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Abstract
Adaptive streaming allows for dynamic adaptation of the bitrate to varying network conditions, to guarantee the best user 
experience. Adaptive bitrate algorithms face a significant challenge in correctly estimating the throughput, as the throughput 
varies widely over time. The current throughput estimation methods cannot distinguish between throughput fluctuations of 
different amplitude and frequency. In this paper, we propose a throughput estimation method that accurately estimates the 
throughput based on previous throughput samples. It is robust to short term and small fluctuations, and sensitive to large 
fluctuations in throughput. Furthermore, we propose a rate adaptive algorithm for video on demand (VoD) services that selects 
the quality of the video based on the estimated throughput and playback buffer occupancy. The objective of the rate adaptive 
algorithms is to guarantee high video quality to improve user experience. The proposed algorithm dynamically adjusts the 
quality level of the video stream. The proposed method selects high quality video segments, while minimizing the risk of 
playback interruption. Furthermore, the proposed method minimizes the frequency of video rate changes. We show that the 
algorithm smoothly switches the video rate to improve user experience. Furthermore, we determine that it efficiently utilizes 
network resources to achieve a high video rate; competing HTTP clients achieve equitable video rates. We also confirm that 
variations in the playback buffer size and segment duration do not affect the performance of the proposed algorithm.

Keywords  HTTP-based video streaming · Quality of experience · Video rate adaptation algorithm · Video streaming 
scheme

1  Introduction

High-speed broadband networks and improvements in dis-
play technology of various devices (e.g., smart phone, table 
PC, and personal media player) have enabled video stream-
ing to become the most popular application over the Internet. 
Most commercial video streaming services run over HTTP 
to provide high quality video. The majority of these services 
use rate adaptive algorithms that adapt the video quality, 
by observing the available throughput or playback buffer 
occupancy.

HTTP-based video streaming solutions provide mul-
tiple representations (e.g., different bitrate/quality) of the 
same content, and divide these representations into small 
segments. The content is stored at the server, and the rate 
adaptive algorithm at the client decides which segment to 
download next. The algorithms try to maximize the quality 
of the video, by meeting conflicting objectives in such a way 
as to improve the user’s viewing experience. Some of the 
potential objectives include selecting a set of video bitrates 
that are the highest feasible, avoiding needless video bitrate 
switches, and preserving the buffer level to avoid interrup-
tion of playback [1–5]. Simply maximizing the video rate 
risks rebuffering, whereas simply minimizing rebuffering 
leads to low video quality.

The estimation of throughput plays an important role in 
the selection of the next segment. Several methods have been 
proposed to estimate the throughput of the upcoming seg-
ment [6–8]. HTTP clients make an estimate of the future 
throughput from past observations to select the video rate 
for the next segment [9–11]. Accurate estimation of the 
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throughput becomes an important challenge for the client. 
Inaccurate estimation may lead to selecting video bitrates 
that degrade user experience. To select video bitrates, the 
rate adaptive algorithms add playback buffer occupancy as 
an adjustment parameter on top of throughput estimation 
[7, 12–14].

In this paper, we first propose a throughput estimation 
algorithm with detection and estimation method. The pro-
posed throughput detection method can distinguish between 
different types of fluctuations in the throughput. Based on 
the result of throughput detection, the estimation method 
offers a stable response to short term fluctuations, and is 
sensitive to persistent large fluctuations. We then propose a 
rate adaptation algorithm that dynamically selects the video 
bitrates based on the estimated throughput and the playback 
buffer occupancy. The objective of the proposed algorithm 
is to improve the viewing experience of the users. The algo-
rithm streams high quality video, while avoiding playback 
interruption. The proposed adaptation algorithm minimizes 
the video rate changes, and makes sure that the video rate 
changes smoothly to improve the user experience. We per-
form experiments to show that irrespective of the buffer size 
and segment duration, the proposed algorithm improves user 
experience. Additionally, in a multi-client environment, we 
show that the proposed scheme efficiently utilizes network 
resources and that the HTTP clients achieve equitable video 
rates.

The rest of this paper is organized as follows: Sect. 2 
offers an overview of HTTP adaptive streaming, and reviews 
the existing video streaming algorithms. Section 3 presents 
the proposed throughput estimation algorithm. Section 4 
explains our throughput and buffer-based rate adaptive algo-
rithm. Section 5 provides simulation results. Finally, Sect. 6 
concludes the paper.

2 � Overview of HTTP streaming

2.1 � HTTP adaptive streaming

HTTP adaptive streaming works by monitoring network in 
real time, and by adjusting the quality of the video stream 
accordingly, without resetting the TCP connection. Figure 1 
shows the basic model of adaptive HTTP streaming, which 
requires the server to store multiple versions of the multi-
media content. At the server side, the content annotation 
module provides information about the characteristics of 
the stored multimedia content. The client initiates a request 
for information about the stored content, which is known 
as metadata. In response to the request from the client, the 
server sends the metadata to the client. The media prepara-
tion module provides tools for encoding and encapsulation, 
so that the content can be presented and efficiently delivered 
to the client in the correct format. On the client side, the 
scheduling module is responsible for scheduling the down-
load of upcoming segments. During the download of the 
segments, the bandwidth estimation module estimates the 
throughput. The adaptation module selects a suitable bitrate 
depending on the received metadata and system conditions, 
such as the throughput and occupancy of the playback buffer. 
Once a segment is downloaded, it is temporarily stored in 
the playback buffer that feeds the player’s decoder.

2.2 � Related work

Currently, several methods have been proposed to estimate 
the throughput. Segment throughput is calculated as the 
ratio of segment size divided by the time it takes to down-
load the segment. In the simplest way, measured segment 
throughput can be used as the throughput estimate of the 
next segment [10]. However, due to short term fluctuations, 
the throughput estimate calculated in this way will result in 
high frequency of fluctuations. Akhshabi et al. [9] evaluate 
the performance of Microsoft Smooth Streaming and Netflix 
player using the running average of the throughput of several 

Fig. 1   HTTP streaming archi-
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segments as the estimated throughput. The method performs 
well under persistent throughput variations. Ran et al. [6] use 
the median of the throughput of the last several segments to 
estimate the throughput of the next segment. Rahman et al. 
[7] show that the McGinely dynamic indicator offers a stable 
response to the throughput fluctuations, while maintaining 
a stable playback buffer. The moving average technique [7] 
is accurate in slow throughput variation, but reacts late to 
sudden variations in the throughput. The VLC media player 
[8] uses the averages of all previous throughputs as the 
estimated throughout to download the next segment. The 
method responds slowly to the actual throughput variations, 
which increases the risk of buffer underflow. Jiang et al. 
[15] use the harmonic mean of the throughput of the last 
20 downloaded segments to estimate the throughput of the 
next segment. The outliers of the throughput do not influ-
ence the estimated throughput, but the method shows delay 
during persistent throughput variations. Many commercial 
clients estimate throughput of the next segment by taking 
the moving average of the previously downloaded segments 
[4]. The method is late to respond to large variations in the 
throughput. The throughput estimation methods proposed 
so far either have an aggressive or a stable response to the 
throughput fluctuations. As the rate adaptive algorithms 
select video rates based on the estimated throughput, an 
aggressive response results in higher number of throughput 
fluctuation. On the other hand, the stable response increases 
the risk of buffer underflow and inefficient utilization of the 
bandwidth. The proposed estimation method can differenti-
ate between small and large fluctuations in the throughput 
based on variations in the frequency and amplitude of the 
network throughput. Based on the behavior of the network 
throughput, the estimation method decides whether to offer 
an aggressive or stable response.

