Multimedia Systems (2021) 27:125-142
https://doi.org/10.1007/500530-020-00716-y

REGULAR PAPER q

Check for
updates

A hybrid firefly and particle swarm optimization algorithm applied
to multilevel image thresholding

Taymaz Rahkar Farshi' - Ahad K. Ardabili?

Received: 1 October 2020 / Accepted: 29 October 2020 / Published online: 19 November 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

There are many techniques for conducting image analysis and pattern recognition. This papers explores a way to optimize
one of these techniques—image segmentation—with the help of a novel hybrid optimization algorithm. Image segmentation
is mostly used for a semantic segmentation of images, and thresholding is one the most common techniques for performing
this segmentation. Otsu’s and Kapur’s thresholding methods are two well-known approaches, both of which maximize the
between-class variance and the entropy measure, respectively, in a gray image histogram. Both techniques were developed
for bi-level thresholding. However, these techniques can be extended to multilevel image thresholding. For this to occur,
a large number of iterations are required to account for exact threshold values. However, various optimization techniques
have been used to overcome this drawback. In this study, a hybrid firefly and particle swarm optimization algorithm has
been applied to yield optimum threshold values in multilevel image thresholding. The proposed method has been assessed
by comparing it with four well-known optimization algorithms. The comprehensive experiments reveal that the proposed

method achieves better results in term of fitness value, PSNR, SSIM, FSIM, and SD.
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1 Introduction

There are many ways to conduct an image analysis or run
pattern recognition. The use of image segmentation is grow-
ing, particularly because digital cameras are becoming more
accessible for implementations. The process of image seg-
mentation divides an image into homogenous regions and
classifies the pixels. Some of the practical applications of
image segmentation are satellite images [1], agriculture
automation [2], medical images [3, 4], traffic control systems
[5] and optical character recognition (OCR) [6].

An RGB image consists of three primary color channels
[7]: red (R), green (G), and blue (B). In most cases RGB
images are converted to grayscale because intensity can still
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be measured, and it is considered sufficient to showcase the
possible performance gain in image segmentation.

There is a wide variety of image segmentation techniques,
and thresholding methods based on image histograms are
some of the most widely used segmentation methods. These
histogram-based methods are very fast and effective com-
pared to other existing segmentation methods because they
only need to pass through the pixel once [8, 9]. Moreover,
bi-level thresholding divides image pixels into two differ-
ent homogenous regions, whereas multilevel thresholding
divides image pixels into many homogenous regions. The
between-class variance method (Otsu’s method) [10] and
the entropy criterion method (Kapur’s method) [11] are two
of the most well-known thresholding algorithms. Although
these algorithms have been developed for bi-level threshold-
ing, these algorithms can be extended for multilevel image
thresholding. Because of iterative processes of these meth-
ods, which need to increase due to the thresholding values,
the computational complexity of the algorithm increases
exponentially; there are also problems regarding the length
of time it takes these models to find the optimal solution.
To overcome this obstacle we have turned to evolutionary
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algorithm models [12-19]. Many of these models have spe-
cifically tackled the multilevel thresholding problem.

Research on multilevel image thresholding based on opti-
mization methods has expanded over the past few years, with
researchers building off of Otsu’s and Kapur’s works and
integrating new techniques. Sathya and Kayalvizhi [20-22]
developed a multilevel image thresholding method based
on the minimum variance and maximum entropy criterions
using an original bacterial foraging algorithm, an adaptive
bacterial foraging algorithm, an amended bacterial forag-
ing algorithm, and a modified bacterial foraging algorithm.
Yin [23] created a particle swarm optimization (PSO) algo-
rithm for the multilevel minimum cross entropy criterion,
while Horng and Jiang [24] applied the ABC optimization
algorithm to optimize the maximum cross entropy crite-
rion. The multilevel thresholding method of Oliva et al.
[25], based on Otsu’s and Kapur’s works, uses the harmony
search optimization algorithm; Ayala and et al. [26] also
employed an improved beta differential evolution algorithm
to optimize Otsu’s minimum variance criteria. Both Mup-
pidi [27] Chao and et al. [15] suggested multilevel image
thresholding techniques based on fuzzy entropy: Muppidi’s
utilizes a genetic algorithm (GA), while Chao et al.’s uses a
modified gravitational search algorithm. Pal and et al. [28]
worked with the spider monkey optimization algorithm to
generate a multilevel thresholding technique based on Otsu’s
and Kapur’s works, and Khairuzzaman and Chaudhury [29]
brought together Kapur’s entropy and Otsu’s between-class
variance for image segmentation using the grey wolf opti-
mizer (GWO). More recently, Rahkar-Farshi [19] employed
an animal migration optimization (AMO) algorithm for a
multilevel thresholding method that maximizes Otsu’s and
Kapur’s objective functions. These are all novel solutions,
but there are still issues that need to be solved and opti-
mized, such as computational complexity and the amount
of time it takes to run the segmentation.

No optimization scheme can satisfy all aspect of all opti-
mization and search problems. The no-free-lunch (NFL)
theorem [30] states that the advantages gained by a optimi-
zation algorithm are offset by other problems and that no
one algorithm works the best for all situations. Therefore,
we need to develop new algorithms and try to enhance the
performance of existing algorithms to tackle new class of
problems. In this paper, a hybrid firefly and PSO (HFPSO)
[31] algorithm is utilized to address the multilevel image
thresholding problem.

The rest of the paper is organized as follows: In Sect. 2,
Otsu’s and Kapur’s methods are described; in Sect. 3, we
give a detailed overview of the particle swarm optimization
(PSO) and the firefly optimization algorithms and intro-
duce our hybrid PSO and firefly optimization algorithm. In
Sect. 4, we describe our hybrid method in detail, in Sect. 5,
we provide the comprehensive experimental results and
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discussion, and in Sect. 6 we give a summary and some
concluding remarks.

