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Abstract
Artificial intelligence has the potential to revolutionize disease diagnosis, classification, and identification. However, the 
implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpret-
ability. This study presents a diagnostic tool based on a deep-learning framework for four-class classification of ocular 
diseases by automatically detecting diabetic macular edema, drusen, choroidal neovascularization, and normal images in 
optical coherence tomography (OCT) scans of the human eye. The proposed framework utilizes OCT images of the retina 
and analyses using three different convolution neural network (CNN) models (five, seven, and nine layers) to identify the 
various retinal layers extracting useful information, observe any new deviations, and predict the multiple eye deformities. 
The framework utilizes OCT images of the retina, which are preprocessed and processed for noise removal, contrast enhance-
ments, contour-based edge, and detection of retinal layer extraction. This image dataset is analyzed using three different 
CNN models (of five, seven, and nine layers) to identify the four ocular pathologies. Results obtained from the experimental 
testing confirm that our model has excellently performed with 0.965 classification accuracy, 0.960 sensitivity, and 0.986 
specificities compared with the manual ophthalmological diagnosis.

Keywords  Biomedical imaging · Deep learning · Disease detection · Image processing · Optical coherence tomography 
(OCT)

1  Introduction

In the past few decades, we have seen the advent of computer 
science in disease detection and diagnosis for biomedical 
sciences. Artificial intelligence (AI) has revolutionized the 
disease diagnosis and the anatomization process by perform-
ing the classification steps, which were time-consuming and 
tedious for the experts [1−3]. The medical field has been 
accepting and adopting AI because of the rampant increase 
in applications employing AI-based technologies in recent 
times and the physicians’ demand to operate with reduced 
errors, mishaps, and misdiagnosis. Many AI and subset DL 
networks are useful in medical image processing for prog-
nosis and diagnosis of various ailments (e.g., breast cancer, 
lung cancer, and brain tumor), which are tedious and prone 
to human error if manually performed. Medical images are 
processed using these DL methods to solve various tasks, 
such as prediction, segmentation, and classification, conse-
quently accurately bypassing human abilities.

The scope of AI is significant in retinal disease diagno-
sis and procedure. The mechanism requires precise, correct 
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identification, and extraction of ocular layers, making it 
easy for ophthalmologists to focus on the treatment. In this 
study, the benefits of AI have been leveraged to classify and 
identify an ocular disease; the retina’s structural complex-
ity makes it inconvenient and time-consuming for accurate 
evaluation by the expert. The retina is situated on the inside 
back wall of the eye and is responsible for sending light 
and images back to the brain. When the light focuses on 
the retina instead of elsewhere, normal vision is observed. 
A person with normal vision can see objects at near and far 
distances. Vision loss, myopia, and macular degeneration 
can occur if the retinal layer is affected. Some commonly 
known retinal diseases are choroidal neovascularization 
(CNV), drusen, diabetic retinopathy, and diabetic macular 
edema (DME).

Employing advanced AI techniques in medical diagnosis 
and image detection has brought the much-needed head-
way in medical science. The automated detection of retinal 
diseases involves a preprocessing with image quantization, 
segmentation and sampling procedures, training of neural 
networks with the vast data, and analysis of statistics. The 
researchers are currently focusing on improving the accuracy 
of classification and identification of the disease, reducing 
the computational time and memory utilization, proper seg-
mentation of ocular layers, and minimizing computational 
complexity.

Optical coherence tomography (OCT) is a modern non-
invasive imaging technique built on low coherence inter-
ferometry. This technique can reconstruct (tomographic) 
sectional images with a high depth resolution of the object 
under study using the projected light beams. The measured 
dimension of the thickness of the retinal layers helps early 
detection of pathologies and disease diagnosis. The two 

types of OCT are time-domain (TD) OCT and spectral-
domain (SD) OCT. The TD-OCT is used to produce the 
2D scans of the given sample internal edifice. The SD-
OCT is said to be 50 times quicker than the conventional 
TD-OCT technique. Furthermore, SD-OCT is 100 times 
faster than the ultra-high-resolution OCT. The SD-OCT 
scan has more clarity and high quality compared with the 
TD-OCT systems.

Figure 1 shows the OCT scans of CNV, drusen, DME, 
and normal retina. The growth of new blood vessels 
through the Bruch membrane in the choroid layer describes 
CNV, and it causes vision loss. The accretion of fluid in 
the retina’s macula part forms DME. The yellow deposits 
composed of lipids, protein, and calcium salts under the 
retina characterizes drusen. The risk of developing age-
related macular generation (AMD) increases in drusen.

This research has evaluated and analyzed a large data-
set of retinal OCT images available in the public domain 
to classify the normal retina and three ocular pathologies 
(CNV, drusen, and DME) for accurately detecting results 
of significant pathological structures. Figure 2 describes 
the framework of the proposed methodology for detecting 
ocular degeneration using OCT images of the retina. The 
OCT images of the retina are preprocessed and enhanced 
for noise removal using a median filter. Contrast Limited 
Adaptive Histogram Equalization (CLAHE) for contrast 
enhancements is used, followed by morphological opera-
tion, thresholding, and contour-based edge detection for 
retinal layer extraction. This image dataset is analyzed 
using three different Convolution Neural Network (CNN) 
models (of five, seven, and nine layers) to identify the four 
ocular pathologies.

Fig. 1   OCT scans of diseased 
and normal retina
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The proposed approach has an accuracy of 96.5%. The 
primary goal is to help the patients and eye specialists make 
an automated and fast diagnosis. Another goal is to increase 
the analytical performance by improving the accuracy and 
assisting ophthalmologists in making quicker and efficient 
detection, which can be of enormous benefit for the patients.

The paper is organized as follows: Sect. 2 elaborates 
the literature review; Sect. 3 presents the methodology; 
Sects. 4 and 5 provide the experimental setup and analysis 
of the results, respectively; Sect. 6 discusses the conclusion; 
Sect. 7 presents the future scope and limitation.

