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Abstract
There are many techniques for conducting image analysis and pattern recognition. This papers explores a way to optimize 
one of these techniques—image segmentation—with the help of a novel hybrid optimization algorithm. Image segmentation 
is mostly used for a semantic segmentation of images, and thresholding is one the most common techniques for performing 
this segmentation. Otsu’s and Kapur’s thresholding methods are two well-known approaches, both of which maximize the 
between-class variance and the entropy measure, respectively, in a gray image histogram. Both techniques were developed 
for bi-level thresholding. However, these techniques can be extended to multilevel image thresholding. For this to occur, 
a large number of iterations are required to account for exact threshold values. However, various optimization techniques 
have been used to overcome this drawback. In this study, a hybrid firefly and particle swarm optimization algorithm has 
been applied to yield optimum threshold values in multilevel image thresholding. The proposed method has been assessed 
by comparing it with four well-known optimization algorithms. The comprehensive experiments reveal that the proposed 
method achieves better results in term of fitness value, PSNR, SSIM, FSIM, and SD.

Keywords Image segmentation · Multilevel thresholding · Kapur’s function · Otsu’s function · Hybrid optimization

1 Introduction

There are many ways to conduct an image analysis or run 
pattern recognition. The use of image segmentation is grow-
ing, particularly because digital cameras are becoming more 
accessible for implementations. The process of image seg-
mentation divides an image into homogenous regions and 
classifies the pixels. Some of the practical applications of 
image segmentation are satellite images [1], agriculture 
automation [2], medical images [3, 4], traffic control systems 
[5] and optical character recognition (OCR) [6].

An RGB image consists of three primary color channels 
[7]: red (R), green (G), and blue (B). In most cases RGB 
images are converted to grayscale because intensity can still 

be measured, and it is considered sufficient to showcase the 
possible performance gain in image segmentation.

There is a wide variety of image segmentation techniques, 
and thresholding methods based on image histograms are 
some of the most widely used segmentation methods. These 
histogram-based methods are very fast and effective com-
pared to other existing segmentation methods because they 
only need to pass through the pixel once [8, 9]. Moreover, 
bi-level thresholding divides image pixels into two differ-
ent homogenous regions, whereas multilevel thresholding 
divides image pixels into many homogenous regions. The 
between-class variance method (Otsu’s method) [10] and 
the entropy criterion method (Kapur’s method) [11] are two 
of the most well-known thresholding algorithms. Although 
these algorithms have been developed for bi-level threshold-
ing, these algorithms can be extended for multilevel image 
thresholding. Because of iterative processes of these meth-
ods, which need to increase due to the thresholding values, 
the computational complexity of the algorithm increases 
exponentially; there are also problems regarding the length 
of time it takes these models to find the optimal solution. 
To overcome this obstacle we have turned to evolutionary 
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algorithm models [12–19]. Many of these models have spe-
cifically tackled the multilevel thresholding problem.

Research on multilevel image thresholding based on opti-
mization methods has expanded over the past few years, with 
researchers building off of Otsu’s and Kapur’s works and 
integrating new techniques. Sathya and Kayalvizhi [20–22] 
developed a multilevel image thresholding method based 
on the minimum variance and maximum entropy criterions 
using an original bacterial foraging algorithm, an adaptive 
bacterial foraging algorithm, an amended bacterial forag-
ing algorithm, and a modified bacterial foraging algorithm. 
Yin [23] created a particle swarm optimization (PSO) algo-
rithm for the multilevel minimum cross entropy criterion, 
while Horng and Jiang [24] applied the ABC optimization 
algorithm to optimize the maximum cross entropy crite-
rion. The multilevel thresholding method of Oliva et al. 
[25], based on Otsu’s and Kapur’s works, uses the harmony 
search optimization algorithm; Ayala and et al. [26] also 
employed an improved beta differential evolution algorithm 
to optimize Otsu’s minimum variance criteria. Both Mup-
pidi [27] Chao and et al. [15] suggested multilevel image 
thresholding techniques based on fuzzy entropy: Muppidi’s 
utilizes a genetic algorithm (GA), while Chao et al.’s uses a 
modified gravitational search algorithm. Pal and et al. [28] 
worked with the spider monkey optimization algorithm to 
generate a multilevel thresholding technique based on Otsu’s 
and Kapur’s works, and Khairuzzaman and Chaudhury [29] 
brought together Kapur’s entropy and Otsu’s between-class 
variance for image segmentation using the grey wolf opti-
mizer (GWO). More recently, Rahkar-Farshi [19] employed 
an animal migration optimization (AMO) algorithm for a 
multilevel thresholding method that maximizes Otsu’s and 
Kapur’s objective functions. These are all novel solutions, 
but there are still issues that need to be solved and opti-
mized, such as computational complexity and the amount 
of time it takes to run the segmentation.

