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Abstract
In dark or poorly lit environments, it is often difficult for the naked eye to distinguish low-light-level images because of low 
brightness, low contrast and noise, and it is difficult to perform subsequent image processing (such as video surveillance 
and target detection). To solve these problems, this paper proposes a low-light-level image enhancement algorithm based on 
deep learning. First, the low-light-level image is segmented into several super-pixels, and the noise level of each super-pixel 
is estimated by the ratio of the local standard deviation to the local gradient. Then, the image is inverted and smoothed by a 
BM3D filter, and the structural filter adaptive method is used to obtain complete images without noise but with the correct 
texture. Finally, the noise-free image and texture-complete images are applied to the integrated network, which can not only 
enhance the contrast but also effectively prevent the over-enhancement of the contrast. The experimental results show that 
this method is superior to traditional methods in terms of both subjective and objective evaluation, and the peak signal–noise 
ratio and improved structural similarity are 31.64 dB and 91.2%, respectively.

Keywords Image processing · Light level image · De-noising · Contrast enhancement · Low-light-level integrated network 
(LLAON) · BM3D filter

1 Introduction

Image enhancement is an important branch of image pro-
cessing. Its purpose is to convert images or videos captured 
in different environments into clear, high-quality images or 
videos using effective methods [1]. Because of low con-
trast, low brightness and varying noise, an image taken at 
night or in a low-light-level environment has a low dynamic 
range, which leads to a significant decline in image quality, 

difficulty in distinguishing details with the naked eye, and 
difficulty in carrying out subsequent image processing (such 
as target detection and video surveillance) [2]. Therefore, 
low-light-level image enhancement has always been a popu-
lar issue in the field of computer vision, and it has increas-
ingly important theoretical significance and research appli-
cation value [3].

To improve image contrast, brightness and quality, schol-
ars have studied this problem from different angles, such as 
the histogram equalization (HE) method among traditional 
methods [4], the method based on retinex theory [5], and the 
method based on the defogging model [6]. In recent years, 
with the development of deep learning, remarkable progress 
has been made in the application of computer vision in many 
fields [7]; especially in super-resolution, image de-noising, 
target detection and tracking, deep learning has made break-
throughs, triggering a research boom in academia and indus-
try. Deep learning extracts the features of images or data 
by building a network model similar to the human brain 
information-processing mechanism, using efficient learning 
strategies, fitting complex nonlinear functions and obtaining 
the expected results. For low-light-level image processing, a 
convolutional neural network model based on deep learning 
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is proposed for image enhancement [8]. The advantages of 
three structures, namely, the local receptive field, weight 
sharing and pooling, not only reduce the number of training 
parameters and the training difficulty but also have good 
robustness to distortion-invariant operations on images 
such as zooming, rotation and translation, which makes the 
extracted deep-seated features have a stronger generalization 
ability. Therefore, a low-light all-in-one network (LLAON) 
is proposed to enhance low-light-level images. Different 
filters and convolution kernels are used to filter low-light-
level images, and then enhanced images are obtained. These 
enhanced images retain the original features and textures. 
In addition, the LLAON integrates the mean-square error 
(MSE) function to reconstruct accurate image textures and 
improve image quality.

2  Related work

At present, there are four main branches in the field of low-
light-level image enhancement: (1) the histogram equaliza-
tion method, which requires that the pixel values maintain 
their relative relationships while obeying a uniform distri-
bution, and the adaptive histogram equalization method of 
limiting contrast, which controls the enhancement range of 
the local contrast by restricting the height of the local his-
togram. The local contrast is limited by over-enhancement. 
This method guarantees a fast processing speed and can 
effectively improve contrast, but it is prone to color bias, and 
gray-level merging leads to the loss of detailed information. 
(2) Based on the retinex theory, this kind of method holds 
that the image observed by human eyes can be expressed as 
the product of an illumination component and a reflection 
component. The illumination component reflects the illumi-
nation condition, and the reflection component is an intrinsic 
attribute of the image. By estimating and removing the illu-
mination component from the original image, the reflection 
component can be obtained, and image enhancement can be 
achieved. Therefore, the core step of the retinex algorithm is 
to accurately estimate the illumination component.