2 � Literature review

Deep learning techniques have advanced the state-of-the-
art in medical image analysis. However, the application of 
DL in retinal diseases is relatively recent. Numerous ocular 
diseases, such as DME, drusen, and CNV, can be captured 
using OCT scans of the human eye and analyzed using DL 
techniques. This section elaborates the research on the auto-
mation of ocular pathology using AI, machine learning, and 
DL. The tomography process involves the reintegration of 
different cross-sectional images of the subject using vari-
ous projections. Ţălu et al. [4] and Schmidt-Erfurth et al. 
[5] stated that OCT is a high-resolution imaging technique 
classified as SD-OCT and TD-OCT. The SD-OCT results 
provide a cross-sectional and volumetric view of the retina 

in high resolution. TD-OCT provides a 2D image of the 
given structure of the internal part of the retina. TD-OCT is 
ineffective because it only includes thickness analysis of the 
macula, while SD-OCT enables the monitoring and meas-
urement of various characteristic features. The study found 
that OCT is a useful technique in analyzing, monitoring, and 
assessing AMD’s different stages. Moreover, drusen could 
be analyzed using various characteristics of its structure.

Srinivasan et al. [6] presented a classification method 
based on support vector machine (SVM) classifiers and 
Histogram of Oriented Gradients (HOG) descriptors and 
obtained successful results to detect dry AMD and DME 
using the OCT imaging technique. Their proposed method 
did not involve the segmentation of inner retinal layers. The 
SD-OCT datasets consisted of 45 volumetric scans, 15 nor-
mal, 15 AMD, and 15 DME. The algorithm achieved the 
highest specificity and perfect sensitivity in detecting 100% 
of AMD cases, 100% of DME cases, and 86.67% of normal 
cases.

A transfer learning method was described by Karri et al. 
[7] to identify retinal pathologies on the basis of the incep-
tion network using the retinal OCT images. The dataset con-
sisted of OCT images with dry AMD, DME, and normal 
subjects. Their study demonstrated that the fine-tuned CNN 
was able to effectively identify pathologies compared with 
classical learning methods. The classifying OCT algorithm 
shown with limited training data and trained with the use of 
non-medical images can be fine-tuned. The mean prediction 

Fig. 2   Block diagram of the 
CNN-based approach with 
image processing for retinal 
disease detection
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accuracies were 99% for normal, 89% for AMD, and 86% 
for DME.

Wang et al. [8] proposed a model for the detection of 
AMD, DME, and healthy macula using OCT images. Clas-
sification algorithms are proven to be necessary for training 
a classification model. The quadratic programming-based 
algorithm, kernel-based algorithm, linear regression-based 
classification algorithm, neural network algorithm, Bayes-
ian algorithm, tree-based algorithm, and ensemble forest 
algorithm are the various classification algorithm groups. 
The dataset was tested using one representative from each 
classification algorithm group. The SMO-sequential mini-
mal optimization-based model was the best with an accu-
racy of 99.3%. Their experimental procedure involved four 
steps, namely OCT image preprocessing, feature extraction 
and selection, classification model building, and predicting 
results.

Alsaih et al. [9] presented an automated classification 
framework to detect DME for SD-OCT imaging data vol-
umes. Their method included the general steps of preproc-
essing, feature detection, feature representation, and classifi-
cation. The SVM and principal component analysis resulted 
in a sensitivity of 87.5% and specificity of 87.5%. LBP-ri 
vectors contributed to the most successful result in the clas-
sification of disease.

Choi et al. [10] applied CNN-based deep learning tech-
nique for fundus photography analysis and classification of 
various retinal diseases. Fundus photographs were taken 
from the structured analysis of the retina database for auto-
mated detection of numerous retinal diseases, based on DL-
CNN using MatConvNet. The dataset was built by including 
10 different categories of retinal images, including normal 
retina images. The classification results varied as per the 
number of categories. These results were obtained using the 
random forest transfer learning method, which was based on 
VGG-19 architecture.

Choi et al. [10] stated that other retinal diseases can even-
tually lead to irreversible loss of vision. The causes of vision 
impairment may include retinal vessel occlusion, retinitis, 
and hypertensive retinopathy. Previous studies focused on 
glaucoma, DMR, AMD, and other eye pathologies using 
fundus photographs. A more effective detection method 
is necessary to reduce vision loss caused by retinal dis-
eases. The DMR screening was initially adopted for diabetic 
patients, and it used fundus photographs as inputs.

Hussain et al. [11] proposed the automated identification 
of AMD and DME using SD-OCT images. The thickness 
of the retina or individual retinal layer and the volume of 
pathologies, such as drusen, were some of the retinal fea-
tures used in the techniques’ classification methodology. The 
SD-OCT images were segmented to extract critical retinal 
features. A dataset of 251 subjects, 59 normal, 15 DME, 
and 177 AMD is evaluated for effectiveness by training the 

system as a two-class problem of a diseased and healthy 
retina using a random forest classifier. The methodology had 
an accuracy of more than 96%.

Kermany et al. [12] achieved 96.6% accuracy along with 
97.8% sensitivity and 97.4% specificity. The AUC was 0.999 
in distinguishing the retinal diseases (CNV, drusen, and 
DME) from normal subjects. A variation in the number of 
images was observed in each category because the training 
dataset consisted of 37,206 images of CNV, 11,349 images 
of DME, 8617 images of drusen, and 51,140 normal images. 
The model’s performance was biased because the validation 
dataset acted as the testing dataset, while only 250 images 
were chosen for testing and validation from each retinal 
class. The result analysis was affected due to the imbalance 
of the number of images in each class.

Schlegl et al. [13] proposed a DL-based technique for 
the detection of different types of fluids in the retina across 
various macular diseases using OCT images. Their data-
set consisted of OCT images of 1200 patients, including 
400 patients with AMD, 400 patients with DME, and 400 
patients with RVO (retinal vein occlusion). This fully auto-
mated method achieved a mean accuracy of 0.94 with 0.91 
precision and 0.94 recall value and was developed to quan-
tify and detect subretinal fluid and intraretinal cystoid.