No optimization scheme can satisfy all aspect of all opti-
mization and search problems. The no-free-lunch (NFL) 
theorem [30] states that the advantages gained by a optimi-
zation algorithm are offset by other problems and that no 
one algorithm works the best for all situations. Therefore, 
we need to develop new algorithms and try to enhance the 
performance of existing algorithms to tackle new class of 
problems. In this paper, a hybrid firefly and PSO (HFPSO) 
[31] algorithm is utilized to address the multilevel image 
thresholding problem.

The rest of the paper is organized as follows: In Sect. 2, 
Otsu’s and Kapur’s methods are described; in Sect. 3, we 
give a detailed overview of the particle swarm optimization 
(PSO) and the firefly optimization algorithms and intro-
duce our hybrid PSO and firefly optimization algorithm. In 
Sect. 4, we describe our hybrid method in detail, in Sect. 5, 
we provide the comprehensive experimental results and 

discussion, and in Sect. 6 we give a summary and some 
concluding remarks.

2  Otsu’s and Kapur’s methods

The image segmentation process uses thresholding meth-
ods that are specifically created to maximize an objective 
function(s); in this case, the objective functions set forth 
by Otsu and by Kapur were used to determine the optimal 
thresholding values. The algorithms work to maximize these 
objective functions, and the thresholding results in a histo-
gram that displays segmented groups that reflect the desired 
objectives of the thresholding process. {0,1,⋯ (L − 1)} is 
a range given to show the probability of ith gray level that 
is mathematically calculated per pi = hi∕(m × n) where hi 
indicates the number of pixels that corresponds gray level 
i,0 ≤ i ≤ (L − 1) and where M and N correspond to the 
height and width of the image, respectively. According to 
Otsu’s method, the objective function for bi-level threshold-
ing is shown as:

where,

with,

and,

�T =
L−1
∑

i=0

i pi,

Therefore, it is easy to show that:
�0�0 + �1�1 = �T and �0 + �1 = 1.
Otsu’s objective function can be extended to multilevel 

model as follows:

where

⋮

(1)J
(

t1
)

= �0 + �1,

�0 = �0(�0 − �T )
2 and �1 = �1(�1 − �T )

2,

�0 =

t1−1
∑

i=0

pi, �0 =

t1−1
∑

i=0

i pi

�0

and �1 =

L−1
∑

i=t1

pi, �1 =

L−1
∑

i=t1

i pi

�1

,

(2)J
(

t1, t2,⋯ , tm
)

= �0 + �2 +⋯ �m,

�0 = �0(�0 − �T )
2,

�1 = �1(�1 − �T )
2,

�2 = �2(�2 − �T )
2,

�m = �m(�m − �T )
2,



127A hybrid firefly and particle swarm optimization algorithm applied to multilevel image…

1 3

with

⋮

[t1, t2,⋯ , tm ] states the m optimal thresholds for a gray 
scale image. There are some constraints, which are defined 
as:t1 < t2 < ⋯ < tm.

The objective function according to Kapur’s method for 
bi-level thresholding is shown as:

where

where  H0 and H1 are partial entropies of histograms. The 
threshold value t1 is the gray level that maximizes the objec-
tive function given in Eq. (3). Moreover, Kapur’s entropy 
criterion can be extended for multilevel thresholding through 
the following equation:

where,

⋮
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3  Hybrid firefly and particle swarm 
optimization

Since each optimization algorithm has its own advantages 
and disadvantages, a hybrid that combines these algorithms 
would allow for an increased robustness and more flexibility 
to tackle complex problems [32]. This section is devoted 
to a review of a hybrid algorithm (HFPSO) that combines 
the firefly and the particle swarm optimization algorithms, 
originally proposed by Aydilek [31]. In the following, we 
first review some basic principles of the PSO and firefly 
algorithms, then discuss the combination these two algo-
rithms in a hybrid model.

