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Abstract
Recently, computer-aided diagnosis (CAD) systems powered by deep learning (DL) algorithms have shown excellent per-
formance in the evaluation of digital mammography for breast cancer diagnosis. However, such systems typically require 
pixel-level annotations by expert radiologists which is prohibitively time-consuming and expensive. Medical institutes would 
wonder if a high-performance breast cancer CAD system can be trained by exploring their own huge amount of historical 
imaging data and corresponding diagnosis reports, without additional annotations workload of their radiologists. In this 
study, we show that a DL classification model trained on historical mammograms with only image-level pathology labels 
(which can be automatically extracted from medical reports) can achieve surprisingly good diagnostic performance on newly 
incoming exams compared with experienced radiologists. A DL model called DenseNet was trained and cross-validated with 
5979 historical exams acquired before September 2017 with biopsy-verified pathology and tested with 1194 newly obtained 
cases after that. For both cross-validation and test sets, the ROCs generated by DL predictions were above the ROCs gener-
ated by ratings from radiologists. For the suspicious cases which radiologists suggest biopsy (BI-RADS category 4 and 5), 
the DL model can reject 60% of false biopsies on benign breasts while keeping 95% sensitivity. For the mammograms based 
on which radiologists were not able to make a diagnosis (BI-RADS 0), the DL model still achieved an AUC score of 79%. 
Moreover, the model is able to localize lesions on mammograms although such information was not provided in the training 
phase. Finally, the impact of input image resolution and different DL model architectures on the diagnostic accuracy were 
also presented and analyzed.
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1  Introduction

Breast cancer is the most frequently diagnosed cancer and 
accounts for 23% of all cancer cases and 14% of cancer-
related deaths among women in the world [1]. Digital 
mammography, a 2-D X-ray examination of the breast, is 
the most commonly used method for breast cancer screen-
ing and diagnosis and can effectively reduce breast cancer 
mortality [2]. A typical mammography exam is composed 
of four images: for each breast, two images are taken from 
two different projection angles, namely Cranial–Caudal 
(CC) taken from above and mediolateral-oblique (MLO) 
taken horizontally. A radiologist interprets the four images 
based on the detection and classification of breast lesions 
such as breast masses and micro-calcifications, and gives a 
BI-RADS score to each breast as a risk assessment of breast 
cancer. Patients with BI-RADS categories 4 and 5 will be 
suggested to receive a biopsy operation, and the presence of 
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cancer will be confirmed by the pathology report. The breast 
cancer diagnosis procedure is illustrated in Fig. 1. Although 
effective, radiologists’ diagnostic accuracy to identify cancer 
from mammograms was only moderate. In the United States, 
74.4% of patients who received biopsies were proven non-
cancer, while 15% of true cancers will not be identified by 
radiologists [3]. The interpretation of mammograms is also 
subjective and the performances are highly dependent on 
the practicing experience of individual radiologists [4]. As a 
result, computer-aided diagnosis (CAD) has been introduced 
to provide an objective view to radiologists.

In recent years, deep learning (DL) models have achieved 
a notable set of accomplishments, and state-of-the-art DL 
models based on convolutional neural networks (CNN) 
have demonstrated excellent performance in various com-
puter vision tasks. A number of deep learning models have 
also been developed for automatic lesion detection and clas-
sification on mammographic images, and reported perfor-
mances were comparable or even surpassed that of human 
radiologists [5–9]. However, the superior performance of 
these models, which are trained and tested on a particu-
lar crafted data set, may not be achieved on other dataset 
acquired by different devices by different medical institu-
tions. A recent study [10] have shown that two state-or-the-
art breast cancer classification models which have reported 
super-expert performances on public datasets achieved only 
near-random classification results when evaluated on an 
external real-world clinical dataset, caused by the data dis-
tribution mismatch between the training and testing data. As 
a result, instead of deploying a DL model trained with exter-
nal datasets and taking the risk of significant performance 
decrease, major medical institutes would wonder if a high-
performance breast cancer detection model can be trained 
internally by exploring their own huge amount of historical 
imaging data and corresponding diagnosis reports. In our 
opinion, such model should have two desirable properties to 

make real contribution to clinical practices: (1) Image level 
labels form model training. The model should be trained 
based on image-level ground truth labels which can be auto-
matically extracted from medical report to exploit the huge 
sum of existing records while preventing the need for pixel-
level annotation. However, most existing approaches require 
pixel-level annotations of abnormality regions, which will 
cause additional workload of radiologists; (2) Model inter-
pretability. The model should be able to locate the abnormal-
ity region to alert radiologists, even if this information is not 
provided in the training phase.