Das [14] surveyed the diagnosis of retinal diseases, such 
as retinal tear, retinal detachment, glaucoma, macular hole, 
and macular degeneration, using various machine learning 
techniques. The study of healthcare analytics and implemen-
tation of deep learning-based pathology detection is a work 
by Hossain and Muhammad [11, 15]. Some commonly used 
machine techniques in ocular diagnosis are logistic regres-
sion, Naive Bayes, KNN algorithm, and SVM classifier. The 
implementation of machine learning techniques can be stud-
ied from [16–20].

Lemaître et al. [21] addressed the problem of classifica-
tion of SD-OCT data for automated detection of patients 
affected by DME. Tsanim et al. [22] employed four CNN 
models, namely, Vanilla CNN, MobileNetV2, ResNet50, and 
Xception network, to detect the category of diseases from 
the retinal OCT scanned images.

Feng et al. [44] focused their study on a four-class retinal 
disease classification problem for the detection of drusen, 
DME, CNV, and normal retina using optical coherence 
tomography images. They proposed a novel classifica-
tion model for the automated detection of most common 
blinding diseases and prepared a big dataset of retinal OCT 
images. The model was based on improved ResNet50. Their 
approach achieved an accuracy of 0.973, a sensitivity of 
0.963, a specificity of 0.985, and an AUC of 0.995 at the 
B-scan level.

OCT images’ automated layering with a blurred layered 
structure and low contrast is considered challenging or dif-
ficult. Xiaoming et al. [23] solved this problem using a new 
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OCT detection method. Their methodology was based on 
complex Shearlet transforms. The test dataset consisted of 
OCT images of dry AMD, Stargardt disease, and retinal 
macular area with normal condition. The results proved 
that the complex Shearlet transform method was an effec-
tive measure because more layers of OCT images could be 
detected using this method.

The recent work on CNN and its application in image pro-
cessing can be studied from Bhatt et al. [24]. They have pre-
sented the prevalent DL models, their architectures, related 
pros and cons, and their medical diagnosis and healthcare 
system prospects. Kim [25] proposed a model that applies an 
image super-resolution method to an algorithm that classifies 
emotions from facial expressions using deep learning. Nie 
et al. [26] discussed convolution deep learning models for 
3D object retrieval. Zhao et al. [27] reviewed the state-of-
the-art blood vessel segmentation methods by dividing them 
into two categories, rule-based and machine-learning-based. 
Rajalingam et al. [28] presented an image fusion algorithm 
to visualize and analyze the MRI-CT-PET medical images 
better. A recent paper by Xi et al. [29] discusses multiscale 
CNNs for the segmentation of CNV from the OCT data. 
Table 1 illustrates a summary of critical papers for OCT 
analysis.

The research gap identified from the literature review are 
as follows:

1.	 Most papers have used a pre-trained model, which has 
fixed biases and weights for retinal disease classification;

2.	 The researchers have not studied the effect of image 
enhancement or segmentation over feeding raw images; 
and

3.	 Existing research models have low specificity and sensi-
tivity values, which are considered essential parameters 
for evaluating the performance for medical diagnosis.

This paper addresses the research gaps mentioned above.

3 � Methodology

Figure 3 demonstrates the process flow of the OCT image 
data analysis for the detection of four retinal diseases clas-
sification using DL-CNN models. Each step is explained in 
the sections below.

3.1 � Data collection

The images of the retinal OCT scans for DME, drusen, 
CNV, and normal retina are taken from the public (Men-
deley database) dataset published in Kermany et al. [12]. 
The images were taken from the dataset and partitioned 

into training, testing, and validation folders, each of which 
has subfolders for four model classes (CNV, DME, drusen, 
and normal), having a total of 84,495 b-scan views of OCT 
images in .jpeg format.

3.2 � Preprocessing data

The first step is to obtain uniform-sized normalized 
images; the dataset images are read, transformed, resized, 
and cropped. The image sampling is performed into train-
ing, validation, and testing in the ratio of 90.16:1.84:8.00. 
Out of the 83,484 images (dataset), 75,270 images were 
used for training, 1536 images as validation data, and 
6678 images as testing data. Table 2 shows the number 
of images of each class type in the respective data load-
ers, and the distribution of the dataset is given in terms 
of percentages. The images were shuffled to reduce the 
biases during training to obtain improved results, and they 
were loaded into different data loaders in a batch size of 
84. The data loading was performed in uniformly sized 
batches because the entire dataset processing in a single 
step would have resulted in computation memory overload 
and system crash.

Figure 4 shows different samples of images from train-
ing, validation, and testing datasets post-preprocessing. 
From these samples, the nine-layered retinal structure 
of the normal eye retina for the given samples is visible. 
The samples with CNV show proliferation of blood ves-
sels in the choroid layer of the retina, causing ruptures 
in the Bruch’s membrane. These samples are visible as 
hollow cavity-like structures in the retinal scans in CNV. 
The DME results from the accumulation of fluids in the 
macula in the retina resulting from leaky blood vessels, 
which causes fovea swelling and is visible as tiny holes 
in the image. The build-up of small yellow/white extra-
cellular material aggregates between the retina pigment 
epithelium of the eye and the Bruch’s membrane causes 
drusen, visible as dome-like elevations. Meanwhile, the 
normal retinal structure is seen with clear and continuous 
membrane boundaries with a deep cut fovea valley with 
almost a uniform thickness across the structure.

Steps for preprocessing of data:

1.	 Read files from the directory.
2.	 Apply resizing of each image to 150 × 150 pixels.
3.	 Apply CentreCrop operation with final dimensions of 

128 × 128 pixels to each image.
4.	 Convert the image to the tensor data type for compat-

ibility with the model.
5.	 Normalize the image by subtracting the mean from each 

pixel value and dividing the result by standard deviation 
using standard transform.
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3.3 � Image enhancement