3.1  Particle swarm optimization

Particle swarm optimization (PSO) is a population-based 
optimization algorithm that was introduced by Russell Eber-
hart and James Kenned in [6]. The model was originally 
inspired by the collective movements exhibited by bird and 
fish swarms while searching for food or escaping from per-
ceived threats.

The PSO algorithm has shown better performance in 
comparison to many other search algorithms because it is 
quick to find the results, uses less parameters, and has a 
lower chance of getting stuck at the local optima. The PSO 
algorithm starts with a bunch of random solutions, which 
are called particles, and a community of particles is called a 
crowd or flock. Initialization of ith particle is mathematically 
calculated per:xi = lb + rand × (ub − lb). Here ub and lb are 
lower and upper bund of the problem space. The search pro-
cess starts by giving each particle a random value in the 
solution space. At every iteration each individual particle 
position xi will get updated based on its best position p1 and 
the best position of the other particles gbest in its topologi-
cal neighborhood. The new position will be found by adding 
velocity vector vt

i
 . PSO is an iterative algorithm; the position 

components are updated at each iteration by calculating the 
particle’s velocity components using Eq. (5a).

Here vt
i
 and xi represent the velocity and position of ith 

particle at iteration t respectively, w is the inertia weight, 
which plays an important role in the exploration/exploitation 

Hm = −

L−1
∑

i=tm

pi

�m

ln
pi

�m

, �m =

L−1
∑

i=tm

pi,

(5a)vt
i
= wvt−1

i
+ R1C1

(

pbesti − xi
)

+ R2C2

(

gbest − xi
)

.

(5b)xi = xi + vt
i
.
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aspects of the PSO algorithm, and pbesti and gbest represent 
the position of the best solution found so far by ith particle 
and the best overall solution, respectively.R1 and R2 are two 
random numbers generated from a uniformly distributed 
range [0,1]. C1 and C2 are the cognition and social learning 
factors, respectively, since C1 is multiplied by the distance 

to the best position of an individual particle and C2 is multi-
plied by the distance to the best position among all the parti-
cles. The main steps of the PSO algorithm can be expressed 
in the form of the pseudo-code covered in Algorithm 1.

3.2  The firefly optimization algorithm

The firefly algorithm (FA) is a well-known optimization 
algorithm based on swarm intelligence and was first intro-
duced in 2008 by Yang [33], who was inspired by the natu-
ral behavior of fireflies. Fireflies use their flashing lights 
for several reasons: the light can help them find a mating 
partner based on the pattern of flashing, it can be a means to 
attract prey, or it can be a way to deter predators. The biolu-
minescence light is produced when oxygen combines with 
calcium, the luciferin enzyme, and adenosine triphosphate 
[34]. The communication of fireflies through flashing lights 
and their subsequent behaviors inspired Xin-She Yang to 
propose a metaheuristic optimization algorithm. The firefly 
algorithm is not a detailed simulation of the behavior of 
fireflies but rather an idealized version of it. For this pur-
pose, one need to assume that (1) all the fireflies are uni-
sex (so there is no difference between females and males in 
terms of attraction); (2) mutual attraction between two fire-
flies is proportional to the intensity of the light emitted and 
observed by each of them; and (3) the brightness depends on 

the objective function, which is the subject of optimization. 
Therefore, the intensity of the light produced by each firefly 
depends on how optimal its position is and is proportional 
to its fitness value. In each itaration the intensity of the light 
of each firefly will be compared to the intensity of the light 
of the other fireflies, and those which are less bright will 
move towards brighter ones. The amount of light perceived 
by other fireflies depends on the distance; fireflies receive 
lights with varying intensities. The firefly with best fitness 
will search the space in a random manner to find the opti-
mum solution. The mathematical formula that describes the 
motion of a less bright firefly moving toward the brighter 
one is given as follows:

Here �0 is the coefficient of the maximum attraction 
between fireflies at positions xi and xj , with Euclidean dis-
tance rij . γ is the light absorption coefficient, and α is the 
coefficient of random displacement vector. The pseudo-code 
of the firefly algorithm is given in Algorithm 2.