References [9–11] propose rate adaptation algorithms 
that select the video rates based on the estimated through-
put. These algorithms have been found to be either slow to 
converge to optimum solution, resulting in high frequency 
of video bitrate switching, or to result in a higher number 
of playback interruptions. In an unstable environment, inac-
curate throughput estimation results in the degradation of 
the user experience.

Many methods have been proposed to incorporate infor-
mation about the playback buffer in selecting the video rate. 
Miller et al. [12] propose a method that divides the buffer 
into multiple predefined thresholds (B1, B2, B3, Bmax) where 
(B1 < B2 < B3 < Bmax), and takes different decisions to select 
the video rates when the buffer level remains in different 
ranges. The algorithm does not dynamically adjust the buffer 
threshold as the segment duration and segment sizes of a 
VBR encoded video stream vary. Rahman et al. [7] pro-
pose an algorithm that intelligently selects the video bitrates 
based on the estimated throughput and buffer occupancy, by 

dynamically selecting buffer thresholds based on the sizes 
of the upcoming segments. The algorithm does not adjust 
the buffer thresholds as the buffer size and segment dura-
tion varies. Huang et al. [16] propose a video rate adaption 
algorithm that selects the video rate by only observing the 
client’s playback buffer. The authors observe that due to the 
highly variable network dynamics, especially in the case 
of wireless networks, it is not easy to estimate throughput. 
Hence, they limit the throughput estimation to the initial 
stage. To handle the variation of segment sizes, the method 
directly maps the buffer occupancy to the segment size, and 
increases or decreases the video rate as the buffer builds up 
or drains, respectively. Furthermore, in deciding to switch 
the video quality, the algorithm considered the sizes of the 
upcoming segments. Rahman et al. [17] propose an algo-
rithm that selects the video rates only based on the buffer 
occupancy by exploiting the variation of sizes of the upcom-
ing segments. The algorithm maps the buffer occupancy to 
the video rate rather than the segment size, as mapping of 
the buffer level to the segment size results in a higher fre-
quency of switches. Authors in [18] propose a user-centric 
streaming algorithm for H.264/SVC DASH streaming which 
adapts its quality according to the playback buffer level only. 
Dubin et al. [19] provides a rate adaptive algorithm that uses 
a double Exponential Moving Average (EMA) algorithm. 
The video quality is selected based on both playback buffer 
level estimation and throughput estimation. It is designed for 
multicast networks but the authors showed that it provides 
a stable performance under both multicast and unicast con-
ditions. Authors in [20] propose the algorithm that adapts 
the video quality based on crowdsourcing data generated 
by users of a professional service. In addition, the authors 
integrate crowd information with the existing algorithms and 
show that read-world data can improve the performance of 
existing algorithms.

The proposed algorithm selects the video rate based on 
throughput estimation and playback buffer occupancy. The 
algorithm uses two video rate maps to select the video rate 
of the upcoming segments. To increase the video rate, the 
algorithm uses a rate map based on a concave function to 
aggressively increase the video rate in order to efficiently 
utilize the available throughput, and uses a linear function 
to conservatively decrease the video rate to avoid playback 
buffer interruption. The algorithms proposed so far do not 
dynamically adjust the video rate maps as the playback 
buffer sizes, segment durations and available set of video 
rates vary. The proposed algorithm dynamically adjusts the 
video rate maps as the buffer size of the client, segment 
duration and available video rates of the video stream vary.
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3 � The throughput estimation method

The rate adaptive algorithms strive to maximize the user 
experience by meeting conflicting video quality objectives. 
Some of the potential objectives include selecting the high-
est feasible set of video bitrates, avoiding needless video 
bitrate switches, and avoiding interruption of playback. The 
rate adaptive algorithms select the next segment on the basis 
of the estimated throughput. Therefore, it is important for the 
throughput estimation method to have a stable response to 
small variations in the throughput, to minimize unnecessary 
fluctuations in the video rate, and to react quickly to large 
fluctuations to minimize the risk of playback interruption 
due to buffer underflow.

3.1 � Throughput detection method

The throughput detection method should be able to distin-
guish between different types of network conditions. To dif-
ferentiate between fluctuations of different amplitude and 
frequency in the throughput, we calculate log return. The log 
return shows the extent of variability of the throughput in 
relation to the average throughput. Let T(i) and T(i) denote 
the instant and average throughput, respectively, observed 
at the download of segment i. We calculate the log return 
ρ using:

where

A high value of log return means that the difference 
between T(i) and T(i) is significantly high, due to large fluc-
tuations in the throughput. The client must react quickly to 
the large fluctuations in throughput. A smaller value of log 
return means a small fluctuation in the throughput or a short-
term fluctuation. The client should offer a smooth and stable 
response to small fluctuations in throughput.

3.2 � Throughput estimation method

After the throughput detection method detects the type of 
network condition, the client estimates the throughput. We 
estimate the throughput in (3) using the weighted average of 
the throughput observed over the last n segments.

(1)� = log

|||T(i) − T(i)
|||

T(i)
,

(2)T(i) =

∑i−1

j=i−n−1
T(j)

n
.

(3)TE(i) =

i−1∑
j=i−n−1

n∑
k=1

p(k) × T(j).

The weighted factor p in (4) depends on the type of 
throughput fluctuation. If the throughput has large persis-
tent variations, the throughput in recent times has higher 
weight, which makes the estimation quickly adjust to the 
actual throughput. We use the exponential function to give 
higher weight to recent throughput. In the case of small vari-
ations, we use the mean of the past throughput observations 
to provide stable estimation.

If the value of ρ ≥ λ, the exponential function is selected 
to make sure more recent throughput has higher weight; oth-
erwise, the method uses mean of the past observations as the 
weighted factor. We perform experiments to select the value 
of λ to detect the type of throughput fluctuations. To this end 
we use rectangular waveform, shown in Fig. 2.

Amax and Amin denote the maximum and minimum values 
of throughput respectively and Δ represents their difference. 
L represents the duration of the framework and D is the pro-
portion of time when the throughput is Amax. We observe the 
response of the throughput estimation method by varying 
value of λ as shown in Figs. 3 and 4.

In the first experiment, Δ is varied while keeping Amax 
equal to 3000 kbps and varying Amin. We vary the values of 
Δ from 250 to 1500 kbps. We want to observe how the pro-
posed estimation method reacts to small and large through-
put variations. The objective is to select the value of λ that 
reacts quickly to the throughput variations to efficiently uti-
lize the bandwidth and minimize the risk of buffer under-
flow. We vary the value of λ from 0.05 to 0.125. The value of 
L and D are kept to 60 s and 0.5 respectively. Figure 3 shows 
that for Δ equal to 250 kbps, setting value of λ equal to 

(4)p =

⎧
⎪⎪⎨⎪⎪⎩

�k2

n∑
l=1

�l2

if � ⩾ �
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n
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∆
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Fig. 2   A rectangular waveform throughput trace
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0.05 results in aggressive response to the fluctuations in the 
throughput. As the value of λ increases, the response to the 
throughput fluctuation becomes conservative. As the value 
of Δ increases, the throughput estimation method should be 
able to react quickly to the fluctuations in the throughput 
to efficiently utilize the throughput or avoid drop in buffer 
occupancy due to the throughput overestimation. Figure 3 
shows that for large values of Δ, the proposed method reacts 
quickly to the changes in throughput for all value of λ.

