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Abstract
Multi-exposure image fusion is an effective method for depicting high dynamic range of the target scene in a single image. 
However, there are still some problems remaining: the preserving of global contrast, the preserving of the local details in 
saturated regions, and the existence of halo artifacts. To solve these problems, this paper proposes a new multi-exposure image 
fusion algorithm with detail enhancement. Firstly, the well-exposedness evaluation function, the chromatic information evalu-
ation function and the local detail preserved function are used to measure weight maps. Then, an improved multi-exposure 
fusion framework based on pyramid decomposition is proposed to further enhance the details. The experimental results 
demonstrate that the proposed algorithm can preserve more details than the state-of-the-art. In the view of appreciation, our 
approach could produce a more realistic brightness distribution of target scene as well as avoid halo artifacts.

Keywords Weight measurement function · Details enhancement · Image fusion · HDR

1 Introduction

WITH the development of computer vision, consumers are 
demanding greater and more vivid visual experiences. Due 
to the limitation of the image sensor, the dynamic range of 
an ordinary digital camera is far lower than the natural scene, 
the captured images often show regions that are “too bright” 
or “too dark” [1–3]. High dynamic range (HDR) imaging 
technology is designed to solve this problem [4–7]. In gen-
eral, the existing HDRI methods can be divided into two 
categories: the tone mapping based method and the multi-
exposure image fusion based method [8–10]. Tone map-
ping based methods require HDR image data acquisition in 
advance, and show HDR images on the low dynamic range 
(LDR) displays using tone mapping techniques [11–14]. 
The method based on multi-exposure fusion skips the step 
of acquiring HDR image data and yields a tone mapped-
like fused image directly, therefore, it generally takes less 
time to depict a high dynamic range of images than the tone 

mapping method [15–17]. In this paper, we achieve HDRI 
based on multi-exposure image fusion algorithm by merging 
multiple image sequences with different exposures.

The primary goal of the multi-exposure fusion algorithm 
is to show a high dynamic range (HDR) target scene in a 
LDR image [18]. In recent years, many researchers have 
investigated multi-exposure fusion algorithms. Mertens 
et al. [19] proposed a multi-exposure image fusion algo-
rithm based on the pyramid decomposition, i.e., Laplacian 
pyramids of LDR images and Gaussian pyramids of weight 
maps consist of contrast, saturation and well-exposedness, 
but at the cost of local information of the detail and con-
text. Li et al. [20] proposed an image fusion algorithm with 
on guided filtering. It divided input image into base layer 
and detail layer, and guided filtering was used to construct 
weight map. This method could preserve local detail infor-
mation well. Ma et al. [21] proposed a multi-exposure fusion 
method based on structural patch decomposition. While it 
could preserve a good global contrast, halo artifacts occur 
in regions with large differences in intensity values. In addi-
tion, Kou et al. [22] proposed a gradient domain multi-scale 
exposure fusion algorithm based on weighted guided image 
filtering.

Ma et  al. [23] proposed a low-resolution version of 
the input sequence to the full convolutional network for 
weight map prediction. Then, use a guided filter to jointly 
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up-sample the weight map. The final image is calculated 
by weighted fusion. Compared with the algorithm in this 
paper, Algorithm proposed by Ma has higher time efficiency. 
The algorithm in this paper enhances the scale details of the 
image detail layer and the base layer separately, so it takes 
more time, but the image detail fusion is clearer. Li et al. 
[24] proposed a new multi-scale exposure fusion algorithm 
which smooths the Gaussian pyramid of the weight map 
of all LDR images by using weighted guided image filters. 
And the detail extraction component of the proposed fusion 
algorithm is designed to enhance the fusion image details. 
The algorithm in this paper decomposes the image into a 
base layer and a detail layer, and performs multi-scale fusion 
on the base layer and the detail layer. At the same time of 
multi-scale fusion, the corresponding detail enhancement 
algorithm is proposed to enhance the detail layer details and 
retain the basic layer image structure. Compared with the 
Algorithm proposed by Ma, the fusion image detail informa-
tion of the algorithm in this paper retains more.

