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Abstract
Image stitching, or known as image mosaic, is the process that combines images with overlapped areas to form an image 
with wide view and high resolution. Image stitching technique has been quickly developed these years. It has become an 
important branch in digital image processing and has wide applications. Many image stitching methods have been proposed. 
This article takes investigation on some image stitching techniques, including image registration, seam removal and quality 
assessment. Most existing related methods are introduced. Experiments are done to show the result of some main methods. At 
last, the advantages and disadvantages of some existing methods are discussed and some future potential work are pointed out.
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1  Introduction

A wide-view, high-resolution image is usually required in 
many fields. At present, there are two main ways to acquire 
these images, first is to fix the shaft of the camera and taken 
photos while pivoting; second is to fix the light centre of 
the camera, moving the lens horizontally and taking photos 
[1]. To merge these images to a wide-view, high-resolution 
image, it is necessary to study image stitching techniques.

Image stitching, or also known as image mosaic, is a pro-
cess that combines images with overlapped areas to form an 
image with wide view and high resolution [2]. Nowadays, 
image stitching plays a vital role in digital image processing, 
making it a popular domain in photographic cartography, 
computer vision, image processing and computer graphics. 
It is widely applied in remote sensing, aerospace, virtual 
reality, medical imaging and so on [3–6].

A well-stitched image should be clear, has smooth edge 
and high resolution. The main process of image stitching 
consists of feature matching, registration and seam removal. 

Take two images as an example, the stitching process 
is shown in Fig. 1. Unfortunately, there is not a common 
method for stitching all kinds of images at present because 
of the complexity of the image. However, the core problem 
is to find the overlapped area and determine the position 
relationship between two images.

Usually, after inputting two images with overlapped 
areas, feature matching is applied to find the correspond 
points of the images for stitching. Image registration is done 
to put the images under the same coordinate system. Seam 
removal is employed to eliminate the seam, because the out-
side environments and camera settings (like exposure) when 
those images are acquired may be different. Therefore, image 
registration and seam removal are key techniques to image 
stitching.

With the development of new techniques, demands to 
time and precision have been refreshed. In recent years, lots 
of achievements have been made in this field. For example, 
scale-invariant feature transform (SIFT) and speed-up robust 
feature (SURF) methods improve the precision of image reg-
istration to a certain degree, optimal seam methods make the 
transition between two images more natural.

In this article, some algorithms about image stitching, 
including image registration and seam removal, are shown 
in Sects. 2 and 3, respectively. Next, some quality assess-
ment methods for stitched image are provided in Sect. 4. 
Discussions are made in Sect. 5. Finally, conclusions are 
made in Sect. 6.
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2 � The key to image stitching: image 
registration

Image registration is a process that combines different 
images for the same area obtained from different time, 
different views and different sensors altogether [7]. It can 
be single modality or multi modalities, rigid or non-rigid. 
In rigid registration, images are simply supposed to be 
rotated and translated to be aligned properly. In non-rigid 
registration, two images cannot be aligned properly with-
out localized stretching of images. The methods commonly 
used in image stitching are single modality, rigid ones 
which mainly categorized as method based on regions and 
method based on features. Method based on regions starts 
from the pixel value and calculates the intensity differ-
ence in the same area between image to be registered and 
reference image mathematically. In general, such methods 
have a large calculation amount but low registration accu-
racy. Method based on features does not make use of pixel 
value directly, it extracts features in images and matches 
the overlapped area using those features extracted. This 
kind of method is of robustness and precision.

2.1 � Image registration based on regions

2.1.1 � Pixel matching algorithm

Basic pixel matching is operated on monochrome images. 
The algorithm selects one image as a base, and the over-
lapped area is employed to be registered and determines 
the matched regions. Some methods use one image as ref-
erence and make the overlapped area move inside the ref-
erence image. When it moves over one pixel, relativity is 
calculated. Suppose I1 is the referrer, I2 is another image, 

the overlapped areas are known as Ω1 and Ω2, whose sizes 
are both M × N. The relativity R can be known as

Then, the row (column) with maximum relativity is 
selected for registration. Obviously, the calculate amount is 
large. For an M × N sized overlapped area, the size of D will 
be M × N as well. It is also difficult for such methods to deal 
with rotation and scaling.

Figure 2 are two images with overlapped area and Fig. 3 
is the stitching result using such method. Note that grey 
image is employed for calculation but map the results into 
the RGB domain. In this method, relativity in a window is 
kept and calculated to find the suitable position to align two 
images. As the method cannot deal with rotation and scal-
ing, the images are kept as their original size and style. The 
relativity of Fig. 2a, b has high relativity at the place denoted 
by an arrow with high relativity so it is chosen as the base 
for aligning the image. The relativity of the place denoted 
by an arrow with low relativity is low and is thus, not chosen 
as the base. From Fig. 3, we can see that there are obvious 
discontinuities in the overlapped area. This is because that 
the lens was rotated into a different angle when photograph-
ing the right image (see Fig. 2b), while the matching method 
cannot deal with rotations in images. To register this image 
better, some methods that could solve the rotation of the 
images should be applied.

To reduce calculate amount, the search field is modified 
to a region and put to practice in [7, 8]. An image stitching 
method based on cross-correlation is also proposed in [9] 
to compute the displacements between the source images.

An image stitching method using dynamic time warping 
(DTW) is proposed in [10]. DTW is a method aligning two 

(1)R =

M∑
x=1

N∑
y=1

||Ω1(x, y) − Ω2(x, y)
||.

Fig. 1   Basic flow chart of image stitching
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sequences of time series by matching their elements while 
minimizing a total distance measure via dynamic program-
ming. The method starts by selecting two images with over-
lapped area. Then, an m × n sub-image is cropped from one 
of them as template, where features are extracted and nor-
malized into a 1-dimensional sequence. Features of another 
image are also extracted and compared with DTW method 
to identify the position. Finally, the stitched image is created.

