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Abstract

Segmentation of the liver from abdominal CT images is an essential step for computer-aided diagnosis and surgery plan-
ning. The U-Net architecture is one of the most well-known CNN architectures which achieved remarkable successes in
both medical and biological image segmentation domain. However, it does not perform well when the target area is small
or partitioned. In this paper, we propose a novel architecture, called dense feature selection U-Net (DFS U-Net), which
addresses this challenging problem. Specifically, The Hounsfield unit values were windowed in a range to exclude irrelevant
organs, and then use the pre-processed data to train our proposed DFS U-Net model. To further improve the segmentation
accuracy of the small region and disconnected regions of interests with limited training datasets, we improve the loss func-
tion by adding a parameter to the formula. With respect to the ground truth, the Dice score ratio can reach over 94.9% for the
liver. Our experimental results demonstrate its potential in clinical usage with high effectiveness, robustness and efficiency.
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1 Introduction

It is greatly significant to delineate the area of an organ of
computed tomography-based clinical diagnosis. The accu-
racy of segmentation not only facilitates the subsequent
quantitative assessment of the regions of interest but also
benefits precise diagnosis, prediction of prognosis, and sur-
gical planning and intra-operative guidance [1]. Recently,
the convolutional neural networks (CNNs) have been utilized
to solve high-level tasks in medical fields, such as organ
recognition and tissues detection [2]. The salient features
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learned by end-to-end approaches are the major advantage of
CNNs, which are more representative and effective than tra-
ditional handcrafted features with heuristically tuned param-
eters for the final task [3]. Similarly, CNNs demonstrate their
outstanding achievements and promising performance for
pixel-level classification and labeling problems e.g., fully
convolutional neural networks (FCN) [4], DeepLab [5]
and U-Net [6]. These methods have all garnered significant
improvements in performance over previous approaches by
applying the state-of-the-art CNN-based image classifiers
and representation to the semantic segmentation problem in
both domains [7]. CNNs-based applications are very wide,
e.g., semantic segmentation in recent computer vision and
medical imaging analysis work. The ASDNet [8] showed
good results in medical image segmentation and adopted
semi-supervised learning. The deep adversarial network [9]
introduced the adversarial method to reduce the demand of
labeling image data and could segment a part of the biologi-
cal image. This same idea is applied in [10] with an images
to images neural network for 3D automatic segmentation.
Semantic segmentation for a target organ involves assign-
ing a label contour to each pixel in a medical image. On one
hand, features of single pixels (or patches) play a major role
in classification. On the other hand, factors such as edges,
i.e., organ boundaries, spatial consistency, and appearance
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consistency, could greatly impact the overall performance
[11]. Furthermore, there are indications of semantic vision
tasks requiring hierarchical levels of visual perception and
abstraction [12, 13]. Therefore, generating rich feature
hierarchies for both interior and boundary of organs will
provide important “mid-level visual cues” [14] for seman-
tic segmentation. Subsequent spatial aggregation of these
mid-level cues then has the prospect of improving semantic
segmentation by enhancing the accuracy and consistency of
pixel-level labeling.

Liver disease is widely endangering the health of people
worldwide. According to statistics, liver disease is one of the
main causes of premature human death. From this point of
view, liver surgery treatment is particularly important. Liver
surgery is one of the main treatment methods for common
benign and malignant liver diseases. Liver segmentation, as
a fundamental and essential step of computer-assisted liver
disease [15], plays a crucial role in liver analysis and clinical
surgical planning. Traditional manual segmentation is very
time consuming and poorly reproducible due to high simi-
larity between liver tissue and its adjacent organs as well as
the difference between the livers and lesion, as Fig. 1 shows.
Therefore, it is essential to develop a high-quality automatic
liver segmentation method.

Medical image segmentation is more and more applied
in assistant diagnosis and has drawn more and more atten-
tion in the field of the enhancement of the efficiency and
accuracy of treatment. Accurate liver segmentation is fun-
damental for various computer-aided procedures including
liver cancer diagnosis, hepatic disease interventions, and
treatment planning.