The image features, retinal structure edge, and reti-
nal layer are improved using various image process-
ing methodologies. Image enhancement helps remove 
background noise; thus, the model training in Step 3.4 
becomes less laborious and complicated and achieves 
greater efficiency. The images obtained from OCT are 
low in contrast and blurred as they are plagued with 
speckle noise. Speckle noise is mainly due to eye move-
ments and blinking during image capturing. The other 
reasons may include camera noise, pixel value distortion, 
and random diffuse scattering resulting from interfering 
ultrasound pulses [30]. Multiple studies to reduce the 
effects of speckle noise have been conducted, which use 
different filtering techniques. Shaw et al. [31] mentioned 
noise filtering algorithms, such as a medium filter, mean 
filter, Gaussian filters, Fourier, and Butterworth filters 
for image smoothening for noise removal. Their stud-
ies showed that Gaussian filters are best suited for OCT 

scans. Kalyanakumar et al. [32] showed how homomor-
phic wiener filters perform better, followed by Gaussian 
filters for speckle noise removal from OCT images. They 
used mean square error, signal-to-noise ratio (SNR), peak 
SNR, and visual inspection as evaluation parameters. In 
another method, Canny edge detectors based on Gauss-
ian filtering are used to remove noise, but it damaged the 
image’s edge structure, resulting in an exceptional edge 
loss. Xiaoming et al. [23] presented edge detection using 
Shearlet transformation, which uses the BM3D algo-
rithm for speckle noise removal, followed by the complex 
Shearlet-based algorithm to layer the retinal OCT image.

This research uses a medium filter after experimenting 
with other filters available in the literature because it pro-
vides excellent results and optimum speed performance. 
Medium filter considers each neighboring pixel value to 
decide whether a pixel represents continuity with its sur-
rounding pixel and updates the noise pixel’s value by the 
medium of surrounding pixel values.

Fig. 3   Process flow diagram

Table 2   Dataset distribution 
table

CNV DME Drusen Normal Total Percentage

Total 37,205 11,348 8616 26,315 83,484 100.00
Training 33,509 10,197 7753 23,811 75,270 90.16
Testing 2951 936 693 2098 6678 8.00
Validation 745 215 170 406 1536 1.84



1424	 A. Tayal et al.

1 3

After the speckle noise is removed, the next step is to 
improve the contrast of the scans. Low contrast is generally 
due to poor illumination conditions, capturing devices, and 

inexperienced technicians. Nandani et al. [33] showcased a 
comparison of different contrast improving algorithms over 
OCT scan images. They observed that the CLAHE method 

Fig. 4   Images after preprocessing in training, validation, and testing datasets (without image enhancement, with normalization, and resizing 
operations)
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outperforms other techniques. Setiawan et al. [34] proposed 
using CLAHE in Green (G) channel to improve the color 
retinal image quality.

The CLAHE algorithm is an enhanced version of adap-
tive histogram equalization used to reduce the noise ampli-
fication in regions of homogeneity. This algorithm is widely 
used in medical images and ophthalmology. In this method, 
the image is divided into subsections, and equalization is 
performed for each area. This situation results in flattening 
the division of gray levels and increasing the visibility of 
the image’s hidden features. Thus, we applied and compared 
Histogram Equalization and CLAHE to improve the gray-
scale image’s contrast and enhance the edges.

The next image enhancement step is edge detection. 
Xiaoming et al. [23] used a complex-Shearlet-based method 
with properties of adequate space, multiscale, frequency 
domain localization, multidirection, and contrast invari-
ance. They compared their work with other algorithms and 
precisely extracted edges with strong anti-noise robust-
ness. Dodo et al. [35] worked upon the level set method for 
separating retinal layers into seven non-overlapping layer 
structures. They started by selecting a region of interest and 
obtained gradient edges from it, and these were used to ini-
tialize curves for the layers. A different approach in Pekala 
et al. [36] showed a deep learning-based model based on 
fully convolutional networks with a Gaussian process cou-
pled with regression-based post-processing to segment the 
images. Luo et al. [37] used the popular two-pass method, 
Canny edge detector, and the edge-flow technique for edge 
detection and found the two-pass method’s performance 
promising over the others. They also found that intensity-
based edge detectors, such as the Canny edge detector, and 
the two-pass method outperformed the texture-based edge-
flow method for OCT retinal image analysis. The Canny 
edge detector algorithm observed fine edge losses in the 
edge structure due to Gaussian filtering used in the algo-
rithm. Similar results are observed when this algorithm was 
used on our research data for edge detection.

A contour-based algorithm was applied to detect edges 
and fine details in the scan images. Finding contours is 
essential for shape analysis and feature/object detection 
and recognition. Contour joins all the continuous points 
along a boundary with the same intensity. It is an outline 
of the feature to be extracted in a binary image using gradi-
ent operations. Contour overlaying is performed to enhance 
the boundary quality as breaks occur in the edges after 
segmentation and morphological operations. These steps 
were preceded by binary image thresholding and morpho-
logical transformation for noise removal to successfully 
find contours. The present studies have employed active 
contour-based segmentation in their work (González-López 
et al. [38], Somfai et al. [39], Perez-Cisneros et al. [40]. 
Perez-Cisneros et al. [40] used active contour models and 

estimation of distribution algorithms to generate contours 
by a prior step of the reference shape’s alignment process, 
which increased the exploration and exploitation capabili-
ties. Mishra et al. [41] improved the active contour model 
using an efficient two-step kernel-based optimization scheme 
that first identified the individual layers’ approximate loca-
tion and refined the results using an active contour model.

In our training of the model shown in Figs. 5, 6, and 7, 
only edges or segmented structures were not suitable inputs 
for our model because they did not account for fine details 
in the membrane structure. The edge detection results in the 
collection of edge segments or contours encompassing the 
whole image. The images lacked useful information, such 
as layered structures of the retina and cavity within these 
layers by only extracting edges, thus, the model could not 
learn much from this information. The segmentation was 
conducted on the retina structure samples, which is the 
extraction of the coherent region of interest isolated from 
the background. Originally, segmentation is a low-level 
image processing technique where the image is divided on 
the basis of the regions of importance into many segments 
separated by boundaries. These mechanisms produced bet-
ter results but still could not perform and with successive 
processing steps. Moreover, these mechanisms lacked the 
fine layer structural details but were able to include cav-
ity structures to a certain extent. However, combining both 
methods allowed us to enhance the edge and fine details in 
these images. The former method obtained a testing accu-
racy of up to 90.20%, while the latter with segmented output 
achieved up to 94.47%. Finally, geometric transformations, 
image resizing, zooming, cropping, and normalizing are 
performed, and images of 128 × 128 pixels were obtained. 
Normalization helps in obtaining the data within a range, 
which helps CNN in performing better and make training 
faster. Figure 8 shows the final enhanced image sample used 
in Step 3.4 for the training of the model.