Researchers have adopted different methods to estimate 
the illumination component and have proposed different 
retinex algorithms. For example, the single-scale retinex 
(SSR) algorithm [9], multiscale retinex (MSR) algorithm 
[10] and MSR algorithm with color restoration (MSRCR) 
[11]. The SSR algorithm estimates the image using Gauss 
filtering. The MSR algorithm is a linear weighted sum of 
multiple scales of SSR. It is better at improving the contrast 
and brightness of the image than SSR, but it will also make 
the image edge sharpening inadequate, and some colors will 
be distorted. The MSRCR algorithm introduces color res-
toration based on the MSR algorithm so that the enhanced 
image will not exhibit distortion, but the color of the image 

will deviate from the original color, and the overall color 
will be white. Fu et al. proposed a weighted variational 
model, namely, SRAIE (simultaneous reflectance and illu-
mination estimation), which estimates both the illumination 
and reflection components [12]. K Ganga Bhavani proposed 
the LIME (low-light image enhancement via illumination 
map estimation) algorithm, which first uses the original low-
light-level image red (R), green (G), and blue (B) channels. 
In the three channels, the maximum value of the illumina-
tion image is obtained, and then the original illumination 
image is continuously revised through the structure priors 
to obtain the final illumination image [13]. (3) Based on 
the method of the defogging model, Dong found that the 
inverted low-light-level image has a high similarity to the 
fog image and proposed the method of defogging to enhance 
the low-light-level image, achieving a good enhancement 
effect. Although this method can improve the visual quality 
to a certain extent, the enhanced images are often incon-
sistent with the actual scene and tend to have artifacts at 
the edges. In addition, there are some algorithms that trans-
form the color space of an RGB (red, green, blue) image to 
other color spaces to achieve image enhancement, which can 
effectively maintain the color of the image and prevent seri-
ous color distortion of the enhanced image, but the bright-
ness and contrast still need to be improved [14]. (4) With the 
development of deep learning in image processing, detection 
and tracking [15], a deep neural network stacked sparse de-
noising self-encoder is proposed to enhance gray images, 
which indicates the feasibility of deep learning methods. 
The convolutional neural network (CNN) is used to enhance 
low-illumination images, which improves the image contrast 
and image quality [16].

To solve the above problems, an effective low-light-level 
image enhancement algorithm based on deep learning is 
proposed in this paper. The method consists of two stages: 
an adaptive denoising method based on super-pixel segmen-
tation and all-in-one network contrast enhancement. The 
super-pixel method can segment a whole image into several 
super-pixels quickly using the geometric flow method. In 
the first stage of the algorithm, according to this excellent 
algorithm, the low-light-level image is divided into many 
super-pixels, and then the noise texture level of each super-
pixel is estimated according to the ratio of the local standard 
deviation to the local gradient. Then, the image is inverted. 
The super-pixel segmentation algorithm is used to extract 
the contour information of noisy images. According to the 
noise texture characteristics of the super-pixels, the original 
image is divided into texture changes and locally similar 
blocks. Then, the smooth bottom layer is extracted using the 
BM3D filter [17], which has self-adaptability. Finally, the 
image is inverted. The first-order differential extracts another 
detail layer and smooths it with a structural filter [18]. The 
two layers are combined adaptively to obtain the complete 
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image without noise but with texture. In the second stage, 
the denoised image is applied to the integrated defogging 
network; we call this the low-light-level integrated network 
(LLAON), and it solves the problem of enhancing contrast 
and preventing excessive contrast enhancement. Finally, the 
image generated in the steps above is inverted to obtain the 
enhanced image. The experimental results show that com-
pared with other mainstream algorithms, the proposed algo-
rithm can not only significantly enhance brightness and con-
trast but also keep the image color information unchanged 
and further improve the visual perception and objective 
evaluation indicators.

The main contributions of this work are as follows:

1. A unified framework is proposed to de-noise and 
enhance contrast jointly to eliminate noise before con-
trast enhancement. A local adaptive denoising scheme 
based on super-pixels is proposed, which can eliminate 
noise while preserving texture details.