In [11], two rows with certain interval in the overlapped 
areas of an image I1 are used as the template to search the 

best matching points in the correspond overlapped area in 
I2. The rows of match are then adjusted to three to improve 
the searching strategies and make the result more precise. 
In [12], a technique for stitching biomedical images is pre-
sented. This algorithm operates by equilibrating neighbour-
ing edges and forcing the brightness at corners to a common 
value. Brightness correction is done by a specific matrix 
before registration in [13] to make the algorithm less sensi-
tive to illumination changes.

In general, this kind of method is simple to realize, but 
the calculation amount is large. Because the image is often 
taken with deformations, while no transformation is made 
in registration process, the result is not so ideal as expected.

2.1.2 � Image registration based on mutual information

Mutual information (MI) is the scale of dependence between 
two variables [14]. If two variables are independent, the 
mutual information is 0. If two variables share strong 
dependence, the mutual information is large. In recent years, 
MI is widely applied in image registration [15–17], image 
retrieval [18], pattern recognition [19]and image stitching 
[20, 21].

The MI of images I1 and I2 is defined as

where PI1I2
(I1, I2) is the joint probability density, PI1

(I1) and 
PI2

(I2) are marginal probability densities.
According to the definition of MI, two images are sup-

posed to be variables, they share large MI if the similarities 
between the images are large. Thus, the image registration 
problem now transforms into a problem to search the max 
value of MI between the template and the sub-image.

To improve the MI algorithm, some concepts, such as 
NMI (normalized mutual information) [22], LMI (local 
mutual information) [23], are proposed. A self-similarity 
weighted graph-based implementation of α-mutual infor-
mation (α-MI) for non-rigid image registration is proposed 
in [16] and is applied into registering pre-operative mag-
netic resonance (MR) images to intra-operative ultrasound 
(US) images. α-MI is used to detect the similarities between 
images.

Registration using MI is of high precision, low interfer-
ence and strong reliability. However, the calculation is very 
complex, and the robustness to rotation is weak.

2.1.3 � Image registration based on Laplacian pyramid

Image registration based on Laplacian pyramid was first pro-
posed in [24], where a sequence of low-pass filtered images 
I1, …, ILdec can be obtained by repeatedly convolving a small 

(2)MI(I1, I2) =
∑
I1,I2

P(I1, I2) log10

PI1I2
(I1, I2)

PI1
(I1)PI2

(I2)
,

Fig. 2   Images with overlapped area

Fig. 3   Image stitching using relativity measurement
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weighting function with a sample image, I0. By this method, 
image sample density is also decreased with each iteration so 
that the bandwidth is reduced in uniform one-octave steps. 
Sample reduction also means that the cost of computation 
is controlled to a minimum size. The pixel value of I1 cor-
responds to the 5 × 5 weighted mean value of transition in 
I0 level. Iterate according to this and get a series of low pass 
filter image (the Gauss low pass filter image series): I0, …, 
ILdec. The pixel of the lth level in image Il (x, y) is defined as

w(i, j) is called generating kernel limited by

A localized algorithm of image stitching based on clas-
sic Laplacian method is proposed in [25]. Multi-resolution 
template, which can calculate multi templates in one scan-
ning process and get the descriptor in different scales, is 
proposed. Experiments show that the use of structure infor-
mation limits the decomposition and reconstruction process 
and reduce the calculation amount.

2.1.4 � Registration in the transformation domain

In the transformation domain, methods commonly used to 
register images are Fourier Transformation (FT) and Wavelet 
Transformation (WT). Here, Fourier Transformation based 
registration is introduced at first. Then, Wavelet based reg-
istration is also introduced.

In 1970, FT was used in image registration [26]. In [27], 
FT is applied into underwater sonar image stitching. In [28], 
it is used for stitching computed tomography (CT) image 
sets.

An image registration method based on WT is proposed 
in [29]. Dual-tree complex wavelet transformation (DT-
CWT) is applied to decompose the images to be registered. 
Starting at the coarsest level, a first estimate of the transfor-
mation vector v = [α, tx, ty] is found, where α is the rotation 
angle, tx and ty are the translation parameters in the x and y 
directions, respectively. Note that in this work, scaling trans-
formation is omitted. Cross correlation is chosen as a match-
ing criterion. Next, edge maps of both low-passed images, 
Emap1 and Emap2, are extracted. Searching is performed to 
determine the best initial transformation vector vinit:

where c(x, y) means cross correlation with x and y, T(Emap2) 
denotes the wrapped image using vector v.

(3)Il(x, y) =

5∑
i=1

5∑
j=1

w(i, j)Il−1(2x + i, 2y + j).

(4)
2∑

i=−2

2∑
j=−2

wl(x − 2li, y − 2lj) = 1

(5)vinit = argmax
v

c(Emap1, T(Emap2)),

The transformation vector vl is found by

Re{x, l}[21] and Cp{x, l} are real and complex part of 
x in level l, respectively. D1 means the decomposing of 
original image and D2 means the decomposing of image to 
be registered. To further reduce the computational burden, 
an alternative search method proposed can be applied.

Registration in the transformation domain is fast, robust 
and can solve most deformations in images. However, 
when the image has few overlapped areas, the result may 
not be precise enough.

2.2 � Image registration based on features

2.2.1 � Corner detecting algorithm

The corner that is usually generated from intersections 
between lines, is usually the point where there is a sharp 
difference in brightness or has huge curvature [30, 31]. It 
is scale-invariant and influenced little from illumination. 
Therefore, corner is suitable for detection. The operators 
generally used are Forstner, Moravec and Harris.

Forstner operator was firstly proposed by Wolfgang For-
stner in [32], where q and w are calculated by

where C is the intensity covariance matrix. Suppose t is the 
threshold (a certain value). If q > t, the pixel is one candi-
date. Then, extreme points of q are selected as feature. The 
best candidate window is the centre window of that point. 
Normal equations are used to calculate the accurate position 
of the corner, where gx and gy are Robert gradient in x and y 
directions, respectively:

In 1980, Moravec operator was formally proposed in 
[33]. It selected the point with minimum intensity variance 
in four main directions.