In previous studies, many image segmentation methods
based on convolutional neural networks, such as U-Net and
FCN, have been proposed, which only can be thought as
a kind of rough segmentation. Their results suffered from
the loss of disconnected liver areas and inaccuracies around
boundary information of small organs and blood vessels.
With the limited number of data, it is very difficult to build

models that are general enough to capture a large variability
of the deformable organs, e.g., the liver. In this paper, we
will propose a novel automatic segmentation method using
a dense block and a feature selection block. This method
turns the convolution process to a dense block with succes-
sive convolution layers based on U-Net. Dense connection
combines underlying boundary features with upper semantic
feature information, which extracts more information with
fewer features as few as possible [16, 17]. We utilize a fea-
ture selection block [18] on the path of copy and concatena-
tion in U-Net. We select the feature maps which are useful
for the segmentation of objects and drop redundant feature
information. By continuously enhancing the extraction of the
fused features through the bottom-up strategy, it is possible
to excavate more accurate segmentation processing of posi-
tion, edge, and texture features with limited data. The new
model is called dense feature selection U-Net (DFS U-Net).

2 Related work

Considering whether human interaction is necessary, we
simply divide previous work into semi-automatic segmenta-
tion and automatic segmentation. Semi-automatic segmenta-
tion could better segment the target region with the guidance
of humans [19]. But with stronger stability, the workload
is greater. Liao et al. [20] proposed an efficient liver seg-
mentation method based on graph cut and bottleneck detec-
tion using intensity, local context, and spatial correlation
of adjacent slices. Yang et al. [21] came up with a hybrid
semi-automatic segmentation method that consists of a fast-
marching level-set and a threshold-based level-set.

The automatic segmentation method saves more work
and time than the semi-automatic method does. The 3D
deep supervised U-Net model [19, 22] obtained great
achievements in medical image segmentation of CT vol-
ume, particularly in the accuracy of liver segmentation.
The deep model ensembled the random feature subspace

Fig. 1 Examples of the limiting factors for liver segmentation in CT images
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[23] performs effectively on the segmentation of liver
tumors. Jin et al. [24] utilized an improved fully convo-
lution network to segment livers. However, their results
were not accurate and stable enough. In many cases, the
segmented contours are not clear and smooth enough, and
it is difficult to capture the feature information of small
samples.

The H-DenseUNet [25] cascaded 2D dense U-Net
and 3D residual dense U-Net, which has obtained more
desired results in the segmentation of livers and lesions.
This method aggregates the location information of 2D
CT slices and the sequence spatial information of 3D CT
volume. However, the shortcoming of this method is obvi-
ous that the huge network structure and a large number
of parameters require high-end hardware for computation.
Compared with the only 2D network, the computing of 3D
convolution has an exponential time complexity. In terms
of training time requirements, this cascaded hybrid net-
work is also more demanding than other network models.

Recently, Krishna et al. [26] simplified the cascaded
network by replacing the 3D structure with a 2D struc-
ture. However, the modified network is two-staged and
still cascaded. Much information is redundant in a large
number of feature maps generated by the successive dense
convolution. In this paper, our work explores a novel end-
to-end DFS method, which significantly improved the per-
formance of liver segmentation.

Fig. 2 Illustration of the entire
segmentation process

Post
-processing

Traming phase

3 Method

An overview of our proposed image segmentation with
DFS U-Net and the entire pipeline are depicted in Fig. 2.
The workflow consists of three major steps. The first step
deals with data preprocessing and preparation for the neu-
ral network segmentation. In the second step, it feeds CT
sequence slices into our DFS U-Net model and obtains the
well-trained parameters for liver segmentation. In the final
step, the neural network obtains the region of interest (ROI)
by calculating the probability of each pixel. We use morpho-
logical optimization as a post-processing method to refine
the final segmentation results.

3.1 Data processing

The data pre-processing generally includes data normaliza-
tion and standardization, but due to the particular distribu-
tion of pixels in medical images, if the traditional normaliza-
tion method is adopted, the image will lose a lot of important
feature information. In order to adapt to the particularity of
CT images, we keep the image values in an interval and use
HU windowing [27] to pre-process the dataset.