The previously mentioned methods all have some prob-
lems in generating HDR images, mainly due to the imbal-
ance of global contrast, the loss of local details, and the 
existence of halo artifacts. To solve the aforementioned 
problems, an improved multi-exposure fusion algorithm 
based on multi-resolution pyramid with detail enhancement 
is proposed in this paper. Our main contributions are as fol-
lows: (1) the measurements of weight map are designed 
based on the brightness information, colorimetric infor-
mation, and detail information respectively. (2) The fusion 
framework based on the Laplacian pyramids is improved. 
(3) Gain control is applied to the high-frequency layers to 
highlight the details, and gain control of the low-frequency 
layers make the fused image more consistent with the real-
istic brightness distribution.

The remainder of this paper is organized as follows. The 
second part of the paper discusses the functions of weight 
map measurement. Afterward, we investigate the improve-
ment of the fusion framework and the fourth section is about 
the analysis of the experimental results. The final part dis-
cusses the conclusions and the future work.

2  Weight map measurement

Mertens et al. [19] designed weight measurement functions 
based on contrast, saturation and well-exposedness. Li et al. 
[20] designed a weighting factor based on Gaussian saliency. 
Ma et al. [21] divided the image patch into signal strength, 
signal structure and mean intensity; Xu et al. [25] designed 
weight measurements based on phase congruency, local con-
trast and color saturation, so it could then use the guided 
filter to refine the weight map.

Contrary to weight map construction of the previously men-
tioned methods, this paper constructs the weight map using 
three measurements: the well-exposedness evaluation func-
tion, the chromatic information evaluation function and the 
local detail preserved function. Figure 1 shows the construc-
tion process of the weight map. Firstly, the well-exposedness 
evaluation function is designed in the gray space. Then, we 
convert from GRB color space to CIE-Lab color space, the 
local detail preserved function and the chromatic information 
evaluation function are designed by the luminance informa-
tion and the chrominance information of CIE-Lab color space 
respectively.

2.1  Well‑exposedness evaluation function

The human visual system is directly related to the exposure 
brightness of pixels, as regions that are too dark or too bright 
causing the human eye to be unable to extract the details of 
the scene. Therefore, this paper designs the well-exposedness 
evaluation function through brightness distribution for only 
the exposure. The “optimum exposed value” is the best per-
forming brightness value across the entire brightness range; 
therefore, the closer the pixel is to this value, the better it will 
behave. To improve the computational efficiency, we use gray-
scale image to evaluate well-exposedness. This article sets the 
“optimum exposed value” as the median of the entire bright-
ness range, which is taken as 0.5 after normalization.

where Igray
k

 is the grayscale version of the k-th LDR image, p 
represents the coordinates, the standard deviation � controls 
the impact of Igray

k
 on we

k
 , � equals 0.2 in our implementation.

(1)we
k
(p) = exp

(
−
(I

gray

k
(p) − 0.5)2

2�2

)
,

Fig. 1  The construction process of weight map
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It can be seen from Table 1 that the image quality is best 
when the optimal exposure value is 0.5, and the details are 
more.

2.2  Chromatic information evaluation function

Color information is an important factor to measure the 
image quality; it is also an essential factor for the human 
eye to feel the outside world. For the chromatic information 
of the image, the algorithm in this paper is processed in the 
CIE-Lab color space. CIE-Lab was established based on the 
international standard of color measurement appointed by 
International Commission on Illumination in 1931 and is a 
physiological color system. The ILum component represents 
the luminance information of the image, and the Ia compo-
nent and the Ib component represent the chrominance infor-
mation of the image. This paper calculates the chromatic 
information evaluation function by Eq. (2).

where Ia
k
 and Ib

k
 are the a-channel and b-channel of the k

-th source image in the Lab color model respectively. The 
chromatic information evaluation function is designed to 
preserve the ample color of the source LDR image.