Harris operator was proposed in [34] based on Moravec 
method [35]. In Harris operator, corner detector Dh is used 
to detect corners:

(6)vl = argmax
v

[
I(Re{D1, l},T(Re{D2, l}))

I
(‖‖Cp{D1, l}

‖‖, T‖‖Cp{D2, l}
‖‖
)
]
.

(7)q =
4 det(C)

(trace(C))2

(8)w =
det(C)

trace(C)

(9)C

[
x

y

]
=

[
x
∑

g2
x
+y

∑
gxgy

x
∑

gxgy + y
∑

g2
y

]
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where I(x, y) is one pixel in image I. w(x, y) is the window 
function, which could be a rectangle window or Gaussian 
window. Suppose

Ix and Iy are gradient values in x and y directions. The 
detect operator can be approximated as

The response value Re of the detection is

Usually, the value of k is 0.04–0.06 [36]. Set k = 0 to 
the k value less than a threshold t and suppress the non-
maximum value in a 3 × 3 or 5 × 5 area, whose local maxi-
mum point is the corner.

Harris operator is invariant to translation and rotation. 
However, the value of t is dependent on image attributes, 
making no measurement when setting specific threshold. 
In addition, the points with large eigen values are often 
assembled in certain range, which will make the distribu-
tion of the detected corner in a non-unified way. As more 
corners can be detected in regions with rich texture, while 
fewer corners can be detected in regions with less texture, 
the corners tend to distribute in the place with richer tex-
ture information [30, 37].

To improve Harris corner detection, a new response 
function is given in [38]. Re is redefined as:

where ε is used to prevent the case when trace(M) is 0. A 
very small ε, like 10–6, can be taken. In addition, in the rede-
fined Re, the selection of k is not needed.

There are some applications of corner detecting algo-
rithms in image stitching. In [39], an adaptive Harris cor-
ner detection for image stitching is given. In [40], Harris 
corner detector is customized to meet the requirements 
of viewing a panorama video in real time. In [41], corner 
detection is adopted to help extract features. In [42], an 
improved Harris corner detection algorithm is proposed 
to stitch the images related to traffic accidents.

(10)Dh(i, j) =
∑
x

∑
y

w(x, y)[I(x + i, y + j) − I(x, y)]2,

(11)M =
∑
x

∑
y

w(x, y)

[
I2
x

IxIy
IxIy I2

y

]

(12)Dh(i, j) =
[
i j

]
M

[
i

j

]
.

(13)Re = det(M)−k[trace(M)]2.

(14)Re =
det(M)

(trace(M))2 + �
,

2.2.2 � Scale‑invariant feature transform (SIFT) method

SIFT method was proposed by David G. Lowe in 1999 and 
was used in feature detections at first [43, 44]. In 2004, the 
algorithm was upgraded [45]. SIFT has been used in image 
registration [46–49] and image stitching [50–54]. SIFT algo-
rithm detects the extreme value in the intensity and scale 
domain and selects the key point using Gaussian kernel G. 
The difference of Gaussian kernel (DoG) in different scale 
σ is used to detect extreme value:

For every L(x, y, σ), the amplitude and direction of the 
key point are then computed. Then, an 8 × 8 window centred 
by the key point is taken and the 8-direction gradient his-
togram of every 4 × 4 direction is calculated. The key point 
descriptor is a 128-dimensional vector.

Key point descriptors are matched using measurements 
like Euclidian distance. After the matching, random sam-
ple consensus (RANSAC) is usually taken to remove mis-
matches [55].

Then, the image is taken for affine transformations, 
where one image can be combined with another. Usually, 
a homography matrix is adopted in this step to describe the 
class of 2-dimensional planar projective transformations by 
matrix multiplication. The projective transformations can 
be defined as a matrix with 8 degrees of freedom called H:

where x′ and y′ can be obtained as

By affine transformation and finding appropriate param-
eters, the two images can be combined with their main fea-
tures matched altogether. The homography matrix is deter-
mined by eight parameters and the coordinate of points 
should be selected to estimate them. However, in pixel-based 
algorithms, the image registration is employed for selecting 
a template from one image and measure the relativity in 
another. Thus, it is unable to take the affine transformation. 
This is the reason why Fig. 3 has large mismatches.

(15)G(x, y,�) =
1√

2��e
x2+y2

2�2

(16)
DoG(x, y, �) = [G(x, y, k�) − G(x, y, �)] ∗ I(x, y).

= L(x, y, k�) − L(x, y, �)

(17)

⎡⎢⎢⎢⎣

x�

y�

1

⎤⎥⎥⎥⎦
= H

⎡⎢⎢⎢⎣

x

y

1

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎣

a1 a2 a3
a4 a5 a6
a7 a8 1

⎤
⎥⎥⎦

⎡⎢⎢⎢⎣

x

y

1

⎤⎥⎥⎥⎦
,

(18)

⎧⎪⎨⎪⎩

x� =
a1x + a2y + a3

a7x + a8y + 1

y� =
a4x + a5y + a6

a7x + a8y + 1

.
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Image stitching with SIFT is in good conditions in many 
cases. It runs very fast and can deal with translation, rotation 
and scaling. Figure 4 is the matched result with SIFT. Note 
that the horizontal lines mean the corresponding points in 
the two images. Figure 5 is the stitched result of Fig. 2 with 
SIFT.

SIFT is improved in [56], known as PCA-SIFT. It accepts 
the same input as the standard SIFT descriptor. PCA [57] 
is the short for principal component analysis. It is a kind of 
technique for dimensionality reduction and has been widely 
applied in computer vision [58–60]. There are mainly three 
steps for PCA-SIFT: first, an eigen space is computed to 
express the gradient images of local patches; second, the 
local image gradient of a given patch is calculated; third, the 
gradient image vector is projected using the eigen space to 
derive a compact feature vector.