2 Otsu’s and Kapur’s methods

The image segmentation process uses thresholding meth-
ods that are specifically created to maximize an objective
function(s); in this case, the objective functions set forth
by Otsu and by Kapur were used to determine the optimal
thresholding values. The algorithms work to maximize these
objective functions, and the thresholding results in a histo-
gram that displays segmented groups that reflect the desired
objectives of the thresholding process. {0,1, - (L — 1)} is
a range given to show the probability of ith gray level that
is mathematically calculated per p; = h;/(m X n) where h,
indicates the number of pixels that corresponds gray level
i,0<i<(L-1) and where M and N correspond to the
height and width of the image, respectively. According to
Otsu’s method, the objective function for bi-level threshold-
ing is shown as:

J(1) =04 +0,, (M
where,
oo = wy(Hy — #T)z and 6 = (4, — llr)z,
with,
fn-1 n-1 . L-1 ip
wo—zpn /40=Z—and Wy = zpn po=p, —
i=0 i=0 i=t i=t 1
and,
L-1
Hr = 2 ip;

i=0
Therefore, it is easy to show that:
Wopy + @0y = prand oy + w; = L
Otsu’s objective function can be extended to multilevel
model as follows:
J(ty,tys e o ty) = 00+ 05+ 0, )
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[t,,t,, - ,t,] states the m optimal thresholds for a gray
scale image. There are some constraints, which are defined
asit; <ty < o+ <t

The objective function according to Kapur’s method for
bi-level thresholding is shown as:

J(1)) = Hy+ H,, 3)
where
-1 -1
Hy = —Z %ln(‘%", Wy = Zpl,
i=0 0 0 i=0
L-1

Zp,,

i=t, i=t,

where H, and H, are partial entropies of histograms. The
threshold value ¢, is the gray level that maximizes the objec-
tive function given in Eq. (3). Moreover, Kapur’s entropy
criterion can be extended for multilevel thresholding through
the following equation:

J(ty,ty, -+ st,) = Hy+ Hy + - H,, “4)

L-1
=2 pi
i:tm

3 Hybrid firefly and particle swarm
optimization

Since each optimization algorithm has its own advantages
and disadvantages, a hybrid that combines these algorithms
would allow for an increased robustness and more flexibility
to tackle complex problems [32]. This section is devoted
to a review of a hybrid algorithm (HFPSO) that combines
the firefly and the particle swarm optimization algorithms,
originally proposed by Aydilek [31]. In the following, we
first review some basic principles of the PSO and firefly
algorithms, then discuss the combination these two algo-
rithms in a hybrid model.

3.1 Particle swarm optimization

Particle swarm optimization (PSO) is a population-based
optimization algorithm that was introduced by Russell Eber-
hart and James Kenned in [6]. The model was originally
inspired by the collective movements exhibited by bird and
fish swarms while searching for food or escaping from per-
ceived threats.

The PSO algorithm has shown better performance in
comparison to many other search algorithms because it is
quick to find the results, uses less parameters, and has a
lower chance of getting stuck at the local optima. The PSO
algorithm starts with a bunch of random solutions, which
are called particles, and a community of particles is called a
crowd or flock. Initialization of ith particle is mathematically
calculated per:x; = [b + rand X (ub — Ib). Here ub and Ib are
lower and upper bund of the problem space. The search pro-
cess starts by giving each particle a random value in the
solution space. At every iteration each individual particle
position x; will get updated based on its best position p; and
the best position of the other particles gbest in its topologi-
cal neighborhood. The new position will be found by adding
velocity vector v. PSO is an iterative algorithm; the position
components are updated at each iteration by calculating the
particle’s velocity components using Eq. (5a).

Vi =wv"! + R, C| (pbest; — x;) + R,C,(gbest —x;).  (5a)

x; =X + Vi (5b)

Here v} and x; represent the velocity and position of ith
particle at iteration ¢ respectively, w is the inertia weight,
which plays an important role in the exploration/exploitation
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aspects of the PSO algorithm, and pbest; and g, represent
the position of the best solution found so far by ith particle
and the best overall solution, respectively.R; and R, are two
random numbers generated from a uniformly distributed
range [0,1]. C, and C, are the cognition and social learning
factors, respectively, since C, is multiplied by the distance

Algorithm 1. PSO Algorithm

to the best position of an individual particle and C, is multi-
plied by the distance to the best position among all the parti-
cles. The main steps of the PSO algorithm can be expressed
in the form of the pseudo-code covered in Algorithm 1.

Initialize the first population, x;, (i = 1,2, ...n) and velocities V; of population vector

t=0;
while the end criterion is not satisfied
fH+;
iff(xi) > f(pbest,i)
pbest, = x,
update gbest
end
update x; (Eq.5)
end

3.2 The firefly optimization algorithm

The firefly algorithm (FA) is a well-known optimization
algorithm based on swarm intelligence and was first intro-
duced in 2008 by Yang [33], who was inspired by the natu-
ral behavior of fireflies. Fireflies use their flashing lights
for several reasons: the light can help them find a mating
partner based on the pattern of flashing, it can be a means to
attract prey, or it can be a way to deter predators. The biolu-
minescence light is produced when oxygen combines with
calcium, the luciferin enzyme, and adenosine triphosphate
[34]. The communication of fireflies through flashing lights
and their subsequent behaviors inspired Xin-She Yang to
propose a metaheuristic optimization algorithm. The firefly
algorithm is not a detailed simulation of the behavior of
fireflies but rather an idealized version of it. For this pur-
pose, one need to assume that (1) all the fireflies are uni-
sex (so there is no difference between females and males in
terms of attraction); (2) mutual attraction between two fire-
flies is proportional to the intensity of the light emitted and
observed by each of them; and (3) the brightness depends on
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the objective function, which is the subject of optimization.
Therefore, the intensity of the light produced by each firefly
depends on how optimal its position is and is proportional
to its fitness value. In each itaration the intensity of the light
of each firefly will be compared to the intensity of the light
of the other fireflies, and those which are less bright will
move towards brighter ones. The amount of light perceived
by other fireflies depends on the distance; fireflies receive
lights with varying intensities. The firefly with best fitness
will search the space in a random manner to find the opti-
mum solution. The mathematical formula that describes the
motion of a less bright firefly moving toward the brighter
one is given as follows:

X, =x+ ﬂoe_yrzf (x; —x;) + a(rand - 0.5). (6)

Here f, is the coefficient of the maximum attraction
between fireflies at positions x; and X, with Euclidean dis-
tance r;. y is the light absorption coefficient, and « is the
coefficient of random displacement vector. The pseudo-code
of the firefly algorithm is given in Algorithm 2.
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Algorithm 2. Firefly Algorithm

