
Vol.:(0123456789)1 3

Multimedia Systems (2018) 24:509–529
https://doi.org/10.1007/s00530-018-0588-7

REGULAR PAPER

SABA: segment and buffer aware rate adaptation algorithm
for streaming over HTTP

Waqas ur Rahman1 · Kwangsue Chung1 

Received: 20 November 2016 / Accepted: 16 March 2018 / Published online: 21 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Adaptive streaming allows for dynamic adaptation of the bitrate to varying network conditions, to guarantee the best user
experience. Adaptive bitrate algorithms face a significant challenge in correctly estimating the throughput, as the throughput
varies widely over time. The current throughput estimation methods cannot distinguish between throughput fluctuations of
different amplitude and frequency. In this paper, we propose a throughput estimation method that accurately estimates the
throughput based on previous throughput samples. It is robust to short term and small fluctuations, and sensitive to large
fluctuations in throughput. Furthermore, we propose a rate adaptive algorithm for video on demand (VoD) services that selects
the quality of the video based on the estimated throughput and playback buffer occupancy. The objective of the rate adaptive
algorithms is to guarantee high video quality to improve user experience. The proposed algorithm dynamically adjusts the
quality level of the video stream. The proposed method selects high quality video segments, while minimizing the risk of
playback interruption. Furthermore, the proposed method minimizes the frequency of video rate changes. We show that the
algorithm smoothly switches the video rate to improve user experience. Furthermore, we determine that it efficiently utilizes
network resources to achieve a high video rate; competing HTTP clients achieve equitable video rates. We also confirm that
variations in the playback buffer size and segment duration do not affect the performance of the proposed algorithm.

Keywords  HTTP-based video streaming · Quality of experience · Video rate adaptation algorithm · Video streaming
scheme

1  Introduction

High-speed broadband networks and improvements in dis-
play technology of various devices (e.g., smart phone, table
PC, and personal media player) have enabled video stream-
ing to become the most popular application over the Internet.
Most commercial video streaming services run over HTTP
to provide high quality video. The majority of these services
use rate adaptive algorithms that adapt the video quality,
by observing the available throughput or playback buffer
occupancy.

HTTP-based video streaming solutions provide mul-
tiple representations (e.g., different bitrate/quality) of the
same content, and divide these representations into small
segments. The content is stored at the server, and the rate
adaptive algorithm at the client decides which segment to
download next. The algorithms try to maximize the quality
of the video, by meeting conflicting objectives in such a way
as to improve the user’s viewing experience. Some of the
potential objectives include selecting a set of video bitrates
that are the highest feasible, avoiding needless video bitrate
switches, and preserving the buffer level to avoid interrup-
tion of playback [1–5]. Simply maximizing the video rate
risks rebuffering, whereas simply minimizing rebuffering
leads to low video quality.

The estimation of throughput plays an important role in
the selection of the next segment. Several methods have been
proposed to estimate the throughput of the upcoming seg-
ment [6–8]. HTTP clients make an estimate of the future
throughput from past observations to select the video rate
for the next segment [9–11]. Accurate estimation of the

Communicated by M. Claypool.

 *	 Kwangsue Chung
	 kchung@kw.ac.kr

1	 Department of Electronics and Communications
Engineering, Kwangwoon University, 447‑1 Wolgye‑Dong,
Nowon‑Gu, Seoul, Republic of Korea

http://orcid.org/0000-0002-0283-0900
http://crossmark.crossref.org/dialog/?doi=10.1007/s00530-018-0588-7&domain=pdf

510	 W. u. Rahman, K. Chung

1 3

throughput becomes an important challenge for the client.
Inaccurate estimation may lead to selecting video bitrates
that degrade user experience. To select video bitrates, the
rate adaptive algorithms add playback buffer occupancy as
an adjustment parameter on top of throughput estimation
[7, 12–14].

In this paper, we first propose a throughput estimation
algorithm with detection and estimation method. The pro-
posed throughput detection method can distinguish between
different types of fluctuations in the throughput. Based on
the result of throughput detection, the estimation method
offers a stable response to short term fluctuations, and is
sensitive to persistent large fluctuations. We then propose a
rate adaptation algorithm that dynamically selects the video
bitrates based on the estimated throughput and the playback
buffer occupancy. The objective of the proposed algorithm
is to improve the viewing experience of the users. The algo-
rithm streams high quality video, while avoiding playback
interruption. The proposed adaptation algorithm minimizes
the video rate changes, and makes sure that the video rate
changes smoothly to improve the user experience. We per-
form experiments to show that irrespective of the buffer size
and segment duration, the proposed algorithm improves user
experience. Additionally, in a multi-client environment, we
show that the proposed scheme efficiently utilizes network
resources and that the HTTP clients achieve equitable video
rates.

