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Abstract
In this paper, a novel two-stage R-CNN network called ParallelNet is proposed for thigh fracture detection task. In the 
proposed method, multiple parallel backbone networks and a feature fusion connection structure are designed, which can 
extract features with different reception fields. Specifically, the first backbone network is denoted as main network, which 
adopted normal convolution to detect small fractures, the rest backbone networks are denoted as sub-networks which adopted 
dilated convolution to detect large fractures. We evaluated the proposed method on a thigh fracture dataset containing 3842 
X-ray radiographs, 3484 of which is assigned as a training dataset and 358 as a testing dataset. The experiments compare 
the proposed method with other state-of-the-art deep learning frameworks, including Faster R-CNN, FPN, Cascade R-CNN 
and RetinaNet, especially DCFPN which focus on thighbone fracture detection task. Our framework achieved 87.8% AP50 
and 49.3% AP75 which outperformed other state-of-the-art frameworks. Moreover, ablation experiments on the backbone 
numbers, connection styles, different dilation rates and the position of dilated convolution have been attempted, and the 
function of each hyperparameter is analyzed.
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1  Introduction

Computer-aided diagnosis (CAD) is a computer-based tech-
nology to reduce the workload and promote the efficiency 
of the clinicians. With the development of computer science 
and the upgrade of computer hardware technology, CAD 
has been applied in many aspects of the medical domain. 
In medical image analysis, CAD assists the clinicians with 
the suggestions predicted by the networks in classification, 
detection and segmentation tasks. With the development 
of deep learning methods, multiple frameworks have been 
implemented using deep convolutional neural networks 
(CNNs) to analysis different diseases. Some deep learn-
ing frameworks have achieved physician-level accuracy at 

variety of diagnostic tasks [1]. Kooi et al. [2] adopted con-
volution neural network in breast lesion detection in mam-
mograms and compared CNN with two certified radiolo-
gists, results show that CNN and human radiologists have 
similar detection accuracy. Esteva et al. [3] identified moles 
from melanomas by using Google Inception-v3 network, 
the authors evaluated the network with two dermatologists 
in two ways, the results indicate that the network achieved 
72.1% and 55.4% accuracy which outperformed two der-
matologists in both validate ways. Recently, deep learning-
based network have been studied on many other kinds of 
diseases. Utilizing Faster R-CNN network, Liu et al. [4] 
achieved the detection task on the colitis dataset, and the 
mean average precision reaches 50.9%. Kermany et al. [5] 
proposed an image-based deep learning method to identify 
medical diagnoses with CNNs which can distinguish three 
diagnoses, including choroidal neovascularization diabetic 
macular edema and drusen. Drozdal et al. [6] established a 
network called FC-ResNet to achieve segmentation tasks 
on electron microscopy, magnetic resonance imaging, and 
computed tomography images. Gibson et al. [7] build a Nif-
tyNet infrastructure which provides a deep learning pipeline 
for medical imaging applications including segmentation, 
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regression, image generation and representation learning 
applications. Wang et al. [8] proposed a deep CNN-based 
interactive framework for 2D and 3D medical image seg-
mentation. In [9], Zhao et al. reviewed the most commonly 
used vessel segmentation methods, and indicates that deep 
neural networks dramatically improved the accuracy and 
robustness of vessel segmentation. Xia et al. [10] proposed 
oriented grouping-constrained spectral clustering (OGCSC) 
to deal efficiently with medical image segmentation prob-
lems. Using multi-scale structure prior, Xi et al. [11] pro-
posed a CNV segmentation method in OCT images. These 
works indicate that deep learning is feasible in medical 
image analysis and capable of implementing multiple dis-
ease diagnosis.

As for fracture image analysis, several studies have been 
presented that related to deep learning methods. Lindsey 
et al. [12] proposed a deep neural network by extending the 
U-Net architecture on wrist fracture detection task. Cheng 
et al. [13] used DensNet-121 to extract the features from 
the hip fracture images to classify if the fracture exists and 
adopted transfer learning by pretraining the network on a 
limb dataset and the result reaches an accuracy of 91%. 
Badgeley et al. [14] used the inception-v3 CNN architec-
ture to perform the recognition task on hip fracture images, 
by removing the final classification layer and computing 
the feature scores in the penultimate layer. Gale et al. [15] 
proposed a new algorithm and refined by a recurrent neural 
network (RNN) with two long short-term memory (LSTM) 
layers. Guan et al. [16] proposed a Dilated Feature Pyramid 
Network (DCFPN) by introducing dilated convolution in the 
original Feature Pyramid Network structure, and established 
a thigh bone dataset including 3484 training data and 358 
testing data to evaluate the detection performance. The result 
reached 82.1% average precision and outperformed some 
well-known networks.

