for AUV vision systems. The principle behind the image deblurring 
module involves a threefold approach consisting of CNNs, adaptive and transformative filters. The ensemble object detec-
tion and recognition module identifies marine life and other frequently existent underwater assets from AUV images and 
achieves mean Average Precision (mAP) of 0.95 and was found to be 6.42% more precise than YOLOv3, 8.43% more than 
FasterRCNN + VGG16 and 15.78% more than FasterRCNN. This framework was created with the purpose of providing 
real-time detection and recognition with minimal delay. The system can also be employed for former images acquired from 
AUVs and hopes to facilitate efficient solutions for marine image post-processing.
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1  Introduction

The development, exploration and protection of marine life 
and underwater resources has gained significant attention 
across the world due to the increase in climate changes and 
global warming. Recent implementations in the domain of 
marine research have resulted in the fruition of advanced 
autonomous and manually operated vehicles for transporting 
visual equipment for detection and recognition of necessary 
targets in underwater conditions. The field of underwater 
exploration is a state of constant development and innovation 
due to the inherent need of imaging processing and computer 
vision techniques for understanding visual information that 
are corrupted by a wide number of factors. Light attenuation, 
scattering, non-uniform lighting, shadows, colour shading, 
suspended particles, obscured vision due to the existence of 

marine life are major contributors to this decrease in their 
ability to interpret valuable information from collected data.

1.1 � Autonomous underwater vehicles

Autonomous under-water vehicles (AUVs) function com-
pletely on their own without the need of manual intervention 
and it is essential for them to have a viable perception of the 
elements in their surroundings. AUVs and their ability to 
extract valuable inferences from captured images is limited 
by the aforementioned factors that are characteristic to the 
medium. Figure 1 showcases the general operational flow 
of an AUV robot.

AUVs have now become increasingly relevant and serve 
as optimal options for water body research explorations. The 
range of depth, from shallower waters to extremely deep 
trenches, that can be serviced by AUVs make it appropriate 
for ocean research. The ability of AUVs to stay underwa-
ter for large and continuous periods of time makes them 
far more efficient than human divers. The sensory com-
ponents and perception methods employed can be altered 
according to the task at hand without the requirement for 
expensive changes to the overall design of a AUV. Cameras 
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are employed in AUVs which explore regions of adequate 
illumination. Recent camera-based explorations for deeper 
ocean regions have been facilitated through strategically 
placed light strobes. The images may be affected by blur 
due to underwater disturbances and illumination deficiency, 
which has given rise to the field of image deblurration for 
underwater images.

1.2 � Underwater image deblurring

Deblurring algorithms and methodologies form an integral 
part of the AUV vision system for the enhancement of cap-
tured images since the obtained data requires feasible pre-
processing techniques in the majority of the cases. While 
light flashes from the visual equipment can enhance visibil-
ity, enhancement algorithms are still essential for underwater 
dark environments to enable autonomous object recognition. 
The retransformation of the obtained image to its original 
form remains a challenge due to the requirement to accom-
modate the blaring and distortion inflicted on the image. 
Deblurring processes are focussed on removing external and 
machine-based noise by estimating the blur kernel informa-
tion and de-convoluting the image to obtain the ground truth 
representation. Both data-driven and traditional techniques 
have been employed in the past for this purpose. Recently, 
blind image deblurring techniques have gained traction in 
the field of image processing research due to their ability to 
restore the initial image with very little information on the 
attributes of the blur kernel. The reduction in peak signal-
to-noise ratio (PSNR) within a considerable execution time 
is imperative for the real-time functioning of the system.

1.3 � Underwater object recognition

Recent innovations in machine learning have propelled 
object localization and object recognition techniques to new 
heights. Object detection can be defined as the identification 
of the locations of required targets in an image and their 
dimensions. The recognition component depends heavily 

on classification modelling to categorise the target. Image 
classification models understand the visual features inher-
ent to an image and assign a class label relevant to it. Object 
detection and recognition methodologies follow a twofold 
approach of isolating the region of interest from an image 
with diverse elements and classification of the recognised 
region to its appropriate label. The high amount of informa-
tion and computational nature of image matrices has led to 
the development of deep-learning models that deploy exten-
sive learning parameters and complex nodal architectures to 
traverse and understand the underlying information present 
in an image. Underwater object detection is dependent upon 
the quality of the camera and is usually combined with an 
image processing module to enhance the image quality. This 
paper proposes a novel framework for deblurring and object 
detecting underwater images obtained by AUVs to integrate 
the overall processes required for an AUV vision system.