The rest of this paper is organized as follows: Sect. 2
offers an overview of HTTP adaptive streaming, and reviews
the existing video streaming algorithms. Section 3 presents
the proposed throughput estimation algorithm. Section 4
explains our throughput and buffer-based rate adaptive algo-
rithm. Section 5 provides simulation results. Finally, Sect. 6
concludes the paper.

2 � Overview of HTTP streaming

2.1 � HTTP adaptive streaming

HTTP adaptive streaming works by monitoring network in
real time, and by adjusting the quality of the video stream
accordingly, without resetting the TCP connection. Figure 1
shows the basic model of adaptive HTTP streaming, which
requires the server to store multiple versions of the multi-
media content. At the server side, the content annotation
module provides information about the characteristics of
the stored multimedia content. The client initiates a request
for information about the stored content, which is known
as metadata. In response to the request from the client, the
server sends the metadata to the client. The media prepara-
tion module provides tools for encoding and encapsulation,
so that the content can be presented and efficiently delivered
to the client in the correct format. On the client side, the
scheduling module is responsible for scheduling the down-
load of upcoming segments. During the download of the
segments, the bandwidth estimation module estimates the
throughput. The adaptation module selects a suitable bitrate
depending on the received metadata and system conditions,
such as the throughput and occupancy of the playback buffer.
Once a segment is downloaded, it is temporarily stored in
the playback buffer that feeds the player’s decoder.

2.2 � Related work

Currently, several methods have been proposed to estimate
the throughput. Segment throughput is calculated as the
ratio of segment size divided by the time it takes to down-
load the segment. In the simplest way, measured segment
throughput can be used as the throughput estimate of the
next segment [10]. However, due to short term fluctuations,
the throughput estimate calculated in this way will result in
high frequency of fluctuations. Akhshabi et al. [9] evaluate
the performance of Microsoft Smooth Streaming and Netflix
player using the running average of the throughput of several

Fig. 1   HTTP streaming archi-
tecture

Playback Buffer

CLIENT

Bandwidth Estimation

Adaptation

Scheduling

SERVER

Media Preparation

Content Annotation

HTTP Requests

HTTP Responses
(metadata)

HTTP Requests

HTTP Responses
(media)

511SABA: segment and buffer aware rate adaptation algorithm for streaming over HTTP﻿	

1 3

segments as the estimated throughput. The method performs
well under persistent throughput variations. Ran et al. [6] use
the median of the throughput of the last several segments to
estimate the throughput of the next segment. Rahman et al.
[7] show that the McGinely dynamic indicator offers a stable
response to the throughput fluctuations, while maintaining
a stable playback buffer. The moving average technique [7]
is accurate in slow throughput variation, but reacts late to
sudden variations in the throughput. The VLC media player
[8] uses the averages of all previous throughputs as the
estimated throughout to download the next segment. The
method responds slowly to the actual throughput variations,
which increases the risk of buffer underflow. Jiang et al.
[15] use the harmonic mean of the throughput of the last
20 downloaded segments to estimate the throughput of the
next segment. The outliers of the throughput do not influ-
ence the estimated throughput, but the method shows delay
during persistent throughput variations. Many commercial
clients estimate throughput of the next segment by taking
the moving average of the previously downloaded segments
[4]. The method is late to respond to large variations in the
throughput. The throughput estimation methods proposed
so far either have an aggressive or a stable response to the
throughput fluctuations. As the rate adaptive algorithms
select video rates based on the estimated throughput, an
aggressive response results in higher number of throughput
fluctuation. On the other hand, the stable response increases
the risk of buffer underflow and inefficient utilization of the
bandwidth. The proposed estimation method can differenti-
ate between small and large fluctuations in the throughput
based on variations in the frequency and amplitude of the
network throughput. Based on the behavior of the network
throughput, the estimation method decides whether to offer
an aggressive or stable response.