2. To overcome the problem of over-enhancement and 
under-enhancement of contrast, the LLAON is used to 
enhance contrast. The mean-square error (MSE) func-
tion [19] is integrated into the LLAON to reconstruct 
more accurate image textures and improve image qual-
ity. Experiments show that not only the peak signal–
noise ratio (PSNR) [20] is improved, but also structural 
similarity (SSIM) [21] and visual quality are improved.

3. The experimental results show that the proposed method 
is superior to traditional methods in terms of both sub-
jective and objective evaluation, and the PSNR and 
SSIM are 31.64 dB and 91.2%, respectively.

3  Low‑light‑level image enhancement 
method

In this section, we introduce the concept of the LLAON; 
Sect. 3.1 gives the overall network architecture; Sect. 3.2 
describes the adaptive de-noising method based on 
super-pixels; Sect. 3.3 describes the integrated network 

architecture; and Sect. 3.4 gives the image quality evalua-
tion PSNR and SSIM.

3.1  Overall network architecture

In this paper, an effective low-light-level image enhancement 
algorithm based on an integrated network is proposed. The 
overall model architecture is shown in Fig. 1.

In this paper, the low-light-level image enhancement 
algorithm based on the integrated network is divided into 
two stages: adaptive de-noising based on super-pixels and 
contrast enhancement based on an integrated network of 
low-light-level images. In the first stage of the algorithm, 
the low-light-level image is divided into many super-pixels, 
and then the noise texture level of each super-pixel is esti-
mated according to the ratio of the local standard deviation 
to the local gradient. Then, the image is inverted. The super-
pixel segmentation algorithm is used to extract the contour 
information of noisy images. According to the noise texture 
characteristics of super-pixels, the original image is divided 
into texture changes and local similar blocks. Then, the 
smooth bottom layer is extracted by the BM3D filter, which 
has self-adaptability. Finally, the image is inverted. The first-
order differential extracts another detail layer and smooths 
it with structural filters. The two layers are combined adap-
tively to obtain a complete image without noise but with 
texture. In the second stage, noise-free texture images are 
applied to the integrated network to form a low-light-level 
integrated network (LLAON). This method not only effec-
tively enhances the contrast but also prevents the problem of 
over-enhancement of the contrast. Finally, we inverted the 
generated image to obtain the final enhanced image.

3.2  Super‑pixel self‑adaptive de‑noising

Due to the characteristics of the human visual system itself, 
the visibility of noise in different regions of an image var-
ies greatly. For example, compared with the noise in a 
smooth-textured region, noise is more obvious with a com-
plex texture. On the other hand, low-pass de-noising filters 
often degrade texture details. Therefore, the intensity of the 

K(x)
Reversal
L=255-I

Clear Image 
Generation Module

Reversal
Y=255-J

Fig. 1  The overall model of the low-light-level image enhancement algorithm based on an integrated network
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adaptive de-noising filter needs to be determined accord-
ing to the local features of the image region. Strong filters 
are more suitable for small areas with high-visibility noise 
or low-complexity details, while weak filters are preferred 
for small areas with low-visibility noise or high-complexity 
details. In this paper, a local adaptive denoising scheme 
based on super-pixels is proposed, which can keep the tex-
ture details and eliminate the noise at the same time so that 
the local noise can be handled well and the feature informa-
tion will not be lost due to excessive denoising.

First, the low-light-level image I is segmented into sev-
eral sub-regions using the super-pixel method. It should be 
noted that the super-pixel segmentation method in this paper 
adopts the method proposed in [22], SEEDS (super pixels 
extracted via energy-driven sampling), because it has better 
retention characteristics for the boundary of the object. For 
each sub-region, the following method is used to determine 
the smoothness, assuming that the noise is additive white 
Gaussian noise (AWGN). The local gradient of the super-
pixel is represented by the standard deviation of the super-
pixel. After adding AWGN to the clear image, the flat area 
increases significantly. However, there is not much change 
in the texture area. For normalized images in the range 
[0, 1] , the standard deviation varies by an order of magni-
tude. Therefore, taking into account the normalized ratio of 
the sums to measure the noise texture grade of the quantum 
region, the following is shown:

The standard deviation of super-pixel i is represented by 
�i , and the local gradient of the super-pixel is represented by 
∇i . After adding AWGN to the clear image, the flat area ∇i 
increases significantly. However, there is not much change 
in texture area ∇i for normalized images in the range [0, 1] , 
and the standard deviation �i varies by an order of magni-
tude. Therefore, the normalized ratio �i between �i and ∇i is 
considered to measure the noise texture grade of the region. 
The specific formulas are as follows:

To facilitate de-noising and enhance the contrast using 
an integrated network de-noising algorithm, the input image 
L = 255 − I is inverted by using I . Inspired by the non-
sharpening mask filter, the de-noising operation L is defined 
as L′. L′ is obtained from the weighting of the base level and 
the noise-free level of L.