2 � Related works

The modern era of underwater imaging began with the 
development of electrical vision systems. The implementa-
tions of SONAR or camera-based imaging in AUVs and 
marine-exploration probes have been extant for quite some 
time and the need for employment of visual processing and 
recognition techniques are ubiquitous in marine research due 
to the unclear and noisy state of the medium. Applications 
requiring manual intervention have now become obsolete 
and automated recognition systems are taking over.

Techniques for reversal of distortions and degradations 
produced in the image due to the light-diminishing and scat-
tering properties of the water bodies have led to innovative 
proposals which deal with contrast-stretching and adaptive 
thresholding based upon existing edge-detection operators 
like Sobel, Canny, Prewitt, etc. While limited range detec-
tion is still viable, the expansion of the visual recognition 
range can be expanded significantly with the introduction of 
appropriate deblurring strategies. The main focus of these 

Fig. 1   General process of AUV 
Operations
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processes is to derive a proper visual representation by 
reducing the PSNR and SSIM [1]. Weighted guided filter-
ing for deblurring to lessen halo artifacts can be propelled 
to the next level using gradient domain guided image filters 
that are focussed on blare restraining and boundary con-
servation [2]. Single image super-resolution of underwater 
images has also been proposed in the past using a set of low 
resolution and high-resolution compact cluster dictionaries. 
The removal of unwanted signals in the image, especially 
caused due to the suspended particles in the ocean water, 
was implemented using object detection and removal [3]. 
The two-fold approach was significant in removing the 
marine particles while preserving target object edges [4]. 
One significant breakthrough in removing the undesirable 
characteristics of colour distortions and visible noise was 
attained by the simplification of the Jaffe-McGlamery opti-
mization algorithm by G. Huo et.al. Their approach was 
based on the derivation of a red-arc channel [5] prior to the 
estimation and transmission of background light. A simple 
and efficient low-pass deblurring filter was also proposed 
and the experimental results conclusively proved that their 
proposed algorithm was feasible for eliminating the influ-
ence of absorption and scattering [6]. Underwater image 
segmentation establishes itself as a reliable and stable pre-
processing method [7] for enhancing the accuracy of target 
tracking and recognition. Segmentation algorithms in this 
field of research aim to solve the contour-deformation and 
edge-expansion problems in traditional methodologies. The 
modern segmentation algorithms are geared towards remov-
ing haze and improving object visibility [8].

Artificial object-based mean-shift tracking and template 
matching designs for underwater robots have been proposed 
with the combination of a novel weighted correlation coef-
ficient employing colour and feature-based techniques to 
test the performance under various lighting conditions [9]. 
Their system was tested using an underwater robot platform 
yShark made by KORDI. Frameworks for AUV motion 
planning take into consideration both the self-dynamics of 
its actuators along the water-flow motion features [10]. The 
generation of vertices leads to an extension of controller 
action considered in previously existing literature where the 
circulation and location are considered as discrete values 
in time with optimum constraints achieved through multi-
processing. The increasing need for real-time data process-
ing for onboard mission planning and adaptations in AUV 
route decisions due to the wide bandwidth requirements and 
data-intensive computations was the main purpose for the 
development of anomaly detection frameworks in the past 
[11]. The need for instant mitigation and response is cru-
cial in dealing with situations that may cause damages or 
disastrous outcomes to the AUVs. The existing frameworks 
demonstrate their capability to side-scan SONAR data-
sets collected by AUVs where the identification of salient 

regions is performed by newly developed algorithms that are 
analogous to key-point matching and detection techniques 
in the field of image processing [12]. The framework also 
allows the transfer of obtained imagery for analysis by the 
operators and their relevant feedback. One prime example of 
an efficient qualitative navigation system was established by 
Memorial University [13]. Memory Explorer AUV enables 
path following and localization where a globally referenced 
position estimate is not necessary for its operation along the 
trained route.