References [9–11] propose rate adaptation algorithms
that select the video rates based on the estimated through-
put. These algorithms have been found to be either slow to
converge to optimum solution, resulting in high frequency
of video bitrate switching, or to result in a higher number
of playback interruptions. In an unstable environment, inac-
curate throughput estimation results in the degradation of
the user experience.

Many methods have been proposed to incorporate infor-
mation about the playback buffer in selecting the video rate.
Miller et al. [12] propose a method that divides the buffer
into multiple predefined thresholds (B1, B2, B3, Bmax) where
(B1 < B2 < B3 < Bmax), and takes different decisions to select
the video rates when the buffer level remains in different
ranges. The algorithm does not dynamically adjust the buffer
threshold as the segment duration and segment sizes of a
VBR encoded video stream vary. Rahman et al. [7] pro-
pose an algorithm that intelligently selects the video bitrates
based on the estimated throughput and buffer occupancy, by

dynamically selecting buffer thresholds based on the sizes
of the upcoming segments. The algorithm does not adjust
the buffer thresholds as the buffer size and segment dura-
tion varies. Huang et al. [16] propose a video rate adaption
algorithm that selects the video rate by only observing the
client’s playback buffer. The authors observe that due to the
highly variable network dynamics, especially in the case
of wireless networks, it is not easy to estimate throughput.
Hence, they limit the throughput estimation to the initial
stage. To handle the variation of segment sizes, the method
directly maps the buffer occupancy to the segment size, and
increases or decreases the video rate as the buffer builds up
or drains, respectively. Furthermore, in deciding to switch
the video quality, the algorithm considered the sizes of the
upcoming segments. Rahman et al. [17] propose an algo-
rithm that selects the video rates only based on the buffer
occupancy by exploiting the variation of sizes of the upcom-
ing segments. The algorithm maps the buffer occupancy to
the video rate rather than the segment size, as mapping of
the buffer level to the segment size results in a higher fre-
quency of switches. Authors in [18] propose a user-centric
streaming algorithm for H.264/SVC DASH streaming which
adapts its quality according to the playback buffer level only.
Dubin et al. [19] provides a rate adaptive algorithm that uses
a double Exponential Moving Average (EMA) algorithm.
The video quality is selected based on both playback buffer
level estimation and throughput estimation. It is designed for
multicast networks but the authors showed that it provides
a stable performance under both multicast and unicast con-
ditions. Authors in [20] propose the algorithm that adapts
the video quality based on crowdsourcing data generated
by users of a professional service. In addition, the authors
integrate crowd information with the existing algorithms and
show that read-world data can improve the performance of
existing algorithms.

The proposed algorithm selects the video rate based on
throughput estimation and playback buffer occupancy. The
algorithm uses two video rate maps to select the video rate
of the upcoming segments. To increase the video rate, the
algorithm uses a rate map based on a concave function to
aggressively increase the video rate in order to efficiently
utilize the available throughput, and uses a linear function
to conservatively decrease the video rate to avoid playback
buffer interruption. The algorithms proposed so far do not
dynamically adjust the video rate maps as the playback
buffer sizes, segment durations and available set of video
rates vary. The proposed algorithm dynamically adjusts the
video rate maps as the buffer size of the client, segment
duration and available video rates of the video stream vary.

512	 W. u. Rahman, K. Chung

1 3

3 � The throughput estimation method

The rate adaptive algorithms strive to maximize the user
experience by meeting conflicting video quality objectives.
Some of the potential objectives include selecting the high-
est feasible set of video bitrates, avoiding needless video
bitrate switches, and avoiding interruption of playback. The
rate adaptive algorithms select the next segment on the basis
of the estimated throughput. Therefore, it is important for the
throughput estimation method to have a stable response to
small variations in the throughput, to minimize unnecessary
fluctuations in the video rate, and to react quickly to large
fluctuations to minimize the risk of playback interruption
due to buffer underflow.

3.1 � Throughput detection method

The throughput detection method should be able to distin-
guish between different types of network conditions. To dif-
ferentiate between fluctuations of different amplitude and
frequency in the throughput, we calculate log return. The log
return shows the extent of variability of the throughput in
relation to the average throughput. Let T(i) and T(i) denote
the instant and average throughput, respectively, observed
at the download of segment i. We calculate the log return
ρ using:

where

A high value of log return means that the difference
between T(i) and T(i) is significantly high, due to large fluc-
tuations in the throughput. The client must react quickly to
the large fluctuations in throughput. A smaller value of log
return means a small fluctuation in the throughput or a short-
term fluctuation. The client should offer a smooth and stable
response to small fluctuations in throughput.