Steps for image enhancement:

1.	 Read files from the directory.
2.	 Apply medium blur filter for smoothening.
3.	 Convert to grayscale for future operations.
4.	 Apply CLAHE over image for low contrast improve-

ment.
5.	 Image thresholding by suitable threshold cut limits.
6.	 Remove further noise and breaks in structure by mor-

phology operation.
7.	 Extract contours from the above output to extract retinal 

layer edges (the other edge detection techniques were not 
useful as discussed).

8.	 Draw contours to the original image to allow edges and 
layer structures.

9.	 Apply further transforms as in the previous step, includ-
ing resizing, center crop, and normalization.
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3.4 � Deep learning models

Our research has used three different CNN-based 
model architecture and compared the results of these 
model architectures on the selected dataset. The CNN-

based architecture was chosen for this problem because 
it demonstrates excellent performance and accurate 
results in computer vision problems and image clas-
sification among the other deep neural network archi-
tectures [42]. The benefits of CNN-based models over 

Fig. 5   Edge detection results

Fig. 6   Segmented retinal struc-
ture results
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conventional feed-forward neural network models 
include lesser parameters and connections and faster 
training [43].
In Fig. 9, the three models are based on different num-
bers of convolutional layers, max-pooling, and fully 
connected dense layers and explained below:

1.	 Five-layered CNN model This model has five CNN lay-
ers, one input CNN layer with three input channels, and 
four hidden CNN layers, all with ReLU (rectifier linear 

unit) activation. The first, second, fourth, and fifth CNN 
layers outputted were fed to the max pool layer with a 
filter size of 2 × 2. The kernel size applied to the image 
has a dimension of 3 × 3. The required padding and 
stride were set to one. The final output of the 2D CNN 
layers was flattened, and the features extracted were fed 
to a block of three fully connected layers with ReLU 
activation. Finally, the log-softmax probability was cal-
culated and used for further computations. A dropout 
with a probability of 0.4 was used to avoid overfitting.

Fig. 7   Image processing step outcomes for the four classes of diseases: a DME, b CNV, c drusen, and d normal



1428	 A. Tayal et al.

1 3

2.	 Seven-layered CNN model The second model was devel-
oped following a similar architecture as in the previous 
one with an increased number of hidden CNN layers. 
This model has used CNN-based blocks for better fea-
ture extraction and the applied max pool layer to the 
output of convolutional blocks. Four CNN blocks exist; 
the first and second blocks consist of only a single CNN 
layer. The third block consists of three CNN layers, 
while the fourth one has two CNN layers. Each block 
has an output max pool layer with 2 × 2 filter dimen-
sions. The output of these CNN blocks has dimensions 
of 48 × 8 × 8, which is fed to a block of three fully con-
nected dense layers.

3.	 Nine-layered CNN model The third model has nine CNN 
layers compared with the previous models. The block 
model architecture was used for training the dataset. The 
first and second blocks consist of a single CNN layer. 
The third block consists of three CNN layers, while the 
fourth and fifth blocks have two CNN layers each. The 
five-block architecture generates an output with dimen-
sions of 64 × 4 × 4 fed to fully connected dense layers.

The first convolutional layer acts as the input layer and 
converts each image into a vector. The convolutional layers 
extract spatial and temporal features by applying different 
filter kernels over the entire image. These filters slide around 
the image doing element-wise multiplication of filter weights 
with image pixel values. These values are then summed up 
for each filter stride and generate a new activation or feature 
map, which is inputted to the hidden CNN layers. The hid-
den CNN layers then improvise on the feature extraction 
and increase the depth of activation maps. The output is 
fed through ReLU activation to introduce nonlinearity for 
better performance. Then, the output is fed to the pooling 
layer (max pool) to reduce the feature map’s dimensionality. 
The last layer of the model comprises fully connected dense 
neural networks that use these generated features and clas-
sify them. The log-softmax probability final output is used 

to compute the error in prediction using the defined NLL-
Loss (negative log-likelihood) criterion and backpropagate 
the error through the network for gradient weight tuning of 
CNN and fully connected layers with an Adam optimizer 
with a learning rate of 10−3.

In our model, the dropout regularization technique and 
early stopping algorithm are used to avoid overfitting of 
results. Table 3 provides the CNN parameters for initializa-
tion. Fifteen epochs are used to train the model with a batch 
size of 84. A total of 880 steps exist in each epoch and a total 
of 13,440 steps for training. The current step model param-
eters were tested on the validation dataset after every 20th 
step during training for the top-1 class prediction to evaluate 
the model’s performance. The finally trained models were 
then used to evaluate the testing dataset, and statistical anal-
ysis was conducted on the observed results.

In CNN, a set of inputs from the training data is mapped 
to a set of outputs. Many unknown weights exist for a neural 
network; therefore, the perfect weights for it are impossible 
to calculate. The problem of learning is seen as a search or 
optimization problem, and the model may use an algorithm 
to navigate the space of possible sets of weights to make 
useful predictions.

Optimizers are algorithms used to modify the neural 
network parameters, such as weights and learning rate, to 
reduce losses. Gradient descent is the popularly used opti-
mization algorithm. The term “gradient” refers to an error 
gradient. The model is used to make predictions with a 
given set of weights and the error for the calculated pre-
dictions. The gradient descent algorithm makes changes in 
the weights; accordingly, the next evaluation reduces the 
error. This notion means that the optimization algorithm 
is navigating down the gradient (or slope) of error. This 
algorithm is employed in linear regression and classifica-
tion algorithms. ADAM is among the most efficient opti-
mizer algorithms that find the learning rate for each model 
attribute. The learning rate is the parameter that defines how 
the model responds to error estimated after the weights are 

Fig. 8   Final processed images after retinal structure edge and layer enhancement



1429DL‑CNN‑based approach with image processing techniques for diagnosis of retinal diseases﻿	

1 3

updated. ADAM considers the exponentially decaying aver-
age of gradients (such as momentum), which are termed the 
first moment, and squared gradients termed as the second 
moment. Hence, the model is named ADAptive moment. 
The past and squared gradients are calculated, which are 
then biased toward zero. The bias updated gradient and 
squared gradients are calculated. Finally, the weights are 
updated.