In the next experiment, L is varied while keeping Amax 
equal to 3000 kbps. The objective is to select the value of 

λ that stabilizes short-term fluctuations to minimize the 
unnecessary video rate changes. The value of Δ and D are 
kept to 450 kbps and 0.5 respectively. In Fig. 4, we vary 
the frequency of throughput variation. We vary the value 
of L to observe how the proposed algorithm reacts to long 
and short-term fluctuations. Figure 3 shows the response of 
the proposed estimation method as for the value of L equal 
to 60 s. Figure 4 shows that as the value of L is reduced to 
16 s, larger value of λ results in a stable response where as 
a smaller values of λ show an aggressive response. As the 
value of λ is increased above 0.125, we observed that the 
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Fig. 3   Performance of the proposed scheme as the amplitude of fluctuations changes
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proposed estimation method becomes slow to react to large 
fluctuations in throughput; therefore, we plotted the results 
only for the value of λ up to 0.125. The reason behind keep-
ing a difference of 0.05 between the plotted values of λ is 
that the smaller values resulted in overlapping of the curves 
which makes the plot reading difficult.

The rate adaptation algorithms select the video rates on 
the basis of the estimated throughput and the playback buffer 
occupancy. As explained earlier, the major factors that affect 
the user experience include the average video rate, play-
back interruption and frequency of video rate changes. The 
purpose of the proposed throughput estimation method is 
to assist the rate adaptive algorithm proposed in the next 
section to select the video rates. Based on the experiments 
results shown in Figs. 3 and 4, we select λ equal to 0.1 for the 
proposed scheme. We observe that when λ is selected equal 
to 0.1, the proposed method reacts quickly to large fluctua-
tions in the throughput; whereas, in case of small or short-
term fluctuations in the throughput, the proposed method 
reacts conservatively to stabilize the estimated throughput. 
When the value of ρ is less than 0.1, the proposed tech-
nique uses the mean of throughputs observed over the previ-
ous n segments. As the value of ρ increases above 0.1, the 
proposed scheme selects the exponential function to react 
quickly to the variations in throughput.

To evaluate the performance of the proposed method, we 
implement the throughput estimation method in the network 
simulator, ns-3. The server offers discrete bitrates from 400 
to 3000 kbps, with a step size of 200 kbps. The duration of 
each segment is 2 s, and the client starts playback after a seg-
ment has completely downloaded. Many commercial clients 
[21] use the previous 10 samples to estimate the throughput; 
therefore, we set the value of n equal to 10 for the proposed 
method. We set the value of α equal to 0.9 to react quickly 

to the large fluctuations in throughput. The video bitrate is 
determined by selecting the highest video rate that is less 
than the estimated throughput.

Figure 5 uses the proposed throughput estimation method 
to estimate the throughput. The proposed scheme shows a 
smooth response to small fluctuations; it is able to detect 
small variations, and offers a stable response to small fluc-
tuations. Furthermore, the proposed scheme reacts quickly 
to large drop in the throughput. The rate adaptive algorithms 
select the video rates based on the estimated throughput; 
therefore, a late response to a large drop increases the risk 
of interruption in the playback. The proposed scheme is able 
to detect a large drop, and in order to quickly react to the 
drop in throughput, estimates the throughput exponentially. 
As the proposed scheme shows a smooth response to small 
fluctuations, it reduces the video bitrate switches. Figure 5 
shows that the client does not change the video rate during 
small throughput fluctuations. As the throughput suddenly 
drops, the video rate drops quickly to avoid buffer underflow. 
As the client selects the highest video rate that is less than 
the estimated throughput, the buffer level increases gradu-
ally. When the throughput suddenly drops, the buffer ini-
tially drops, but as the client quickly drops the video rate, 
the buffer level stabilizes.

To further evaluate the performance of the proposed 
scheme, we compare with the method that estimates 
throughput by dividing the download size by the download 
time and passing it through moving average filter [21].

Figure 6 compares the performance of the proposed 
scheme with the moving average throughput estimation 
method. Figure 6a shows that unlike proposed scheme, mov-
ing average method reacts slowly to the actual throughput. 
This not only results in underutilization of the available 
throughput when the throughput increases but also risks 

Fig. 5   Throughput estimation 
under a predetermined network 
scenario
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playback interruption due to buffer underflow when the 
throughput suddenly drops. In case of a gradual drop and 
increase in the throughput, the proposed scheme accurately 
estimates the throughput. The weighted average method 
reacts slowly to the actual throughput which results in inef-
ficient utilization of the throughput.

4 � Proposed algorithm

In this section, we propose a segment and buffer aware 
(SABA) rate adaptive algorithm. The proposed rate adap-
tive algorithm selects the video rate based on the estimated 
throughput and the playback buffer level. Video rates and 
rebuffering events are important factors for improving the 
user experience. In addition, frequent video rate switching 
has been found to annoy the viewer. The main goal of the 
proposed algorithm is to adaptively select a video rate from 
a set of video rates R = {R1, R2, R3,…, Rn}, to optimize the 
viewing experience.

4.1 � System model

The video stream is segmented into n segments, each con-
taining τ seconds of playback, and stored at the server side. 
Each segment is available in multiple bitrates. The set of 
representations available for the video stream is denoted by 
R. The client dynamically selects a video rate from the set 
R. The client selects the kth video rate, Rk, from the set R for 
each segment, to adapt the video according to the estimated 
throughput and playback buffer. Rmin and Rmax are the repre-
sentations with the lowest and highest video rate in the set R.

The presented work uses a serial segment fetching 
method to download segments, which requests the next seg-
ment after the current segment has completely downloaded. 
Once the current segment has completely downloaded, it 

adds data of τ seconds to the buffer. After the first segment 
has downloaded, the client starts playing the video.

4.2 � Adaptive bitrate algorithm

Algorithm 1 provides the algorithm’s pseudo-code. We 
invoke Algorithm 1 immediately after segment i-1 is down-
loaded. The algorithm selects the representation for the 
download of the next segment i. The algorithm considers 
the buffer level and throughput together.

To download the first segment, the client always selects 
the minimum available video rate, Rmin. There are two rea-
sons for selecting Rmin as the video rate of the first segment. 
First, as the buffer builds up from being empty, it carries 
little information with which to select a video rate. We con-
sider a conservative approach at the start, and as the buffer 
gradually increases, we start taking more risk in selecting 
the video rate. Secondly, downloading the segment with the 
smallest video rate reduces the initial delay. Waiting time 
impairment such as initial delay is of considerable interest 
in HAS systems [22].