Several object-detection algorithms are currently being 
applied for ocean exploration, employing contour segmen-
tation and border-mapping techniques to locate objects 
and realise the target position [14]. Object detection data 
models and datasets are a crucial requirement in the field 
of underwater resource tracking and navigation. UDD is 
one such underwater open-sea farm object detection dataset 
that consists of images classified into three labels—scallop, 
sea cucumber, and sea urchin. It is one of the first data-
sets collected in a real open-sea farm with close to 2227 
images. The paper also proposed a novel GAN algorithm 
(Poisson GAN) to combat class-imbalance issues in UDD 
[15]. Other object detection algorithms are usually built 
upon Convolutional Neural Networks (CNN). Deformable 
CNNs [16] pre-process underwater images to increase con-
trast and remove deviation of colour. ResNet-101 was uti-
lised as a sub-network for feature extraction using deform-
able convolutional models and showcased prominent feature 
extraction improvements. Video-based object detection and 
summarization techniques have also established themselves 
as significant contributors to the design of technologically 
well-equipped underwater vision systems [17–22]. With the 
development of both image enhancement and object detec-
tion networks for marine resource recognition, it is impera-
tive to understand the correlation between these models. 
Changes in the parameters defining image quality after 
enhancement processes and the accuracy achieved in object 
detection were carried out. An increase in accuracy on the 
image-enhanced dataset was recorded but no direct statistical 
correlations were established between the parameter changes 
and final detection accuracy [23]. ResFeats [24] based fea-
ture extraction processes have also proven much more effi-
cient compared to CNNs for underwater image classifica-
tion tasks. The absence of an integrated solution to perform 
deblurring and object recognition on the same platform has 
been a path of extensive research and this paper proposes 
a complete framework for realtime and post processing of 
image data in AUV vision systems.

Based upon careful consideration of existing works, an 
integrated system consisting of functional deblurring and 
object detection, specific to underwater exploration, was 
found to be lacking. The significant contributions of this 
work includes a triadic deblurring approach coupled with an 
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ensemble object detection module. This approach provides 
the combinational benefits of close to real-time results and 
visual robustness of clarifying images of disadvantageous 
resolutions.

3 � Proposed system

The DeepRecog framework follows a hybrid approach of 
combining image dehazing and underwater object recogni-
tion for enhancing AUV image interpretations. The novel 
framework and its process flow are depicted in Fig. 2. The 
functioning of the framework is set in motion once the image 
is captured by the AUV vision system. The attained visual 
data is passed through a custom layered deep-learning model 
for deblurring and the processed image is made feasible for 
object detection. An ensemble object detection module has 
been built to predict target boundaries and their classes by 
obtaining a weighted average of two pre-trained models 
subjected to transfer learning (YOLOv5 and MR-CNN). As 
the system executes a dual model approach for underwater 
object detection and deep-learning-based image processing, 
the final recognition outputs of our DeepRecog framework 
provide a concise and visually accurate solution, disregard-
ing irrelevant objects. This will alleviate the vulnerabili-
ties and weak points of existing AUV vision recognition 
frameworks.

3.1 � Deblurring module

The deblurring algorithm follows a triadic approach—an 
end to end transmission map is estimated using CNNs, col-
our deviation is removed based upon white balance param-
eters, and the final image is de-noised using hybrid wave-
lets and directional filter banks. The CNN is focussed on 
feature extraction, non-linear regression, local extremum 
and multi-scale mapping. The feature extraction is carried 
out by three kernels of different sizes to extract multi-scale 

features. The final output is compressed by the Maxout acti-
vation function and is normalised using a bilateral rectified 
linear unit (BReLU). Unrealistic colour deviations can be 
amended based upon light estimation and colour correction. 
The implementation of the initial CNN for single image 
deblurring for the underwater images follows the principle 
of DehazeNet [25]. The first step is to calculate the light-
ing of the image for every colour channel with the use of 
Minkowski p norm. The unavailability of red components 
and properties of white objects underwater are some fac-
tors considered during the selection of the p value [26]. 
For colour corrections, we use comprehensive comparison 
for severely colour deviated underwater images [27]. The 
colour deviation is corrected iteratively by finding grey pix-
els and comparing their deviations. The colour corrected 
and blur free images are combined together Laplacian 
pyramids are utilised to obtain an amalgam between the 
colour corrected and blur free image. Each input image is 
modelled into different scales and every normalised weight 
map is calculated. The final image before edge detection is 
obtained by:

where I shows the pyramid level count, W is the normalised 
weight map, G{W} is its Gaussian version and L{I} is the 
Laplacian form of I The edge detection component of the 
module comes into play in the form of subjecting the image 
to HWD Transformation [28]. The HWD transformation dis-
integrates the images into L levels and the high frequency 
sub banks are subjected to directional filter banks. Texture 
and contour features are more accurately captured by the 
HWD transformation.