Initialize the first population of fireflies, x;, (i = 1,2,...n)

Calculate the fitness of fireflies
Define light absorption coefficient y
while (t < Numberoflteration)
fori = 1:n
forj = 1:1
if (I; > 1)
Move firefly i towards j in d-dimension;
end

Attractiveness varies with distance rvia exp[—yr]
Evaluate new solutions and update light intensity

end
end
Rank the fireflies and find best
end

3.3 Hybrid firefly and PSO

It has been demonstrated that for some problems the PSO
algorithm has faster convergence in comparison to other
algorithms. However, it has the potential to slow down as
it approaches the global optimal point. Since the algorithm
adjusts itself at each iteration with the global best posi-
tion, this increases the risk of getting stuck in the region
of local optima. The other drawback to the PSO algorithm
is its dependency on search parameters. Different param-
eter settings can lead to different convergence speeds [35].
Many variants of the PSO algorithm have been proposed
to enhance its performance, with the main goal being to
balance the exploratory and exploitatory aspects. These
proposals include changes in the strategy of the evolution,
tuning the parameters, changing the updating rules, and
incorporating better evolving strategies. For the method pro-
posed in this paper, the velocity, calculated using Eq. (5a),
will be substituted in the formula of Eq. (5b) to update the
position of the particles in the next stage. If this velocity is
too slow or too fast, it can lead to difficulties such as oscil-
lation around the solution, which can cause the speed of
convergence to decrease. To tackle this problem, we need
to adjust the inertia weight w and acceleration coefficients
(cy,¢,) and then calculate velocity according to Eq. (5a).
These adjustments are challenging problem: the FA does not
include velocity in its algorithm, but it has also been shown
that the FA is more efficient and has higher success rate in

multimodal problems in comparison to PSO [33]. The intent
behind the hybrid firefly and particle swarm optimization
algorithm (HFPSO) [31] algorithm proposed by Aydilek is
to benefit from the strengths of each of these algorithms. The
PSO algorithm will help with exploration, while the FA will
take care of local search. Meanwhile the inertia weight will
be updated dynamically.

The first step in the HFSPO algorithm is to initialize all of
the parameters. Then the positions and velocities of particles
will be initialized to random values (in the predetermined
ranges). The fitness, global best (gbest), and personal best
(pbest;) will be calculated as the next step. Then the parti-
cle’s fitness in the current stage and its last iteration accord-
ing to Eq. (8) will be compared. If the fitness value of parti-
cle is the same or improved, the FA will take over and local
search will start; otherwise, the PSO algorithm continues
according to Eq. 5. IF the FA algorithm takes over, then the
position and velocity will be calculated according to Egs. ((9
and ((10. In the next step the position and velocity ranges are
checked for all the fireflies and particles. If the fitness value
reaches the desired value, the algorithm will be terminated,
and the final result will be given as output.

W —W;

w=w,— | ——— | Xiteration. 7
! <1terat10nmax> @

. true, iffitness(particle) < gbest'™!
f(z,r)={ fumess(particle,) < g ®)

false, iffitness(particle!) > gbest’™!."
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x(t+ 1) = x,(t) + Boe_”izi (xi(t) - gbest’_l) + a(r and — %)
9
Vi(t +1)= xi(t +1) - Xi—temp (10)

Here, indices i and t refer to the number of the step and
the number of the particle, respectively. Choosing the right

strategy to control the inertial weight w parameter is helpful
in balancing the exploratory and exploitary aspects of the
PSO algorithm. Here a linearly decreasing inertia weight is
implemented, which will help the PSO to converge better
[36]. The pseudo-code of HFPSO is given below:

d Hunter e Pepper f Mandrill
Fig. 1 Images used for performance evaluation
Table 1_ Barameter set?ings for Algorithm Initial values of control parameters
the optimization algorithms
HFPSO (C; and C,)=1.49445, maximum velocity (V,,,,) =0.1 X search range (X, ., — X,;n),
where minimum velocity (Vi) = — Vi Inertia weight (w), w;=0.9, w;=0.5 are
used according to Eq. (7). f, =1, y=5, ¢, =0.5
AMO Neighborhood length =5,6 is a random number controlled by a Gaussian distribution
PSO Cognitive coefficient (C, and C,)=0.88, inertia weight (W)=0.91,
GA Roulette Selection, CR =0.8, Gaussian Mutation scale =2 shrink=1
FA =1, y=5, ay=0.5
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Fig.2 Segmented Cameraman with located thresholds

Algorithm 3. HFPSO Algorithm
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Initialize the first population of particles, x;, (i = 1,2,...n) and velocities V; of population vector
Initialize all original parameters of PSO, minimum and maximum velocity range limits (Vyin, Vinax)

Calculate the fitness of fireflies

t=0;

while the end criterion is not satisfied
++;

’

if f(x;)> pbest;, Eq(8)

Xi—temp =X

update x; and V, Egs. (9) and (10)
else

update w Eq. (7)

update x; and V; Eq.(5a)
end

update gbest
end

4 Multilevel thresholding using HFPSO

In this section we will use the HFPSO algorithm to search
in the threshold’s space. The aim of the optimization is to
find the thresholds that will give the desired segmenta-
tion of the histogram. This can be done by maximizing the
Otsu objective function or Kapur’s entropy criterion given

in Eqgs. (2) and (4), respectively. The dimension (D) of the
optimization algorithm is equal to the number of thresholds
x=[ty, 1, ..., tp]). The gray level ¢ in an image is bounded
from below by 0, and its upper bound is 255 (0 < g <L
— 1=255). Thresholds are then subjected to the constraint
<t <t <..<tp<L.
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In the HFPSO algorithm the first step is to initialize the The randomizer r and,; gives a number that is randomly
thresholds randomly as follows: generated from a uniform distribution in the interval [0,1].
Here i is the number of the particles (i=1, ..., N). The
number of dimensions is shown byj = 1,2, ..., D.