The purpose of our study is to show that an expert-
level breast cancer diagnosis model based on DL can 
be obtained by training with large-scale historical data 
resources of a medical institute, and to investigate its 
potential applications in real-world clinical applications. 
The methodology of the study is illustrated as a flowchart 
in Fig. 2. First, we constructed a large real-world clini-
cal mammographic dataset with solid cancer/non-cancer 
ground truth labels. 7108 patients (more than 3000 with 
proven cancer) who received mammographic exams and a 
following biopsy operation were identified from our insti-
tutional Clinical Information System (CIS) and their cor-
responding mammographic images, imaging report and 
pathology report were extracted and anonymized. Malig-
nant/benign labels, and well as BI-RADS scores given 
by radiologists are automatically extracted from textual 
reports. Second, the whole database is divided into a 
train-val set (historical data) and a test set (recent exams) 
according to a temporal order. Different DL classification 
models are trained and validated, and the best perform-
ing model, namely DenseNet-121, is selected as the final 
model. Third, the performance of the selected model is 
evaluated with different subset of the test set, simulating 
different clinical application settings. Finally, we pre-
sent further analysis about the influences of different DL 

Fig. 1   An illustration of the breast cancer examination and diagnosis 
procedure. Left: example of a mammographic exam, a highly suspi-
cious tumor is identified in both CC and MLO projections of the right 
breast; middle: BI-RADS scores extracted from the corresponding 

medical report and an explanation of different BI-RADS categories. 
BI-RADS 4c leads to a biopsy suggestion; right: an illustration of 
breast biopsy which confirms the presence of cancer
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models, image resolutions, and show the capability of 
our model of locating cancer-related regions with neural 
network visualization techniques.

The main contributions of this paper are summarized 
as follows:

•	 As a leading cancer-specific hospital of the most popu-
lated province in China, we constructed a large-scale 
clinical digital mammographic dataset. The dataset 
includes more than 7000 biopsy-verified mammogram 
exams and more than 3000 them are cancer cases. The 
number of cancer cases in our dataset is among the 
largest reported in related literature.

•	 We show that a DL breast cancer classification model 
trained on historical mammograms with only image-
level pathology label can achieve comparable (if not 
superior) diagnostic performance on newly incoming 
exams experienced radiologists.

•	 We show that our model can achieve surprisingly good 
classification performance (AUC 79%) with difficult 
samples which radiologists regarded as “information 
incomplete” (BI-RADS category 0). Which can poten-
tially reduce the number of unnecessary additional 
examinations.

•	 We show that the DL model is able to locate lesions 
on mammograms, although this information was not 
provided during the training phase.

The rest of the article is organized as following. Sec-
tion 2 includes materials and methods, which describes 
the details of our dataset and experimental methods. In 
Sect. 3, experimental results and feature visualization are 
presented. In Sect. 4, we discuss related work and limita-
tions of its current implementation. Finally, a conclusion 
of this paper is presented in Sect. 5.

2 � Materials and methods

2.1 � Dataset collection

Our study was performed with anonymized, retrospec-
tively collected digital mammographic images and their 
corresponding pathology report in our institute. The study 
was approved by the local Ethics Committee, and informed 
consent from patients was waived after the review of the 
institutional review board due to the retrospective nature. 
We extract from PACS of our institute all mammogram 
images (recorded using a Hologic Selenia digital mam-
mography system) and the corresponding pathological 
records of all 7108 patients who underwent both a mam-
mographic exam and biopsy operation from August 2014 
to March 2018. Among them, 887 patients had biopsies 
on both breasts and other patients had biopsy on a single 
breast, giving a total of 7173 breast cases (14,346 mam-
mogram images including CC and MLO views) along with 
their ground truth pathology labels (3938 benign and 3235 
malignant). Note that our dataset only consisted of breast 
cases with biopsy-confirmed malignancy to make sure the 
ground truth malignancy was solid and non-subjective. For 
the comparison of radiologists’ performance against the 
proposed deep learning model, we also extracted Breast 
Imaging-Reporting and Data System (BI-RADS) catego-
ries of each breast from the mammographic reports. In all 
mammogram exams of our institute, the BI-RADS catego-
ries were given to each single breast by a reporting radi-
ologist of at least 3-year mammogram reading experiences 
and double checked (and modified if necessary) by a chief 
radiologist with more than 10 years of mammogram read-
ing experience. Finally, each breast case in our dataset was 
comprised of 2 mammogram images from CC and MLO 

Fig. 2   Methodology of the 
study as a flowchart
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views, a ground truth pathology (malignant or benign) and 
a BI-RADS category in [0, 1, 2, 3, 4, 4A, 4B, 4C, 5, 6].