To select the kth video rate, two conditions should be 
satisfied. Firstly, the selected video rate should be less than 
the estimated throughput. To avoid depletion of the buffer, 
the first condition makes sure that the selected video rate 
is below the estimated throughput. The throughput is esti-
mated using the estimation method described in Sect. 3. Sec-
ondly, for a client to select the kth video rate, the buffer level 
should be higher than the threshold, Bk. The reason behind 
this condition is to reduce the risk of playback interruption 
due to buffer underflow in case the throughput is estimated 
inaccurately.

The video rate for the next segment is selected on a seg-
ment-by-segment basis. We consider the buffer dynamics 
when the segment has completely downloaded. Let B(i−1) 
be the buffer level at the end of the download of segment 
i−1. B(i) is then given by:
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where Rk(i) is the kth video rate from the set R, and T(i) is 
the video throughput observed during the download of seg-
ment i. Equation (5) shows that a video rate greater than the 
throughput drains the playback buffer.

We use mathematical buffer models to select the thresh-
olds, Bk, used to select the video rates. The buffer models 
are based on a mathematical function that restricts the video 
bitrates based on the buffer occupancy level. We use two 
buffer models to select the video rates based on the buffer 
occupancy levels. Figure 7 shows that we use buffer mod-
els based on concave and linear functions to increase and 
decrease the video rates as the buffer occupancy increases 
and decreases, respectively. When the buffer level increases, 
we use the concave buffer model to restrict the video rates; 
and when the buffer level decreases, we switch to the linear 
buffer model. In Fig. 7, Bck and Blk are the buffer occupancy 
thresholds to select the kth video rates when the client uses 
the concave and linear functions, respectively. When the 

(5)B(i) = B(i − 1) + � −

[
� ×

Rk(i)

T(i)

]
,

buffer occupancy increases, the client uses the threshold Bck 
to select the video rate; and when the concave wave suggests 
a lower video rate, the client switches to the threshold Blk 
to pick the video rate. It selects the threshold, Bk, to select 
the kth video rate as:

The buffer model based on the concave function to cal-
culate the video rate restriction � for a segment si [23], is 
given by:

where i ϵ [1,N] represents the segment number, δi the 
buffer occupancy level, and α, b, c are the predefined param-
eters to fine-tune the model. The buffer occupancy level 
ranges from 0 to 1; 0 means that the buffer is empty and 
1 means that the buffer is full. The parameters can be fine-
tuned to manage the aggressiveness of the buffer model. 
The reason we use a concave function is that the client can 
more quickly switch to higher quality levels at the beginning, 
or recover from low buffer occupancy. Now we describe 
the semantics of the parameters α, b and c. The parameter 
α is set to the maximum available video rate, Rmax. The 
parameter c enables a minimum buffer fill state, referred 
to as steady phase. This means that the client will down-
load the segments with the lowest available video rate, until 
the buffer occupancy reaches the threshold Bmin. Once the 
buffer occupancy increases above Bmin, the algorithm enters 
the adaptation phase. The parameter c influences and modi-
fies the range of the steady state. To set the value of Bmin 
equal to 20% of the buffer size (δ = 0.2), the value of c is 
set to 1/δ = 5. This means that until δ ≤ 0.2, the client stays 
in steady state, because for c = 5 and δ ≤ 0.2, the value of � 
≤ 0. Setting the base of the logarithm function b equal to 5 
would result in δ = 1. To aggressively select the video rates, 
the video rate map selects the maximum available rate, Rmax, 
when the buffer occupancy is 80% (δ = 0.8) of the buffer 
size. Therefore, we use the base of 4 i.e. the parameter b = 4, 
which results in � = Rmax (or a), when δ = 0.5 and c = 5. As 
the value of δ increases, the client stays at the current video 
rate, so long as the value of � suggested by (7) does not pass 
the value of the next highest available video rate.

When the concave function suggests a lower video rate, 
the client shifts to the linear function to select the video 
rates for the upcoming segments. The buffer model based 

(6)Bk =

⎧
⎪⎪⎨⎪⎪⎩

Bck when the client decides to increase

the video rate

Blk when the client decides to decrease

the video rate.

(7)�(si) = � × logb(�i × c),
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on the linear function to calculate the video rate restriction 
� is given by:

As the buffer level drops, the client decides to switch 
to the lower video rates, since the depletion of the buffer 
indicates that the selected video rate is higher than the avail-
able throughput. One of the important objectives of the rate 
adaptation algorithms is to select the highest feasible video 
rate, but not at the expense of buffer underflow. The video 
clients do not have control over TCP sockets, and HTTP/1.1 
does not support the termination of ongoing segment trans-
fer, so the client can only switch to a different video rate 
when the segment download finishes. If the throughput sud-
denly drops in the middle of a segment transfer, the buffer 
may run dry before the client switches to a lower video rate. 
Authors in [24] suggest that the user experience improves 
when the video rate is increased aggressively as it makes the 
users believes that the provider is attempting to maximize 
the QoE. Figure 7 shows that the buffer threshold to select 
R3 as suggested by concave function Bc3 is greater than the 
buffer threshold suggested by Bl3. This means that if the 
client adopts concave behaviour, it can more aggressively 
select the video rate, in comparison to if it adopts linear 
behaviour. When the estimated throughput and the buffer 
level drops, the client decides to switch to the less aggressive 
linear function, to avoid the risk of buffer underflow. Similar 
to the video rate map based on the concave function, the lin-
ear rate map always selects Rmin when the buffer level drops 
below Bmin, and selects Rmax when δ ≥ 0.8. As the buffer level 

(8)𝜆(si) =

⎧
⎪⎪⎨⎪⎪⎩

Rmin B(i − 1) < Bmin

Rmin +
B(i − 1) − Bmin

0.8 × Bmax
× (Rmax − Rmin) Bmin ⩽ B(i − 1) < 0.8 × Bmax

Rmax B(i − 1) ⩾ 0.8 × Bmax

.

decreases, the client stays at the current video rate so long as 
the value of � suggested by (8) does not drop below the value 

of the next lowest available video rate. When the buffer level 
drops below Bmin, Rmin is always selected.

First, we consider the scenario of an increase in through-
put, and a subsequent increase in the buffer level. To increase 
the video rate in response to the increase in throughput and 
buffer level, four conditions should be satisfied:

1)	 R↑< TE(i).
2)	 The buffer level should be greater than Bc↑.
3)	 R(i − 1) ≠ Rmax.
4)	 TE(i) > TE(i−1).

We denote video rates higher and lower than the current 
video rate by R↑ and R↓, respectively. To avoid buffer drop, 
the first condition makes sure that the selected video rate is 
less than the estimated throughput. As the video rate can-
not be adapted until the download of the next segment, in 
the case of a sudden drop in throughput, the second condi-
tion reduces the probability of a buffer underflow event. As 
explained earlier, when the client decides to increase the 
video rate, it selects Bk using the concave function. The last 
condition reduces the frequency of video rate switches, by 
not switching up the video rate when the client observes a 
drop in throughput. This avoids the risk of a likely step down 
in the near future.