(6)xi = xi + �0e
−�r2

i,j

(

xj − xi
)

+ �(rand − 0.5).
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3.3  Hybrid firefly and PSO

It has been demonstrated that for some problems the PSO 
algorithm has faster convergence in comparison to other 
algorithms. However, it has the potential to slow down as 
it approaches the global optimal point. Since the algorithm 
adjusts itself at each iteration with the global best posi-
tion, this increases the risk of getting stuck in the region 
of local optima. The other drawback to the PSO algorithm 
is its dependency on search parameters. Different param-
eter settings can lead to different convergence speeds [35]. 
Many variants of the PSO algorithm have been proposed 
to enhance its performance, with the main goal being to 
balance the exploratory and exploitatory aspects. These 
proposals include changes in the strategy of the evolution, 
tuning the parameters, changing the updating rules, and 
incorporating better evolving strategies. For the method pro-
posed in this paper, the velocity, calculated using Eq. (5a), 
will be substituted in the formula of Eq. (5b) to update the 
position of the particles in the next stage. If this velocity is 
too slow or too fast, it can lead to difficulties such as oscil-
lation around the solution, which can cause the speed of 
convergence to decrease. To tackle this problem, we need 
to adjust the inertia weight w and acceleration coefficients 
( c1, c2 ) and then calculate velocity according to Eq. (5a). 
These adjustments are challenging problem: the FA does not 
include velocity in its algorithm, but it has also been shown 
that the FA is more efficient and has higher success rate in 

multimodal problems in comparison to PSO [33]. The intent 
behind the hybrid firefly and particle swarm optimization 
algorithm (HFPSO) [31] algorithm proposed by Aydilek is 
to benefit from the strengths of each of these algorithms. The 
PSO algorithm will help with exploration, while the FA will 
take care of local search. Meanwhile the inertia weight will 
be updated dynamically.

The first step in the HFSPO algorithm is to initialize all of 
the parameters. Then the positions and velocities of particles 
will be initialized to random values (in the predetermined 
ranges). The fitness, global best (gbest), and personal best 
( pbesti ) will be calculated as the next step. Then the parti-
cle’s fitness in the current stage and its last iteration accord-
ing to Eq. (8) will be compared. If the fitness value of parti-
cle is the same or improved, the FA will take over and local 
search will start; otherwise, the PSO algorithm continues 
according to Eq. 5. IF the FA algorithm takes over, then the 
position and velocity will be calculated according to Eqs. ((9 
and ((10. In the next step the position and velocity ranges are 
checked for all the fireflies and particles. If the fitness value 
reaches the desired value, the algorithm will be terminated, 
and the final result will be given as output.

(7)w = wi −

(

wi − wi

iterationmax

)

× iteration.

(8)f (i, t) =

{

true, iffitness(particlet
i
) ≤ gbestt−1

false, iffitness
(

particlet
i

)

> gbestt−1.
.
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Here, indices i and t refer to the number of the step and 
the number of the particle, respectively. Choosing the right 

(9)
xi(t + 1) = xi(t) + B0e

−�r2
ij

(

xi(t) − gbestt−1
)

+ �

(

r and −
1

2

)

.

(10)Vi(t + 1) = xi(t + 1) − xi−temp

strategy to control the inertial weight w parameter is helpful 
in balancing the exploratory and exploitary aspects of the 
PSO algorithm. Here a linearly decreasing inertia weight is 
implemented, which will help the PSO to converge better 
[36]. The pseudo-code of HFPSO is given below:

Fig. 1  Images used for performance evaluation

Table 1  Parameter settings for 
the optimization algorithms

Algorithm Initial values of control parameters

HFPSO (C1 and C2) = 1.49445, maximum velocity (Vmax) = 0.1 × search range (Xmax − Xmin), 
where minimum velocity (Vmin) =  − Vmax. Inertia weight (w), wi = 0.9, wf = 0.5 are 
used according to Eq. (7). �

0
 =1, �=5, �

0
 =0.5

AMO Neighborhood length = 5,� is a random number controlled by a Gaussian distribution
PSO Cognitive coefficient (C1 and C2) = 0.88, inertia weight (W) = 0.91,
GA Roulette Selection, CR = 0.8, Gaussian Mutation scale = 2 shrink = 1
FA �

0
=1, �=5, �

0
 =0.5
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Fig. 2  Segmented Cameraman with located thresholds