First, we process the Pixel Padding Value in the
acquired DICOM image. The abdominal interface of the
human body is almost irregular. The DICOM image will
automatically add a padding value to the image during the
acquisition process. The padding value will increase the
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variation of the image range. Therefore, we first set the
value of Pixel Padding in the dataset to 0, then remove the
attribute from the DICOM image.

In the second stage, we need to use the following for-
mula to convert the pixel values into HU values:

HU = pixel_value X rescale_slope + rescale_intercept (1)

where the rescale_slope value and rescle_intercept value are
setto 1 and —1024, respectively. The raw CT slices are win-
dowed to a Hounsfield Unit in the range of —75 to 175 HU to
neglect organs and tissues that are not interest [27]. Moreo-
ver, we enhance the contrast through histogram equaliza-
tion. The intensities are better distributed by spreading out
their frequencies so that the spacing out values are closely

Fig.3 The raw CT slice (left);
CT slice after pre-processing
(right); The contrast within the
liver have been enhanced to
allow better differentiation of
abnormal liver tissue

placed. Figure 3 shows the effect of our preprocessing to a
raw medical slice.

3.2 DFS U-Net for liver segmentation
3.2.1 Architecture

The dense feature selection U-Net model proposed in this
paper mainly includes convolution layer, pooling layer,
dense connection block, transition layer, threshold decon-
volution layer, and feature selection block. Figure 4 shows
the architecture of the DFS U-Net. First, we utilize 3 X 3
filters to coarsely extract features of input CT images. After
the first pool layer, we replace the convolution in the second
layer with the dense connection block of different speci-
fications between the coming adjacent pooling layers. We
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Fig.4 The structure of DFS U-Net
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combine the convolution layer with 1 X 1 filters with a2 x 2
max-pooling layer to reduce the resolution and dimension as
the input of the next dense connection block, which is called
the transition layer. The transition layer can also generate the
number of feature maps we want for the skip connection.

In the deconvolution phase, we come up with a new
method of restoring resolution, namely the threshold
deconvolution layer. The size of the image is restored by the
deconvolution operation. The feature maps from the transi-
tion layer and the deconvolution layer are concatenated so
that the feature and location information will be reused in
the down-sampling process. The improved resolution feature
maps undergo subsequent continuous convolution operations
and allow more accurate combination of information of skip
connection and output of the deconvolution layer. In the pro-
cess of deconvolution, the dense connection block is not
used, because from f our experimental results, we found that
the dense connection block could do well in the continuous
exploration of new features, but not in reusing them. If the
dense connection blocks are used blindly, they will make the
network over parameterized, which will increase the training
time but helpless with the accuracy of segmentation.

In the skip connection part, we add a module similar to
residual connection in parallel to the skip connection, which
is called feature selection block. With the deepening of net-
work layers, the number of feature maps is increasing. Some
of them are useless to our segmentation target and some are
not informative.

All of these feature maps are redundant. Figure 5 shows
feature maps that are not informative. The feature selection
block can reflect the importance of each channel by a param-
eter. Thus, we could suppress redundant features and extract
the feature maps we need.

Fig.5 The redundant feature
map

3.2.2 Dense block

The basic idea of the dense block proposed is to continuously
enhance the feature extraction of the target organ through
successive convolutional layers. We have established a short
path to make sure that the information transmission between
the convolution layers is not affected. Briefly, the input to
each layer comes from the output of all convolutional layers
before in the same dense block. We define the output of the
n'™ as follows:

Rn=Fn<[R0’R1’R2""’Rn—l]) )
where [RO,RI,RZ, ,R,,_l] refers to the feature map con-
catenations of 0, ...,n — 1 layer, and F), is a function that

integrates BN, ReLU and convolution. In this way, each
convolutional layer can access all previous feature maps in
the dense block. To avoid the dimension being too large, we
add al x 1convolution layer before each convolutional layer
in the dense block, and made the output dimension of each
convolution layer narrow (less than 100).