3.2 � Ensemble detection module

Elementary object-detection algorithms were not as sys-
tematic as we want them to be today. To detect an object, 

RI(x, y) = GI
{

W(x, y)k
}

LI
{

I(x, y)k
}

,

Fig. 2   DeepRecog architecture
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the methodology involved implementing a classifier for the 
particular object, and estimate its closeness at several loca-
tions of the image. Many of the said algorithms used a slid-
ing-window style to run the classifier at uniformly spaced 
regions over the entire image matrix. More recent trends 
include the use of R-CNNs that employ the use of region 
proposal methods to initially generate probable bounding 
boxes. The said classifier was limited to running over these 
boxes for recognition, rather than the entire image. Post-
processing techniques for filtering and increasing the accu-
racy of the boxes, as well as the removal of duplicate boxes 
were included.

Most of the popular object-detection algorithms have 
one main drawback—speed for real-time object detec-
tion. YOLO [29] re-defines object detection as an uncom-
plicated regression model. The naming ‘You Only Look 
Once’ is administered literally, as the system only looks 
once at the image to predict the objects. The consolidated 
model has multiple advantages over earlier methods and 
is specifically optimised for detection performance. The 
decreased processing time can be attributed to the fact that 
object detection is defined as a regression problem, which 
negates the need for a complex pipeline. In this paper, we 
implement a weighted ensemble object detection module 
implementing two recently established object detection 
models (YOLOv5 and a hybrid FasterRCNN + Inception-
ResNet V2). The weighted ensemble structure allows us to 
combine different structural models into the same module. 
The final prediction region is obtained from the models by 
structuring them as coefficient weighted ensembles trained 
independently.

3.2.1 � YOLOv5

YOLO aims at the image globally, rather than region-
restricted techniques mentioned earlier. The entire image 
is understood during training and testing to encode the cor-
respondent data of the objects, as well as their other visual 
attributes. It generates a generic rendition of objects and 
their boxes. This step also involves the usage of non-maxi-
mal suppression and Intersection-over-union to excise dupli-
cate boxes. YOLOv5 set the benchmark for object detection 
models very high. 4 models of YOLOv5 are publicly avail-
able, each having its own pre-trained weights on the COCO 
dataset. The said dataset is not inclusive of objects/animals 
found underwater, which necessitates the need for transfer 
learning. Images of underwater marine life were taken from 
a variety of publicly available datasets. Training of YOLO 
models requires the annotations of each image that is the 
coordinates of the rectangle that encompasses the required 
object in the said image. While some datasets came along 
with their annotations, others required manual annotation 
via software like LabelImg that allows the user to manually 
select the coordinates of the object.

3.2.2 � FasterRCNN + InceptionResNet V2

InceptionResNet V2 is a pre-trained convolutional neural net-
work that has a depth of 164 layers and the ability to classify 
1000 object categories robustly without the need for custom 
learning. The network, originally trained on a wide range of 
images from Imagenet (close to 1 million images), has attained 
rich feature characteristics and identification techniques. The 
image input size for the network is set at 299*299. Inception 
V2 [30] has gained attention due to its ability to widen the 

Fig. 3   Comparison of raw images with the DeepRecog deblurred images
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architecture of the network rather than deepening it. The inclu-
sion of residual nature into the original Inception module has 
proved beneficial in several past works. Residual Inception 
architectures outperform all similar Inception Networks that 
are implemented without residual connections.

Faster RCNN, the successor of Fast RCNN and the origi-
nal RCNN, is one of the most renowned deep convolutional 
networks with an Object Detection component and a Region 
Estimation Network (REN). The region proposals are pre-
dicted by a separate network instead of the implementation 
of a selective search algorithm on the feature maps. The faster 
neural network in place of the original algorithm is one of 
the main improvements of the Faster RCNN in comparison 
to the previous such object detection algorithms. The Region 
Estimation/Proposal Network is another major addition con-
tributed by the Faster RCNN development. The feature maps 

are scaled down to decreased dimensions by a sliding window 
in the final stages of the initial CNN. Multiple likely regions 
are generated at each location of the sliding window based on 
default bounding boxes. Different sized boxes are tested for 
their probability of encompassing an object and their coor-
dinates. Softmax probability is considered for the conclusion 
of the best bounding box most likely to contain the object. 
The Region proposal network works primarily towards esti-
mating the box coordinates and does not classify the bounded 
box objects. If a certain threshold of probability is passed by 
the bounding box it is proposed as a region of interest. Once 
the region of interest has been finalised, they are fed into the 
main network of pooling and fully connected layers of the Fast 
RCNN. The final layer is a Softmax classification and a bound-
ing box regressor is also in place. Tensorflow’s implementa-
tion of the Fast RCNN model with Inception ResNet is one of 

Fig. 4   YOLOv5 overview

Fig. 5   InceptionResNetv2 overview
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Fig. 6   DeepRecog deblurring effects comparison with existing works
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their most accurate models and hence. Has been considered 
as part of our ensemble structure. Once the classification has 
been made by the model, the object is bound in the image 
along with its appropriate classified label.