2.3  Local detail preserved function

For multi-exposure image fusion, the preservation of local 
detail information is very important. This article uses a 
Laplacian filter to extract local details of the luminance 
information of source image.

where L is a 3 × 3 Laplacian filter; ∗ represents convolution 
operation; Ilum

k
 represents the grayscale version of the k-th 

image; | ⋅ | means absolute operation. The local detail pre-
served function is designed to make details more weighted.

(2)wc
k
(p) =

√(
Ia
k
(p)

)2
+
(
Ib
k
(p)

)2
,

(3)wd
k
(p) = |L ∗ Ilum

k
(p)|,

According to the previous three weight map measure-
ments, the initial weight map is constructed as shown in 
Eq. (4).

where we
k
 , wc

k
 and wl

k
 represent the well-exposedness evalu-

ation function, the chromatic information evaluation func-
tion and the local detail preserved function of the k-th input 
image respectively; �1 , �2 and �3 are exponential parameters 
of we

k
 , wc

k
 and wl

k
 respectively, with all functions set to 1.

To obtain a consistent result, the weight map is normal-
ized so that the weight of each pixel is sum to one.

where N represents the number of input images; � is a small 
number that prevents the denominator from zero.

The final weight map is the normalized weight map, 
as shown in Fig. 2, showing three input images and their 
corresponding weight map. Among them, the input images 
are the under-exposed, normal-exposed, and over-exposed 
images, respectively. It can be seen from Fig. 2b that the 
region of input images with well-exposed or ample color 
information has a large weight; the weight of the under-
exposed or over-exposed regions is small, or even zero.

(4)Wk(p) =
(
we
k
(p)

)�1 ×
(
wc
k
(p)

)�2 ×
(
wl
k
(p)

)�3 ,

(5)Ŵk(p) =
Wk(p)

∑N

k=1

�
Wk(p) + 𝜀

� ,

Table 1  Image quality evaluation index IL-NIQE results with differ-
ent optimum exposure values

Bold values indicate better results than other filtering methods

Optimum exposure 
value

0.4 0.45 0.5 0.55

House 23.48 22.92 21.47 22.12
Laurenziana 21.11 20.12 19.83 20.72

Fig. 2  Input images and weight maps (Source image courtesy of 
Jacques Joffre)



36 Z. Qu et al.

1 3

3  Fusion

The traditional direct weighted fusion methods often result in 
discontinuous regions and gaps in the fused images. To ensure 
the fused image has global consistency, the methods [19] fuse 
the Laplacian pyramid of the input image with the Gaussian 
pyramid of the weight map, as shown in Eq. (6). However, 
the traditional Laplacian pyramid often loses details and is 
time consuming. In addition, there are also multi-resolution 
image fusion methods based on the frequency domain, such as 
wavelet pyramid [18, 24]. The method of image fusion in the 
frequency domain is also time consuming and prone to fade.

where Pyr{R}l represents the l-th layer of the fusion pyra-
mid. L{Ik}l is the l-th level Laplacian pyramid of the k-th 
input image. G{Wk}

l is the l-th level Gaussian pyramid of 
the k-th weight map.

This paper proposes a new detail improved fusion frame-
work based on pyramid decomposition. According to the input 
LDR image sequence {Ik} , this paper constructs the Laplacian 
pyramid L{Ik}l of the source image and the Gaussian pyra-
mid G{Wk}

l of the weight map using the method in [19]. The 
improved fusion framework in this paper is shown in Fig. 3.

Firstly, we calculate the number of pyramid layers based on 
the size of the input image sequence. If we assume that r and c 
are the number of pixels of the height and width of the source 
image, respectively. Then the number of pyramid layers L is 
calculated by the Eq. (7),

(6)Pyr{R}l =

N∑

k=1

G{Wk}
lL{Ik}

l,

(7)L = ⌊log2 min(r, c)⌋ − 2.