Fig. 7   The video rate map based 
on concave and linear buffer 
models
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Next, we consider the scenario of a decrease in through-
put, and a subsequent decrease in the buffer level. We stay at 
the current video rate, until the buffer level drops below Bck. 
This is to minimize the frequency of video rate switches, by 
not reacting to short-term fluctuations. Once the buffer level 
falls below Bck, we shift to the linear function to select the 
video rates. We continue to reduce the video rate, until the 
selected video rate is less than the estimated throughput and 
the buffer level is above the threshold Blk.

4.3 � Smoothing video rate switches

The proposed algorithm selects the video rate based on 
both buffer occupancy and the estimated throughput. The 
variations in the playback buffer level results in video rate 
switches. Figure 8 shows examples of video rate switches 
due to variations in buffer level. In scenario 1, as the buffer 
level drops below the threshold Bck, the client steps down 
the video rate from video rate. In scenario 2, as the buffer 
level increases above Bck, the client steps up the video rate. 
A small fluctuation in throughput may result in fluctuation 
of the buffer level around Bck, which means a high frequency 
of video rate switches.

Many video streaming services encode their videos in 
variable bitrate (VBR). Encoding static scenes with fewer 
bits and active scene with more bits allows more flexibility 
and efficient utilization of bits. While all the segments are of 
equal duration, τ, the size of each segment varies. The larger 
segments will take more time to download, compared with 
the smaller segments. Therefore even in a stable network 
environment, as the client downloads segments of variable 
sizes, the buffer level may fluctuate. This results in higher 
video rate switches, which impair the viewing experience 
[2, 4].

To this end, we add a buffer zone around Bck, within 
which, if the buffer level stays, the client avoids switch-
ing the video rate. To explain how the proposed method 
smooths out the video rate switches, Fig. 9 introduces three 
scenarios. In scenario (a), the buffer level before download-
ing segment i lies between B and Bck. If the buffer level 
increases above Bck, the client switches up the video rate. 
In scenarios (b) and (c), the buffer level before download-
ing segment i is higher than Bck. If after downloading the 
ith segment, the buffer level stays between Bck and B , the 
client does not switch the video rate; whereas, if the buffer 
level drops below B , the client switches down the video rate. 
The buffer zone should be large enough to absorb the varia-
tions in buffer level, but not at the expense of risking buffer 
underflow. The larger the segment duration, the larger the 
expected variation in buffer level. Therefore, we set the value 
of Bto:

(9)B = Bck − �,

where τ is the segment duration.

5 � Performance evaluation

5.1 � Evaluation setup

We use network simulator, ns-3, as the experimental simu-
lation environment. Our simulation adopts three rate adap-
tive algorithms as benchmarks. Besides the rate adaptive 
algorithm proposed in our previous work [7], we adopt the 
algorithms proposed in [12, 13, 19], as benchmarks to dem-
onstrate the efficiency of the proposal. In the results, we 
refer to the algorithms proposed in [7, 12, 13, 19] as BBAB, 
AAA, SARA and MAL respectively. In the simulation, we 
evaluate the algorithm under varying network conditions, 
buffer sizes, and segment durations. We modified the code 
available in https​://githu​b.com/djver​gad/dash to perform our 
experiments.

The length of the video is 400 s. To achieve adaptive 
streaming, the HTTP server offers the client seven levels of 
representation to adapt the video rates. These video rates are 
356, 500, 800, 1200, 1800, 2500 and 3000 kbit/s. Figure 10 
shows the topology implemented in this paper. The topology 
consists of an HTTP server, HTTP client, and a pair of rout-
ers. The link between the routers is our bottleneck link. To 
vary the throughput across the bottleneck, we add the UDP 
traffic between the routers.

5.2 � Bitrate adaptation performance

First, we demonstrate how the proposed algorithm performs 
under multiple environments. For these experiments we set 
buffer size to 60 s. Figure 11 demonstrates the video rate 
selected by the proposed algorithm under a small throughput 
fluctuation scenario. This figure plots the values from the 
middle of the streaming session, as the objective is to show 

Bck-1 Bck

Bck-1 Bck Bck-1 Bck

B(i-1)

B(i) B(i)

Bck-1 Bck

B(i-1)

Scenario 1 Scenario 2

Fig. 8   An example of video rate switches due to variations in the 
buffer level

https://github.com/djvergad/dash
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the response to short term fluctuations. Figure 11 shows that 
the proposed algorithm is stable in response to small fluctua-
tions, which reduces the frequency of video rate switches. 
The reason for the stable response is that the buffer distance 
between Bk(i) and Bk+1(i) and the addition of the buffer zone 
provides a cushion, and reduces the frequency of video rate 
switches.

Figure 12 demonstrates the response of the proposed algo-
rithm to a large throughput drop. An important property of 
an adaptive algorithm is that it should have a swift response 
to large fluctuations. To make sure that the throughput drop 
is not due to a short-term fluctuation, the proposed algorithm 
waits for the buffer level to drop below B ̅. Once the buffer 
level drops further, the algorithm quickly switches down 
the video rate, to avoid the risk of playback interruption. 
The proposed rate adaptive method quickly switches down 
the video rate, because in the case of a large variation in the 
throughput, the throughput estimation method proposed in 
Sect. 3 exponentially varies the throughput.

Figure  13a shows that as the throughput gradually 
increases, the proposed algorithm increases the video rate. 
As the algorithm adopts the concave behaviour when the 
buffer level increases, it quickly switches to higher video 
rates to efficiently utilize the throughput. When the through-
put gradually drops, the proposed algorithm maintains a 
high video rate without risking buffer underflow. Figure 13b 
shows that the proposed algorithm ensures that a small drop 

in throughput doesn’t result in unnecessary stepping down 
of the video rate.

5.3 � Single‑user scenario

The topology of a single-user scenario consists of an HTTP 
server, an HTTP client, and a pair of routers. We analyze 
the algorithms for the scenarios mentioned in Table 1. We 
demonstrate the impact of the buffer size and segment dura-
tion on the performance of the algorithms. The HTTP cli-
ents offer distinct buffer sizes. The rate adaptive algorithms 
should be able to guarantee QoE under different client set-
tings. We set the buffer size to 20, 40 and 60 s, and evalu-
ate the performance of the rate adaptive algorithms. Then, 

Fig. 9   Selection of video rates 
as the playback buffer level 
fluctuates

Bck-1 Bck
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B(i-1) B(i)

B(i-1) B(i)

Scenario (a)

Scenario (b)

Scenario (c)
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Fig. 10   The network topology

0
500

1000
1500
2000
2500
3000
3500

55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109

B
itr

at
e 

(k
bp

s)

Segment Index

Video Rate Available Throughput

Fig. 11   The response of the proposed algorithm to small throughput 
fluctuations



520	 W. u. Rahman, K. Chung 

1 3

we demonstrate how the algorithms perform as the segment 
duration varies. In the results, we refer to the throughput 
traces shown in Fig. 14a and b employed for single-user 
scenario as Scenario A and Scenario B respectively. Sce-
nario A produces bandwidth fluctuations of variable ampli-
tude. We evaluate how the algorithms adapt the video rate 
as the amplitude of throughput varies. Scenario B initially 
increases the video rate gradually and then produces large 
drops in the throughput of gradually increasing durations. 
We evaluate how the algorithms adjust the video rates when 
there are small and large variations in the throughput.