Among the variables, m(L) and n(L) represent the noise-
free layer and base layer of L , respectively. For sub-regions 
with small � values, some details are added to restrict the 
noise level. For sub-regions with larger � values, more 
details are added to the underlying layer. Using a BM3D 

(1)�i =
�i

∇i

.

(2)L� = � ⋅ m(L) + n(L).

filter to smooth the image can obtain the image base level, 
which leads to the desirable result that the AWGN can be 
effectively reduced. The noise texture horizontal coefficient 
� is used as the weight to generate the roots.

In the formula, mfine(L) and mcoarse(L) represent the 
smoothing results of BM3D filters using parameters that are 
half and twice the local standard deviation �i of the average 
value of the low-light-level image I.

To obtain the detail layer n1(L) , we select the first-order 
differential of the inverted image L . It is found that the ran-
dom noise in detail layer n1(L) tends to fuse the image detail 
texture. Therefore, we use structured filters to smooth the 
texture detail layer of the image to retain useful image tex-
ture to obtain smoother and more complete texture feature 
results n(L).

3.3  Integrative network image enhancement

Because the low-light image L′ is similar to a defogged 
image, an effective integrated network is used to enhance 
the contrast. One of the definitions of the atmospheric scat-
tering model is:

where J(x) is the scene radiance (“clean image”), A denotes 
the global atmospheric light, � is the scattering coefficient of 
the atmosphere, and d(x) is the distance between the object 
and the camera.

The formula for deformation is:

The two parameters t(x) and A are unified into one for-
mula, that is, K(x) in the following formula, and the recon-
struction error in the pixel domain is directly minimized. To 
this end, the formula is expressed as the following conver-
sion formula:

where

In this way, t(x) and A are integrated into a new variable 
K(x) . m is a constant deviation with a default value of 1. 
Because K(x) depends on L′ , the objective is to construct 

(3)m(L) = � ⋅ mfine(L) + (1 − �) ⋅ mcoarse(L).

(4)L� = J(x)t(x) + A(1 − t(x)),

(5)t(x) = e−�d(x),

(6)J(x) =
1

t(x)
L� − A

1

t(x)
+ A.

(7)J(x) = K(x)L� − K(x) + m,

(8)K(x) =

1

t(x)
(L� − A) + (A − m)

L� − 1
.
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an input adaptive depth model whose parameters will vary 
with the input low-light-level image to minimize the recon-
struction error between the output J(x) and the actual clear 
image on the ground. The LLAON consists of two modules. 
As shown in the Fig. 2(a), K estimation module is used to 
estimate K(x) from input I , and then K(x) is used as an adap-
tive parameter to input a clear image generation module to 
estimate J(x) to obtain a clear image with improved contrast.

The K  estimation module is a key component of the 
LLAON; it is responsible for estimating the depth and the 
relative light level. In the convolution network, the shallow 
features are more detailed, and there is more deep seman-
tic information. The fusion of the shallow features and the 
deep features can increase the amount of useful informa-
tion to a certain extent so that the K-map can be estimated 
more accurately. As shown in the Fig. 2(b), five convolu-
tion layers are used, and multi-scale features are formed by 
fusing convolution cores of different sizes. In [23], parallel 
convolution with different convolution core sizes is used in 
the second layer. Ref. [24] links the features of coarse-scale 
networks with the middle layers of fine-scale networks. 
Inspired by [23, 24], the characteristics of the “concat1” 
layer and connection layers “conv1” and “conv2” of the 
LLAON are linked. Similarly, the “concat2” connection 
comes from the characteristics of “conv2” and “conv3”; 
the “concat3” connection comes from the characteristics of 
“conv1”, “conv2”, “conv3” and “conv4”. This multi-scale 
design captures the characteristics of different scales, and the 

intermediate connection also compensates for the informa-
tion loss during convolution. Each convolution layer of the 
LLAON uses only three convolution cores. Therefore, the 
LLAON is lighter than existing deep-seated methods. After 
the K estimation module, the clear image generation mod-
ule is composed of an element-by-element multiplication 
layer and several element addition layers so that the restored 
image can be generated by formula (6). The calculation flow 
of this algorithm is shown in Table 1.