As is shown in Fig. 3, we give a gain control factor to 
high-frequency and low-frequency information layers of 
Laplacian pyramids respectively.Al

k
 represents the high-

frequency information of the k-th source image; Dk rep-
resents the low-frequency information of the k-th source 
image. The fusion strategy of high frequency information 
is shown in Eq. (8),

where � represents the high-frequency information gain fac-
tor, designed to enhance the details of the original image 
texture information, described in this paper as the constant 
� = 1.1.

Low-frequency information fusion strategy is as Eq. (9).

where mIk indicates the k-th source image of the true aver-
age brightness.

Referring to method in [26], this paper calculates the 
average brightness using the following method:

where M is the total number of pixels; � is the spatial 
domain coordinates of the k-th image;lumk(p) is the bright-
ness of the k-th image at p ; and � is a small constant to 
avoid singularity. To avoid the interference of unnormal-
exposed pixels, � takes pixels between 0.4 and 0.6 (image 

(8)L{R}l
A
=

N∑

k=1

G{Ŵk}
lL{Ik}

l
⋅ 𝛼,

(9)L{R}l
D
=

N∑

k=1

G{Ŵk}
LL{Ik}

L
⋅ mIk,

(10)mIk = exp

(
1

M

∑

�

log
(
lumk(p)

)
+ �)

)
,

Fig. 3  Improved fusion framework
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was normalized into 0–1 before). The fusion process used 
in this paper is shown in Fig. 4.

4  The experimental results and analysis

In this paper, we compare our fusion method with the tra-
ditional Mertens’ method [19], the fusion method based on 
the guided filter [20], and the fusion method based on the 
structure patch decomposition [21]. All experiments were 
done using MATLAB (R2016a) on an Intel i5 processor 
with a 4G memory PC platform. Some of the comparison 

results are shown in Figs. 5, 6, 7, 8, 9, 10, 11, 12 and 13. 
The images in each Figure show four different images in 
each and are labeled (a–d), which stand for the four dif-
ferent methods.

4.1  Comparison of global contrast

Figures 5, 6, 7, 8, 9, 10, 11, 12 and 13 shows the compari-
son of 9 experimental results. In general, Mertens’ method 
shows a good global contrast distribution. However, there 
is a certain fading phenomenon, as shown in Figs. 5a and 
10a. Li’s method uses a guided filter to smooth the weight 

Fig. 4  Image fusion process

Fig. 5  Comparison on image set “Belgium House” (courtesy of Dani Lischinski)

Fig. 6  Comparison on image set “Cave” (courtesy of Bartlomiej Okonek)



38 Z. Qu et al.

1 3

map, as shown in Figs. 5b and 11b. Ma’s method is based 
on structural patch decomposition, which decomposes the 
image patch into signal intensity, signal structure, and aver-
age intensity, which shows a good global contrast. However, 
it may lead to brightness inversion, as shown in Figs. 12c 
and 13c. The above methods do not consider the real bright-
ness distribution of HDR scene for consideration. The pro-
posed method produces a better global contrast with realis-
tic brightness distribution and can also avoid the brightness 
inversion.

4.2  Comparison of local contrast

The preservation of local details is an important factor to 
measure the fusion quality of multi-exposure images. We 
also compare the detail preservation performances of the 
four methods. Figures 14, 15, 16 and 17 shows the close-up 
view of local regions in images of Figs. 5, 6 and 7 and 13 
respectively.

Although the Mertens [12] method maintains a good 
global contrast, the loss details are serious, and some details 

Fig. 7  Comparison on image image set “House” (courtesy of Tom Mertens)

Fig. 8  Comparison on image set “Kluki” (courtesy of Bartlomiej Okonek)

Fig. 9  Comparison on image set “Laurenziana” ( courtesy of Bartlomiej Okonek)
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Fig. 10  Comparison on image set “Memorial” (courtesy of Paul Debevec)

Fig. 11  Comparison on image set “Office” (courtesy of MATLAB)

Fig. 12  Comparison on image set “Garage” (courtesy of Shree K. Nayar)