An independent test set containing 1194 breast cases 
from 1183 patients whose mammography was performed 
during the last 6 months (September 2017 to March 2018) 
of our data collection period were first split out to evaluate 
the DL model’s ability of diagnosing new exams by learn-
ing from historical data. The rest 5979 breast cases from 
5925 patients which was acquired before September 2017 
were used for fivefold cross-validation, and was denoted 
as train-val set. This train-val set was randomly split into 
five subsets on patient level, and in each fold of the cross-
validation, one subset was used as validation set and the 
4 others were used for training. There was no overlap of 
patients among the training, validation and test set in each 
fold of cross-validation. The summary of the train-val 
and test dataset, including the distributions of benign and 
malignant cases in each BI-RADS category, was presented 
in Table 1. Note that a significant number of biopsies were 
also performed in breasts with BI-RADS 1 (no finding) or 
2 (benign finding). This is due to the fact that the major-
ity of mammographic exams performed in our institute 
(Henan Cancer Hospital, the leading cancer-specialized 
hospital in the most populated province in China) were 
diagnostic, and often went along with breast ultrasound 
and MRI. Breast lesions non-identifiable in mammograms 
might be detected by other imaging modalities which lead 
to biopsy suggestions. All cases of BI-RADS category 4 
were merged to category 4B since the two categories have 
very similar probability of malignancy. Nevertheless, the 
BI-RADS in the test set may better reflect the diagnostic 
performance of radiologists.

2.2 � Deep learning model

In this study, we used deep CNN classification models 
trained on ground truth pathology to classify a mammogram 
image into malignant or benign.

Since the success AlexNet [11] in the general image 
recognition task, consistent breakthroughs in CNN model 
development were made year after year. In the annual Large 
Scale Visual Recognition Challenge (ILSVRC), the top 5 
classification error of the winning model each year dropped 
annually from 16% (AlexNet, 2012) to 2.25% (SE-ResNet, 
2017), which was well below the average human error rate 
of 5% on the same task. It is thus meaningful to check the 
influence of the ever-evoluting DL models on mammo-
graphic diagnostic performance. Meanwhile, mammo-
gram image resolution is pivotal to radiologists’ diagnosis, 
helping to better distinguish small or nuanced features of 
lesions potentially leading to cancer. As a result, a number 
of representative deep learning models including AlexNet 
(2012) [11], VGGNet (2014) [12], ResNet (2016) [13] and 
DenseNet (2017) [14] operating on different image resolu-
tions were trained and evaluated. Finally, the configuration 
of DenseNet-121 model (DenseNet model with 121 con-
volutional layers) with an image resolution of 1024 × 832 
achieved the best cross-validation accuracy. The main results 
reported in following sections were based on this configura-
tion, while the impact of the CNN architectures and image 
resolution on classification performance is also reported and 
analyzed.

All DICOM files were first converted to PNG images 
and resized to 1024 × 832 in resolution, roughly keeping 
the original aspect ratio. To attenuate overfitting, data aug-
mentation including random vertical/horizontal flipping 

Table 1   Distribution overview 
of the train-val and test set

Fivefold cross-validation was performed on the train-val set, and the resulting model performances are 
evaluated on the test set. The numbers in table denote breast cases, each containing 2 images of MLO and 
CC views, a BI-RADS category, and its ground truth pathology. The percentages in parenthesis indicate the 
portion of malignant cases in a specific BI-RADS category

BI-RADS Train-val set Test set

Benign Malignant Sum (M%) Benign Malignant Sum (M%)