4  Multilevel thresholding using HFPSO

In this section we will use the HFPSO algorithm to search 
in the threshold’s space. The aim of the optimization is to 
find the thresholds that will give the desired segmenta-
tion of the histogram. This can be done by maximizing the 
Otsu objective function or Kapur’s entropy criterion given 

in Eqs. (2) and (4), respectively. The dimension (D) of the 
optimization algorithm is equal to the number of thresholds 
(x = [t1, t2, ..., tD]). The gray level q in an image is bounded 
from below by 0, and its upper bound is 255 (0 ≤ q < L 
− 1 = 255). Thresholds are then subjected to the constraint 
1 < t1 < t2 < ... < tD < L.
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In the HFPSO algorithm the first step is to initialize the 
thresholds randomly as follows:

(11)xj,i,0 = xj,min + randj,i[0,1] × (xj,max + xj,min).

The randomizer r andi,j gives a number that is randomly 
generated from a uniform distribution in the interval [0,1]. 
Here i is the number of the particles ( i = 1, …, N). The 
number of dimensions is shown by j = 1,2,… ,D.

Fig. 3  Segmented Lena with located thresholds

Fig. 4  Segmented Livingroom with located thresholds
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5  Experimental results and discussion

To compare different algorithms with the proposed algo-
rithm, we carried out computations using MATLAB R2018 

on PC with Intel Core (TM) i7- 3632QM 2.2 GH processor 
and 8 gigabytes of RAM. We evaluated the efficiency of 
these algorithms by applying them to the benchmark images: 
“Cameraman,” “Lenna,” “Livingroom,” “Hunter,” “Pepper,” 
and “Mandrill.” The images are shown in Fig. 1. These 

Fig. 5  Segmented Hunter with located thresholds

Fig. 6  Segmented pepper with located thresholds
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images are difficult to segment using the more traditional, 
bi-level thresholding methods because their gray scale image 
histograms are multimodal. The multimodal histograms of 
“Lenna” and “Pepper” exhibit many valleys and peaks, while 
“Livingroom” and “Hunter” are characterized by extreme 
changes in the number of pixels. “Mandrill’s” histogram 
has a smooth distribution in the gray level in comparison 
to “Cameraman.”

The performance of the algorithm that we implemented 
here depends on the parameters. To perform a fair com-
parison among the proposed algorithm and the other algo-
rithms—AMO, PSO, GA, and FA—we used the follow-
ing parameters: the number of agents (animals, particles, 
chromosomes, and fireflies in AMO, PSO, GA, and FA, 
respectively) and number of maximum generations for all 
algorithms is taken to be 200. Table 1 contains the param-
eters of the different optimization algorithms we used in the 
experiments.

To compare the outcome of different algorithms, we eval-
uated them both visually and numerically. Figure 2 depicts 
the segmented version for different levels of thresholding 
(m = 2, 3, 4, and 5).

Tables 2, 3, 4, 5, 6, 7 give the numerical evaluation of 
algorithms. The performance of the algorithms was evalu-
ated using well-known indicators: peak signal to noise 
ratio (PSNR), structural similarity index measure (SSIM), 
Feature SIMilarity (FSIM), standard deviation (SD), and 

fitness value. The mathematical representation of PSNR is 
as follows:

PSNR = 10log10(
255

MSE
) , with mean squared error

where I(x, y) is the value of a pixel of original image 
located at (x, y) , and 

∼

I (x, y) is the segmented image value 
at (x, y) . The size of the images is M × N. Also, SSIM is 
calculated using the following equation:

where �seg and �I indicate the mean gray value of the 
segmented and original image, respectively.�seg and �I are 
the mean standard deviation of the segmented and original 
image, respectively. �I,seg is the covariance of I and Seg. 
Here, c1 and c2 are replaced by 6.5025 and 58.52252, respec-
tively. Additionally, FSIM is computed as follows:

where Ω indicates the entire domain of the image and 
their value is calculated as foloows:

(12)MSE =
1

M × N

M−1
∑

x=0

N−1
∑

y=0

[I(x, y)−
∼

I (x, y)]]
2

.