Fig. 13  Comparison on image set “Studio” (courtesy of Jacques Joffre)
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are not clear enough, as shown in Figs. 14a, 16a and 17a; 
Li’s [13] method uses a guided filter and can preserve local 
details to a greater effect. However, it may still result in 
halo artifacts, such as the black side of the pillar outside 
the window in Fig. 14b. Ma’s [14] method may also lead 
to halo artifacts and brightness inversion in regions with 

large contrast difference, as shown in Figs. 14c and 17c. The 
algorithm proposed in this paper has a better detail preserva-
tion performance, while presenting clearer color informa-
tion, which is undoubtedly better than the appeals method, 
as shown in Figs. 14d, 15, 16 and 17d.

Fig. 14  Details of the image set “Belgium House”

Fig. 15  Details of the image set “Cave”

Fig. 16  Details of the image set “House”
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4.3  Quantitative comparison

The image evaluation index is divided into reference 
images based evaluation methods and non-reference 
images based evaluation methods [27–29]. Image evalua-
tion methods based on reference images usually need actu-
ality as reference, while multi-exposure images are fused 
without reference images. Therefore, we use image evalu-
ation indexes based on non-reference images. Blind Image 
Spatial Quality Evaluator (BRISQUE) [30] and integrated 
local natural image quality evaluator (IL-NIQE) [31] are 
two evaluation indexes based on non-reference images, 
which directly evaluate the image quality according to the 
input image. The closer the score is to 0, the better the 
image quality. BRISQUE is an image quality evaluation 
algorithm in spatial domain without reference. The general 
principle of the algorithm is to extract mean subtracted 
contrast normalized (MSCN) coefficients from the image, 
fit the MSCN coefficients into an asymmetric generalized 
Gaussian distribution (AGGD) asymmetric generalized 
Gaussian distribution, extract the characteristics of the 
fitted Gaussian distribution, and input it to the support 
vector. Regression in the machine SVM, so as to get the 
evaluation result of image quality. A smaller score indi-
cates better perceptual quality. IL-NIQE is one of blind 
image quality assessment (BIQA) methods. IL-NIQE com-
pares images to a model computed from images of natural 
scenes. It is used to evaluate the distortion of fused images 
in static scenes in our paper, including the sharpness of 
details and noise in color components. A smaller score 
indicates better perceptual quality.

In addition to the nine sets of comparative experiments 
previously presented, six sets of comparative experiments 
are also performed in this paper. Figure 18 shows the 
fusion results of the remaining six sets of images using 

the proposed algorithm. It can be seen from Tables 2 and 
3 that the evaluation index of the proposed algorithm is 
superior to the traditional fusion methods in most image 
sets (the bold values in Tables 2 and 3 stand for the mini-
mum values of each row).

Mertens method maintains a good global contrast, the 
loss details are serious, and some details are not clear 
enough; Li’s method uses a guided filter and can preserve 
local details to a greater effect. However, it may still result 
in halo artifacts. Ma’s method may also lead to halo arti-
facts and brightness inversion in regions with large con-
trast difference. The algorithm proposed in this paper has 
a better detail preservation performance, while presenting 
clearer color information, which is undoubtedly better than 
the appeals method.

5  Conclusions

In this paper, we investigated how to measure the global 
contrast and the preservation of local detail. We propose 
a new multi-exposure image fusion algorithm with detail 
enhancement and weight map measurement functions 
based on the luminance, colorimetric, and detail infor-
mation. Experiments show that the proposed algorithm is 
good at preserving the global contrast and details while 
avoiding halo artifacts, making the fusion result more 
colorful. Two image quality evaluation indicators show 
that the proposed algorithm is superior to the traditional 
multi-exposure image fusion method.

At present, only the multi-exposure image fusion algo-
rithm for static scenes is researched in this paper. In the 
future, we plan to investigate the removal of ghosting in 
multi-exposure image fusion for dynamic scenes and look 
for further improvements to the algorithm.

Fig. 17  Details of the image set “Studio”
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Fig. 18  The fusion results of the remaining six image sets by our proposed algorithm
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