In fact, most of above-mentioned the deep learning net-
works are initially applied in generic objects. Recently, 
generic object detection networks are uniformed in two 
types: one-stage networks and two-stage networks. One-
stage networks adopted uniform sampling from the feature 
maps to generate a large number of prior boxes and based 
on these prior boxes to classify and localize the objects. 
Redmon et al. [17] proposed a real-time detection network 
called YOLO, including 24 convolutional layers followed by 
2 fully connected layers and achieved 57.9% mean average 
precision on PASCAL VOC 2012 dataset. YOLO v2 [18] 
proposed a new method to harness the large amount of clas-
sification data and use it to expand the scope of the detec-
tion systems, which improved the performance of YOLO. 
Lin et al. [19] proposed RetinaNet, which adopted FPN as 
its backbone network and designed a focal loss function 
to solve the superfluous negative sample problems. Two-
stage networks first extract features from the images and 

generate the proposals by the Region Proposal Network 
(RPN) presented in Faster R-CNN [20], then classify and 
localize the proposals in the second stage. Feature Pyramid 
Network (FPN) [21] introduced a pyramid-shaped network 
structure to promote the performance on detecting objects 
at vastly different scales, by combining the low-level high-
resolution feature map with the high-level low-semantical 
feature maps. Mask R-CNN [22] based on FPN and Faster 
R-CNN proposed quantization-free layer called RoIAlign 
to preserve exact spatial locations. Cascade R-CNN [23] 
improved Faster R-CNN by adding extra detectors to pro-
mote the quantity of RPN introduced a learnable anchor in 
RPN, which shape is changing to fit the ground truths during 
training. Moreover, Guided Anchor [24], Libra R-CNN [25] 
and TridentNet [26] proposed new structures focusing on 
different purposes, respectively. Overall, two-stage methods 
are more time consuming due to the region proposal pro-
cedure, but the accuracy is higher than one-stage method. 
In our thigh bone detection task, real-time detection is not 
required, a higher detection accuracy can better help clini-
cians in diagnosis. Thus, two-stage networks are more suit-
able than one-stage networks in this task.

In this paper, we proposed a two-stage network with 
multiple parallel backbone networks called ParallelNet for 
thigh fracture detection task. The first backbone is denoted 
as the main network which adopted normal convolution to 
extract features from tiny fractures, the other backbones are 
denoted as sub-networks which adopted dilated convolution 
with different dilation rates to enrich the reception fields for 
detecting large fractures. A feature fusion connection struc-
tures named backward connection is designed between each 
individual backbone to fuse the feature maps. We assessed 
this novel network on the thigh fracture dataset established 
in [16], including 3842 thigh fracture X-ray images, 3484 
of which are assigned as training data and the remainder are 
used as test data. The results show relatively higher accuracy 
of 87.8% AP50 and 49.3% AP75 which outperformed previ-
ous thigh bone detection network, DCFPN [16] by 5.7% in 
AP50 and 4.2% in AP75. We also compared the proposed 
network with other state-of-the-art detection networks, and 
outperformed the next best AP50 by 2.5% (RetinaNet) and 
AP75 by 0.6% (Cascade R-CNN).

2 � Approach

The overview of the proposed ParallelNet is demonstrated 
as Fig. 1. First, original X-ray fracture images are fed into 
the multiple backbone networks, all networks consist of deep 
residual blocks in five stages and share the same stage 1. 
Each backbone network generates feature maps with dif-
ferent reception fields. Backward connection is designed to 
connect feature maps from different stages. Second, feature 
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pyramid network structure generates feature maps with high-
resolution information to detect fractures in large-various 
scales. Third, region proposal network (RPN) [20] RPN is 
employed to generate the region of interest (RoI) indicating 
which region contains the fracture. These RoIs will be con-
verted into same size by RoI pooling layer to calculate their 
bounding-box regression and classification loss. Finally, 
focal loss function [19] evaluated the difference between 
the proposals and ground truths, both classification loss and 
localization loss are calculated, then Stochastic Gradient 
Descent (SGD) is adopted to update weights of the network.