0 935 329 1264 (26.0%) 187 65 252 (25.8%)
1 236 27 263 (10.3%) 37 6 43 (14.0%)
2 1052 75 1127 (6.7%) 206 18 224 (8.0%)
3 381 65 446 (14.6%) 85 14 99 (14.1%)
4 193 365 558 (65.4%) 43 70 113 (61.9%)
4A 266 71 337 (21.1%) 57 17 74 (23.0%)
4B 144 258 402 (64.2%) 28 47 75 (62.7%)
4C 69 1079 1148 (94.0%) 13 212 225 (94.2%)
5 6 361 367 (98.4%) 0 72 72 (100.0%)
6 0 67 67 (100.0%) 0 17 17 (100.0%)
Sum 3282 2697 5979 (45.1%) 656 538 1194 (45.1%)
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and random rotation in (−10,10) degrees were applied to 
each input image. Adam optimizer [15] was employed for 
model optimization. The CNN model was pretrained with 
ImageNet dataset [16] which contains 1.3 million non-
medical images and then fine-tuned with our dataset. Dur-
ing fine-tuning, the initial learning rate was set to 10–4 and 
was reduced by a factor of 10 when the validation loss did 
not reach a new minimum for 3 consecutive epochs. The 
training process ended when the learning rate fell below 
10–6. Although the training process was performed on sin-
gle images, the predicted malignancy scores of MLO and 
CC views were averaged to generate a single prediction for 
each breast. The deep learning network was implemented 
using PyTorch [17] and ran on a workstation equipped 
with 3 Nvidia GTX 2080Ti GPUs (11 GB memory each), 
which can fit a maximum batch size of 12 under the con-
figuration of DenseNet-121 and 1024 × 832 input resolu-
tion. However, such small batch size will severely damage 
model convergence and accuracy due to the batch nor-
malization layers in most recent CNN architectures [18]. 
As a result, a batch sub-division approach was adopted: 
the model was updated once only after the gradients were 
accumulated for 3 batches, making an effective batch size 
of 36. In our experiment, the fivefold training and cross-
validation finished in 15 h; and in test phase, the inference 
of 1193 exams took less than 5 min.

2.3 � Performance of human readers

To compare the performance of DL models and the radi-
ologists’ evaluation, ROCs were generated from both the 
prediction scores of DL models and the BI-RADS categories 
extracted from the mammogram reports, and the area under 
curve (AUC) was used as a metric of prediction accuracy. 
Although using BI-RADS to generate ROC curves was a 
common practice in many existing literatures [19, 20], there 
were disputations. Jiang et al. [21] argued that BI-RADS 
should not be used to estimate ROC curves mainly because 
BI-RADS category 0, 1 and 2 are not ordinal with respect to 
the estimated probability of cancer. But [21] also suggested 
that for diagnostic mammography in particular, BI-RADS 
can be made ordinal by (1) Removing all cases with BI-
RADS category 0; (2) combining BI-RADS 1 and 2 into one 
category, and then can be used to generate ROC curves. Fol-
lowing these suggestions, when the DL model performances 
had to be compared with radiologists, we only use breast 
cases with BI-RADS 1/2, 3, 4A, 4B, 4C and 5 as six ordinal 
points with respective to malignancy probability estimated 
by the reporting radiologist, then use each as a threshold to 
calculate the true positive rate (TPR) and false positive rate 
(FPR) from which an ROC can be generated to represent 
radiologists’ performance.

2.4 � Evaluation setting

To simulate different clinical application scenarios, we eval-
uated the performance of the proposed DL model in three 
different settings, depending on the different samples used in 
the validation and test set. These evaluation settings include:

(1)	 Setting BI-RADS 1–5: In this setting, cases with BI-
RADS 0 were removed from the validation set and test 
set, and ROCs of both the DL model and the radiolo-
gists were generated with the rest cases. The evalua-
tion in this setting reflected the general performance 
of DL model compared to the reporting radiologists on 
mammograms which radiologists regarded as “contains 
complete information to make decision”.

(2)	 Setting BIRADS 4–5: In this setting, evaluation was 
performed on samples belonging to BI-RADS category 
4A, 4B, 4C and 5, which was a subset of cases which 
radiologists would recommend for biopsy. The evalua-
tion in this setting answers the question: Among breast 
cases which a radiologist would suggest biopsy, can DL 
effectively reduce the number of unnecessary biopsies 
without losing sensitivity?

(3)	 Setting BI-RADS 0: In this setting, the DL performance 
was evaluated only on cases with BI-RADS category 
0. This experiment dealt with the DL performance to 
distinguish benign and malignant cases which radi-
ologists regarded to as “information incomplete, need 
other imaging modalities”.

Although the validation and test sets were different, noted 
that we did NOT train different models for different settings. 
The training process was performed only once for each fold 
of cross-validation on all BI-RADS categories, because the 
training process did not require BI-RADS but need more 
samples.