SIFT descriptor is invariant to image deformations such 
as translations, rotations and scaling. It is also robust to 
moderate perspective transformations and illumination vari-
ations. However, it cannot meet the demand of calculation 
speed in some cases. As an improvement, PCA-SIFT con-
sumes less time than SIFT with the cost of lower robustness 
to scaling.

2.2.3 � Speed up robust feature (SURF) algorithm

SURF, a robust image recognition algorithm, was firstly 
proposed in 2006 [61]. It can be used in pattern recognition 

and 3D reconstruction. Experiments show that compare with 
SIFT, SURF will be serval times faster [62]. In recent years, 
studies on image registration [63, 64]and image stitching 
[65–67] based on SURF demonstrate good results.

SURF takes use of the integral image to convert the sec-
ond-order Gaussian integral template filter into the modifica-
tion of the integral image.

Hessian matrix, H(x, σ) in x at scale σ, is then applied to 
detect feature points:

Lxx, Lxy, Lyy are the second-order derivations in xx, xy, yy 
directions, respectively, which can be acquired from con-
voluting the image with second-order Gaussian gradient 
template. In SURF, this template is approximated by box 
functions, usually a 9 × 9 box function that is equivalent to 
a Gaussian filter (σ = 1.2). Such approximation is called blob 
response maps expressed by Bxx, Byy and Bxy.

Thus, det(H) can be approximated by

Next, feature descriptors are created using Haar Wave-
let. Integral image is used to simplify the calculation. The 
descriptor is a 64-dimensional matrix with coordinate, 
amplitude and rotation angle. Figure 6 is the matching points 
found with SURF, where the horizontal lines mean the 

(19)H(x, �) =

[
Lxx(x, �) Lxy(x, �)

Lxy(x, �) Lyy(x, �)

]

(20)det(H) = BxxByy − w(Bxy)
2.

Fig. 4   Matched result with SIFT

Fig. 5   Stitched image with SIFT

Fig. 6   Matched result with SURF

Fig. 7   Stitched image with SURF
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corresponding points in the two images. Figure 7 is stitch-
ing result of Fig. 2 using SURF.

Compare Fig. 6 and Fig. 4, we can see that SURF finds 
fewer feature points than SIFT. The applications of Hes-
sian matrix and box function make SURF faster than SIFT. 
However, compare with SIFT, SURF is not robust against 
large rotations.

Template-convolution speed-up robust features (TSURF), 
an improvement of SURF, is proposed in [68] to improve the 
stitching speed while maintaining the precision. The maxi-
mum value (Hmax) of Hessian matrix’s determinant minus 
the secondary value (Hsec) is used:

In their algorithm, θ is set to 0.5 when the image contrast 
is 0.14. If Hmax − Hsec ≥ θ, the point is assumed as a candi-
date. The higher the contrast is, the greater the θ will be.

Registration based on SURF consumes less time than 
registration based on SIFT. However, it is less robust than 
SIFT to rotations in images. In addition, misalignments with 
SURF are more than using SIFT.

2.2.4 � KAZE features

KAZE feature is a multi-scale 2-dimensional feature detec-
tion and description algorithm in nonlinear scale spaces 
proposed in 2012 [69], where 2-dimensional features are 
detected and described in a nonlinear scale space by non-
linear diffusion filtering. In KAZE feature description, the 
nonlinear scale space up to a maximum evolution time is 
built at first. Then, the 2-dimensional features, which exhibit 
the max value of the scale-normalized determinant of the 
Hessian response through the nonlinear scale space, are 
detected. Finally, the main orientation of the key point is 
calculated to obtain a scale and rotation invariant descriptor.

In KAZE feature description, the scale space is discrete 
in logarithmic as a series of O octaves and S sub-levels. 
The octave sets, and sub-levels are identified by o, a dis-
crete octave index, and s, a sub-level octave index. They are 
mapped to their corresponding scale ε as

where ε0 is the base scale level, N is the total number of 
filtered images.

Then, the scale levels in pixel units are converted into 
time units with

An input image is firstly convoluted with a Gaussian ker-
nel with standard deviation ε0 to reduce noise and possible 

(21)Hmax − Hsec ≥ �.

(22)
�i(o, s) = �02

o+
s

S , o ∈ [0,O − 1], s = [0, S − 1], i ∈ [0,N],

(23)ti =
�2
i

2
, i ∈ [0,N].

image artefacts. Then, its gradient histogram is computed to 
obtain the contrast parameter k in an automatic procedure.

Given the contrast parameter and the set of evolution 
times ti, the non-linear space is built as

To detect the interest points, the response of scale-nor-
malized determinant of the Hessian matrix is computed at 
multiple scale levels:

where Lxx and Lyy are the second-order horizontal and verti-
cal derivations, respectively, Lxy is the second-order cross 
derivation.

Then, the maximum value in scale and spatial loca-
tion is found. The extrema are also found in all the filtered 
images (except the top and the end levels). Each extremum 
is searched over a rectangular window of size εi × εi on the 
current i, upper i + 1 and lower i − 1 filtered images.

Finally, the descriptors are generated. The dominant 
orientation is found in a circular area of radius 6εi with a 
sampling step of size εi. First-order derivations Lx and Ly 
are weighted with a Gaussian centred at the interest point 
for each of the samples in the circular area. Then, the 
derivation responses are represented as points in vector 
space. The dominant orientation is found by summing the 
responses within a sliding circle segment covering an angle 
of π/3. From the longest vector, the dominant orientation is 
obtained.