2.1 � Backbone network

Backbone network is the fundamental structure, it extracted 
learnable features from the original input images for the net-
work. Previous work on thigh bone detection task, DCFPN 
[16] introduced dilated convolution in the backbone network 
and proved that enriching the reception field is conductive 
to improve the detection performance. However, we found 
the gridding effect of dilated convolution harms the perfor-
mance of detecting small objects. As shown in Fig. 2, dilated 
convolution skipped some pixels during the calculation, this 

could be regarded as the normal convolution with holes, 
which means discrete dilated convolution sampling leads to 
lack of correlation in the long spatial distance sample. This 
indicates that, dilated convolution ignores vital information 
for detecting tiny objects while enriching the reception field. 
The larger dilation rates, the more pixels it skips. To over-
come gridding effect, we designed a backbone network in 
three pathways with different dilation rates. Shown in Fig. 3, 
the first pathway is denoted as the main network, the second 
pathway is denoted as the sub-1 network and the last one is 
denoted as sub-2 network.

Fig. 1   The overview of ParallelNet

Fig. 2   Graphic illustration of normal convolution and dilated convo-
lution
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The main network is composed of five stages and shares 
stage 1 with other pathways, and each stage includes several 
bottleneck blocks. Stage 1 composed of a 7 × 7 convolution 
kernel and a 3 × 3 max-pooling layer. The max-pooling layer 
is used to reduce the size of the feature map. Stage 2 to stage 
5 contains 3, 4, 23, and 3 bottleneck blocks, respectively. 
These blocks extract features from the thigh fracture images 
and update the weights in training. The bottleneck block 
employed in the main network is demonstrated in Fig. 4a. 
The block includes three convolution kernels: the first 1 × 1 
convolution kernel is used to decrease the input channels 
to 1/4 to decrease the number of calculations required, the 
3 × 3 convolution kernel is employed to extract features for 

the network, then the final 1 × 1 kernel increase the channels 
to the input amounts. Here, the residual connection between 
the input and the output is considered as the identity map-
ping, which is used to ensure the network to train deeply. 
Parameters in stage 1 is frozen, because features learned 
in stage 1 are relatively elementary, usually some simple 
curves and edges. These primary features show similarity 
in different tasks, hence we frozen the parameters in stage 1 
to save calculation resources. Parameters in stages 2–5 are 
trained, respectively, and did not share weights. At the end 
of each stage, backbone networks output a feature map with 
different reception fields, denoted as {M1, M2, M3, M4}. 
Feature maps reduce by 2 in size.

Fig. 3   The structure of proposed multiple pathway backbone network
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The sub-1 network and sub-2 network are established 
with dilated convolution to obtain multi-scale features. 
Both of the sub-networks are composed of 3, 4, 23 and 
3 dilated blocks in stages 2–5 and generate feature maps 
denoted as {S1, S2, S3, S4} and {S1′, S2′, S3′, S4′}. The 
structure of dilated blocks is demonstrated in Fig. 4b. The 
dilated bottleneck block utilizes the dilated convolution 
kernel by replacing the 3 × 3 convolution kernel to extract 
more information.

The other problem of building multiple pathway net-
works is parameter redundancy. In our triple pathway net-
work, parameters used are three times than single back-
bone networks, features from the same stage have strong 
similarity which brought difficulty to train the network. 
Hence, we designed a backward connection which fused 
the output feature map with the feature map of the previ-
ous stage in the second backbone. For instance, the output 
of the main-network M2 is fed back to fuse with S1 in the 
sub-network. Two types of feature maps are composed of 
different sizes and different channels. We used a decon-
volution kernel to correct the channels and sizes of the 
feature maps. With this structure, feature maps are fused 
with different stages enriched the complexity of features, 
and parameters can be fully utilized.