5.3.1 � Scenario A

First, we set the buffer size and segment duration to 60 and 
2 s respectively. Table 2 shows the statistics of the algo-
rithms over the streaming session. The SARA algorithm 
results in the most fluctuating bitrate curve, and the AAA 
algorithm is the most stable, but to the detriment of video 
rate. The proposed method and the BBAB algorithms pro-
vide a smoother bitrate curve with higher bitrate. The pro-
posed algorithm is able to achieve a high video rate when 
the network conditions improve. For downward switching, 

abrupt switching impairs the QoE, as compared to smooth 
switching [5, 25–27]. On average, the minimum quality 
level is rated 30% better quality in case of gradual video 
rate switches compared to an instantaneous switch [25]. 
The maximum downward switch when the client switches 
down the video rate means the largest video rate difference 
between any two consecutive segments over the whole ses-
sion. Although the average of the switches and the standard 
deviation (STD) of the video rates selected by the proposed 
algorithm are higher, the lower value of the maximum down-
ward switch shows that the proposed and AAA algorithms 
smoothly switch down the video rate. Unlike downward 
switching, viewers prefer abrupt increase in the video qual-
ity for upward switching [28, 29]. The higher value of the 
maximum upward switch shows that the proposed algorithm 
aggressively increases the video rate, to better utilize the 
available throughput. The MAL algorithm achieves high 
video rate and small number of video rate switches but expe-
riences playback interruption for 1.6 s. The reason behind 
playback interruption is that the MAL algorithm does not 
check whether the estimated throughput is lower than the 
selected representation. Figure 15 shows the percentage of 
mid to high video rate segments downloaded by the client 
for Scenario A. As mentioned earlier that the user experi-
ence improves when the video rate is increased aggressively 
[24]. In addition, long spell of good quality video improves 
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Table 1   Buffer sizes and segment durations for the implemented sce-
narios

Scenario no. Buffer size (s) Segment 
duration (s)

1 60 2
2 40 2
3 20 2
4 60 4
5 60 10
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the user experience [24, 26]. Figure 15 shows that only the 
proposed, SARA and MAL algorithms are able to efficiently 
utilize the bandwidth and download the segments encoded 
with the highest available video rates. However, the SARA 
and MAL algorithms stream the high quality video at the 
expense of high number of video rate switches and playback 
interruption respectively.

Table 3 shows the statistics of the algorithms when the 
buffer size is set to 40 s. The SARA algorithm achieves the 
highest average video rate, but results in the highest fre-
quency of video rate switches. The SABA, BBAB, and 
MAL algorithms achieve high average video rate and low 
frequency of video rate switches. The AAA algorithm sta-
bilizes the video rate curve, but achieves a low video rate. 
Table 3 shows that both the proposed and AAA algorithms 
smoothly switch down the video rate to improve the user 
experience. As explained earlier, the proposed algorithm has 
a higher average of switches, but this is due to an aggres-
sive increase in the video rate in order to efficiently utilize 
the throughput. The MAL algorithm experiences playback 

interruption for 3.7 s. Similar to the previous experiment, 
the AAA and BBAB algorithms cannot stream the video at 
the highest available video rate.

Table 4 shows the statistics of the algorithms when the 
buffer size is set to 20 s. Similar to previous scenarios, the 
SARA algorithm achieves the highest average video rate, 
and results in the highest number of video rate switches. 
The BBAB algorithm achieves a video rate similar to the 
SABA algorithm when the buffer size is set to 60 and 40 s, 
but in the case of a smaller buffer size, the BBAB algorithm 
is nearly 400 kbps worse than the proposed method. The 
reason is that the BBAB algorithm requires large buffer sizes 
to select higher video rates. The AAA algorithm is the most 
stable method in the case of larger buffer sizes, but as the 
buffer size reduces, the frequency of the video rate switches 
increases. The proposed algorithm keeps the frequency of 
video rate switches low. The AAA algorithm conservatively 
increases the video quality, whereas the BBAB algorithm 
cannot select a video rate higher than 1800 kbps. SARA 
and SABA algorithms achieve high average video rate; but 
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Fig. 14   Throughput trace employed in the evaluation

Table 2   Statistics of different adaptive methods when buffer size is 60 s and segment duration is 2 s

Metrics/algorithms Scenario A Scenario B

Proposed AAA​ SARA​ BBAB MAL Proposed AAA​ SARA​ BBAB MAL

Average video rate (kbps) 1903.29 1483.28 2169.14 1951.28 2131.00 1967.78 1281.23 2084.49 1901.35 2103.78
MAX (kbps) 3000 2500 3000 2500 3000 3000 2500 3000 2500 3000
MIN (kbps) 356 356 356 356 500 356 356 356 356 356
MAX Switch (kbps) 1444 1000 2644 1300 1700 1200 2000 2644 700 2200
Max switch downward (kbps) 1000 1000 2644 1300 1700 1200 2000 2644 700 2200
Max switch upward (kbps) 1444 1000 700 700 700 1000 1700 700 700 700
No. of switches 14 7 57 11 10 19 12 88 7 11
Avg of switches (kbps) 696 592 617.05 504 655.56 656.00 674.67 582.30 457.33 708.47
Standard deviation (kbps) 626.7 578.84 866.64 547.8 622.40 750.17 747.37 565.77 688.51 913.44
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the SARA algorithm achieves it is at the expense of higher 
changes in the video rate. The MAL is the only algorithm 
that experiences playback interruption due to buffer under-
flow for 2.1 s.

Currently, video streaming services deploy segment dura-
tion differently in their services. Microsoft Smooth Stream-
ing, Netflix and Apple HTTP Live Streaming offer segment 
duration of 2, 4 and 9 s respectively [30–32]. We set the 
segment durations to 2, 4 and 10 s, and evaluate the perfor-
mance of the rate adaptive algorithms. The buffer size is set 
to 60 s for all of the experiments.

Table 5 shows the statistics of the algorithms results 
when the segment duration is set to 4 s. In comparison to 
the experiment where the segment size is set to 2 s, all of 
the algorithms except the AAA algorithm achieve similar 
average video rates. The average video rate of the AAA algo-
rithm drops by roughly 200 kbps. The AAA algorithm has 
the most stable video rate curve followed by the MAL algo-
rithm, whereas the SARA algorithm results in the highest 

frequency of video rate switches. Table 5 shows that the 
SABA algorithm has a slightly higher number of video rate 
switches as compared to the BBAB algorithm, but switches 
down the video rate more smoothly. In case of the SABA 
algorithm, the majority of video rate switches are between 
high and mid-quality. The experiments have shown that 
limited noticeable difference in quality is observed between 
high and mid-quality switches during video playback [25]. 
The AAA algorithm downloads the highest percentage of 
low quality segments.