3.4  Image quality evaluation

3.4.1  Peak signal–noise ratio (PSNR)

The PSNR is an objective criterion for image evaluation. It 
measures the damage degree of the original image and the 
noise and is similar to a human perception of the image. 
Additionally, the higher the PSNR is, the better the de-
noising image. Basically, it is a correction of the mean-
square error between the clear-light reference image and 
the reconstructed image. Given a clear-light m × n image I 
and its reconstructed version K , the MSE is calculated by 
the formula:

and the PSNR, in dB, is expressed as:

(9)MSE =
1

mn

m−1
∑

i=0

n−1
∑

j=1

[I(i, j) − K(i, j)]2,

(a)

(b)

Fig. 2  a Integrated network model. b K estimation module
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where MAXI is the maximum possible pixel value of image 
I . Because the pixels used in this paper are 8 bits, in this 
case, MAXI = 28 − 1 = 255.

3.4.2  Structural similarity (SSIM)

The structural similarity index (SSIM) is used to measure the 
structural similarity between two images and is sensitive to 
local structural changes. Under specific illumination condi-
tions, image enhancement will not change the structure, and 
the texture of the images remains relatively complete. For 
example, in natural images taken during the day, all the pixel 
values can be changed by adding or subtracting a small num-
ber, but the structure and texture will not greatly change, while 
the PSNR behaves quite differently. For low-light-level image 
enhancement, texture preservation is more important than 
structure preservation. Therefore, the SSIM function is more 
suitable for low-light-level image enhancement than other 
kinds of enhancement. The SSIM is equivalent to calculat-
ing the illumination (the mean value of image sub-regions), 
contrast (variance of image sub-regions) and normalized pixel 
vectors after normalizing the data, and then multiplying the 
values.

The SSIM value of pixel i is calculated by definition as:

The SSIM value is in the range (0,1), and the value 1 means 
that the two images are identical. Therefore, 1 − SSIM(i) is 
used to calculate the loss of pixels. The SSIM function is 
defined as follows:

(10)PSNR = 10 ⋅ log10

(

MAX2
I

MSE

)

,

(11)SSIM(i) =
2�x�y + C1

�2
x
+ �2

y
+ C1

⋅

2�xy + C2

�2
x
+ �2

y
+ C2

.

(12)lSSIM =
1

N

∑

i∈I

1 − SSIM(i).

We divide image I into N sub-regions, where i is a sub-
region of region I.

4  Experimental results

4.1  Introduction of the experimental data set

Because deep learning requires a large number of train-
ing samples, it is difficult to achieve complete consistency 
between a low-illumination image taken under a low light 
level and a normal-illumination image of the same scene, 
which seriously restricts the research and development of 
deep learning technology in low-light-level image enhance-
ment. Inspired by [25], this paper proposes an easy-to-oper-
ate but time-consuming training sample generation method. 
According to the retinex model, a low-illumination image is 
the product of the illumination component M and the reflec-
tion component N (the normal-illumination image). Experi-
ments are carried out on the Berkeley Segmentation Data Set 
(BSD) in the field of computer vision. Five hundred images 
with good illumination conditions are selected as reflective 
components. A total of 256,000 image blocks with dimen-
sions of 40 pixels by 40 pixels are randomly selected and 
fused with randomly selected images with Gaussian white 
noise to obtain the illumination component L. The fusion 
ratio �,� ∶ [0, 1] obeys a beta distribution. Each pixel cor-
responding to the two images is added. The value is added 
directly—that is, L = � ∗ image + (1 − �) ∗ image_random