2.5 � Interpreting DL model’s decision 
with visualization

A major drawback of DL-based classification models in 
medical diagnosis is that it often operates as a black box, 
which generates prediction without explaining. Doctors do 
not know if such prediction should be trusted if it contra-
dicts with their own decision. However, a number of recent 
progresses in neural network visualization may improve the 
interpretability of DL models. Zhou et al. [22] proposed 
class activation mappings (CAM) method to localize objects 
in image from a CNN model trained on image-level labels. 
Rajpurka et  al. [23] used CAM to localize Pneumonia-
related areas in chest X-Ray images. In this study, we also 
use CAM to visualize the area most indicative of malignancy 
in mammograms, making deep learning model’s prediction 
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more interpretable. Moreover, such visualization also gave 
us a cue about the behavior of DL models to know their 
advantages and disadvantages, which is helpful for the 
development of new models.

3 � Results

In each fold of the fivefold cross-validation, a single DL 
model was obtained. For each model, their ROC curve was 
calculated on their validation set as well as the test set and 
compared to the ROC curve generated with BI-RADS scores 
from radiologist ratings. Area under the ROC Curve (AUC) 
is used as the evaluating metric of both the DL model and 
radiologists performances. We report below the performance 
of DL models and radiologist rating in each of the testing 
scenario introduced in the previous section.

3.1 � Setting BI‑RADS 1–5

In this evaluation setting, the performances of DL mod-
els and radiologists were evaluated on samples within 
BI-RADS categories 1/2, 3, 4A, 4B, 4C and 5. The ROC 
curves generated for cross-validation and test were shown 
in Fig. 3. For fold 1 to 5 in cross-validation, the AUCs of 
DL models were 0.947, 0.953, 0.931, 0.931, and 0.940 
respectively (mean = 0.939, std = 0.009), while the AUCs 
generated from radiologist BI-RADS were 0.912, 0.922, 
0.906, 0.921 and 0.909 respectively (mean = 0.913, 
std = 0.006). For the test set, the 5 DL models obtained 

from fivefold cross-validation achieved a mean AUC of 
0.940 with standard deviation of 0.003, while the AUC of 
radiologists rating was 0.906. It can be observed in ROC 
curves of both validation and test that, the DL models’ 
performance was similar (or slightly better) to the com-
pared radiologists at high sensitivity and high specific-
ity regions where radiologists were relatively sure about 
their decisions (BI-RADS ≥ 4C or BI-RADS < 3); whereas 
DL models showed notable better performance in middle 
specificity regions where the radiologists’ decisions were 
obscure (BI-RADS 3, 4A and 4B). It is also worth noted 
that in the test set, the DL model was able to achieve sen-
sitivity 0.9 at specificity of 0.85. On the other hand, the 
radiologists ROC only reached same sensitivity of 0.9 at 
specificity of 0.7, which means that the DL model can 
prevent nearly half of false positives in this scenario.

3.2 � Setting BI‑RADS 4–5

In this task, the performances of DL models were evalu-
ated only on samples within BI-RADS categories 4A, 4B, 
4C and 5, which represented a subset of exams in which 
radiologists would suggest a biopsy based on the mam-
mogram alone. The ROC curves generated for cross-vali-
dation and test is shown in Fig. 4. In cross-validation and 
test set respectively, the DL model achieved a mean AUC 
of 0.932 and 0.927, while the mean AUCs of radiologists 
were 0.837 and 0.847, respectively.

Fig. 3   ROC curves of DL model and radiologists with samples 
with BI-RADS 1–5. In cross-validation (left), the mean and stand-
ard deviation of the ROC curves of DL model and radiologists was 
shown in blue and red respectively. In test set (right), Red crosses 

were the operating point of human reader by setting cases with BI-
RADS higher than a certain threshold as positive prediction. It can be 
noticed that on each operation point, the DL model performs better 
than human radiologists
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3.3 � Setting BI‑RADS 0

Finally, we evaluated the performance of the DL model to 
distinguish the malignancy of BI-RADS 0 samples, which 
radiologists regarded to as “information incomplete, need 
other imaging modalities”. The ROC curves were shown 
in Fig. 5. The mean AUCs of cross-validation set and test 
set were 0.758 and 0.787, respectively. It was shown that 
even for samples which radiologists regarded to as infor-
mation incomplete, the proposed DL model can still well 
distinguish the malignant and benign classes, which can 
potentially reduce the number of unnecessary additional 
examinations.