The short path between the convolution layers implies
that each layer has access to the gradients from the upper
layers and the input image directly, guiding to implicit in-
depth supervision [15]. This structure can effectively reduce
the number of parameters and control the complexity of the
model. Through improving feature utilization and transmis-
sion rate, it can effectively alleviate the problem of vanish-
ing gradient. To make the feature maps in one and the same
block with coincident size, we set three blocks between each
two pooling layers. We have set 6, 12, and 18 sets of convo-
lution layers in the three dense blocks. Figure 6 shows the
detailed architecture of six sets of dense blocks.
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Fig.6 The specific structure of r
dense block

Dense block

3.2.3 Feature selection block

The neural networks mainly consider semantic information but
not consider the relationship between channels. The feature
selection block is proposed based on this point. Our motivation
is to explicitly establish the interdependence between feature
channels. In addition, we do not intend to introduce a new
dimension for feature channel fusion, but to adopt a new “fea-
ture re-calibration” strategy. Specifically, it acquires the impor-
tance of each feature channel by learning automatically and
then according to this importance, it enhances useful features
and suppress features that are not very helpful for the task.

Figure 7 shows the specific structure of the feature selec-
tion block. First, we compress the feature map with dimen-
sion w X h X ¢ along the spatial dimension. This is achieved
by using global average pooling to generate channel-wise sta-
tistics. We can define it as:

1 H W
Zo= 2 ; u (0, ) 3)

B axs conv ] 1x1 conv [ max_pool

The 1 X 1 X ¢ feature maps have a global sensing field. They
represent the global distribution of responses on feature
channels and the dimension of output matches the number of
feature channels of input. By fitting the correlation between
channels through the full connection layer, the parameter
W of F_ layer generates a weight for each channel, and out-
puts the importance of each channel through the non-linear
function:

s = Fy(z W) = o(W(5(z) @

where 6 refers to the ReLLU function and o refers to the sig-
moid function. Finally, the importance of each channel after
feature selection is weighted to the input feature maps by
channel-wise multiplication to complete the re-selection of
the input feature in the channel dimension. The final output
of the block is defined as follows:

X = F,(u.,5,) =, X S,. ®)

channel-wise
multiplication

Fig.7 The specific structure of feature selection block
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3.3 Optimization through DFS U-Net
3.3.1 Threshold deconvolution layer

To make the final output consistent with the original image
size, we take advantage of the deconvolution layer to remap
the feature with lower resolution to the denser space of higher
resolution of input images. The zero values of the upsampled
fill will make difference become large between max activation
and other activation within each pooling region, which would
increase inter-subject variance in local segmentation regions
[28]. To deal with this issue, our new method fills values after
comparing the mean value with the maximum activation value
of the whole map instead of just filling zero value at the empty
pixels. The mean value of the whole map is calculated when
yielding pooled maps and filled in vacancy during upsampling.
In this process, we need to select the value to be filled in the
pooling area by using the following formula:

ifu>v

. u
Jo = { 0 othewise (6)

where f(x) is the filling method with two options; v,u denote
maximum activation value after pooling and mean value of
the entire map, respectively.

The specific process of the filling method is demonstrated
in Fig. 8, where we have a,c < u < b,d. The output of the
map is first enlarged to Mapl1 after filling maximum activa-
tion values a, b, ¢, and d. Then, for each of the maximum
activation values, if they are larger than u other activation
within corresponding pooling region is filled with u; oth-
erwise, it is filled with value 0. After getting Map2, it still
exists vacancy sparsely when v < u. So we need to utilize
deconvolution operation to further densify the outputs.

3.3.2 Improvement of loss function

Because of the peculiarities of enhanced CT images, two
problems lead to the difficulty of our segmentation. (1) The
target organ is divided into many disconnected parts in one
CT slice. (2) Due to the possibility of being tangent to the
boundary of the target organ in CT scanning, there are only
a small part on some CT slices, even an area with tens or
hundreds of pixels, which has a negative impact on accuracy.
Figure 9 shows examples of these problems.