For a detected feature with εi scale, first-order derivation 
Lx and Ly of size εi are computed over a 24εi × 24εi rec-
tangular grid divided into 4 × 4 sub-regions of size 9εi × 9εi 
with an overlap of 2εi. The derivation responses in each 
sub-region are weighted with a Gaussian (εl = 2.5εi) cen-
tred on the sub-region centre, and summed into a descriptor 
vector dy = (ΣLx; ΣLy; Σ|Lx|; Σ|Ly|). Then, each sub-region 
vector is weighted using a Gaussian (ε2 = 1.5εi) defined over 
a 4 × 4 mask and centred on the interest key point. When 
considering the dominant orientation of the key point, each 
of the samples in the rectangular grid is rotated according 
to the dominant orientation. The derivations are also com-
puted according to the dominant orientation. Finally, the 
64-dimensional descriptor vector is normalized into a unit 
vector to achieve contrast invariance.

Experiments show that KAZE feature description is 
robust to noise and blurring. However, it adopts non-linear 
diffusion in a low level and it costs more time than SURF. 
To reduce the calculate amount, A-KAZE, the short for 
accelerate KAZE, is proposed [70]. It uses the thought of 
fast explicit diffusion (FED) in a pyramidal framework and 

(24)Li+1 =

(
I − (ti+1 − ti)

m∑
l=1

AlLi

)−1

Li.

(25)LHessian = �2(LxxLyy − L2
xy
),
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binary descriptors [71] to speed up the calculation and is 
suitable for portable devices.

Once KAZE feature is proposed, many researches are 
focused on its application. In [72], KAZE feature is used 
to matching the feature points of frame-patch in videos. In 
[73], S-AKAZE is proposed as a modification of KAZE to 
do image matching. In [74], A-KAZE is applied for object 
recognition. In [75], KAZE is taken to assist image seg-
mentation. In [76], A-KAZE is adopted for image stitching.

2.3 � Assessment to image registration descriptors

In this section, four main image registration descriptors 
(Harris, SIFT, SURF, KAZE) are taken to register two 
images, as shown in Fig. 2. The metrics of the matching 
points are set as Euclidian distance. For one key point in one 
image, two correspond points in another image is found. If 
the ratio between the distance of the second nearest point 
and the nearest point is less than a threshold, such two points 
are considered as correct matched points. The ratio threshold 
of Euclidian distance is set as 0.6. The mismatching points 
are all removed by the same method (RANSAC) to form 
correct matching points. The correct rate is the percentage 
of correct matching points in the matching points found. The 
results are shown in Table 1.

From the table, we can see that KAZE finds the maximum 
number of matching points and correct matching points 
among the four descriptors. SURF finds the minimum num-
ber of matching points and correct matching points. Among 
the four methods, it is SIFT that has the highest correct rate 
in the matching points found. Thus, it is considered to be the 
best-performed descriptor.

3 � The key to image stitching: seam removal

As image registration is the most important issue to a suc-
cessful stitching, many literatures pay more attention to 
image registration rather than seam removal. However, seam 
removal is also a critical issue in image stitching as humans 
are sensitive to the seam in an image, as shown in Fig. 8.

Seam removal can improve the general quality of the 
stitched image, and make the information in the stitched 
image more accurate. Therefore, it is necessary to remove 
the obvious seam caused by brightness inconsistency of 

input images after finishing registration. The seam usually 
appears at the border of two images, making a bigger pixel 
variance or gradient difference. Essential seam removal 
needs to reduce such variance (difference) to an acceptable 
range, making the transition more smoothly in the over-
lapped area.

Such process is something like image fusion, a process 
that fuses images from different sensors into an integrated 
one using mathematical method to meet certain demands 
[77]. What is different from image fusion is that seam 
removal is only the adjustment of brightness and contrast, 
extra information is not added after such process. Classified 
from method, there are methods based on pixel weighing, 
optimal seam method and transformation domain. Seam 
removal based on pixel weighting performs directly on the 
overlapped area but cannot get the ideal result when there are 
large differences in outside environments or camera settings 
in the two images.

Thus, optimal seam methods are to find an optimal seam 
by optimizing an objective function that minimizes the 
difference near the overlapped area. Seam removal in the 
transformation domain decomposes the image via specific 
transformation at first and apply different rules to different 
bands, then the image after seam removal is reconstructed 
and output.

3.1 � Seam removal based on pixel weighting

In many references, weighting based seam removal tech-
nique [78, 79] is usually employed

where a is a coefficient between 0 and 1. Ω1(x, y), Ω2(x, 
y) are the pixel values of I1(x, y) and I2(x, y) in overlapped 
area Ω, respectively. At the beginning, a is a fixed value, 
but such setting cannot strengthen the interested parts in an 
image [80].

(26)I(x, y) = aΩ1(x, y) + (1 − a)Ω2(x, y)

Table 1   Assessment to image registration methods

Harris SIFT SURF KAZE

Matching points found 136 502 106 639
Correct matching points 115 468 91 563
Correct rate 84.56% 93.23% 85.85% 88.11%

Fig. 8   Stitched image without seam removal
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Thus, a is adaptive. When a varies from 1 to 0, two 
images can transit smoothly. The selections of a is shown 
clearly in [81]. Figure 9 is the seam removal result with 
pixel weighting. From Fig. 9, we can see that this kind of 
weighting function is generally rough, making the seam 
still visible. In some cases, like two images, as shown in 

Fig. 10, it will cause ghost artefacts and cannot meet the 
high demands for precision (Fig. 11) (shown in Fig. 12).

3.2 � Seam removal based on optimal seam methods

The optimal seam method searches for the optimal seam in 
the overlapped area to create mapping or labelling between 
pixels in the composite and source images. The optimal 
seam is found by optimizing an objective function that mini-
mizes the difference near the overlapped area. To eliminate 
seam more precisely, some optimal seam methods are pro-
posed in [82–88].

An optimal seam finding method is proposed in [82]. 
Suppose I1 and I2 are two images with overlapped areas, the 
optimal seam is a connected path traversing across the over-
lap that starts on the first row/column and ends on the last 
row/column. By adopting a more compact and descriptive 
data structure called tensor (a symmetric and positive semi-
definite matrix T), the weights of pixels in the overlapped 
area are optimized. Riemannian norm is taken to measure 
the distance between two tensors.