3.4 � Influence of DL models and image resolution

We trained and validated different CNN model architectures 
with different image resolutions to check the influence of 
these two factors on the final diagnostic accuracy. Due to 
the limited computational resources, instead of performing 
fivefold cross-validation, all models were only trained and 
evaluated once using training-validation split of the first 
fold. Moreover, all data regardless of BI-RADS (0–6) were 
used for validation to compute ROCs, since comparison with 
human reader performance was no longer needed.

We first compared performances of a series of repre-
sentative deep learning models including AlexNet (2012), 

Fig. 4   ROC curves of DL model and radiologists with samples with BI-RADS 4A, 4B, 4C and 5

Fig. 5   ROC curves on samples with BI-RADS 0 in cross-validation (left) and test set (right)
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VGGNet (2014), ResNet (2016) and DenseNet (2017). Since 
AlexNet and VGGNet only accept a fixed image resolution 
at 224 × 224 pixels, other models were also trained and 
evaluated at this resolution. The performances of different 
models were summarized in Table 2(a). The earliest CNN 
model architecture AlexNet performed worst (AUC = 0.822) 
and the most recent DenseNet-121 model achieved the best 
performance (AUC = 0.892), showing a direct impact of 
the development in deep learning technology on diagnos-
tic accuracy. However, as can be noticed in Table 2(a), the 
models’ classification accuracy in mammograms was not 
always correlated with their classification accuracy in the 
general image recognition task. The DenseNet-121 model 
had lower classification accuracy in ImageNet contest than 
both ResNet-50 and ResNet-101 models, but it achieved 
the best performance in the mammogram classification 
task. In our option, the reasons are twofold: (1) Although 
DenseNet-121 has more convolutional layers, it has much 
less trainable model parameters than VGGNet, ResNet-50 
and ResNet-101. Since the mammogram training set in 
this study was much smaller than the ImageNet training 
set (> 1Million images), DenseNet models were less prone 
to overfitting. (2) The low-level features of mammograms 
were very different from non-medical images, and DenseNet 
models are especially good at learning low-level features, 
resulting in more effective transfer learning.

To evaluate the influence of the image resolution, the 
DenseNet-121 model was trained and validated with dif-
ferent image resolutions, and the result was presented in 
Table 2(b). The AUC first improves along with the increased 
resolution from 0.882 for 224 × 224 to 0.921 for 1024 × 832, 
then decreased when the resolution moved further to 
1536 × 1248. This might be because DenseNet (and most 
other off-the-shelf CNN classification architectures) assumes 

input resolution of 224 × 224, thus has a limited recep-
tive field. When the image resolution increases, the CNN 
acquires more and more detailed but local information, but 
failing to capture the global information. As a result, there 
is a trade-off between the importance of learning detailed 
(at high resolution) and global (at low resolution) features.

3.5 � Model interpretation by visualization

To interpret the DL model’s predictions, the heat maps were 
produced to visualize the areas of the image which is most 
indicative of the malignancy using class activation mappings 
(CAM) method proposed in [23]. For most of malignant 
mammograms, the CAM correctly identified the regions 
containing the malignant lesions. Figure 6a shows several 
examples DL visualizations and the radiologists’ annota-
tions of on the same mammogram. Figure 6b shows a mam-
mogram with invasive cancer which was given a BI-RADS 
category 4B by radiologist and a malignant probability of 
0.96 by the DL model. The DL model visualization (left) 
correctly identified the mass region as highly indicative of 
cancer, as well as auxiliary signs such as the thickened skin 
and the axillary nodule, which was not annotated by the 
radiologist. Visualization also helps us to understand the 
behavior on CNN models trained with different image reso-
lutions and provides hints for further improvement of model 
structure. Figure 6c shows the activation patterns in on a 
spiculated mass that the radiologist rated as BI-RADS 4C. 
It can be observed that in lower resolution (512 × 416), the 
whole mass region was activated, while in higher resolu-
tion (1024 × 832) more local regions like the spikes around 
the mass was considered most indicative of malignancy. 
Although under both resolutions, the model correctly pre-
dicted the malignancy (score > 0.99), the decision was made 

Table 2   Summary of influence of the choice of DL models and image resolutions on classification performance