4 � Experimental results

4.1 � Dataset

The dataset comprises 7000 jpeg images of 7 different 
underwater specific categories namely—humans, fishes, jel-
lyfish, starfish, sharks, tortoises and coral-reef. The images 
were compiled from various open-source image datasets 
with Open Images Dataset v6 (Google) as the primary con-
tributor. A twofold approach was employed to improve the 
robustness of the classification model. The first approach 
focussed upon obtaining significant naturally blurred images 
as well as synthetic blurred images with randomised noise 
functions. The second approach was obtaining non-blurred 
underwater images belonging to the relevant classes. For the 
training process, the blurred images were processed using 
our aforementioned deblurring module before feeding it 
into the network while the non-blurred images were used 

directly. A majority of the images were obtained along with 
their annotations whereas the remaining dataset was manu-
ally annotated using LabelImg (Figs. 3, 4, 5).  

4.2 � Implementation

The entire framework was coded on a Ryzen 5 3600 @ 
3.6  GHz, 16  GB RAM PC. It is built upon MATLAB 
(deblurring module) and Python (object detection) and 
integrated using the Matlab Engine API. To evaluate the 
higher visual enhancement of our blur-removal algorithm, 
an extensive comparison was drawn among recent works in 
underwater image deblurring. Figure 6 showcases the visual 
enhancements of our model in comparison with the ground 
truth and other existent works. Hence, it can be inferred 
that our deblurring module provides a much more visually 
refined output suitable for further image operations (in this 
case, object detection).

Since the availability of a CUDA compatible GPU is 
highly beneficial, a Google Colab environment was used 
for training. The general method to calculate the value of 
Average Precision (AP) is to estimate the area under the 
Precision-Recall curve. mAP can be determined as the aver-
age of AP. Talking in particular to object detection, the mAP 

Fig. 7   DeepRecog object detection metrics

Table 1   Object detection model 
comparisons

Model Mean average 
precision (map)

Difference in mAP 
(%) over extant 
models

DeepRecog Ensemble 0.95 –
YOLOv3 0.89 6.42
Modified YOLOv3 0.87 8.43
FasterRCNN + VGG16 0.87 8.43
Faster RCNN with region network proposal acceleration 0.83 12.63
RCNN with bounding box regression 0.81 14.73
Faster RCNN 0.80 15.78
Fast RCNN with single value decomposition 0.79 16.84
Fast RCNN 0.73 23.15
Deformable Parts Model ( Baseline) 0.67 29.47
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score is calculated by computing the mean AP overall IoU 
thresholds, depending upon the specific parameters of the 
model. A total of 1000 images (per class) were trained on 
the model for 50 epochs. Figure 7 shows the metrics which 
threw a mAP accuracy score of 0.95, precision of 0.88 and 
recall of 0.0.93. Table 1 draws a comparative analysis of 

our ensemble with existing models [31–33] for underwater 
object detection.

The training and validation losses of the model can be 
seen in Fig. 8. In both cases, it can be observed that loss is 
almost negligent as both graphs tend towards zero. Figure 9 

Fig. 8   Training and validation curves of the combinational detection module

Fig. 9   DeepRecog object detection metrics
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showcases the final results of our DeepRecog framework 
that recognises the target objects present in the image.

Based upon analysis of the training and validation curves 
of the combinational model, we can conclude that the 
model is a good fit to the dataset without any sign of over-
fitting or underfitting. The mAP (mean Average Precision) 
obtained by the object detection network of our DeepRe-
cog Framework is 6.42% better than the closest state of the 
art model(YOLOv3) and is 29.47% better than the baseline 
model(Deformable parts model. Overall, the DeepRecog 
framework acts as an optimal addition to existing AUV 
vision by collaborating the processes of deblurration and 
underwater specific object detection.