The seam cost function Cost in an image whose height 
is M is defined as

Fig. 9   Stitched image with pixel weighting

Fig. 10   Another set of images with overlapped area

Fig. 11   Stitched image without seam removal

Fig. 12   Stitched image with pixel weighting
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where I(si) is the ith pixel on seam s. c(i, j) is defined as

where T1, T2 are tensors of I1 and I2, I″ is the 2nd derivation 
of image I. The optimal seam is defined as

The demos of this method are shown in Figs. 13 and 14.
Some other optimal seam methods also show better 

results. In [83], optimal seam method is used to handle 
the ghost artefacts in moving object problems. In [84], an 
improved seam finding method is proposed by downscaling 
the overlapped areas to approximate the seam. In [86], a 
new energy aggregation and traversal strategy is adopted to 
find an optimal seam for image stitching. In [86], optimal 
seam lines between adjacent input images are detected via 
the graph cut energy minimization framework. In [87], the 
information of image colour, gradient magnitude and texture 
are fused into graph cuts. In [88], an optimal seam pair is 
selected by comparing the cross correlations from multiple 
seams detected by variable cost weights.

3.3 � Seam removal in the transformation domain

Seam removal in the transformation domain decomposes 
the image via specific transformation and applies different 
rules to different frequency bands. By doing seam removal 
in the transformation domain, the seam in the stitched image 
can be reduced. The common transformations are Fou-
rier transformation, wavelet transformation and Curvelet 
transformation.

To remove seam with two images, the common practices 
are decomposing the images in the transformation domain 

(27)Cost = Cost(Is) =

M∑
i=1

c(I(si)),

(28)c(i, j) = d(T1(i, j), T2(i, j)) +
||I��1 (i, j) + I��

2
(i, j)||,

(29)s∗ = min
s

Cost(s) = min
s

M∑
i=1

c(I(si)).

at first to achieve N level of decomposing and coefficients in 
different frequencies in correspond levels. Then, apply dif-
ferent rules to the high frequency and low frequency bands, 
respectively, to preserve both the contour and the detail 
information as the high frequency bands imply the detail, 
while the low-frequency bands imply the contour. Finally, 
the image is reconstructed by the inverse transformations.

There is a method for seam removal using Fourier Trans-
formation in [89]. Besides Fourier transformation, Wavelet 
transformation can also be applied in seam removal [90, 91]. 
A method suitable for seam removal based on Wavelet trans-
formation is provided in [90], where Wavelet fusion is taken 
to create a seamless underwater stitching. In [91], Wavelet 
transformation is used to decompose the images so that the 
transition of the overlapped area can be smooth enough.

Figures 15 and 16 are the seam removal results of over-
lapped area using Wavelet transformation. The low fre-
quency bands are obtained using the average value of two 
parts and the high frequency bands are obtained using the 
maximum value of two parts. The seam has been greatly 
reduced compare with Fig. 8, but still more visible than 
Fig. 11.

Besides Fourier and Wavelet transformation, Curvelet 
transformation can also be applied to remove seam. Being 

Fig. 13   Seam removal using optimal seam method only

Fig. 14   Seam removal using optimal seam method only

Fig. 15   Seam removal with Wavelet transformation (cise)
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an extension of Wavelet, Curvelet is a non-adaptive tech-
nique for multi-scale object representation. It was proposed 
in 1999 and improved in 2002 [92]. Compare with Wavelet, 
a curve can be represented by Curvelet in a smoother way 
[93]. Curvelet transformation has been widely applied in 
image processing, such as image denoising [94, 95], image 
enhancement [96] and image fusion [93, 97, 98].

When γ is a curve with second derivations, Curvelet 
transformation is proved in [99] to have an error bound as

where f (x) = g(x)l{x2≤�(x1)} , and QC
N
 is the non-linear approxi-

mation of N items in the Curvelet transformation of f. The 
seam removal results with Curvelet transformation are 
shown in Figs. 17 and 18.

In [93], an image fusion technique based on Curvelet 
transformation is proposed. Local energy-based fusion rule, 
which is more effective than single pixel-based fusion rules, 
are taken into application. In [97], a Curvelet based approach 
for image fusion is proposed. The image is segmented into 
small tiles to show detail information. Ridgelet transforma-
tion is applied on each of these tiles and used in the fusion 

(30)‖‖‖f − QC
N
(f )

‖‖‖
2

2
≤ CN−2 log

1

2 N,

process. In [98], Curvelet transformation is combined with 
Genetic Algorithm for medical image fusion.

4 � Quality assessment of image stitching

It plays a key role to assess a stitched image to improve the 
stitching algorithm and judge whether the stitching results 
correspond to the vision of human eyes. Image quality 
assessment methods contain subjective methods and objec-
tive methods [100]. In subjective assessment, experiments 
are needed to make testers assess the image, while in objec-
tive assessment, algorithms are applied to assess the quality 
of an image. The main algorithms in objective assessment 
are PSNR (Peak Signal to Noise Ratio) [101]and SSIM 
(Structural SIMilarity index) methods [102, 103].

PSNR is an engineering term for the ratio between the 
maximum possible power of a signal and the power of cor-
rupting noise that affects the fidelity of its representation. It 
is usually applied to measure the quality of reconstruction 
of lossy compression codecs (e.g., for image compression). 
PSNR is defined by mean squared error (MSE) as

where MAXI is the maximum possible pixel value of an 
image. When the pixels are represented using 8 bits per 
sample, it is 255. For an M × N sized image I and its noisy 
approximation K, MSE is defined as

PSNR approximates human perception of reconstruc-
tion quality. In PSNR method, when the reference image 
is the same with the image under assessment, the PSNR 
value is ∞ (inf). Typical values for the PSNR in lossy image 

(31)PSNR = 10 log10

(
MAX2

I

MSE

)
,

(32)MSE =
1

MN

M−1∑
x=0

N−1∑
y=0

(I(x, y) − K(x, y))2.