(13)SSIM(I, Seg) =
(2�I�seg + c1)(2�I,seg + c2)

(�2
I
+ �2

seg
+ c1)(�

1
I
+ �2

seg
+ c2)

(14)FSIM =

∑

w∈Ω SL(w)PCm(w)
∑

w∈Ω PCm(w)
,

Fig. 7  Segmented Mandrill with located thresholds
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The gradient magnitude (GM) of a digital image and is 
defined by G , and the value of PC that is the phase congru-
e n c e  i s  c o m p u t e d  p e r :  G =

√

G2
x
+ G2

y
 a n d 

PC(w) = E(w)∕(� +
∑

n An(w)) , here An(w) indicates the 
local amplitude on scale n and E(w) is the magnitude of the 
response vector in w on n, � is a small positive number and 
finally, PCm(w) = max(PC1(w),PC1(w)) . After all to calcu-
late the standard deviation (SD), we use the following 
formula:

where N is the number of runs, xi is the fitness value 
obtained in ith run, and � is mean value obtained over all 
runs of the algorithm.

(15)

S
L
(w) = S

PC
(w)S

G
(w)S

PC
(w)

=
2PC

1
(w)PC

2
(w) + T

1

PC
2

1
(w) + PC

2

2
(w) + T

1

S
G
(w)

=
2G

1
(w)G

2
(w) + T

2

G
2

1
(w) + G

2

2
(w) + T

2

.

(16)� =
1

N

N
∑

i=1

(

xi − �
)2
,

We used the AMO, PSO, GA, and FA algorithms to opti-
mize the corresponding objective functions. These results 
were obtained by applying the algorithms to the 6 test 
images; we ran each algorithm 30 times over the test images. 
In Table 2, we report the thresholds and the corresponding 
fitness values, which were obtained and averaged from the 
30 runs for each algorithm on each test image, for Kapur’s 
objective function. Additionally, Table 5 shows the corre-
sponding thresholds and average fitness values for Otsu’s 
objective function.

Figures (2, 3, 4, 5, 6, 7) show the segmented “Camera-
man”, “Lenna”, “Livingroom”, “Hunter”, “Pepper” and 
“Mandrill” images using Otsu’s method with various “m” 
levels. These images highlight the segments identified using 
a different color palette than the original image. The figures 
to the right of each image depict the histograms, which are 
superimposed (shown by dashed vertical lines) with mul-
tilevel thresholds. These images show that increasing the 
number of the levels (m) helps identify more details in the 
picture. However, this also increases the risks of splitting a 
segment in the image into many more segments. For each 
image, we first ranked the fitness values for each number 
of thresholds of each algorithm. After taking the average 

Table 3  Comparison of 
standard deviation for based on 
Kapur

Test images m Standard deviation

HFPSO AMO PSO GA FA

Cameraman 2 0 0 0 0 0.000445
3 0 0.000058 0 0.000058 0.001732
4 0 0 0 0.000442 0.017537
5 0 0.017974 0 0.026591 0.030404

Lenna 2 0 0 0 0 0.000284
3 0 0.000029 0 0 0.001294
4 0.003119 0.010953 0.010367 0.006775 0.008164
5 0 0.001825 0 0.001235 0.030825

Livingroom 2 0 0.000062 0 0 0.000209
3 0 0.135441 0.249758 0.001005 0.006737
4 0 0.130444 0.073166 0.004961 0.009016
5 0.026311 0.018067 0 0.017017 0.024339

Hunter 2 0 0 0 0 0.000065
3 0.000139 0.000944 0 0.000346 0.002245
4 0 0.001416 0.108648 0.000914 0.012181
5 0 0.047041 0.079500 0.009460 0.038341

pepper 2 0 0 0 0 0.000148
3 0 0.000005 0 0.000004 0.001034
4 0.015222 0.018778 0.020611 0.016801 0.009540
5 0 0.001212 0 0.000348 0.017309

Mandrill 2 0 0 0 0 0.000086
3 0 0.000052 0 0 0.001111
4 0.002304 0.002267 0.001512 0.002195 0.004870
5 0 0.008513 0 0.004116 0.017606

Average rank 1,375 3,125 1,916,667 2,125 4,416,667
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1 3

over the ranks of each algorithm, the highest averaged rank 
is bolded.