5 � Conclusion

DeepRecog accomplishes the combinational proposal of 
integrating deblurring and object detection into a sin-
gle application entity focussed towards marine resource 
research and improving AUV vision. The deblurration 
system provided a water specific methodology for the 
removal of haze and noise while preserving the visual 
integrity of the original image. The novel object detec-
tion module for underwater items was 6.42% more precise 
than YOLOv3, 8.43% more than FasterRCNN + VGG16 
and 15.78% more than FasterRCNN. The future scope of 
research may be directed towards accommodating illu-
mination enhancement modules for deep-sea AUV vision 
systems. With recent advances in autonomous underwater 
transportation, the possible depth and range of underwater 
exploration have increased and the object detection sys-
tem can be modified to include more categorical labels.

Funding  Not applicable.

Data availability  Not applicable.

Code availability  The code has been made available on https://​github.​
com/​prana​vmvp/​DeepR​ecog.

Declarations 

Conflicts of interest  The author declares that he has no conflict of in-
terest with respect to publication of this research work.

References

	 1.	 D. Kim, D. Lee, H. Myung and H. Choi (2012) Object detection 
and tracking for autonomous underwater robots using weighted 
template matching, 2012 Oceans—Yeosu, Yeosu, Korea (South), 

pp. 1-5, doi: https://​doi.​org/​10.​1109/​OCEANS-​Yeosu.​2012.​62635​
01

	 2.	 Cheng, C., Sung, C., Chang, H.: Underwater image restoration by 
red-dark channel prior and point spread function deconvolution, 
2015 IEEE International Conference on Signal and Image Pro-
cessing Applications (ICSIPA), Kuala Lumpur, Malaysia, 2015, 
pp. 110–115, https://​doi.​org/​10.​1109/​ICSIPA.​2015.​74121​73.

	 3.	 Iqbal, K., Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H.: 
Enhancing the low quality images using unsupervised colour cor-
rection method. In: IEEE International Conference on Systems 
Man and Cybernetics (SMC). 2010, pp. 1703– 1709.

	 4.	 Farhadifard, F. (2017). Underwater image restoration: super-res-
olution and deblurring via sparse representation and denoising by 
means of marine snow removal.

	 5.	 Peng, Y-T., Cosman, P. C.: Underwater image restoration based 
on image blurriness and light absorption. In: IEEE Transactions 
on Image Processing 26.4 (2017), pp. 1579–1594.

	 6.	 Huo, G., Wu, Z., Li, J., Underwater image restoration based on 
color correction and red channel prior, 2018 IEEE International 
Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, 
Japan, 2018, pp. 3975–3980, https://​doi.​org/​10.​1109/​SMC.​2018.​
00674.

	 7.	 Hitam, M. S., Yussof, W. N. J. H. W., Awalludin, E. A., Bachok, 
Z.: Mixture contrast limited adaptive histogram equalization for 
underwater image enhancement. In: IEEE International Confer-
ence on Computer Applications Technology (ICCAT). 2013, pp. 
1–5.

	 8.	 Zheng, H., Sun, X., Zheng, B., Nian, R., Wang, Y: Underwater 
image segmentation via dark channel prior and multiscale hierar-
chical decomposition, OCEANS 2015—Genova, Genova, Italy, 
2015, pp. 1–4, https://​doi.​org/​10.​1109/​OCEANS-​Genova.​2015.​
72714​50

	 9.	 F. L. Pereira, T. Grilo and S. Gama (2018) Optimal Control 
Framework for AUV’s Motion Planning in Planar Vortices Vector 
Field, 2018 IEEE/OES Autonomous Underwater Vehicle Work-
shop (AUV), Porto, Portugal, pp. 1-6, doi: https://​doi.​org/​10.​1109/​
AUV.​2018.​87297​82

	10.	 Kaeli, J. W.: Real-time anomaly detection in side-scan sonar 
imagery for adaptive AUV missions, 2016 IEEE/OES Autono-
mous Underwater Vehicles (AUV), Tokyo, Japan, 2016, pp. 
85-89, doi: https://​doi.​org/​10.​1109/​AUV.​2016.​77786​53

	11.	 Stephan, Thomas & Beyerer, Jürgen. Computergraphical Model 
for Underwater Image Simulation and Restoration. Proceedings 
- 2014 ICPR Workshop on Computer Vision for Analysis of 
Underwater Imagery, CVAUI 2014, 73–78. https://​doi.​org/​10.​
1109/​CVAUI.​2014.​11.