Fig. 16   Seam removal with Wavelet transformation (rail)

Fig. 17   Seam removal with Curvelet transformation (cise)

Fig. 18   Seam removal with Curvelet transformation (rail)
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compression are between 30 and 50 dB if the bit depth is 
eight bits, where higher is better. For 16-bit data, typical 
PSNR values are between 60 and 80 dB [104].

SSIM is a full reference metric predicting the perceived 
quality of digital television and cinematic pictures, as well 
as other kinds of digital images and videos. It is also applied 
to measure the quality of images. SSIM is calculated on 
various windows of an image. The measure between two 
windows x and y of with size N × N is

where μx and μy are the mean values of x and y, σx, σy are the 
variances of x and y, σxy are the covariance of x and y. c1 is 
set to be (k1L)2 and c2 is set to be (k2L)2. L is the dynamic 
range of the pixel-values (usually 28–1 = 255 in eight bit 
image) and k1 = 0.01, k2 = 0.03. SSIM value is between 0 
and 1, the higher value means that the image under assess-
ment has higher quality. When the reference image is the 
same with the image under assessment, the SSIM value is 
1. Tables 2 and 3 are assessment results using PSNR and 
SSIM, respectively.

In tables cise denotes the image stitched with Fig. 2 and 
rail denotes the image stitched with Fig. 10. Images with 
seam removal using optimal seam [55] (for cise, it is Fig. 13; 
for rail, it is Fig. 14) are taken as the reference. original 
means image stitched without seam removal (for cise, it is 
Fig. 8; for rail, it is Fig. 11). weighted means image stitched 
with pixel weighting [78]to remove seam (for cise, it is 
Fig. 9; for rail, it is Fig. 12). wavelet means image stitched 
with Wavelet transformation [90] to remove seam (for cise, 
it is Fig. 15; for rail, it is Fig. 16). curvelet means image 
stitched with Curvelet transformation [93] to remove seam 
(for cise, it is Fig. 17; for rail, it is Fig. 18). All these images 
are registered by SIFT, the best-performed descriptor dis-
cussed in Sect. 2.3.

(33)SSIM(x, y) =
(2�x�y + c1)(2�xy + c2)

(�2
x
+ �2

y
+ c1)(�

2
x
+ �2

y
+ c2)

,

PSNR is one of criterions for image assessment. How-
ever, PSNR needs reference image, which will sometimes be 
difficult to obtain. In addition, its results will not correspond 
to human vision in some cases. This is because the sense 
of human vision will be affected by many factors such as 
spatial frequency and brightness. SSIM is calculated based 
on a sensation model which takes the varying of structural 
information of an image into consideration. It has strong 
ability in measuring information loss occurred during the 
image degradation processes. It is also easy to compute and 
applicable to various images. However, SSIM also needs the 
reference image.

In the assessment results, optimal is taken for reference. 
Thus, its PSNR is ∞, and its SSIM is 1. From the results, 
we can see that the PSNR and SSIM indices of Curvelet is 
the highest among the others, meaning its quality is the best. 
We can also find that there is an obvious ghost artefact in 
rail-weighted (Fig. 12). In PSNR, its score decreased sharply 
compared with rail-original, but in SSIM, its score is almost 
the same as rail-original. This implies the importance of 
selecting proper seam elimination method, as an improper 
selection may cause counterproductive results.

An image assessment model based on deep learning is 
proposed in [105], where the assessment is converted into 
a 5-level classification system. Levels such as Excellent, 
Good, Fair, Poor, Bad are set. In this method, P(Q|L) is the 
posterior probability based on Bayes function with L levels 
of decomposition and intrinsic quality Q. Given the input 
image representation X, the distribution of the intrinsic qual-
ity can be obtained by marginal distribution:

P(Q|X) is the quality distribution which represents the 
evaluations by a population. The numerical measurement 
of image quality is

E(x) is the mean value of x.
Experimental results show this method is of effective-

ness, efficiency, and robustness to small training sets. It 
corresponds well to human vision. However, this method is 
hand-crafted, which requires time-consuming hand-tuning. 
It also fails to express certain eccentric distortions. This 
means using deep learning to learn more powerful image 
representation for describing image quality remains a great 
challenge that has yet to be resolved.

A difference of edge map (DoEM) assessment method is 
proposed for stitched images in [106]. It detects the mean 
values of brightness in local edge difference maps and 
divides them to the entire mean value. It judges whether the 
difference in brightness plays a major role according to the 

(34)P(Q|X) = ∫ P(Q|L)P(L|X)dL

(35)Quality = E(P(Q|X))

Table 2   Assessment of stitched images using PSNR

The data unit in the table is dB

Optimal Original Weighted Wavelet Curvelet

Cise ∞ 32.1528 35.4534 35.7947 36.5353
Rail ∞ 37.3452 34.2652 38.0641 38.5621

Table 3   Assessment of stitched images using SSIM

Optimal Original Weighted Wavelet Curvelet

Cise 1 0.9594 0.9714 0.9715 0.9771
Rail 1 0.9747 0.9745 0.9765 0.9787
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ratio. When generating marks, the ratio of brightness muta-
tion and misplacement assessments adjusts dynamically with 
the variance of differentiate map. DoEM is defined by the 
following equation:

where μe is the mean value of the transition region in edge 
difference map, μa is the entire mean value in the transition 
region, σ2 is the entire variance in the transition area, C1, 
C2, C3 and C4 are four constants. C1 and C2 are determined 
according to the relativity of the mean value difference in the 
differential map, C3 and C4 are on the sub-Gaussian distribu-
tion curve. According to numerous experiments, the suggest 
values are given as C1 = 80, C2 = 50, C3 = 600, C4 = 256. The 
final mark is normalized between 0 and 1, the higher mark 
means the better quality of an image. Table 4 is the assess-
ment result with DoEM method.