To solve the problem, we plan to change the distribution
of back-propagation signals by improving the calculation
of loss function, thus enhancing our network capture capa-
bility of the foreground during the training [29]. Because
of the high imbalance between background and foreground

Fig. 8 Illustration of filling Ma p 1 A*fﬂp P
method

Map a 0 a u u

z b b 0 0 u b

& d ¢ 0 e u u

d 0 0 u d

Fig. 9 Examples with difficulty
to segment
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voxels (organs, vessels, etc.) the network will concentrate on
differentiating the foreground from the background voxels
in order to minimize the loss function used for training. In
order to avoid over-fitting and enhance the semaphore of
loss function during the backpropagation, we add the sec-
ond /_2 regularization term. By enhancing semaphores, the
loss function can be more demanding on segmentation fore-
ground so that the problem of the disconnected parts can be
solved. The improved balanced cross-entropy loss function
formula is as follows:

(1= =5) clog(1- ——=)) @

H 2
+Sw
S

From the Eq. (7), our major idea is to balance the weight
proportion and sample loss of foreground and background
in the back propagation by introducing a new weight param-
eter f, where 1 — = |Y,|/|Y|and g = |Y_|/|Y]. |Y,| and
|Y_| denote the positive samples (foreground) and negative
samples (background) of label sets (ground truth), respec-
tively. In this way, even if the proportion of foreground is
very small, the loss is more inclined to feature extraction of
the foreground part.

3.3.3 Other optimization

We found that although the 5 X 5 convolution kernel has a
large receptive field if we used two successive 3 X 3 convo-
lution kernels, we could achieve the same effect as using
a 5 X 5 convolution kernel, but the number of parameters
would be less. Thus, we all used 3 X 3 kernels in our net-
work. The initialization of kernels is “Xaiver” [30], which
initializes the weights in the network by plotting them
from the distribution of zero mean and specific variance.
The weight distribution of the method is evenly distrib-
uted, which enables the network to converge fastest and the
weights to reach superior values. The initial learning rate
is 10~* and reduces at every 10 epochs. For the choice of
pooling layer, we chose the max pooling. In general, the
mean pooling can retain more background information of
the image, and the max-pooling could retain more texture
information. The detailed architecture of the final network
is shown in Fig. 10.

3.4 Post processing
The binary mask achieved by softmax with loss prediction

layer is processed by morphological operations for boundary
enhancement and filling the internal holes.

@ Springer

4 Experiment

Training of the model for the weight-optimization pro-
cess and segmentation based on the trained model,
see Fig. 11. Given a training set of images and labels
s=1{G,1l),n=1,2,...,N},i,denotes the raw CT images
and denotes the ground truth label images. The image to
be segmented is input into the trained model. During the
training process, the input image is continuously extracted
feature. Finally, the outputs are two probability maps,
which represent the probability that each pixel belongs to
a category. After thousands of iterations, we continuously
reduce the loss value through feedback to get the model
with the well-trained weights. We use this well-trained
model for the final test phase segmentation.

4.1 Dataset preparation

In this experiment, to test the robustness and precision
of our proposed novel network, we use two datasets to
prevent occasions and coincidence. LiTS [25] is the data-
set of liver and liver tumors for enhanced CT image seg-
mentation challenge competition. Many researchers in the
field of liver segmentation are using this dataset to show
the superiority of their methods. The second dataset is
DatasetA, which is composed of enhanced CT images of
180 patients from Affiliated Hospital of Jiangsu Univer-
sity through data preprocessing based on Housefield. The
image of each patient is marked by a professional doctor
as its ground truth.

For the LiTS dataset, we use 110 groups for training and
the remaining 20 groups for testing. Similar to the setting
of LiTS dataset, we divide datasetA into 150 cases and 30
cases for training and testing, respectively.

4.2 Experiment and evaluation

Based on the datasets introduced previously, the experimen-
tal results of contour show that three superiorities of DFS
U-Net model: (I) the effectiveness of small region segmenta-
tion; (II) the robustness of disconnected region segmenta-
tion; (IIT) With limited training data, our deep network can
still achieve accurate segmentation and avoid over-fitting.
Figure 12 shows our segmentation of the liver.

We evaluate the proposed segmentation framework in the
context of the automated segmentation of the liver. To evalu-
ate the effectiveness of the DFS U-Net model on improving
the accuracy of liver segmentation, we consider the follow-
ing three evaluation measures.