The function, which is minimized or maximized, is 
referred to as a criterion. This function can be referred to 
as the cost function, error function, or loss function while 
minimizing it. The training loss, which can be defined as 
the error or difference between true and predicted values 
used, is the NLL. We pass in the raw output from the mod-
el’s final layer because the NLL loss in PyTorch expects 
log probabilities, which are useful to obtain predictions 

Fig. 9   a Five-layered CNN 
model architecture; b seven-
layered CNN model architec-
ture; c nine-layered CNN model 
architecture
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for a classification model with a Softmax output, repre-
sented by

where M is the number of classes (= 4) and ĥ is the model 
current prediction outcome.

The logarithm ensures that the maximum value of the log 
of probability occurs at the same point as the original prob-
ability function because the logarithm is a monotonically 
increasing curve. Hence, maximizing the log of the prob-
ability function works similar to maximizing the probability 
function. The weights are updated as given below:

The neural network model suffers from the problem of 
overfitting. The model performs well on the training dataset 
but does not work well on the testing dataset. Regulariza-
tion is applied to the model to minimize overfitting. In this 
technique, we modify the existing model and the learning 
algorithm to perform well on both datasets. Various regulari-
zation techniques are available in machine learning, such as 
L1 and L2 regularization, data augmentation, dropout, and 
early stopping.

Our research aims to reduce overfitting conditions during 
training and testing of the model using a dropout technique. 
In the training phase, random nodes are selected with a prob-
ability “pi”, and their activations are made zero for each hid-
den layer and training input for every iteration. In the testing 
phase, all the activations are considered, but reduced by a 
factor “pi” to account for the missing activations.

Steps for model training:

1.	 Shuffle dataset. Load processed images to data loaders 
(train, validation, and test). Define batch size and split 
ratio.

2.	 Define model architecture by defining different layers, 
activations, and input and output dimensions.

(1)L
(

ĥ
)

= −
1

M

M
∑

m=1

log
(

ĥ
)

,

(2)weight = weight − (learningrate × gradient).

3.	 Define loss criterion, optimizer, learning rate, and num-
ber of epochs.

4.	 For each epoch:
	   Take a batch of training dataset.

(a)	 Initialize optimizer, input, and labels
(b)	 Pass input image to model
(c)	 Compute the training loss and backpropagate loss 

to update weights
(d)	 After each kth step, validate the trained model 

using the validation dataset. Compute validation 
loss and accuracy

(e)	 Store results in an array.

5.	 Visualize results.
6.	 Once the test model is trained on the test dataset, plot the 

confusion matrix and compute the accuracy, precision, 
sensitivity, specificity, kappa score, F1 value, and test 
loss.

4 � Experimental setup

Google Kaggle is used for accessing the data and train-
ing and testing the model architecture. Kaggle consists of 
Nvidia Tesla P100.1xsingle core hyperthreaded Xeon 2 GHz 
processors, 46 MB cache, 13 GB RAM, and 220 GB disk 
space. Python v3 and PyTorch v1.4.0 were used. The accel-
erators supported include TPU and GPU, and our project 
was trained on the GPU environment.

5 � Results

In this research, the following evaluation criteria are com-
puted to identify the accuracy of the CNN model for identi-
fying/classifying ocular diseases.

5.1 � Evaluation criteria and definitions

	 1.	 Confusion matrix: It helps in exploring the details nec-
essary to diagnose the performance of our model. A 
confusion matrix is a summary of prediction results 
on a classification problem. The number of correct and 
incorrect predictions is summarized with count values 
and broken down by each class. The confusion matrix 
shows the ways in which our classification model is 
confused when it makes predictions. This mechanism 
provides insight into not only the errors being made 
by our classifier but also the types of errors that are 
being made by the models. The confusion matrix is 
also useful for measuring recall, precision, specificity, 
and accuracy, which we also have considered in this 

Table 3   Parameter initialization for CNN

Parameter Value/type

Weight initialization Random
Image input size 128 × 128
Loss criterion NLLLoss
Optimizer ADAM
Learning rate 0.001
Batch size 84
Network output Softmax probability of 

CNV, DME, drusen, and 
normal
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study while evaluating the performance of our differ-
ent models and used confusion matrix to compute the 
same.

		    The value of true positive (TP) and true negative 
(TN) and false positive (FP) and false-negative (FN) 
can be derived from the confusion matrix and are 
explained below:

•	 TP: correctly predicted positive class;
•	 FP: incorrectly predicted positive class;
•	 FN: incorrectly predicted negative class;
•	 TN: correctly predicted negative class.

	 2.	 Accuracy: It is the measure of how accurately the clas-
sifier can classify the data. The following equation pro-
vides the accuracy:

	 3.	 Precision: It defines the relation of total positive results 
that are correct to the classifier’s total positive results, 
as provided by

	 4.	 Sensitivity (or recall): It corresponds to the TP rate of 
the considered class and is computed using

	 5.	 Specificity: It corresponds to TN rate of the considered 
class (i.e., the proportion of negatives that have been 
correctly identified). The following equation provides 
the specificity:

	 6.	 F1 score: It considers the precision and recall values to 
calculate the weighted average and is computed using 
the following equation:

	 7.	 Minimum training loss: It is the minimum amount of 
error on the training set of data during the training 
steps.

	 8.	 Minimum validation loss: It is the minimum error after 
running the validation set of data through the trained 
network.

	 9.	 Maximum validation accuracy: It is the measure of 
how accurate the model’s prediction is compared with 
the true data after running the validation set of data.

(3)Accuracy(range0 − 1) =
TP + TN

FP + FN + TP + TN
.

(4)Precision (range 0 − 1) =
TP

TP + FP
.

(5)Senstivity (range 0 − 1) =
TP

TP + FN
.

(6)Senstivity (range 0 − 1) =
TN

TN + FP
.

(7)F - 1 Score =
2 × TP

FP + FN + (2 × TP)
.