Experiments show that in cise, curvelet based method has 
the best score, while in rail, original image without seam 
removal has the best score. We can also see that in rail-
weighted where a ghost artefact appears, its DoEM score 
also decreases a lot. This means DoEM could accurately 
reflects the real quality of stitched image and the perfor-
mance of image stitching algorithm. However, this metric is 
not suitable for assessing the stitching sequence.

An approach to assess stitched images is proposed in 
[107]. SSIM, SAM (spectral angle mapper) and IMR (inten-
sity magnitude ratio) are applied to assess geometric and 
photometric qualities of stitched images. Suppose p1 and 
p2 are two pixels from two images, |p1| and |p2| denote their 
norms, SAM calculates the angle between them using the 
dot product formula:

If the angle between two vectors is large, SAM will be 
small and it indicates that the two vectors/image pixels are 
different.

For intensity quality assessment, IMR, defined as the ratio 
of magnitudes of two 3D color vectors, is used. If p1 and p2 
are two pixels, |p1| and |p2| denote their norms, then IMR is 
defined as

(36)

DoEM = e
−

�2

c4

(
�ee

−
�e

c1 + �ae
−

�a

c2

�e + �a

)
+

(
1 + e

−
�2

c4

)
e
−

�2

c3 ,

(37)SAM = arccos
p1 ⋅ p2
||p1||||p2||

.

The algorithmic procedure for IMR calculation is similar to 
that of colour quality assessment in SAM, except that instead of 
using SAM, IMR is used. The threshold for significant error in 
IMR is considered as 2%. This metric can be effectively used to 
quantitatively determine the quality of stitched images. Its results 
agree with qualitative analysis and the method is extensible.

In our experiments, we printed the pixel value and the gra-
dient value 25 pixels both sides near the stitching seam. To 
make the results show more clearly, the figures here are results 
of one randomly selected column in each image. Figure 19 
is the assessment result of cise and Fig. 20 is the assessment 
result of rail. Three lines in each figure show three channels 
(i.e., R, G and B) in the image, respectively. The full line cor-
responds to the R channel, the break line corresponds to the G 
channel and the dot line corresponds to the B channel.

We also calculate the variance of the gradient value in the 
columns selected in the figure. The variance demonstrates the 
degree of dispersion of data (pixels). Such data are shown in 
Tables 5 and 6. M means the average value of R, G and B in a 
row. It can be calculated by the following equation, where R, 
G and B are the mean gradient variance in R, G and B channel, 
respectively. The greater variance value shows that the data is 
more discrete in the set:

From Figs. 19a and 20a, we can see there is a gradient 
difference between two images, making an obvious stitch-
ing seam. Hence, the goal of seam removal is to reduce such 
differences. When we use weighted, optimal and curvelet for 
seam removal, we can see the gradient variance has reduced, 
meaning the seam is going to disappear. We can also see that 
when we use wavelet, the gradient variance even increases. As 
the image can be abstracted and approximated by curves, this 
shows that the representation of curves in wavelet cannot meet 
the demand of seamless stitching.

By combining the results in figures and tables, we can see 
that it is better to take optimal seam method for seam removal 
in our case. However, there is not a method that is suitable for 
all kinds of seam removal in image stitching, because there are 
many factors affecting the attribute of the seam.

5 � Discussion

Image stitching has been quickly developing in recent years. 
Many new methods related to image stitching have been 
proposed. However, there are still some points that can be 
improved in the future.

(38)IMR =
min

(||p1||, ||p2||
)

max
(||p1||, ||p2||

) .

(39)M =
R + G + B

3
.

Table 4   Assessment of stitched images using DoEM

Original Weighted Optimal Wavelet Curvelet

Cise 0.8921 0.9051 0.9094 0.9089 0.9111
Rail 0.7961 0.7247 0.7701 0.7733 0.7813
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First is image registration with a large number of images. 
The errors of matching and registering two images will be 
enlarged when we stitch a large number of images and 
form it into a whole panorama image. Since the error is not 

evitable, we need to further transform the images to reduce 
it.

Second is image stitching with 3-dimensional images, 
which not only have the colour information, but also 

Fig. 19   Assessment results of 
cise 
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contain the information in the depth dimension. We need 
to adjust the matching and registration methods to take 
the depth dimension into consideration. Using point cloud 
might be one of the solutions.

Third is to develop image stitching for special purposes, 
including transplanting the algorithm into embedded sys-
tems such as cell phones, digital camera, unmanned aircraft, 
tablet and specific algorithms for geographical, biomedical, 

Fig. 20   Assessment results of 
rail 
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under water images. This can be done by deeply investigat-
ing both its application field and the related algorithms.

With the increasing application of panorama image, 
new requirements are set to image stitching. It has become 
increasingly important to make the whole stitching process 
faster and easier. It is also a tendency that the image stitched 
will become more precise. The stitching algorithms that are 
designed for specific projects such as geographical, biomedi-
cal, under water images will appear. A mature algorithm 
should achieve a balance between time consuming and preci-
sion, making an optimal result that can be accepted by most 
of audience.

6 � Conclusion

Image stitching relates to domains such as computer vision, 
image processing, computer graphics and software devel-
oping. The effects of image registration and seam removal 
play key roles in a successful stitching. In this article, some 
methods about image registration and seam removal are 
introduced and analysed. Then, image assessment methods 
are briefly presented.

In recent years, more and more improved image stitch-
ing methods keep appearing. Some algorithms can register 
images in a fast way, and some combine multi registration 
algorithms altogether. Many new seam removal methods will 
be proposed at the same time. Unfortunately, there is not 
an algorithm suitable for all the stitching, nor is it easy to 
select a specific method for certain purposes. However, with 
the development of new techniques, image stitching will be 
more precise and have wider applications.
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M 6.8568 6.0774 4.4084 7.0725 5.5774
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