X0 = Xjmin T rand A0, 1] X (x Xi max X min)- (11)
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Fig.4 Segmented Livingroom with located thresholds
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Fig.5 Segmented Hunter with located thresholds
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Fig.6 Segmented pepper with located thresholds

5 Experimental results and discussion

To compare different algorithms with the proposed algo-
rithm, we carried out computations using MATLAB R2018
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on PC with Intel Core (TM) i7- 3632QM 2.2 GH processor
and 8 gigabytes of RAM. We evaluated the efficiency of
these algorithms by applying them to the benchmark images:
“Cameraman,” “Lenna,” “Livingroom,” “Hunter,” “Pepper,”
and “Mandrill.” The images are shown in Fig. 1. These
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Fig.7 Segmented Mandrill with located thresholds

images are difficult to segment using the more traditional,
bi-level thresholding methods because their gray scale image
histograms are multimodal. The multimodal histograms of
“Lenna” and “Pepper” exhibit many valleys and peaks, while
“Livingroom” and “Hunter” are characterized by extreme
changes in the number of pixels. “Mandrill’s” histogram
has a smooth distribution in the gray level in comparison
to “Cameraman.”

The performance of the algorithm that we implemented
here depends on the parameters. To perform a fair com-
parison among the proposed algorithm and the other algo-
rithms—AMO, PSO, GA, and FA—we used the follow-
ing parameters: the number of agents (animals, particles,
chromosomes, and fireflies in AMO, PSO, GA, and FA,
respectively) and number of maximum generations for all
algorithms is taken to be 200. Table 1 contains the param-
eters of the different optimization algorithms we used in the
experiments.

To compare the outcome of different algorithms, we eval-
uated them both visually and numerically. Figure 2 depicts
the segmented version for different levels of thresholding
(m=2, 3,4, and 5).

Tables 2, 3, 4, 5, 6, 7 give the numerical evaluation of
algorithms. The performance of the algorithms was evalu-
ated using well-known indicators: peak signal to noise
ratio (PSNR), structural similarity index measure (SSIM),
Feature SIMilarity (FSIM), standard deviation (SD), and
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fitness value. The mathematical representation of PSNR is
as follows:

PSNR = IOIOgIO(%), with mean squared error

M-1N-1

1 ~ 2
MSE = - —— Z Z U y)— 1T (611 -

x=0 y=0

12)

where I(x,y) is the value of a pixel of original image
located at (x,y), and [ (x,y) is the segmented image value
at (x,y). The size of the images is M X N. Also, SSIM is
calculated using the following equation:

(2”I”seg + Cl)(zal,seg + CZ)
(U7 + u2, +c)o] + 6% +¢y)

seg

SSIM(Z, Seg) = 13)

where p, and y; indicate the mean gray value of the
segmented and original image, respectively.c, and o, are
the mean standard deviation of the segmented and original
image, respectively. o; ., is the covariance of I and Seg.
Here, ¢, and ¢, are replaced by 6.5025 and 58.52252, respec-
tively. Additionally, FSIM is computed as follows:

ZWEQ SL(W)PCm(W)
Zweﬂ PCm(W)

FSIM = , (14)

where Q indicates the entire domain of the image and
their value is calculated as foloows:



135

A hybrid firefly and particle swarm optimization algorithm applied to multilevel image...

L99°OT6'C L99°99T°T L99'99T'T L99II'E EEE'EEET yuex aFesony
Tl T pLI L
SLTOPT ‘901 ‘€L°6E  ‘OVI'SOT'SL'T ‘61 °901°€L°0F  ‘IVI‘80I‘VL°Ov  ‘6C1°901 ‘€L°0P 0TS0STT LLEOSOT 1480S0T €LTOSOT I¥80S0C ¢
€91°TCI'¥8°0F  €O1VTI'S8°Ly  O91'SIT'IS*Ph  €OT'CTI P8Oy  TOI‘ITI'¥8°OF OI0LO'IT SSE6S'LI EI968°LI 69E68'LT 99V6S'LI b
YST 50T °LS €51 10T *98 €ST 401 ‘98 €ST 401 ‘98 EST Y0195 OTPSI'61 S60EI'ST 860ST'ST L6OSI'ST  S60ETSI 5
£v1 ‘08 £v1 ‘08 £v1 ‘08 €VT ‘08 EV1°08 6SSLI'OT OWPTITI 9VHTITI OVWTITI 9PTITI AN
g6l g6l S61 s61
S61'EST*VITLLTY  PSTPIT'SL'Sy  ‘€STPIT‘SL'St VST PII'SL'Py ‘€51 11 ‘SL'Sh LOTSI'IT SSTOIIT 6LT61'IT 96161'1T 6LT61'IT S
S61°0ST ‘SO '8 061 ‘SPT‘TOI'LS  IS1°9S1°16°CS  $81°THI‘86°SS 161 °SKI‘TOT LS OSTPY'SI IVISY'ST 6ISEP8T CTLVYST OvbSHSI ¥
SOT *€1T ‘79 $O1 TI1 ‘19 $O1 1119 91 ‘TI1 29 YOLTIT19 €LTTOST ¥8ETO'ST ¥8ETOST P8ETIST P8ETYSI ¢
Lyl LL Ly1LL Ly LL L1 LL LYL*LL ©ISSSTI 0TSSSTI 0TSSSTI  TS8STI 0TS8STI C 1addod
€81 80¢ e €81
LST'LST'OTI'L6°L9  “VST'STI'L6'89 ‘TLL'OVI‘LOTTL ‘SLI'TWI'LOT'EL  “PSIVTI'S6°99 PPHTOOT 8S660°0T €T9000T €TTI6'6T 9L60TOCT 9
€8T °SPTCIT L €81°6VI PIT'OL 98T °IST'SIT'LL €81 °6YIPIT'OL  €81°6VT bI1°OL VT6TOLI 908SOLI GOLIOLI 0TSSYLI SYSSYLI ¥
181 °€€1°L8 081 “I€T ‘98 081 “6T1 ‘98 081 “0€T ‘98 081°6T1°98 1SOL6VT E€SVLEVT ISVLGWT YSPLEPI SLYLGHI £
6L1 TIT 6L1 TIT 6L1 I 6L1 I 6L1°TIT I€600TI PEEO0TI HEELO0TT PEEO0TI  PELOOTI z sowny
20t 95t see te
T0T°S9T'ETI¥8 T 'SOL'LTI'$8°Sy  ‘88I'SPI'86°L  ‘€81°LEI'T6'vP  ‘TLI'EEI 16V PSSOIT €89EI'IT SOV60'IT SOSLOTT ¥8STI'IT s
S61°0ST'L6°Ly 961 °6VI‘66°Ly  SET'ELI'COL'Ly  TTT'SOL'TOL'LY  L61'6v1‘S6°Ly €8TYY'SI 0899p'8T €99TTSI 0S66T8I SLOLY'I ¥
SLT ‘01 ‘8% SLT 0T Ly $0T “SET *L9 081 ‘01T ‘08 SLI'EOT 'Lt $TOPS'ST S0TSS'ST OVLIEST ISTISST 1STSSSI €
VLI €6 SLT b6 SLT 't6 SLT 't6 SLI'P6  LLSOVTI LSSOYTI L8SOV'TI 98SOPTI L8SOYTI ¢ woosSumary
761 761 v61 v61
S61 ‘€91 ‘LTI €6 °€9 ‘€91 °STI'S6'V9 ‘€91 °STI'S6°¥9 ‘€91 °STI'S6P9 ‘€91 °STI ‘S6°¥9 SLEESOT $8009°0T TEI090T LYOO9OT TEI09'0T ¢
ISTCPTSO1 60 6L1‘6ET 00199 8T THI ‘TOI ‘L9 ¥8T°SYI'SOT'IL  6LI‘SEI'86¥9 EISSG'LI SSTOO'ST LOTO0'ST TTE66'LI  E1900°8T ¥
OLI ‘LTI ‘€8 SLT *9T1 ‘T8 SLT *9T1 ‘T8 SLI*9TT ‘T8 GLI'OTI ‘T8 €OEIEST ISSIEST ISSIEST ISSIEST I8SIESI ¢
$91 ‘L6 $91 L6 $91 L6 $91 °L6 SOT°L6 V6EVETI YOPPETI VOVPETI POVVETI POPKETI ¢ euS
60¢ e 144 144
T0T'SSTOIT'69°ST  ‘TLI'OTI'€8°8€  “I61°SPI 96Tk  ‘T61 ‘¥1‘S6 Ty ‘161 'Skl 96Tk SIEVTIT 9999TIT EIOTTT IPPSTIT $EIOTIT s
L6 PYI'S6 Ty L61°'SPI'96°Ch  861°SPI‘06°Th  S61°SPI 96Tk 861 °Svl‘06°Th IpSTS'SI TIGHS'ST TL6VS'ST TLOYS'SI TLOVSSI ¥
961 ‘201 ‘€% 961 ‘20T ‘t¥ 961 20T “tb 961 201 “tb 961 ‘0 ‘¥b  SSYSE'ST S6LSE'ST 96L8E'ST S6LSE'ST 96LSEST €
961 ‘I 961 ‘SCI 961 ‘ST 961 ‘ST 961°STI 0008TTI $108TTI SI0STTI 8I0STTI  S108TTI ¢ uewenuR)
vd VD osd OV OSddH v vD OSd  OWV  OSddH -ﬁ%ﬂ
sanfeA proysaliyl MNE:QO OWNHO>< aAMNJeA ssauly ®MN.~®>< JO 'ON mDMNEw 1897,