The Dice coefficient is the function to calculate the coin-
cidence degree of two sets in segmentation application,
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Layers Output Size Dense Feature Selection U-net
Convolutionl—3»Norm 512x512,64 3x3,3x3conv,stride 2
Pooling 256 x 256, 64 2 x 2 max pool , stride 2
Dense Block 1 256 x 256,192

Transition Layer 1

Dense Block 2

Transition Layer 2

Dense Block 3

Transition Layer 3

Convolution 2

128 x 128,128

128 x 128,384

64x 64, 256

64x 64,576

2% 32 312

|7V

32x 32,1024

1x1comu
[3 X3 COH:L:I
1x1conv,
2 x 2 max pool, stride 2
1x1conv
%3 comz] *
1x1conv,
2 x 2 max pool , stride 2
1xlcony
3x3 con.t.] *
1x1conv,
2 x 2 max pool , stride 2

3x3.3x3conv,stride 1

Deconv1 & Concat 64 x 64 ,1024/2 2 x 2 filter , stride 2
Convolution 3 64x 64,512 3x3.3x3conv,stride 1
Deconv2 e Concat 128 x 128 , 512/2 2 x 2 filter , stride 2
Convolution 4 128 x 128 , 256 3x3.3x3conv,stride 1
Deconv3 §PpConcat 256 x 256 ,256/2 2 x 2 filter , stride 2
Convolution 5 256x256.128 3x3,3x3conv,stride 1
Deconv4 §pConcat 256 x256,128/2 2 x 2 filter , stride 2
Convolution 6 512x 512, 64 3x3,.3x3conv,stride 1
Convolution 7 32 x512 2 1x1 conv
Fig. 10 Detailed architecture Of the DFS U-Net
Fig. 11 . The segmentation pro- Feedback \ Loss
cess with two parts ‘ Function

| |

A. Training Phase
Feature Probability
Extraction Prediction

|
|

'Weights

Model

B. Test Phase
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Fig. 12 Results of liver segmen-
tation using our DFS U-Net on
4 cases. Outcome contours are
marked in red and the ground
truth is marked in yellow

which is widely used to evaluate segmentation models. The
Dice coefficient is calculated as follows:

|A U B|

Dice =2Xx ——— 8
AT+ 1B] ®)

where the set A and set B represent a result mask and its cor-
responding label, respectively. The higher Dice coefficient,
the higher the segmentation accuracy is.

The Precision and Recall are also two commonly used
evaluation coefficients in segmentation, which could calcu-
late the relationship between positive and negative samples
and prediction results. The formula defined is as follows:

Precision = P 9
" TP+FP ®)
TP
Recall = ———
4 = TPIEN (10)

The Precision reflects the relation between the correct
prediction and the wrong prediction of background as a tar-
get. And Recall reflects the association between the cor-
rect prediction and the wrong prediction of target organ as

@ Springer

background. In some ways, the two evaluation coefficients
will not change in the same direction. But they could repre-
sent the stability, robustness and applicability of the segmen-
tation model. The performance of DFS U-Net and various
other algorithms on the LiTS dataset are showed in Table 1.

It can be seen from the table that the network model we
proposed is obviously superior to other existing methods
in all indicators. The proposed network is improved on the
foundation of the traditional U-Net model, aiming at the
problem that the previous semantic segmentation model can
hardly solve. Thus, from Table 1, we can see that the seg-
mentation effectiveness of our model is much better than
that of FCN-8s and U-Net with the same data and preproc-
essing. Comparing with Krishna et al. [26] with both 2D
dense U-Net structure, the Dice coefficients of our model
are obviously better than those of them, which proves that
our changes in other areas have indeed optimized our model.

In addition, we also present the comparison results of
different algorithms on the Dataset A, which is shown in
Table 2. By comparing the indicators of different algorithms,
we can see that our algorithm has a better performance.