5.1  Kapur’s function

It is clear from Table 2 that PSO produced very competitive 
results in comparison to HFPSO; however, HFPSO overall 
surpasses PSO in performance evaluation. From Tables 2, 
3, 4, it is seen that the HFPSO ranks first in fitness value, 
SD, PSNR, and SSIM. Likewise, GA, AMO, HFPSO, PSO, 
and FA rank first to last respectively in terms of FSIM. Also, 
Table 3 reveals that in most of the cases the obtained SD 
values of the HFPSO are zero. This shows that HFPSO is 
a more stable algorithm in comparison to other algorithms 
in this study. On the other hand, FA ranks worst in fitness 
value, SD, and PSNR. Moreover, AMO ranks fourth in all 
criteria, whereas GA ranks second, alongside PSO, in fitness 
value. PSO ranks second in SD, and GA’s rank is third. GA 
ranks second in PSNR, whereas PSO ranks third.

5.2  Otsu’s function

Table 5 shows that HFPSO and PSO outperform the other 
algorithms in fitness value and that FA performs the worst. 
GA and AMO rank second and fourth, respectively. Fur-
thermore, based on Table 6, HFPSO is the most stable algo-
rithm because its SD is 0 in all levels of segmentation in all 
the images. PSO ranks second in SD value, whereas GA, 
AMO, and FA rank third to fifth, respectively. For PSNR, 
GA performs the best and HFPSO ranks second, where PSO. 
AMO and FA rank fourth and fifth, respectively. Moreo-
ver, HFPSO and PSO rank first according to SSIM. Like-
wise, HFPSO ranks First alongside PSO in terms of FSIM 
(Table 7).

The experimental results show that our proposed method 
of an HFPSO algorithm achieves better fitness value and 
PSNR. It also shows better stability in comparison to 
the other optimization algorithms for multilevel image 
segmentation.

Table 6  Comparison of 
standard deviation based on 
Otsu

Test images Number of 
thresholds

Standard deviation

HFPSO AMO PSO GA FA

Cameraman 2 0 0 0 0 0.019945
3 0 8.441050 0 0 0.674793
4 0 8.884541 0 0.185656 1.799805
5 0 4.670287 0 0.710497 3.154229

Lenna 2 0 0 0 0 0.034656
3 0 0.019827 0 0 0.435547
4 0 0.113073 0 0.028327 1.735644
5 0 0.828885 0.374665 0.483083 2.737694

Livingroom 2 0 0 0 0 0.044281
3 0 0.001544 0 0 0.686807
4 0 0.104463 0 0.012190 2.768423
5 0 0.934447 0 0.468806 2.599497

Hunter 2 0 0 0 0 0.051701
3 0 0.040290 0 0 0.552600
4 0 0.335195 0 0 1.053928
5 0 3.487077 0 0 2.208677

pepper 2 0 0 0 2.4695e + 03 0.077890
3 0 0 0 2.6367e + 03 0.367532
4 0 1.223259 0 2.6984e + 03 1.191859
5 0 0.701220 0 2.7425e + 03 2.197863

Mandrill 2 0 0 0 0 0.035860
3 0 0.055361 0 0 0.539065
4 0 0.144469 0 0.004483 3.460228
5 0 1.990693 0 0.093835 2.463172

Average rank 1 3,25 1,041,667 2,333,333 4,625
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6  Conclusion

In this study, a multilevel image thresholding method has 
been proposed using a hybrid firefly and particle swarm 
optimization algorithm that maximizes Otsu’s and Kapur’s 
objective functions. The proposed method has been assessed 
by comparing it with four well-known optimization algo-
rithms (AMO, PSO, GA, and FA) for six commonly used 
benchmark images. The visual experiments show that the 
thresholds are mostly located in valleys between two peaks.

The proposed HFPSO algorithm is extremely stable. The 
SD results are zero in Otsu’s objective function, and it was 
ranked first according to Kapur’s method. Moreover, HFPSO 
ranked first in fitness value for both Otsu’s and Kapur’s 
methods. In terms of the PSNR performance criterion, for 
Otsu’s objective function, HFPSO came in second, behind 
GA and for Kapur’s objective function, HFPSO ranks first. 
HFSPO performs well in terms of SSIM: it ranks first in 
Kapur’s method and first alongside PSO in Otsu’s method. 
On the other hand, for FSIM, HFPSO is tied with PSO 
for first under Otsu and is ranked third under Kapur. The 
comprehensive experiments reveal that this hybrid method 
achieves overall better results in term of fitness value and 
PSNR and that its SD is the best out of all the algorithms.
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