(a) Performance different CNN models on 224 × 224 image resolution measured by AUC on the validation set of the first fold. The ImageNet 
Errors were measured by the top 5 classification error rates, which were extracted from papers in which the models were first proposed

CNN models Year # of conv layers ImageNet Error AUC​

AlexNet 2012 7 15.3% 0.822
VGGNet 2014 16 7.1% 0.875
ResNet-50 2015 50 5.3% 0.872
ResNet-101 2015 101 4.6% 0.883
DenseNet-121 2017 121 6.6% 0.892

(b) Performance of DenseNet-121 model on different image resolution

Resolution AUC​

224 × 224 0.892
512 × 416 0.916
1024 × 832 0.921
1536 × 1248 0.908
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based on different image features. As a result, a new CNN 
architecture able to learn both global and local features may 
further improve the performance.

4 � Discussions

In this study, we present a novel investigation showing that 
deep learning methods trained on a large set (over 5000 
patients) of historical mammographic exams with ground 
truth pathology can out-perform experienced radiologists 
in distinguishing malignant case from benign ones, showing 
the potential to reduce the number of biopsies performed 
on benign breasts in clinical applications. Even on cases 
which human readers regarded to as “information incom-
plete” (rated as BI-RADS 0), the DL model can still achieve 
a decent AUC around 80%.

4.1 � Relation to previous literature

The main objective of this paper is to explore the possibili-
ties that if a major medical institute can train a high-perfor-
mance breast cancer classification model by exploring their 
huge amount of historical imaging data to assist radiologists 
to perform more accurate diagnosis, but without increasing 
their workload to perform pixel-level annotations for model 

training. For this purpose, we discuss previous literature in 
two aspects: datasets and algorithms.

4.1.1 � Datasets

In most technical oriented literature, proposed algorithms 
were trained and evaluated with public datasets. The most 
widely used public mammographic datasets include the 
DDSM dataset [24] and the InBreast dataset [25], which 
hardly meet clinical need. The DDSM dataset is the larg-
est publicly available mammogram dataset which contains 
screen film mammography images of 2620 patients. Screen 
film mammography devices are nowadays obsolete and the 
image style of the DDSM dataset is vastly different from 
that of modern digital mammograms. A recent study [10] 
have shown that two state-or-the-art breast cancer classifica-
tion models which have been trained and evaluated with the 
DDSM dataset achieved near-random classification results 
when applied to real-world digital mammogram images. 
The InBreast dataset consists full-field digital mammo-
gram images acquired by a modern digital mammography 
machine, but only contains 115 patients, which is unlikely 
to train and validate a clinically reliable deep learning model 
for breast cancer diagnosis. To fill this gap, other research 
group constructed their own digital mammogram datasets 
which are generally not publicly available, such as the NYU 

Fig. 6   a Heatmap visualization of regions most indicative of malig-
nancy on random samples of malignant images in test set (left), and 
annotations of the most significant lesions annotated by radiologists 
(right). b A mammogram with invasive cancer which was given a BI-
RADS category 4B by radiologist and a malignant probability of 0.96 
by the DL model. The DL model visualization (left) not only cor-

rectly identified the mass region as highly indicative of cancer, but 
also showed auxiliary signs such as the thicken skin and the axillary 
nodule as weakly indicative of cancer. c Malignancy Heatmap on a 
spiculated mass image generated by two DenseNet121 models trained 
with different image resolutions. Global features were learnt at low 
resolution while local features were learnt at high resolution
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[5] dataset. The NYU dataset consists of mammographic 
exams from 141,473 patient in total, but only 985 of them 
have biopsy-proven cancer. In comparison, the dataset con-
structed and used in this study is much smaller in total, but 
contain more than 3000 biopsy-proven cancer cases, which 
provides the deep learning model more general cancer-
related features.

4.1.2 � Algorithms

Deep learning algorithms in mammography have been previ-
ously studied by a number of researchers and can be roughly 
categorized into two classes, namely detection-based and 
classification-based approaches, depending on if manual 
annotations of abnormal regions is required for model train-
ing. For detection-based approaches, Kooi et al. [26] trained 
a customized CNN model with extracted image patches from 
lesion-annotated mammograms and show that such model 
out-performed traditional CAD system in screening mam-
mography; Ribli et al. [6] used Faster-RCNN detector to 
detect lesions in mammograms and estimate their malig-
nancy and achieve good performance in the public INBreast 
database [25]; Shen et al. [7] proposed a two-stage training 
strategy where the abnormality annotation is required in the 
first stage, and the image-level label is used to fine-tune the 
model in the second stage [8] and [27] showed that a com-
mercialized deep-learning-based CAD system can achieve a 
cancer detection accuracy non-inferior to an average breast 
radiologist. However, all those detection-based methods 
need extra manual annotations of lesion locations by radi-
ologists which is impractical for major medical institutions 
where radiologists are already under high workload. Moreo-
ver, these methods or systems can only detect masses and 
micro-calcifications while ignoring other axillary signs of 
cancer.