—and the synthesized low-illumination image block can be 
expressed as S = M*N. The data can be expanded to 26,000 
low-light-level images with a size of 480*640 by the above 
transformation and a scale transformation. To make the data 
more diversified, the relevant video images on the network 
are captured, the data sets are constructed, and 4000 images 
are captured. After the expansion of the original data and 
the image on the network, the data set has a total of 30,000 
pictures. The training set of this method is constructed as 
follows: 70% are the data extracted randomly from the data 

Table 1  Algorithmic flow chart The algorithm in this paper: low-light-level image enhancement based on an integral network

Input: a low-light-level image I
1: Super-pixel segmentation is applied to I , and �

i
 is calculated by formula (1)

2: Image I is reversed, and a new image L is obtained after inversion
3: BM3D filters are used to obtain bfine(L) and bcoarse(L) , and b(L) is obtained by combining these formulas
4: The first-order difference method is applied to L′ to generate the noise detail layer d

1
(L)

5: Structural filter smoothing d
1
(L) is used to generate the noise-free detail layer d(L)

6: First, the noise-free detail layer d(L) is adaptively combined with the basic layer b(L) , and then L is 
obtained according to formula (2)

7: Through the K estimation module in the integrated network, K(x) is obtained
8: J(x) is estimated by the clear image generation module
9: Image J(x) is reversed to obtain the final output enhancement image E
Output: An enhanced image E
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set, and 30% are the data extracted from the data set. Each 
picture is labeled manually according to the format of the 
BSD data set. Some of the data set pictures are shown in 
Fig. 3. 

4.2  Experimental settings

In the Ubuntu 16.04 operating system, a low-light-level 
image enhancement algorithm based on an integrated net-
work is implemented using Pytorch, a deep learning frame-
work. The experimental platform uses an Intel (R) Core 
(TM) i5-8600 central processing unit (CPU), and its main 
frequency is 3.10 GHz; it has 16-G memory, and its GPU 
(graphics processing unit) is an NVIDIA GTX 1080Ti. We 
train and test the network in the above environment. To ver-
ify the effectiveness and optimization of the algorithm, seven 
current algorithms with good performance are selected for 
comparison under the same environment. Regarding the 
training set for this method, 70% of them are data extracted 
randomly from the data set, and 30% are the data extracted 
from the data set. Additionally, real pictures are used for 
testing.

The algorithm network has five convolution layers, each 
of which has a size of 2.3 sections. The number of convo-
lution kernels in the feature extraction part of the network 
framework is 64, and the size is 3*3*64 pixels; the number 
of all convolution kernels in the non-linear mapping part is 
64, and the size is 5*5*64 pixels; the convolution kernels 
in all layers of the network are adopted. In the initialization 
method of [26], in the training process, the weights are ini-
tialized by using Gaussian random variables, the bias term 
is initialized to 0, the momentum and attenuation parameters 
are set to 0.9 and 0.0001, respectively, and the learning rate 
is 0.01. In the later stage, in the process of fine-tuning and 
retraining, over fitting is prevented, and the learning rate is 
reduced by an order of magnitude to perform retraining. The 

size, C1 and C2 parameters of the SSIM kernel are set to 8, 
0.001 and 0. 0001; 10 000 iterations are carried out, and a 
simple mean-square error (MSE) loss function is used. The 
experiment shows that not only the PSNR but also the SSIM 
and visual quality are improved.

4.3  Experimental analysis

In this section, through objective quantitative analysis and 
subjective visual analysis, the effectiveness and optimization 
of the algorithm are analyzed. The adopted image size is 
consistent, and the full reference mode is selected to evaluate 
the image quality. Next, the proposed model is objectively 
compared with other traditional contrast enhancement meth-
ods and depth-based learning methods. Then, the proposed 
algorithm is analyzed on the basis of the objective vision 
and compared with other algorithms in terms of visual 
performance.

4.3.1  Objective quantitative analysis

To validate the effectiveness and optimization of the algo-
rithm, six enhancement methods are selected and com-
pared under the same test environment: classical histogram 
equalization (HE), dynamic histogram equalization (DHE), 
Dong’s image enhancement method based on the defogging 
model, LIME, a CNN, an LLCNN based on deep learning 
and the method proposed in this paper [27–29]. The results 
are shown in Table 2.