indey] uo paseq sanfea pioysaiy) rewndo pue 9A1n92[qo paureiqo 1soq jo uostredwo) g ajqel

pringer

A's



136

T. Rahkar Farshi PhD, A. K Ardabili

Table 3 Comparison of

P Test images m Standard deviation
standard deviation for based on
Kapur HFPSO AMO PSO GA FA
Cameraman 2 0 0 0 0 0.000445
3 0 0.000058 0 0.000058 0.001732
4 0 0 0 0.000442 0.017537
5 0 0.017974 0 0.026591 0.030404
Lenna 2 0 0 0 0 0.000284
3 0 0.000029 0 0 0.001294
4 0.003119 0.010953 0.010367 0.006775 0.008164
5 0 0.001825 0 0.001235 0.030825
Livingroom 2 0 0.000062 0 0 0.000209
3 0 0.135441 0.249758 0.001005 0.006737
4 0 0.130444 0.073166 0.004961 0.009016
5 0.026311 0.018067 0 0.017017 0.024339
Hunter 2 0 0 0 0 0.000065
3 0.000139 0.000944 0 0.000346 0.002245
4 0 0.001416 0.108648 0.000914 0.012181
5 0 0.047041 0.079500 0.009460 0.038341
pepper 2 0 0 0 0 0.000148
3 0 0.000005 0 0.000004 0.001034
4 0.015222 0.018778 0.020611 0.016801 0.009540
5 0 0.001212 0 0.000348 0.017309
Mandrill 2 0 0 0 0 0.000086
3 0 0.000052 0 0 0.001111
4 0.002304 0.002267 0.001512 0.002195 0.004870
5 0 0.008513 0 0.004116 0.017606
Average rank 1,375 3,125 1,916,667 2,125 4,416,667
S W) = SpeW)Sc(W)Spc(w) We used the AMO, PSO, GA, and FA algorithms to opti-
2PC,(W)PC,(w) + T, s mize the corresponding objective functions. These results
P Cf W)+ P Ci )+ T, W) were o.btalned by apply¥ng the E.IIgOI‘ltth to thf? 6 test
images; we ran each algorithm 30 times over the test images.
— 2G,wW)G,W) + T, ) In Table 2, we report the thresholds and the corresponding
G%(W) + Gg(W) +7, (15) fitness values, which were obtained and averaged from the

The gradient magnitude (GM) of a digital image and is
defined by G, and the value of PC that is the phase congru-
ence is computed per: G=,/G?+G? and
PC(w) = Ew)/(e + },,A,(W)), here A, (w) indicates the
local amplitude on scale n and E(w) is the magnitude of the
response vector in w on 7, € is a small positive number and
finally, PC,,(w) = max(PC,(w), PC;(w)). After all to calcu-

late the standard deviation (SD), we use the following
formula:

1
c=—=
N 4

1

N
(x;—n)’, (16)
=1
where N is the number of runs, x; is the fitness value
obtained in ith run, and g is mean value obtained over all
runs of the algorithm.

@ Springer

30 runs for each algorithm on each test image, for Kapur’s
objective function. Additionally, Table 5 shows the corre-
sponding thresholds and average fitness values for Otsu’s
objective function.