2.2 � Feature pyramid structure

Fractures have very distinguished spatial scales in differ-
ent images, feature pyramid network (FPN) [21] is built 
to generating a series of high-resolution feature maps by 

Fig. 4   The architecture of Bot-
tleneck Block (a) and Dilated 
Bottleneck block (b)

Fig. 5   Structure of feature pyramid network
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up-sampling, and combined these high-resolution feature 
maps with the output feature maps to detect objects in vast 
different scales. Specifically, in Fig. 5, feature maps output 
by the backbones, denoted as {F1, F2, F3, F4}, are semanti-
cally high. FPN first generate feature map P5 as top layer 
with Maxpooling and uses up-sampling to generate high-
resolution feature maps at each spatial size, denoted as {P1, 
P2, P3, P4, P5}. These feature maps are enhanced with 
features from feature map F1 to F4 via a 1 × 1 convolution 
kernel. The enhanced feature maps are combined both high-
semantic information and high-resolution information which 
is friendly to detect vast object scales.

2.3 � Region proposal network

Region proposal network (RPN) is first proposed in faster 
region-based convolution neural network (Faster R-CNN) 
[20]. This algorithm proposed a network to generate the 
Region of Interest (RoI), which indicates the region with 
the fractures. By creating anchors on every spatial pixel in 
feature map with three scales and three aspect ratios (0.5, 
1, 2), the network will generate W × H × 9 anchors, where W 
and H are the width and height of the feature map. These 
anchors are fed to calculate the intersection over union (IoU) 
with the ground truths and assigned as a positive sample if 
IoU is over 0.6, a negative sample if IoU less than 0.3, and 
ignores the RoI when it is IoU is between 0.6 and 0.3. RPN 
predicts 128 RoIs including all positive samples if posi-
tive samples are fewer than 128, the network pads with the 
negative samples. The following RoI pooling layer converts 
the RoIs into fixed spatial size and then fed to two indi-
vidual fully connected layers to turn the fixed RoI into two 
4096-dimension vectors, one of which sent into the softmax 
classifier to label the positive and negative RoIs, the other 
sent to calculate the bounding-box regression with ground 
truths. In our network, five output feature maps in different 
depth and size represent the same fracture position in the 
original images, thus, we employed RPN in a stride of {4, 
8, 16, 32, 64} corresponding to the size to generate RoIs in 
each feature maps simultaneously. At last, the loss function 
adopted is the Fast R-CNN multi-task loss function, and gra-
dient descent is employed with Stochastic Gradient Decent 
(SGD) in backward propagation.

3 � Experiments

We first trained ParallelNet with the thigh fracture dataset 
established in [16], including 3842 thigh fracture X-ray 
images. 3484 images are used as training data to train the 
network, and 358 images assigned to test the result of the 
model. The dataset is annotated by Linyi People’s Hospital 
in China and set in the same format as COCO dataset.

Considering the fracture dataset is relatively small and 
lacks information to teach the network, we employed trans-
fer learning in our work using the ResNet-101 pretrained 
model to initial the weight of our network. In our Parallel-
Net, backbone network is composed of multiple pathways, 
hence we load the pretrained model of ResNet-101 in all 
individual pathways.

Training and testing pipeline are illustrated in Fig. 6. 
The input images with ground truths are fed into the net-
work to update the weights in each backbone networks, 
respectively. The output trained model will be used in 
the testing procedure. In testing process, original images 
are sent into the model and output images with propos-
als. These proposals will calculate the IoU with ground 
truths. The result is evaluated with two metrics, AP50 and 
AP75. These two standards indicate different IoU between 
the predicted bounding boxes and the ground truths, if the 
IoU is over 0.5 in the test procedures, the prediction will 
be considered as a correct prediction in AP50, and if over 
0.75 will be considered as a correct prediction in AP75.

Backbone network is the fundamental structure, it 
extracted learnable features from the original input images 
for the network. Previous work on thigh bone detection 
task, DCFPN [16] introduced dilated convolution in the 
backbone network and proved that enriching the reception 
field is conductive to improve the detection performance. 
However, we found the gridding effect of dilated convolu-
tion harms the performance of detecting small objects. As 
shown in Fig. 2, dilated convolution skipped some pixels 
during the calculation, this could be regarded as the nor-
mal convolution with holes, which means discrete dilated 
convolution sampling leads to lack of correlation in the 
long spatial distance sample. This indicates that, dilated 
convolution ignores vital information for detecting tiny 
objects while enriching the reception field. The larger dila-
tion rates, the more pixels it skips. To overcome gridding 
effect, we designed a backbone network in three pathways 
with different dilation rates. Shown in Fig. 3, the first path-
way is denoted as the main network, the second pathway is 
denoted as the sub-1 network and the last one is denoted 
as sub-2 network.