	10.	 Minimum testing loss: It is the minimum loss calcu-
lated on the testing dataset using the trained model.

	11.	 Model size and training time: The time taken by the 
program to train the model and test results defines the 
training time in minutes. The size of memory used by 
the CPU to store model weights defines the model size 
in megabytes.

	12.	 Kappa value: Cohen’s kappa statistic is an important 
overall accuracy measurement parameter for multiclass 
classification problems with data imbalance. In this 
case, other measures may not provide a complete per-
formance picture of the classifier by considering the 
possibility of the outcomes occurring by chance.

5.2 � Parameter‑based evaluation

The system is trained on three machine learning models, 
namely, five-layer CNN model, seven-layer CNN model, 
and nine-layer model. Figure 10 illustrates the confusion 
matrix for each of the CNN models. The comparison aims to 
find the most suitable and efficient model for our dataset by 
comparing the performance metrics and visualization results 
from all the CNN layers. The parameter-based model evalu-
ation’s essential measures are precision, accuracy, F1 score, 
kappa value, losses, and confusion matrix. Table 4 reports 
the outcomes of our study.

The epochs at 15/13,440, learning rate at 0.001, and input 
size at 0.19 MB are maintained for all three models. The 
minimum training loss is 0.039854, the minimum validation 
loss is 0.149069, and the minimum test loss is 0.005284 in 
the five-layer CNN that is similar to the losses seen in other 
layered models. The nine-layer CNN model is memory-
optimized. The overall accuracy is high for the five- and 
seven-layer CNN models at 96.50% and 96.54%, respec-
tively. The maximum validation accuracy used to estimate 
the model’s prediction capability for the five-layer CNN at 
96.30% is higher than that of other models. The F1 score, 
which signifies the accuracy by finding the balance between 
precision and recall value, is considerably low for the five-
layer CNN, but it is best for the seven-layer CNN. The train-
able parameters increase with the increase in the number 
of layers. Hence, considerable differences exist between 
the nine-layer CNN and the rest of the models. The kappa 
coefficient identifies the relationship between the expected 
accuracy and the observed accuracy in a confusion matrix. 
The value is high for the five-layer CNN (0.949) and seven-
layer CNN (0.948). The precision is calculated for all four 
classes, and the nine-layer CNN has the highest precision 
for CNV at 98.53%. The seven-layer CNN has the highest 
precision for DME, drusen, and normal at 97.13%, 96.86%, 
and 98.31%, respectively. The recall value indicates the 
accuracy with which the model detects all the classes in the 
dataset. The recall accuracy is highest in the seven-layer 
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CNN in CNV and normal detection at 99.58% and 98.03%, 
respectively, whereas the five-layer CNN performs best in 
DME and drusen with accuracy rates of 98.93% and 96.38%, 
respectively.

The model training time is about the same for all three 
model structures and almost double for the image-enhanced 
dataset. In the five-layer CNN model, the total trainable 
parameters were 55,58,116, which took 233.4027 min of 
training time. The model’s estimated total size was 26.01 
MB (0.19 MB input size, 4.62 MB forward/backward pass 
size, and 21.2 MB parameter size). In the seven-layer model, 
the total trainable parameters were 55,69,684, which took 
238.8658 min of training time. The model’s total estimated 
size was 25.61 MB (0.19 MB input size, 4.18 MB forward/
backward pass size, and 21.25 MB parameter size), which is 

slightly less than that of the five-layer model. The last model 
with nine layers has total trainable parameters of 7,00,636, 
which took 230.1585 min of training time. The model’s total 
estimated size was 7.08 MB (0.19 MB input size, 4.22 MB 
forward/backward pass size, and 2.67 MB parameter size). 
This model may be best suited to run in environments with 
memory limitations with some trade-off with performance. 
In the three models devised, a high specificity value and sen-
sitivity value of 0.98 and 0.96 were accomplished. The F1 
score observed in the seven-layer model was highest among 
the three models.

The training log shows that the model training was sig-
nificant for ten epochs, and beyond that, it started to overfit 
(Fig. 11). The increase in accuracy was also reduced. Thus, 
epochs were reduced in the final model; hence, computations 

Fig. 10   Confusion matrices for different models



1433DL‑CNN‑based approach with image processing techniques for diagnosis of retinal diseases﻿	

1 3

and time also decreased. Figure 11 illustrates that the five-
layer CNN model is slightly overfitting.

5.3 � Visualizing model performance

The deep learning-based classification performed is a black 
box AI system for automated decision-making, which uses 
machine learning techniques to map feature data into class 
without uncovering the reasons. Different visualization tech-
niques are used to analyze the performance and understand 
the decision-making of these models. For this purpose, 
popular open-source matplotlib and OpenCV libraries were 
utilized. The variation of training loss and validation loss 
(NLLLoss with softmax envelope) over successive steps dur-
ing training was plotted. This situation demonstrates how the 
two losses vary with each other. Both the losses decrease 
with successive steps, reflecting that predictions are becom-
ing increasingly accurate, and updating weights results in 
the movement of losses in the direction of minima. This 
phenomenon can also show if the model is overfitting or not.

Next, a comparison of the variation of validation loss and 
accuracy over the training steps is performed (Fig. 11). We 
can see a subsequent increase in the validation accuracies 

with a decrease in validation loss. The filter outputs of all the 
CNN layers and fully connected layers show how the model 
views the image internally as it passes down through multi-
ple layers. The confusion matrix is plotted to calculate multi-
ple parameters and evaluate the model performance. Finally, 
50 random example images from the test dataset were taken, 
and their prediction for each model was observed (Fig. 12). 
Each correct prediction was marked with a green and an 
incorrect prediction with a red. Running on different samples 
multiple times for each model showed that most predictions 
were correct.