In the next experiment, we increase the segment duration 
to 10 s. Table 6 shows that the BBAB algorithm has a sta-
ble response, but the average video rate drops. Furthermore, 
BBAB algorithm does not experience a downward switch. 
Figure 15 shows that the BBAB algorithm streams more 
than 70% of the video at 1800 kbps. It means that the algo-
rithm does not efficiently utilize the bandwidth. The SABA 
algorithm outperforms BBAB by almost 227 kbps. Also, it 
smoothly changes the video rate to minimize the degradation 
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Fig. 15   The percentage of the time the client downloads the segments encoded at 1800, 2500 and 3000 kbps during the implementation of Sce-
nario A

Table 3   Statistics of different adaptive methods when buffer size is 40 s and segment duration is 2 s

Metrics/algorithms Scenario A Scenario B

Proposed AAA​ SARA​ BBAB MAL Proposed AAA​ SARA​ BBAB MAL

Average video rate (kbps) 1901.78 1460.82 2169.14 1922.67 1944.64 1964.33 1343.34 2089.28 1901.38 2103.28
MAX (kbps) 3000 2500 3000 2500 300 3000 2500 3000 2500 3000
MIN (kbps) 356 356 356 356 356 356 356 356 356 500
MAX Switch (kbps) 1444 1000 2644 1300 2000 1300 2000 2644 1000 2200
Max switch downward (kbps) 700 700 2644 1300 2000 1300 2000 700 1000 2200
Max switch upward (kbps) 1444 1000 700 700 700 1000 1300 2644 700 700
No. of switches 13 11 59 12 13 22 18 88 9 13
Avg of switches (kbps) 711.07 521.09 596.13 512 565.67 648.00 686.00 575.68 527.11 768
Standard deviation (kbps) 581.26 590.37 866.64 557.76 707.58 879.40 746.07 1005.67 781.94 939
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of the user experience, and has a low average video rate 
switch. Like the previous experiments, the SARA algorithm 
achieves a higher average video rate, and experiences higher 
video rate switches, while MAL algorithm achieves the low-
est average video rate. Figure 15 shows that only the pro-
posed and SARA algorithms are able to stream the video 
at the highest available video rate. The SARA algorithm 
streams the video at the highest available video rate at the 
expense of high number of video rate switches and playback 
interruptions. The SARA and MAL algorithms experience 
playback interruptions for 20.8 and 0.8 s, respectively. The 
SABA algorithm downloads a high percentage of high qual-
ity segments, and smoothly switches the video rate.

5.3.2 � Scenario B

In this section we evaluate the algorithms for Scenario B. 
Table 2 shows that the SARA and MAL algorithms achieve 
high video rate but at the expense of higher video rate 
changes and playback interruptions, respectively. The MAL 
algorithm experiences playback interruptions six times dur-
ing the streaming session. The proposed algorithm achieves 
high average video rate. It experiences a slightly higher num-
ber of video rate switches because the proposed algorithm 
aggressively reduces the video rate when the throughput 
suddenly drops to mitigate the risk of buffer underflow. The 
BBAB algorithm has a lower average video rate and lower 
number of video rate switches than the proposed algorithm. 
Figure 16 shows that similar to Scenario A, only the pro-
posed, SARA and MAL algorithms stream the video at the 
highest available video rate. The SARA and AAA algo-
rithms download high percentage of video rates encoded 
at 3000 kbps, but to the detriment of the user experience 
as they result in high number of video rates switches and 
playback interruption, respectively. Figure 17 shows that 
the BBAB algorithm achieves the highest eMOS values fol-
lowed by the proposed algorithm. The eMOS of the SABA 
algorithm is 0.04 worse than the BBAB algorithm.

Then we evaluate the algorithms for the scenario when 
the buffer size is set to 40 s. The SARA algorithm results 
in the highest number of video rate of switches, whereas 
the MAL algorithm results in three playback interruptions, 
which degrade the user’s experience. The BBAB algorithm 
has slightly less number of video rate switches because it 
takes a conservative approach in selecting higher video 
rates; therefore, it never selects the highest available video 
rate. The BBAB algorithm is nearly 60 kbps worse than 
the proposed method. Similar to the previous scenario, the 
BBAB and AAA algorithms cannot stream the video at the 
highest available video rate. The AAA algorithm achieves 
the lowest video rate among the compared algorithms. The 
SABA algorithm achieves the highest eMOS value followed 
by the BBAB algorithm.Ta
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In the next experiment we set the buffer size to 20 s. Like 
the previous experiments, SARA and MAL algorithms result 
in high number of video rate switches and playback inter-
ruptions, respectively. The MAL algorithm experiences nine 
playback interruptions, which degrade the user’s experience. 
The proposed algorithm achieves a high average video rate. 
It experiences slightly high number of video rate switches. 
The reason is that due to small buffer size and the ability 
of the proposed algorithm to efficiently utilize the band-
width, when the throughput increases the proposed algo-
rithm quickly increases the video rate and as the throughput 
drops, it decreases the video rate, while making sure that it 
does not experience buffer underflow. Figure 16 shows that 
the proposed algorithm streams the majority of the video at 
high video rates. The SABA algorithm achieves the highest 
eMOS value followed by the BBAB algorithm.

Next, we set the buffer size to 60 s and increase the seg-
ment duration to 4 s. The proposed algorithm selects high 
video rate while avoiding the playback interruption. The 
MAL algorithm experiences three playback interruptions 
due to buffer underflow. The BBAB algorithm results in the 
lowest number of video rate changes but it achieves aver-
age video rate 150 kbps worse than the proposed algorithm. 

Figure 17 shows that the proposed algorithm achieves the 
best eMOS among the compared algorithms.

Next, we increase the segment duration to 10 s. The pro-
posed algorithm achieves the highest average video rate 
followed by MAL. The MAL algorithm experiences four 
playback interruptions. The AAA algorithm results in the 
lowest average video rate, whereas the SARA algorithm 
experiences the highest number of video rate changes. Simi-
lar to Scenario A, in case of BBAB algorithm, the average 
video rate drops significantly. Figure 16 shows that only the 
proposed and SARA algorithm is able to select the segments 
encoded at the highest available video rate. The AAA and 
BBAB algorithms stream majority of the video at low video 
rates. Figure 17 shows that the eMOS value of the BBAB 
algorithm drops sharply as the segment duration is increased 
to 10 s. The proposed algorithm achieves the highest eMOS 
value.

The experiments show that the BBAB algorithm keeps 
the frequency of video rate switches low, but when the buffer 
size drops to 20 s or the segment duration is increased to 
10 s, the average video rate drops significantly. The SARA 
algorithm achieves a high average video rate, but at a high 
frequency of video rate switches. On the other hand, the 

Table 5   Statistics of different adaptive methods when buffer size is 60 s and segment duration is 4 s

Metrics/Algorithms Scenario A Scenario B

Proposed AAA​ SARA​ BBAB MAL Proposed AAA​ SARA​ BBAB MAL

Average video rate (kbps) 1934.92 1280.96 2161.92 1927.56 2020.00 1962.56 1240.65 2096.65 1807.71 2048.94
MAX (kbps) 3000 1800 3000 2500 3000 300 2500 3000 2500 3000
MIN (kbps) 356 356 356 356 800 356 356 356 356 356
MAX switch (kbps) 1444 1444 2644 2500 700 700 2000 2644 1000 2200
Max switch downward (kbps) 1444 1444 2644 1700 700 700 2000 2644 1000 2200
Max switch upward (kbps) 844 844 700 700 700 700 2000 700 700 700
No. of switches 15 6 51 8 7 17 11 44 7 9
Avg of switches (kbps) 655.46 722.00 694.03 693.00 600.00 585.78 802.67 675.18 549.14 649.33
Standard deviation (kbps) 626.70 499.01 982.17 502.77 576.83 692.24 758.59 1001.40 732.22 960.17