Figures (2, 3, 4, 5, 6, 7) show the segmented “Camera-
man”, “Lenna”, “Livingroom”, “Hunter”, “Pepper” and
“Mandrill” images using Otsu’s method with various “m”
levels. These images highlight the segments identified using
a different color palette than the original image. The figures
to the right of each image depict the histograms, which are
superimposed (shown by dashed vertical lines) with mul-
tilevel thresholds. These images show that increasing the
number of the levels (m) helps identify more details in the
picture. However, this also increases the risks of splitting a
segment in the image into many more segments. For each
image, we first ranked the fitness values for each number
of thresholds of each algorithm. After taking the average



137

A hybrid firefly and particle swarm optimization algorithm applied to multilevel image...

0619°C  €80LT ST 9991°C €80TC  9999°C  9I0'T  €EEET  €8SHT 9999°T  9916°€  9991°C  9991°C  9991°C XYY ! U OFBIOAY
8¢Y6'0  09¥6'0  0SY6'0  LSH6'0 0S¥6'0  €SI80 0S80  0£C80  +618°0 0£80  80SCC  SS8TT  IELTT  LLYTT €L S
78160  S6160  THIE0 88160 YLIGO  PILLO  €PLLO  OTLL'O  OTLLO 6CLL0  0LOTT  990°'TC  #80°1C  1¥0'IT Irie v
0988°0 19880 19880 19880 1988°0  0TTLO  I¥TL0  I¥CL0  I¥TLO Iv2L0 8161  8SI'61  8SI'61  8ST°61 8SI61 €
9¢€8'0  9£€80  9¢£8°0  9£€8°0 9¢€8°0  8€I19°0  8€19°0 8190  8€I19°0 8¢19°0  8LI'9T  8LI'OT  8LI'9T  SLI'9T 8L191 ¢ [[LIpUEIN
€S18°0  SPIS0  €¥I80  8FI80 €180  TOYLO  TLVL'O  LLYL'O  SLYLO LLYLO  I8TIT  6¥€1T  ObEIT  THeIT (1] FANES
€SLL'O  TYLL'O  008L'0  90LLO PILLO 97890  €9L90  $9690 96990 0TL90 61161  6SE¥'6  S06'61  LTL6I 0661 ¥
TOSL'0  LOSL'O  LOSL'O  TOSLO LOSL'O €890 68590 68590  €859°0 68S9°0  LSEC'8T  LSEST  ¥L6'8T  €LE'ST LSEST €
G689°0  SS89°0  SS89°0  SS89°0 66890  €I8S0  €I8S0  €I8S0  €I8S0 €850  €hP9T  €HP9T  €PP9T  EhP 9l ol T Joddad
76680 68680  L£88°0  [LLSO 66680  €0£9°0  8I€9°0  T68S0  TESSO LSE90  9TIE6I  €9T61  S8Y'8T  TOE'8I LEY'61 S
T0L8°0  $698°0  LS98°0 #6980 76980  61LS0 66950  TS9S0 66950 66950  9I6'LT  €68°LT  LLL'LT  €68°LI €68°LT ¥
8018°0  T6I80 98180  €618°0 9818°0 1080  LE8F'0  L9SY'0  L¥SFO L98F'0  TTIOT L6191  +ITI9T  €68°LI ¥1291 ¢
€9TL0  €9TL0  €9TL'0  €9TL0 €9TL'0  6TSE0  6TSE0  6TSE0  6TSE0 6CS€0  €ETET  €E€TEl  €ETEl  €€TET €Tl T Toyuny
L0060 0£06'0 19980  091L0 €€68°0  T0TL0  STTL'O 91890  I€8+°0 €L0L'0  8I80T  LEOTT  8I96I 89661 0SL0T S
16680 9680  LSO80  SS80 SPS8'0  ¥£99°0  00L9°0 16190 #6990 ¥699°0  L90°61  €TT6I  LOCLT  T89'LI rhI6l v
GE08°0 60080  9PLL'O  €66L°0 €66L°0  T€19°0  I¥I90  8TYSO  8¥19°0 8¥19°0  €STLT  861°LT  8€TII  06TLI 9PILT €
681L°0  091L0  091L0  091L0 091L°0  €¥8¥'0  T1€8%°0  I€8Y'0  T€8Y0 I€8Y'0  89SHT  96SHT  96SFT  96SHI 9Svl T WOOISUIAI]
¥b08'0  TTT80  TTI80O  TTT80 TTC80  6LSL'O  TPOL'O  THOL0  THOL'O 1%0L°0  98L°61  T9L'61  T9L61  T9L°61 9L61 S
6¥SL'0  SY6L'0  SL6L'O  ¥T08°0 YE6L0 97890  £€89°0  ¥9L90  69L9°0 €689°0 17881  0S6'8T  €4881  Sv9'8I sto6l ¥
6SVL'0  €YPLO  EPPLO  SHPLO SPPL'0  LTTY0  T1STO0  1ST90  1ST90 1S79°0  SLU'LY  ¥CTLT  $TTLT  +TTLI YT LI ¢
€0L9°0  €TL90  €TL90  €TLYO €TL90  SPTSO0  SHTSO  SHTSO SISO SIS0 €SSPT €SSHT €SSHT €SP €SSyl T BUUS]
7988°0  $988°0  S6L8°0  S£88°0 S6L8°0 90890  T8S90 87990  T999°0 8799°0  TESIT  SLTOT  6LTOT  TLTOT 6LT0T S
01880 €980  89.8°0  89.8°0 89/8°0  TL990  €€99°0  L£99°0  L£99°0 L€99°0  ¥SO'0T  891°0T  SSI'0T  SST'0T SS10T ¥
TTE80 6180  6I€8°0  61€8°0 61€8°0  LV090  9¥09°0  9v09°0  9¥09°0 95090  TTHPT  9TYHT  9THFYT  9TH I T4 A d S
ITIL0  T1TIL0  TITIL0  ITILO ITIL0  9YISO  9¥ISO0  9vISO  9¥ISO 9vIS0  SLL'ET  SLL'ST  SLL'ST  SLL'ET SLLET T UBWIEIOWED)
vd VD 0Sd OWV  OSd-dH vd VD 0Sd  OWV  OSd-dH vd VD 0Sd  OWV  OSddH
INISA ISS ANSd w soSewr 19,