This research focuses on three CNN models with five, 
seven, and nine layers. Lower numbers, such as a three- or 
four-layer model, were analyzed, which showed poor per-
formance in extracting fine features because the input OCT 
images are similar with subtle differences in structure. The 
result showed that the higher layered models performed bet-
ter in identifying the information, such as layered structures 
of the retina and cavity. We also wanted to study and explore 
memory and time-efficient solution. We added layers to our 
model and observed that performance decreased for layers 
greater than nine to our model. We observed a decrease in 
the gap between the training and the validation loss with 

Table 4   Performance of 
different models at the B-scan 
level for detection of four 
classes

Comparison parameters Five-layer CNN Seven-layer CNN Nine-layer CNN With image 
processing

Epochs/steps 15/13,440 15/13,440 15/13,440 10/8960.0
Learning rate 0.001 0.001 0.001 0.001
Min training loss 0.039854 0.05164 0.084115 0.085634
Min validation loss 0.149069 0.14923 0.158438 0.154837
Max validation accuracy 96.30% 95.36% 95.55% 95.14%
Accuracy (overall) 96.54% 96.50% 96.05% 97.14%
Precision (CNV) 97.19% 94.93% 98.53% 98.34%
Precision (DME) 96.69% 97.13% 94.03% 97.19%
Precision (drusen) 96.10% 96.86% 91.54% 88.89%
Precision (normal) 95.71% 98.31% 94.83% 98.03%
Recall accuracy (CNV) 98.53% 99.58% 97.72% 98.93%
Recall accuracy (DME) 98.93% 98.22% 96.29% 95.26%
Recall accuracy (drusen) 96.38% 79.80% 85.22% 93.11%
Recall accuracy (normal) 83.04% 98.03% 97.32% 96.64%
Sensitivity 0.9649 0.9605 0.9654 0.9447
Specificity 0.9883 0.9868 0.9884 0.9816
F1 score 89.7995 95.33464 94.43444 95.80451
Kappa 0.949 0.948 0.941 0.957
Model training time (minutes) 233.4027 238.8658 230.1585 420.3642
Min test loss 0.005284 0.005602 0.008608 0.006861
Total trainable parameters 55,58,116 55,69,684 7,00,036 55,69,684
Input size (MB) 0.19 0.19 0.19 0.19
Forward/backward pass size (MB) 4.62 4.18 4.22 4.18
Params size (MB) 21.2 21.25 2.67 21.25
Estimated total size (MB) 26.01 25.61 7.08 25.61
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Fig. 11   Performance of five, seven, nine-layer models and with image enhancement CNN model: a training and validation losses over successive 
training steps; b validation loss and validation accuracy over successive training steps
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the increase in the number of CNN layers in the successive 
models (Fig. 11). The saturation in losses is achieved at later 
stages with the increase in the number of layers. The slope 
is more gradual when two models are compared in Fig. 13, 
which helps the model learn over greater epochs and requires 
more features for classification.

5.4 � Variations due to image enhancement

In the final model, the performance was evaluated using 
the seven-layer CNN model with an image-enhanced input 
(Fig. 13 and Table 4). During the model’s training, 8960 
steps with each batch size of 84 scans per step and 0.001 
learning rate were performed. In a multiclass comparison 
of CNV, drusen, DME, and normal, the model attained an 
overall accuracy of 97.14%, F1 score of 95.8045, and kappa 
value of 0.957. These values show a slight improvement 
in performance measures by advancing our preprocess-
ing algorithm and better results than all the three models. 
The minimum training, validation, and testing losses are 
similar to the other models. However, the training time has 
increased due to an increase in the model’s processing steps 
and complexity. Figure 11 shows a decrease in losses, and 
the increase in accuracy becomes more gradual than the 
other models. In this model, higher classification accuracy 

for CNV, DME, and normal classes can be achieved than 
others with decreased value for drusen. This model also had 
poor performance in terms of sensitivity, which decreased to 
0.94 from 0.96 compared with the other models. The train-
ing time increased due to the additional preprocessing of 
the image.

6 � Conclusion

This study presents a comprehensive and systematic imple-
mentation of deep learning techniques (CNN) for accurately 
classifying and identifying ocular pathological structures 
for CNV, drusen, and DME versus normal. The framework 
utilizes OCT images of the retina, which are preprocessed 
and processed for noise removal, contrast adaptation for the 
edge, and layer structure for the retinal structure edge and 
layer enhancement. This image dataset is analyzed using 
three different CNN models (of five, seven, and nine lay-
ers) with an ADAM optimizer to classify and identify the 
four ocular pathologies. The output results can show the 
distinction between drusen, CNV, DME, and normal scans 
with very high F1 score, precision, accuracy, and sensitiv-
ity with a considerable decrease in time taken for detec-
tion and epochs. After the different layered CNN models 

Fig. 12   Predictions on random OCT samples using a seven-layer model
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are evaluated, we could identify the detrimental parameters 
affecting the algorithm’s operations. The seven-layer CNN 
model is the one with balanced statistics and is suggested by 
our proposed work for use. The proposed approach has an 
accuracy of 96.5%. The primary goal is to help the patients 
and eye specialists in making an automated and fast diagno-
sis with increased accuracy, performance, and quicker and 
efficient detection, which can greatly benefit the patients.

7 � Limitation and future scope

This research successfully demonstrated the detection of 
four ocular diseases from the OCT images with an accu-
racy of 96%. Certain limitations of this study are as follows: 
(1) the dataset which we had selected for the project had 
scans collected from a single demographic region and did 
not contain diversity in terms of eye structure observed in 
people of different races; (2) the images taken for this pro-
ject specifically included the OCT scans, while for other 
diseases, the scans may not be OCT but fundus photographs 
or angiographic pictures, which may require the project to be 
trained again for such types images; (3) the scans taken from 
the dataset consisted of all of them in the same scanning 

settings or techniques. Therefore, the efficacy of this model 
for different systems is still not fully established.

We can further improve this work by exploring various 
options for dimensional reduction. In this work, we reduced 
the size of the input images to 128 × 128 pixels to minimize 
the input parameters and employed max pool layers in the 
models, which also decreases the dimensions of the feature 
matrix over successive steps.

Further extension of the model may include analyzing 
the other ocular pathology class, such as diabetic retinopa-
thy, AMD, and glaucoma. The model currently operates on 
the OCT images for the classification; however, it would be 
beneficial to modify the model to operate on the OCT angi-
ography and fundus photographs. Models can be developed 
or explored to consider the biological variations in eye and 
retina structure.
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