	12.	 King, P., Vardy, A., Vandrish, P., Anstey, B.: Real-time side scan 
image generation and registration framework for AUV route 
following, 2012 IEEE/OES Autonomous Underwater Vehicles 
(AUV), Southampton, UK, 2012, pp. 1–6, doi: https://​doi.​org/​10.​
1109/​AUV.​2012.​63807​58

	13.	 Jiji, A. C., Nagaraj, R.: Enhancement of Underwater Deblurred 
Images using Gradient Guided Filter, 2018 3rd IEEE International 
Conference on Recent Trends in Electronics, Information & Com-
munication Technology (RTEICT), Bangalore, India, 2018, pp. 
1136–1140, https://​doi.​org/​10.​1109/​RTEIC​T42901.​2018.​90123​
05.

	14.	 Saini and M. Biswas, Object Detection in Underwater Image by 
Detecting Edges using Adaptive a, 2. 628–632, doi: https://​doi.​
org/​10.​1109/​ICOEI.​2019.​88627​94.

	15.	 Wang, Z., Liu, C., Wang, S., Tang, T., Tao, Y., Yang, C., Li, H., 
Liu, X., & Fan, X. (2020). UDD: An Underwater Open-sea Farm 
Object Detection Dataset for Underwater Robot Picking. ArXiv, 
abs/2003.01446.

	16.	 Zhang, D., Li, L., Zhu, Z., Jin, S., Gao, W., Li, C.: Object Detec-
tion Algorithm Based on Deformable Convolutional Networks for 

https://github.com/pranavmvp/DeepRecog
https://github.com/pranavmvp/DeepRecog
https://doi.org/10.1109/OCEANS-Yeosu.2012.6263501
https://doi.org/10.1109/OCEANS-Yeosu.2012.6263501
https://doi.org/10.1109/ICSIPA.2015.7412173
https://doi.org/10.1109/SMC.2018.00674
https://doi.org/10.1109/SMC.2018.00674
https://doi.org/10.1109/OCEANS-Genova.2015.7271450
https://doi.org/10.1109/OCEANS-Genova.2015.7271450
https://doi.org/10.1109/AUV.2018.8729782
https://doi.org/10.1109/AUV.2018.8729782
https://doi.org/10.1109/AUV.2016.7778653
https://doi.org/10.1109/CVAUI.2014.11
https://doi.org/10.1109/CVAUI.2014.11
https://doi.org/10.1109/AUV.2012.6380758
https://doi.org/10.1109/AUV.2012.6380758
https://doi.org/10.1109/RTEICT42901.2018.9012305
https://doi.org/10.1109/RTEICT42901.2018.9012305
https://doi.org/10.1109/ICOEI.2019.8862794
https://doi.org/10.1109/ICOEI.2019.8862794


593DeepRecog: Threefold underwater image deblurring and object recognition framework for AUV…

1 3

Underwater Images, 2019 2nd China Symposium on Cognitive 
Computing and Hybrid Intelligence (CCHI), Xi'an, China, 2019, 
pp. 274–279, doi: https://​doi.​org/​10.​1109/​CCHI.​2019.​89019​12

	17.	 Vijayvergia, A., Kumar, K.: Selective shallow models strength 
integration for emotion detection using GloVe and LSTM. Mul-
timed Tools Appl 80, 28349–28363 (2021). https://​doi.​org/​10.​
1007/​s11042-​021-​10997-8

	18.	 Kumar, K.: Text query based summarized event searching 
interface system using deep learning over cloud. Multimed 
Tools Appl 80, 11079–11094 (2021). https://​doi.​org/​10.​1007/​
s11042-​020-​10157-4

	19.	 Kumar, K. (2018). EVS-DK: Event video skimming using deep 
keyframe. J Vis Commun Image Represent 58. https://​doi.​org/​10.​
1016/j.​jvcir.​2018.​12.​009.

	20.	 Kumar, K., Shrimankar, D.D.: ESUMM: event SUMMarization 
on scale-free networks. IETE Tech. Rev. 36(3), 265–274 (2019). 
https://​doi.​org/​10.​1080/​02564​602.​2018.​14543​47

	21.	 Kumar, K., Shrimankar, D.D.: F-DES: fast and deep event summa-
rization. IEEE Trans. Multimedia 20(2), 323–334 (2018). https://​
doi.​org/​10.​1109/​TMM.​2017.​27414​23

	22.	 Kumar, K., Shrimankar, D.D. & Singh, N. Eratosthenes sieve 
based key-frame extraction technique for event summarization 
in videos. Multimedia Tools Appl 77, 7383–7404 (2018). https://​
doi.​org/​10.​1007/​s11042-​017-​4642-9