indey] uo paseq 10} YNS Jo uostredwo)  3jqel

pringer

A's



T. Rahkar Farshi PhD, A. K Ardabili

138

€EEC'EES'E  €EEBSHT  LI9THOT € L9YTHOT Juel 95eIAY
TLl TLl TLI ‘8¥1 0LT TLI ‘8¥1
‘L¥1°TTL 96 99 ‘LT FTI 66 ‘69 ‘ST1 001 ‘69 “F¥I ‘0TI “S6 ‘9 ‘GT1 001 ‘69 €0+2FETS'T €0+9368TST €0+998TST €0+969TST €0+998CS T S
91 991 91 991
991 ‘9T ‘901 ‘€L ‘CET ‘901 ‘€L ‘CET ‘901 ‘€L ‘CET ‘901 ‘€L ‘CET 901 ‘€L €0+9S66% T €0+936€0S'T €0+96£0S T €0+96£0S'T €0+96€0S T 4
8ST “vTI ‘98 65T v ‘98 6ST ‘v ‘98 65T ‘v ‘98 65T PTI98 €0+96ESHT €0+39¥SH' T €0+39¥SH' T €0+29%SH T €0+99KSH T €
871 ‘86 81 ‘86 871 ‘86 81 ‘86 87186 €0+9€L9C'T €0+IELIET €0+9ELIET €0+9ELIE'T €0+93ELIET (4 [ILIpUe
LI LLT LLT 6L1 LLT
‘LYTPIT 8L €Y “OPT ‘€I '6L ‘€Y ‘OVI ‘€11 6L €y ‘6Y1 ‘SIT1°08 €k ‘Op1 ‘€11 ‘6L €y €0+IE6ELT €0+3STYL'T €0+9STYL'T €0+30TPL'T €0+3STHL'T S
OL1 ‘LTI ‘88 °6F 691 ‘9TI ‘98 Ly 691 ‘9T1 ‘98 ‘Ly OLI ‘8T1 ‘88 ‘8% 691 ‘OTI ‘98 Ly €0+99969'C €0+3¥869'C €0+°¥869'C €0+96L69'T €0+3+869'C 14
LOT ‘611 ‘%9 991 ‘611 ‘49 991 ‘611 +9 991 ‘611 ¥9 991 ‘611 9 €0+919€9°C €0+93L9EYT €0+3LIEYT €0+9L9EIT €0+3L9€9T €
9¢T1 ‘69 9¢T ‘69 9¢T ‘69 9¢T ‘69 9¢1 ‘69 €0+369Y'T €0+3S69Y'T €0+9S69F'T £0+9569'T £0+95691'T 4 JToddod
181 181 181 81 ‘9S1 181
“IST “¥T1 96 ‘T9 “OST ‘TTI ‘€6 ‘T9 ‘0ST ‘TTI ‘€6 ‘79 ‘0€T ‘001 ‘S9 ‘0ST ‘TTI ‘€6 °T9 €0+9SS61°T €0+9900C°C €0+9900T°C €0+9TL6T'T €0+°900T°C S
L Ll L L
€LT “T¥1 ‘901 89 ‘0%1 ‘901 ‘L9 ‘0%1 ‘901 °L9 “TH1 “LOT ‘89 ‘0F1 ‘901 L9 €0+9LLIT'T €0+3L69T'T €0+3L691'T €0+°¥691°C €0+9L691°C 4
SST P11 1L SSTHIT 1L SSTHIT 1L SST P11 1L SSTPIT‘TIL €0+99PTITT €0+9€STI'T €0+3ESITT €0+IESTTT €0+AESTI'T €
I¥1 ‘98 %1 ‘98 %1 ‘98 %1 ‘98 17198 €0+93SY66'T €0+9SK66'T €0+93SH66'T £0+3SY66'T €0+3SH66'T (4 Ioyuny
6L1 6L1 8L1 081 8L1
‘LPT 61T L8 9% “L¥1ITI ‘06 ‘IS ‘OFI ‘0TI ‘88 ‘6 ‘StI ‘TTI ‘68 ‘6% ‘OF1 ‘0TI ‘88 ‘6% €0+9CTS98'T €0+980L8'T €0+OTILY'T €0+3LOL8T €0+9CTILY'] S
691 ‘TET ‘96 ‘SS 891 “TEL “L6 '9S 89T “TET “L6 °9S 891 ‘TEL ‘L6 89T ‘TET ‘L6°9S €0+20¥T8T €0+°I8T8T €0+2I878'T €0+308C8' 1 €0+°18T8'1 14
€91 ‘€TI ‘9L €91 ‘€TI ‘9L €91 ‘€TI ‘9L €91 ‘€TI ‘9L €91 ‘€T1 ‘9L €0+I8SLT €0+2P6SL'T €0+3H6SL'T €0+3H6SL T €0+o6SL' €
SP1°L8 SP1°L8 SP1°L8 SP1°L8 SPIL8 €0+9ELTOT €0+IELTYT €0+OELTYT €0+9€LTIT €0+9€ELTY'T T WooISuIAry
L81 981 “LST L81 ‘65T 881 ‘091 L8 ‘65T
‘LST 0€T ‘20T ‘0L ‘TET“01 “TL ‘PET “LOT ‘TL ‘SET “LOT ‘TL ‘PETLOT ‘TL €0+98IITT €0+98SITT €0+209ICTT  LTSTIE6T €0+9091T°C S
181 181 181 181
181 ‘SPT ‘€11 ‘vL ‘OFT ‘P11 ‘SL OFL ‘PIT ‘SL ‘OpT P11 ‘SL ‘T ‘P11 ‘SL €0+91881'C €0+3061°C €0+34061C  ¥L0909'8 €0+34061C 4
ILT ‘LTT ‘18 ILT ‘9TT ‘08 IL1 ‘921 ‘08 IL1 ‘921 ‘08 IL1°9T1 ‘08 €0+97921'C €0+989Z1'C €0+989ZI'T  0£0SSE'LT €0+989C1°C €
IST ‘€6 IST ‘€6 IST ‘€6 1ST ‘€6 IST €6 €0+96656'T €0+36656'T €0+966S6'T  1STTYTST €0+96656'1 C BUUS]
9L1 €L1 Ll 061 oLl
‘0ST “€TI ‘€8 °9¢ “6¥I ‘€T ‘S8 ‘6€ ‘S¥I ‘ITI ‘T8 ‘SE ‘651 ‘TET ‘L8 “LE ‘8F1 ‘ITI ‘T8 ‘SE €0+300EL'E €0+IGTIL'E €O+OIEIL'E €0+THSL'E €0+IEIL'E S
OLL‘OF1 T6 ‘¥ 691 ‘6€1 ‘S6 ‘€v 691 ‘6€1 ‘¥6 ‘I TLL ‘T¥1 ‘S6 ‘T 691 ‘6€1 ‘6 ‘1 €0+98SGL'E €0+°PCEL'E €0+STEL'E €0+AEHTLE €0+ISTEL'E 14
€ST ‘611 ‘98 €ST ‘11 ‘98 €ST ‘11 ‘96 191 ‘9T1 “‘+9 €ST'STT ‘96 €0+9L9LY'E €O+LLYE €O+IFLLYE €0+I6TLYE €0+OVLLIE €
71 0L 771 0L 71 0L 771 0L PP1 0L €0+96£09°C €0+96£09°€ €0+96£09'C €0+36£09'C €0+96£09°€ ¢ UewERRWE)
vd VO 0sd OWY OSd:H vd VO 0sd ONV  OSdiH -ﬁ%ﬂ
sanfeA proysary) rewndQ a3eroay on[eA ssour 93eIAY  JO ON  SoSewlIsa,