3.1 � Implementation details

The method is exploited with Pytorch v1.1.0, CUDA 9.0 
and cuDNN 7.1.4. and adopted with transfer learning of 
the backbone of ResNet-101 pretrained model. Data aug-
mentation with a horizontal flip is used to enhance the 
quantities of our dataset. 4 NVIDIA GeForce GTX 1080TI 
GPU and each process 1 image with the learning rate of 
0.005, the momentum of 0.8 and weight decay of 0.005, 
in 20 total epochs.
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3.2 � Results

The 3483 thigh fracture X-ray images are adopted in train-
ing. In test procedures, two metrics in the COCO style 
has been adopted to evaluate the results, including AP50 
and AP75. We compared some of the state-of-art generic 
object detection methods with our network on the same 
thigh fracture dataset. To be fair, all of the networks are 
finetuned and chose the best detection results. Table 1 
shows the result of different methods, including Faster 
R-CNN and feature pyramid network, etc. Previous work 
on thigh bone detection task, dilated convolution feature 
pyramid network (DCFPN) [16] reaches 82.1% AP50 and 
45.1% AP75. It can be seen that our method is relatively 
higher in the final result, with the dilation rates of 2, 2, 1, 
3 in stages 2–5, the results reach 87.8% AP50 and 49.3% 
AP75 which outperformed DCFPN by 5.7% AP50 and 
4.2% AP70, and outperformed the next best AP50 by 2.5% 
(RetinaNet) and AP75 by 0.6% (Cascade R-CNN). Some 
samples of our detection results are illustrated in Fig. 7.

3.3 � Ablation experiments

3.3.1 � Experiments on dilated convolution rates

Dilation rates are very vital hyperparameter for the network. 
We attempted several experiments on different dilation rates 
to evaluate the best baseline on the proposed network. Each 
backbone network is composed of five stages and shared a 

Fig. 6   Pipeline of training and testing the network

Table 1   Comparison of ParallelNet with other state-of-the-art meth-
ods

Method Backbone AP50 (%) AP75 (%)

DCFPN ResNet-101 82.1 45.1
Faster R-CNN ResNet-50 78.1 46.3
FPN ResNet-101 85.2 45.2
Cascade R-CNN ResNet-50 85.0 48.7
FPN (guided anchoring) ResNet-101 85.1 45.1
RetinaNet (with FPN) ResNet-101 85.3 46.7
ParallelNet (ours) TripleNet (ours) 87.8 49.3
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frozen first stage, so dilation rates in stages 2–5 are denoted 
in a bracket with four numbers, each number representing 
the dilation rates in stages 2–5. This presentation of dilation 
rates is also applied in the following experiments.

In this experiment, the dilation rates of the main network 
are set as (1, 1, 1, 1) and different dilated rates are attempted 
in the sub-1 network and sub-2 network to evaluate the best 
setting of dilation rates. Table 2 presents the result of differ-
ent dilation rates in each sub-network. In the experiments, 

we found that enlarging the dilation in sub-2 network can 
improved the detection accuracy, the results achieve 87.3% 
AP50 and 47.6% AP75 in experiment 2. However, it can 
also cause negative effect on the detection accuracy in some 
cases. Comparing experiment 2 and 3, the dilation rates of 
sub-2 network increased from (2, 2, 2, 2) to (3, 3, 3, 3) yet 
the result decreased significantly. Because larger dilation 
rates skipped more pixels, these skipped pixels contain vital 
information for detecting small objects. Also, irrelevant fea-
tures, such as background information, are collected into the 
feature maps and harmed the final detection performance. 
Thus, we infer that the best setting of dilation rates is (1, 
1, 1, 1) in sub-1 network and (2, 2, 2, 2) in sub-2 network.