In the objective evaluation, Table 2 is the average of 
some evaluation indexes obtained on the same data set 
using different enhancement algorithms. The bold part 
are the performance results of the proposed algorithm. We 
compared the PSNR, SSIM, MSE and LOE (lightness order 
error); a higher PSNR reflects a smaller distortion degree 
of the image, a higher SSIM represents better integrity of 
the image structure information, and the MSE reflects the 
structural characteristics of the enhanced image and the real 
image. The difference between the enhanced image and the 
real image is reduced; the brighter the enhanced image is, 
the closer it is to the original normal-illumination image. 

Fig. 3  Partial data set

Table 2  Evaluation indicators for different enhancement algorithms

METHOD PSNR/DB SSIM MSE LOE

HE 16.07 0.7885 1928.3 62.68
DHE 16.35 0.6469 1899.8 58.49
DONG 17.29 0.7848 1684.1 95.65
LIME 19.17 0.9251 1303.7 93.60
CNN 23.08 0.790 998.6 36.68
LLCNN 30.20 0.853 586.4 29.27
Ours 31.64 0.912 496.7 25.36



2022 P. Wang et al.

1 3

The LOE mainly evaluates the naturalness preservation abil-
ity of the enhanced image. The smaller the value, the more 
the brightness sequence is protected and the more natural 
the image is. Their formulas are as follows:

MSE: MSE is the energy mean of the difference between 
the real image and noisy image.

where yb represents the real image and ya is the noisy image.
PSNR: PSNR is the ratio of the peak signal energy to 

the MSE.

In the second equation, “bits” is the number of bits that 
each pixel holds; the pixel value of the image is stored quan-
titatively. Thus, MaxValue is 2bits − 1.

SSIM: The brightness is represented by the mean � , the 
contrast by the variance normalized by the mean � , and the 
structure by the correlation coefficient C.

LOE: The relative brightness order is used to measure the 
naturalness degree of the image. The order of relative bright-
ness can be used to indicate the direction of illumination and 
the degree of the variation of illumination.

The LOE measures the order of difference in brightness 
between enhanced pictures Ie and I:

L(x, y) is the maximum value in the RGB channel. For 
each pixel, the relative brightness order difference between 
the original image and the enhanced image is defined as:

where ⊕ is the xor operation.

From Table 2, we can see that, in addition to the SSIM 
being slightly lower than that of LIME, the PSNR, MSE 
and LOE are better than those of the other algorithms. This 
shows that the proposed algorithm has low distortion and 
good texture details, is closer to the original image, and 

(13)MSE = E[(yb − ya)
2],

(14)PSNR = 10 log10
MaxValue2

MSE
= 10 log10

2bits − 1

MSE
.

(15)SSIM(x, y) =
(2�x�y + C1)(2�xy + C2)

(�2
x
+ �2

y
+ C1)(�

2
x
+ �2

y
+ C2)

.

(16)L(x, y) = max
c∈{r,g,b}

Ic(x, y).

(17)

RD(x, y) =

m
∑

i=1

n
∑

j=1

(U(L(x, y),L(i, j))⊕ U(Le(x, y), Le(i, j))),

(18)U(x, y) =

{

1,

0,

forx ≥ y

else
,

(19)LOE =
1

m ∗ n

m
∑

i=1

n
∑

j=1

RD(i, j).

produces an enhanced image that is more realistic and natu-
ral. The effectiveness and optimization of the algorithm are 
verified.

Different methods are compared in terms of the time cost. 
To ensure a comparable performance in terms of the image 
processing time, in the same hardware environment, we pre-
process the data of the following algorithms, fine-tune the 
network, and ensure a time-consuming comparative analy-
sis under the same image size (244*244). The experimental 
results are shown in Fig. 4. Although LIME causes very 
little distortion, it is quite time-consuming. The proposed 
method achieves less distortion than the other methods at 
an acceptable time cost.