	23.	 J. Zhang, L. Zhu, L. Xu and Q. Xie, Research on the Correlation 
between Image Enhancement and Underwater Object Detection, 
2020 Chinese Automation Congress (CAC), Shanghai, China, 
2020, pp. 5928-5933, doi: https://​doi.​org/​10.​1109/​CAC51​589.​
2020.​93269​36

	24.	 Mahmood, A., Bennamoun, M., An, S., Sohel, F., Boussaid, F., 
ResFeats: Residual network based features for underwater image 
classification, Image and Vision Computing, Volume 93, 2020, 
103811, ISSN 0262-8856, https://​doi.​org/​10.​1016/j.​imavis.​2019.​
09.​002

	25.	 Cai, B., et al.: DehazeNet: an end-to-end system for single image 
haze removal. IEEE Trans. Image Process. 25, 5187–5198 (2016)

	26.	 Finlayson, G., Trezzi, E. (2004). Shades of gray and colour con-
stancy. Proceedings of the 12th Color Imaging Conference. 37–41.

	27.	 Huo, J. et al. Robust automatic white balance algorithm using gray 
color points in images. IEEE Transactions on Consumer Electron-
ics 52 (2006): 541–546.

	28.	 Eslami, R., Radha, H. (2005). New image transforms using 
hybrid wavelets and directional filter banks: analysis and design. 
1. I–733. https://​doi.​org/​10.​1109/​ICIP.​2005.​15298​55.

	29.	 Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look 
once: unified, real-time object detection, 2016 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 
NV, USA, 2016, pp. 779–788, https://​doi.​org/​10.​1109/​CVPR.​
2016.​91.

	30.	 Szegedy, C, Ioffe, S., Vanhoucke, V., Alemi, A. A.: 2017. Incep-
tion-v4, inception-ResNet and the impact of residual connections 
on learning. In <i>Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence</i> (<i>AAAI'17</i>). AAAI 
Press, 4278–4284.

	31.	 Han, F., Yao, J., Zhu, H., Wang, C. (2020). Underwater image 
processing and object detection based on deep CNN method. J. 
Sens. 2020.

	32.	 Li, X., Shang, M., Hao, J., Yang, Z. Accelerating fish detec-
tion and recognition by sharing CNNs with objectness learning, 
OCEANS 2016—Shanghai, 2016, pp. 1–5, https://​doi.​org/​10.​
1109/​OCEAN​SAP.​2016.​74854​76.

	33.	 Li, X., Shang, M., Qin, H., Chen, L.: Fast accurate fish detec-
tion and recognition of underwater images with Fast R-CNN, 
OCEANS 2015—MTS/IEEE Washington, 2015, pp. 1–5, https://​
doi.​org/​10.​23919/​OCEANS.​2015.​74044​64.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/CCHI.2019.8901912
https://doi.org/10.1007/s11042-021-10997-8
https://doi.org/10.1007/s11042-021-10997-8
https://doi.org/10.1007/s11042-020-10157-4
https://doi.org/10.1007/s11042-020-10157-4
https://doi.org/10.1016/j.jvcir.2018.12.009
https://doi.org/10.1016/j.jvcir.2018.12.009
https://doi.org/10.1080/02564602.2018.1454347
https://doi.org/10.1109/TMM.2017.2741423
https://doi.org/10.1109/TMM.2017.2741423
https://doi.org/10.1007/s11042-017-4642-9
https://doi.org/10.1007/s11042-017-4642-9
https://doi.org/10.1109/CAC51589.2020.9326936
https://doi.org/10.1109/CAC51589.2020.9326936
https://doi.org/10.1016/j.imavis.2019.09.002
https://doi.org/10.1016/j.imavis.2019.09.002
https://doi.org/10.1109/ICIP.2005.1529855
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/OCEANSAP.2016.7485476
https://doi.org/10.1109/OCEANSAP.2016.7485476
https://doi.org/10.23919/OCEANS.2015.7404464
https://doi.org/10.23919/OCEANS.2015.7404464

	DeepRecog: Threefold underwater image deblurring and object recognition framework for AUV vision systems
	Abstract
	1 Introduction
	1.1 Autonomous underwater vehicles
	1.2 Underwater image deblurring
	1.3 Underwater object recognition

	2 Related works
	3 Proposed system
	3.1 Deblurring module
	3.2 Ensemble detection module
	3.2.1 YOLOv5
	3.2.2 FasterRCNN + InceptionResNet V2


	4 Experimental results
	4.1 Dataset
	4.2 Implementation

	5 Conclusion
	References