3.3.2 � Experiments on number of backbone pathways

In this section, we attempted dual backbone network and 
compared with the proposed triple backbone network. Dual 
backbone network composed of a main network and a sub-
network. The dilation rate of the stages in the main net-
work is frozen in (1, 1, 1, 1). Experiments on different dila-
tion rates on individual sub-networks are demonstrated in 
Table 3. The results indicate that decreasing the backbone 
numbers greatly harmed the detection performance. It is 
because triple backbone network provides more learnable 
features due to their different dilation rates. This led the net-
work to learn more complex features in the training process 
and contributes to the optimization of network parameters.

3.3.3 � Experiments on different feature fusion connection 
structures

In this section, we compared backward connection structure 
with lateral connection structure which connected feature 
maps from the same stages of the backbones. Results are 
presented in Table 4. We test the performance of connection 
styles in two dilation rates baselines. The results indicate 
that backward connection outperformed lateral connection 
in both two baselines. The reason is that, in our Parallel-
Net, parameters used are three times than those in single 
backbone networks. When building lateral connection struc-
tures, features extracted from the same stage of backbones 
have strong similarity which causes parameter redundancy. 
This represents the network cannot learn more semantic 

Fig. 7   Samples of detection results

Table 2   Ablation experiments on dilation rates

Sub-1 net | Sub-2 net AP50 (%) AP75 (%)

1 (1, 1, 1, 1) | (1, 1, 1, 1) 86.2 45.2
2 (1, 1, 1, 1) | (2, 2, 2, 2) 87.3 47.6
3 (1, 1, 1, 1) | (3, 3, 3, 3) 85.6 47.3
4 (2, 2, 2, 2) | (1, 1, 1, 1) 86.0 46.9
5 (2, 2, 2, 2) | (2, 2, 2, 2) 86.1 47.5
6 (2, 2, 2, 2) | (3, 3, 3, 3) 85.4 46.1

Table 3   Ablation experiments on number of backbone pathways

Sub-1 net | Sub-2 net AP50 (%) AP75 (%)

1 (1, 1, 1, 1) | None 84.7 44.5
2 (2, 2, 2, 2) | None 85.6 44.6
3 (1, 1, 1, 1) | (1, 1, 1, 1) 86.2 45.2
4 (1, 1, 1, 1) | (2, 2, 2, 2) 87.3 47.6
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information and parameters cannot fully utilized. Backward 
connection connected features from different semantic levels 
which enriched the complexity of features, parameters are 
fully trained and enhanced the detection accuracy.

3.3.4 � The position of dilated convolution

In the experiments, we found that the position of dilated con-
volution is a vital hyperparameter to the final accuracy. The 
position could be regarded as which backbone is adopted 
the largest dilation rate. The following table 5 shows several 
experiments on the position of dilated convolution. All the 
following experiments are adopted with a triple backbone 
network and using a backward connection method. When 
employed dilation rates of (2, 2, 2, 2) in the sub-2 network, 
which is the final backbone network, the result achieves 
87.3% in AP50. However, when applying the same dilation 
rates to the other two backbone networks, the result dropped 
significantly. The reason of this is because the latter back-
bone inherits the features extracted from previous one, if 
dilated convolution employed in previous backbones, grid-
ding effects will lead to ignoring vital information of the 
small fractures and collect irrelevant information, this will 
further infect the performance of the detection accuracy. 
Thus, the last sub-network is the best employment position 
of dilated convolution (Table 5).

4 � Conclusion

This work presented a novel network structure called Paral-
lelNet to detect thigh bone fracture from X-ray images. Par-
allelNet is designed with several individual backbone path-
ways in the same shape with different dilated convolution 

rates. A backward connection structure is proposed to 
connect each backbone networks to connect feature maps 
with different reception fields. Feature pyramid structure 
is adopted in the proposed network to detect fractures in 
large different scales. Furthermore, RPN is applied in the 
network to propose the candidate region, these candidate 
regions representing the specific fracture positions in the 
X-rays. Several experiments have been implemented based 
on the thigh bone fracture dataset established in DCFPN 
[16]. Specifically, the result achieved 87.8% AP50 and 
49.3% AP75 which shows relatively higher results than the 
other state-of-the-art algorithms. Ablation experiments on 
the number of backbone networks, different types of feature 
fusion methods, different dilation rates in individual back-
bone networks and the employment of dilated convolution 
have been analyzed.
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