The method used in this study fall in to the category of 
classification approaches and can be trained with image-
level annotations only, which can be directly extracted from 
medical reports with no additional efforts required; hence, 
enables large-scale data collection and training. In [28] the 
authors employed AlexNet to distinguish recalled but benign 
mammograms. The mammogram images were downscaled 
to a very low resolution of 224 × 224 pixels which has lim-
ited value for real-world clinical application. Zhu et al. [29] 
proposed a multi-instance learning model for the detection 
of breast cancer without the need to annotate the training 
data. However, their method was trained and tested on a 
small dataset of 115 patients. On the other hand, our study 
perform training and validation with a large real-world data-
set of more than 7000 patients with biopsy-proven pathol-
ogy, which provides more solid proof for such a model to aid 
radiologists in making more accurate diagnosis.

4.2 � Limitations

Our study has limitations that need to be acknowledged. 
The first is about the data collection. Although we col-
lected a large digital mammogram dataset with reliable 
ground truth pathology, all samples were from the same 
institute and recorded by the same mammogram machine. 
There was no guarantee that the trained model can perform 
equally well on mammograms shot by devices from other 
manufactures. Moreover, the dataset used in this study 
contained only the breast cases which finally underwent 
biopsies. Although we did this intentionally to guarantee 
a solid ground truth of malignancy in both training and 
validation, a fraction of both true negative and false nega-
tive cases in terms of radiologist decision were screened 
out, causing that the ROCs generated did not fully repre-
sent the performance of both radiologists and DL models 
in real clinical diagnosis scenarios. Future improvements 
of the study include training and evaluating DL models 
on a more comprehensive datasets including mammo-
gram cases both with and without biopsies, whereas those 
considered-benign cases are verified by patient tracking. 
The second limitation of our study is about the radiolo-
gist performance evaluation. Because of the large size of 
the dataset, we did not have enough resources to asking 
extra radiologists to re-interpret those historical mammo-
grams, and the radiologist performance evaluation was 
only based on historical BI-RADS. Though every mammo-
gram exam had underwent double-reading by a radiologist 
with no-less than 3-year mammogram reading experience 
and a senior radiologist with more than 10-year experi-
ence, we cannot readily claim the performance reported 
is representative of breast radiologists in general. As a 
result, we do not claim a “super-radiologist” performance 
of deep learning in general diagnostic mammogram set-
ting, although experiments in our study showed that the 
proposed DL model can effectively reject a large fraction 
of unnecessary biopsies suggested by our radiologists with 
little loss in sensitivity.

In the algorithm aspect, although different DL classi-
fication models such as VGGNet, ResNet and DensNet 
were trained and evaluated, we do not claim our model 
performance to be the state-of-the-art, which is not the key 
point of this paper. The main contribution of our paper is 
a proof-of-concept that a major medical institute is able 
to train a high-performance breast cancer classification 
model by exploring their huge amount of historical imag-
ing data, and analyze the potential clinical use cases of the 
model. Recent progresses in deep learning such as fine-
grained classification [30, 31], multi-view learning [32], 
3D learning [33] can be integrated into the current model 
to further boost the system performance.
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5 � Conclusion

To conclude, we showed that under certain conditions (suf-
ficient training sample, homogeneous data source, etc.), a 
well-designed deep neural network model can be trained 
on historical mammogram-pathology pairs to make accu-
rate diagnosis on breast cancer, showing comparable or bet-
ter accuracy than experienced radiologists. Our study also 
showed the potential of further optimization of the neural 
network architecture specific to mammography problem, 
and the development of more effective interpretation tools 
to enable radiologists to discover knowledge from neural 
networks instead of only providing knowledge to train them. 
Finally, we are optimistic that the incorporation of deep-
learning-based artificial intelligence into clinical workflow 
of breast cancer diagnosis may lead to better working effi-
ciency and diagnostic accuracy.
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