From Fig. 4, we can see that the classical low-light-
level image contrast enhancement algorithm has a simple 
structure. For example, the HE, DHE, DONG, and lIME 
algorithms mainly process the input pixels directly, and pro-
cess them quickly through functions and formulas, so their 
time costs are low. The low-light-level image enhancement 
method based on depth learning needs to perform param-
eter adjustment because of its complex structure, and deep 
learning processes a large number of image features into 
the pixel matrix, including many convolution operations, 
leading to a large time consumption. The CNN algorithm 
uses many convolution layers for processing, and the time 
cost is large, while LLCNN uses residual blocks later, which 
further increases the time cost. Because the integrated net-
work parameters mentioned in the method of this paper are 
fewer, the number of network layers is smaller and the nested 
formulas function better as a network compared with other 
methods. Based on the convolution neural network enhance-
ment algorithm, this algorithm is lighter, less time consum-
ing and performs faster image processing.

4.3.2  Subjective visual analysis

In subjective evaluation, all methods are tested on 32 real 
images with different darkness and noise levels. Due to 

Fig. 4  Time consumption of different algorithms
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space limitations, this section compares the experimental 
results of four images with different darkness and noise lev-
els using different algorithms. The sizes of the input image 
are 512*512 and 1024*1024. For different algorithms, cor-
responding pre-processing is added, and the normalized 
image size is 512*512 pixels so that the final output image 
is a fixed size and the experimental comparison effect is 
more obvious; the images obtained by other enhancement 
algorithms are then compared. The results show that the pro-
posed algorithm can adaptively control the contrast enhance-
ment of different regions to prevent over-enhancement and 
suppress most of the noise while retaining the texture details. 
Figure 5 shows the comparison results. Figure 6 shows 32 
images and the enhancement results obtained by this algo-
rithm, and Fig. 7 shows the plane of the 32 images. All 
LOEs were compared.

Figure 5 shows that although the HE algorithm can 
enlarge the dynamic range of the image and improve the 
overall brightness and contrast of the image, over-satu-
ration will lead to serious color bias. From the image, it 
can be clearly observed that the sky/indoor color is white, 

while that in the original image is black, the grass color is 
no longer green, and the overall image is yellow. Similar 
color distortion also occurs in DHE. The Dong algorithm 
maintains the image color well after enhancement, but it 
has a serious edge effect. In the figure, observing soldiers, 
plants and construction equipment shows that the edges 
of these elements have obvious black lines, and the image 
looks very unnatural. The LIME algorithm improves the 
brightness of the dark areas, improves the overall bright-
ness of the image, and makes the color brighter. However, 
the LIME algorithm is prone to over-enhancement and 
causes some color distortion. The CNN algorithm is only 
effective for dark areas, but it cannot improve the bright-
ness of dark areas, and it is difficult to distinguish the 
details clearly. The brightness of human and indoor equip-
ment images is still dark after enhancement. The LLCNN 
algorithm greatly enhances the brightness of low-light-
level images, but it is easy for it to over-enhance. Soldiers 
in the figure are revealed, and the LLCNN algorithm will 
enhance an area whether the area is dark or not. There-
fore, the image is over-enhanced, which is not in line with 
human visual perception. The proposed algorithm can 
maintain the color and improve over-enhanced images, 

Fig. 5  Comparison of contrast enhancement algorithms for different low-light-level images

Fig. 6  32 real test images and enhanced results

Fig. 7  Average LOE comparison of 32 images with different algo-
rithms
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enhance the brightness of dark areas, and have a better 
visual perception.

For all 32 images in Fig. 6, the average LOE values of 
seven different methods of low-light-level image enhance-
ment are calculated in Fig. 7. The results show that the algo-
rithm presented in this paper has better naturalness preser-
vation ability on the basis of retaining details and textures.

5  Conclusion

Aiming at addressing the phenomena of color distortion 
and over-enhancement that arise when the current classic 
low-light-level image enhancement algorithm improves the 
brightness and contrast of an image, an effective integrated 
neural network algorithm is proposed to enhance the contrast 
of low-light-level images. Using adaptive de-noising based 
on super-pixels and adaptive contrast enhancement based 
on an integrated neural network, the heavy noise and texture 
blur in traditional methods are eliminated, and the contrast 
of low-light-level images is effectively improved. The exper-
imental results show that the proposed algorithm not only 
improves brightness and contrast but also avoids serious 
color distortion. The enhancement effect is better than that of 
the current mainstream low-light-level image enhancement 
algorithm, which has theoretical significance. In the future, 
we will continue to optimize the network model to further 
improve the speed and performance of image processing.
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