Table 6   Statistics of different adaptive methods when buffer size is 60 s and segment duration is 10 s

Metrics/algorithms Scenario A Scenario B

Proposed AAA​ SARA​ BBAB MAL Proposed AAA​ SARA​ BBAB MAL

Average video rate (kbps) 2018.9 1540.3 2310.9 1791.61 1497.5 2003.80 1335.3 1963.1 1521.4 1974.53
MAX (kbps) 3000 2500 3000 2500 2500 3000 2500 3000 2500 3000
MIN (kbps) 356 356 356 356 800 356 356 356 356 356
MAX switch (kbps) 1444 1000 2644 2500 1700 700 1700 2644 1300 700
Max switch downward (kbps) 700 1000 2644 1700 1700 700 1700 2500 1300 700
Max switch upward (kbps) 1444 1000 2500 844 700 700 1700 2644 700 700
No. of switches 10 5 14 3 7 11 8 22 10 12
Avg of switches (kbps) 714.40 828.80 1493.43 714.67 728.57 570.33 1027.11 1041.82 614.40 570.33
Standard deviation (kbps) 534.99 643.48 1114.00 381.66 775.09 709.51 750.77 1059.59 717.02 709.51
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AAA algorithm stabilizes the video rate curve, but achieves 
the lowest video rate among all the algorithms. The MAL 
algorithm stabilizes video rate changes but at the expense 
of playback interruptions, which degrades the user’s experi-
ence. The proposed algorithm irrespective of the buffer size 
and segment duration achieves high video rate and mini-
mizes video rate switches while avoiding playback interrup-
tion. Furthermore, assures a smooth switch from the higher 
rate to the lower video rate.

5.4 � Multi‑client scenario

In this section, we analyze the performance of the algorithms 
when multiple clients share the bottleneck. Figure 18 shows 
the topology implemented for the multi-user scenario. The 
bandwidth of the bottleneck link is 10 mbps for all experi-
ments. The algorithms are evaluated for varying number of 
clients, buffer sizes, and segment durations. Similar to the 
single client-scenario, we set the buffer size to 20, 40 and 
60 s and set the segment duration to 2, 4 and 10 s.
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Fig. 16   The percentage of the time the client downloads the segments encoded at 1800, 2500 and 3000 kbps during the implementation of Sce-
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In an environment where multiple clients compete for the 
bottleneck, the clients are inefficient and select low-quality 
video rates and bandwidth is shared unfairly among the 
competing clients. The inefficiency at time t is given by the 
following [15]:

where W is the bandwidth, and each client x selects bit rate 
bx,t. [33] defines the unfairness metric for two competing 
clients as the average of the absolute bit rate differences 
between the corresponding segments requested by each cli-
ent. To evaluate unfairness, this is generalized to multiple 
players as

√
1 − JainFair , where JainFair is the Jain fairness 

index [34] of bx,t over all players. Let RA={RA
1,RA

2,…,RA
n} 

denote the set that contains the video rates achieved by n 
competing clients. Additionally, to evaluate the unfairness 
metric for more than two users, we define the parameter diff 
as follows:

Ideally, the values of inefficiency, unfairness and diff 
should be zero. Low values of inefficiency, unfairness and 
diff are desired; a low value of inefficiency means that the cli-
ent selects the highest feasible bit rates lower than the actual 
throughput and low values of diff and unfairness means that 
the competing clients achieve equitable video rates.

(10)Inefficiency =

��
∑

x bx,t −W��
W

,

(11)diff = Max
(
RA

)
−Min

(
RA

)
.

5.4.1 � Five‑clients scenario

In this section we compare the adaptive algorithms when 
five clients share the bottleneck. We evaluate the algorithms 
for scenarios mentioned in Table 1. The results show that 
the proposed scheme provides the best performance among 
the compared algorithms overall. The proposed algorithm 
results in low inefficiency, unfairness and diff values. Fig-
ure 19 shows that the SARA and SABA algorithm are the 
least inefficient whereas the AAA algorithm is the most 
inefficient algorithm. Figure 20 shows the diff values of the 
compared algorithms for each scenario. Figure 21 shows the 
average diff value of the compared algorithms. Figures 19 
and 20 show that the proposed algorithm has the lowest 
unfairness and diff values. Figures 21 and 22 show that the 
proposed algorithm makes sure that the client switches the 
video rate gradually while keeping the video rate switches 
low. The performance of the BBAB algorithm fluctuates 
from one environment to another. The BBAB algorithm 
shows improved performance for large buffer sizes and 
small segment durations, but when the segment duration is 
increased or buffer size is decreased, the performance of the 
BBAB algorithm degrades. The SARA algorithm has a low 
inefficiency value but results in a high unfairness and diff val-
ues. Furthermore, it experiences most number of video rate 
changes. The AAA algorithm has a high inefficiency, unfair-
ness and diff values. Figure 22 shows the video rate switches 
experienced by the algorithms. The BBAB algorithm has the 

Fig. 18   Multi-client network 
topology
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lowest number of video rate switches. As explained earlier, 
a large downward video rate switch affects user’s experience 
more than a gradual downward switch. The proposed algo-
rithm on average experiences 1.25 more video rate switches 
per 100 s compared to BBAB algorithm but the proposed 
algorithm results in lower average downward switch. The 
MAL algorithm performs the worst among the compared 
algorithms as it experiences a high number of video rate 
switches. The clients experience on average 10 playback 
interruptions during the implementation of the MAL algo-
rithm for each scenario. The rest of the algorithms streamed 
the video without experiencing playback interruption.

Proposed AAA BBAB SARA MAL
Inefficiency 0.13 0.22 0.14 0.13 0.17
Unfairness 0.13 0.25 0.15 0.32 0.19

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32

Fig. 19   Inefficiency and unfairness of the compared algorithms

Fig. 20   diff values of the 
compared algorithms for each 
scenario mentioned in Table 1
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6 � Conclusion

In this paper, we propose a throughput estimation method 
and a rate adaptive algorithm for HTTP adaptive streaming. 
The proposed throughput estimation method can accurately 
estimate the throughput of the upcoming segment based on 
previous samples. We show that the throughput estimation 
method is sensitive to large fluctuations, and robust to small 
fluctuations. The objective of the adaptive bitrate streaming 
algorithm is to improve the viewing experience of multi-
media streaming applications. The proposed rate adaptive 
algorithm offers stable response during small variations 
in the throughput to minimize the video rate switches, and 
quickly reacts when there are large variations in throughput 
to minimize the risk of buffer underflow. The proposed algo-
rithm provides high quality video by achieving a high video 
rate while preventing interruption in playback. We show 
that the algorithm minimizes the video rate switches, and 
makes sure that the video rate changes smoothly to improve 
the user experience. Furthermore, we show that in a multi-
client scenario, the proposed algorithm efficiently utilizes 
the bandwidth and the competing clients achieve comparable 
video rates.
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