To show the advantages of our model in the segmentation
of small samples and disconnected regions, we chose 60 CT
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Table 1 The comparison of differnet segmentation methods on the LiTS dataset

Method Preprocessing Model DSC (%) Precision (%) Recall (%)

U-Net HU[- 75, 175] U-Net 926 +2.2 91.3 90.9

FCN-8s HU[- 75, 175] FCN-8s 92.1+1.5 92.5 90.6

U-Net - U-Net 924 +2.7 92.2 90.5

FCN-8s - FCN-8s 92.1+1.2 90.7 88.7

Dou et al. [29] - 3D DSN 928+14 - -

Krishna et al. [26] 0-1 min-max normalization Dense U-Net 92.3 - -

Gauriau et al. [32] Global-to-local RF 749 +10.0 67.2+19.8 78.3+6.0

Wolz et al. [33] - Atlas 94.0+2.8 - -

He et al. [34] Enhanced FCN 93.389.6 - -

Christ et al. [27] - U-Net+CRF 93.1 - -

Ben et al. [35] - FCN-8s 88.0 - -

Ben et al. [35] - FCN-4s 87.1 - -

Ahmad et al. [36] HUJ[- 100,400] Auto encoder 90.1 - -

Rafiei et al. [37] Registration 3D Region growing 92.56 93.42 86.29

Our model HU[- 75, 175] DFS U-Net 949 +3.1 93.5 91.7

T?ble 2 The Compa.rison of Method Preprocessing Model DSC (%) Precision (%) Recall (%)

differnet segmentation methods

on the DatasetA U-Net - U-Net 81.6 +2.7 80.5 83.4
FCN-8s - FCN-8s 852+12 85.9 83.9
U-Net HU[- 75, 175] U-Net 86.7+2.2 84.6 86.7
FCN-8s HU[- 75, 175] FCN-8s 889+ 1.5 87.1 81.3
Our model HU[- 75, 175] DFS U-Net 902+ 1.8 92.5 91.3

Table 3 The results of differnet segmentation methods for small sam-
ples and disconnected regions

Method Model DSC (%) Precision (%)  Recall (%)
FCN-8s FCN-8s 43.1+56 478 41.2
U-Net U-Net 472+4.8 43.6 48.5
Our model DFS U-Net 61.5+3.8 594 63.5

slices from 20 groups of the testing part in the LiTS data-
set, including small and disconnected liver regions. Besides,
we used the same training and test dataset to compare with
traditional U-Net and FCN-8s. In the process of training,
we set the same values for the parameters of preprocessing,
learning rate decay ratio, the total number of iterations, etc.
Figure 13 shows the comparison of small section organs and
Table 3 shows quantitative results.

Fig. 13 The small sample segmentation results of FCN-8s (left); U-Net (middle); and our DFS U-Net (right). Results of liver segmentatiosn con-
tours are marked in blue and the ground truth is marked in red
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Fig. 14 Comparison results of the disconnected regions. a FCN-8s; b U-Net, ¢ DFS U-Net. Results of liver segmentation contours are marked in
blue and the ground truth is marked in red

@ Springer



Automatic liver segmentation from abdominal CT volumes using improved convolution neural... 123

The results prove the outstanding performance and capa-
bility of DFS U-Net for liver segmentation. From the results
of the segmentation, it can be seen that the proposed DFS
U-Net can effectively capture the feature information such as
the position and boundary of a target organ. For small sec-
tion organs, our model can still achieve good accuracy. Of
course, the model also performs well for the segmentation
of disconnected regions. Figure 14 shows the comparison
results of the disconnected regions.

Without extracting 3D context information and features,
it is worth noting that, the accuracy of our model is higher
than the 3D DSN model of Dou et al. [19]. Therefore, this
experiment verifies the DFS U-Net is powerful and robust
in the liver segmentation problem.

5 Conclusion

This paper proposed a DFS U-Net segmentation model that
combines traditional U-Net with densely connected blocks
and feature selection block with an attention mechanism.
The method first preprocesses the slice data of the enhanced
CT. The preprocessing method uses the characteristics of the
window width of the CT image to limit the variation range
of the HU value in an image. The pre-processed datasets
are more conducive to the training and convergence of our
DFS model. Our experimental results showed that the inser-
tion of dense connection blocks during the down-sampling
process can significantly improve the accuracy of image
segmentation. Moreover, the feature selection blocks does
choose the useful feature maps for our task. The automatic
segmentation results for the liver is not much different from
the results of manual segmentation by the doctor. Our DFS
U-Net model can still achieve more accurate segmentation
in the case of insufficient data and can effectively avoid
over-fitting.
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