ns)Q uo paseq sanyea proysany) rewndo pue 9A1)09[qo paure)qo 1soq jo uostredwo)) g djqel

pringer

Qs



A hybrid firefly and particle swarm optimization algorithm applied to multilevel image... 139
Table 6 Con.lpa.lrison of Test images Number of Standard deviation
standard deviation based on thresholds
Otsu HFPSO AMO PSO GA FA
Cameraman 2 0 0 0 0 0.019945
3 0 8.441050 0 0 0.674793
4 0 8.884541 0 0.185656 1.799805
5 0 4.670287 0 0.710497 3.154229
Lenna 2 0 0 0 0 0.034656
3 0 0.019827 0 0 0.435547
4 0 0.113073 0 0.028327 1.735644
5 0 0.828885 0.374665 0.483083 2.737694
Livingroom 2 0 0 0 0 0.044281
3 0 0.001544 0 0 0.686807
4 0 0.104463 0 0.012190 2.768423
5 0 0.934447 0 0.468806 2.599497
Hunter 2 0 0 0 0 0.051701
3 0 0.040290 0 0 0.552600
4 0 0.335195 0 0 1.053928
5 0 3.487077 0 0 2.208677
pepper 2 0 0 0 2.4695e+03 0.077890
3 0 0 0 2.6367e+03 0.367532
4 0 1.223259 0 2.6984e+03 1.191859
5 0 0.701220 0 2.7425e+03 2.197863
Mandrill 2 0 0 0 0 0.035860
3 0 0.055361 0 0 0.539065
4 0 0.144469 0 0.004483 3.460228
5 0 1.990693 0 0.093835 2.463172
Average rank 1 3,25 1,041,667 2,333,333 4,625

over the ranks of each algorithm, the highest averaged rank
is bolded.

5.1 Kapur’s function

It is clear from Table 2 that PSO produced very competitive
results in comparison to HFPSO; however, HFPSO overall
surpasses PSO in performance evaluation. From Tables 2,
3, 4, it is seen that the HFPSO ranks first in fitness value,
SD, PSNR, and SSIM. Likewise, GA, AMO, HFPSO, PSO,
and FA rank first to last respectively in terms of FSIM. Also,
Table 3 reveals that in most of the cases the obtained SD
values of the HFPSO are zero. This shows that HFPSO is
a more stable algorithm in comparison to other algorithms
in this study. On the other hand, FA ranks worst in fitness
value, SD, and PSNR. Moreover, AMO ranks fourth in all
criteria, whereas GA ranks second, alongside PSO, in fitness
value. PSO ranks second in SD, and GA’s rank is third. GA
ranks second in PSNR, whereas PSO ranks third.

5.2 Otsu’s function

Table 5 shows that HFPSO and PSO outperform the other
algorithms in fitness value and that FA performs the worst.
GA and AMO rank second and fourth, respectively. Fur-
thermore, based on Table 6, HFPSO is the most stable algo-
rithm because its SD is 0 in all levels of segmentation in all
the images. PSO ranks second in SD value, whereas GA,
AMO, and FA rank third to fifth, respectively. For PSNR,
GA performs the best and HFPSO ranks second, where PSO.
AMO and FA rank fourth and fifth, respectively. Moreo-
ver, HFPSO and PSO rank first according to SSIM. Like-
wise, HFPSO ranks First alongside PSO in terms of FSIM
(Table 7).

The experimental results show that our proposed method
of an HFPSO algorithm achieves better fitness value and
PSNR. It also shows better stability in comparison to
the other optimization algorithms for multilevel image
segmentation.
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6 Conclusion

In this study, a multilevel image thresholding method has
been proposed using a hybrid firefly and particle swarm
optimization algorithm that maximizes Otsu’s and Kapur’s
objective functions. The proposed method has been assessed
by comparing it with four well-known optimization algo-
rithms (AMO, PSO, GA, and FA) for six commonly used
benchmark images. The visual experiments show that the
thresholds are mostly located in valleys between two peaks.
The proposed HFPSO algorithm is extremely stable. The
SD results are zero in Otsu’s objective function, and it was
ranked first according to Kapur’s method. Moreover, HFPSO
ranked first in fitness value for both Otsu’s and Kapur’s
methods. In terms of the PSNR performance criterion, for
Otsu’s objective function, HFPSO came in second, behind
GA and for Kapur’s objective function, HFPSO ranks first.
HFSPO performs well in terms of SSIM: it ranks first in
Kapur’s method and first alongside PSO in Otsu’s method.
On the other hand, for FSIM, HFPSO is tied with PSO
for first under Otsu and is ranked third under Kapur. The
comprehensive experiments reveal that this hybrid method
achieves overall better results in term of fitness value and
PSNR and that its SD is the best out of all the algorithms.
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