3.2 � Throughput estimation method

After the throughput detection method detects the type of
network condition, the client estimates the throughput. We
estimate the throughput in (3) using the weighted average of
the throughput observed over the last n segments.

(1)� = log

|||T(i) − T(i)
|||

T(i)
,

(2)T(i) =

∑i−1

j=i−n−1
T(j)

n
.

(3)TE(i) =

i−1∑
j=i−n−1

n∑
k=1

p(k) × T(j).

The weighted factor p in (4) depends on the type of
throughput fluctuation. If the throughput has large persis-
tent variations, the throughput in recent times has higher
weight, which makes the estimation quickly adjust to the
actual throughput. We use the exponential function to give
higher weight to recent throughput. In the case of small vari-
ations, we use the mean of the past throughput observations
to provide stable estimation.

If the value of ρ ≥ λ, the exponential function is selected
to make sure more recent throughput has higher weight; oth-
erwise, the method uses mean of the past observations as the
weighted factor. We perform experiments to select the value
of λ to detect the type of throughput fluctuations. To this end
we use rectangular waveform, shown in Fig. 2.

Amax and Amin denote the maximum and minimum values
of throughput respectively and Δ represents their difference.
L represents the duration of the framework and D is the pro-
portion of time when the throughput is Amax. We observe the
response of the throughput estimation method by varying
value of λ as shown in Figs. 3 and 4.

In the first experiment, Δ is varied while keeping Amax
equal to 3000 kbps and varying Amin. We vary the values of
Δ from 250 to 1500 kbps. We want to observe how the pro-
posed estimation method reacts to small and large through-
put variations. The objective is to select the value of λ that
reacts quickly to the throughput variations to efficiently uti-
lize the bandwidth and minimize the risk of buffer under-
flow. We vary the value of λ from 0.05 to 0.125. The value of
L and D are kept to 60 s and 0.5 respectively. Figure 3 shows
that for Δ equal to 250 kbps, setting value of λ equal to

(4)p =

⎧
⎪⎪⎨⎪⎪⎩

�k2

n∑
l=1

�l2

if � ⩾ �

1

n
else

,

∆

= /

Fig. 2   A rectangular waveform throughput trace

513SABA: segment and buffer aware rate adaptation algorithm for streaming over HTTP﻿	

1 3

0.05 results in aggressive response to the fluctuations in the
throughput. As the value of λ increases, the response to the
throughput fluctuation becomes conservative. As the value
of Δ increases, the throughput estimation method should be
able to react quickly to the fluctuations in the throughput
to efficiently utilize the throughput or avoid drop in buffer
occupancy due to the throughput overestimation. Figure 3
shows that for large values of Δ, the proposed method reacts
quickly to the changes in throughput for all value of λ.

In the next experiment, L is varied while keeping Amax
equal to 3000 kbps. The objective is to select the value of

λ that stabilizes short-term fluctuations to minimize the
unnecessary video rate changes. The value of Δ and D are
kept to 450 kbps and 0.5 respectively. In Fig. 4, we vary
the frequency of throughput variation. We vary the value
of L to observe how the proposed algorithm reacts to long
and short-term fluctuations. Figure 3 shows the response of
the proposed estimation method as for the value of L equal
to 60 s. Figure 4 shows that as the value of L is reduced to
16 s, larger value of λ results in a stable response where as
a smaller values of λ show an aggressive response. As the
value of λ is increased above 0.125, we observed that the

(c)Δ = 1500 kbps

0

500

1000

1500

2000

2500

3000

3500

2 10 18 26 34 42 50 58 66 74 82 90 98 106
114
122
130
138
146
154
162
170
178
186
194
202
210
218
226
234
242
250
258

)spbk(
etarti

B

Time (s)
Instant Throughput λ = 0.05 λ = 0.075 λ= 0.10 λ = 0.125

(a) Δ = 250 kbps (b) Δ = 1000 kbps

0

500

1000

1500

2000

2500

3000

3500

2 10 18 26 34 42 50 58 66 74 82 90 98 106
114
122
130
138
146
154
162
170
178
186
194
202
210
218
226
234
242
250
258

)spbk(
etarti

B

Time (s)
Instant Throughput λ = 0.05 λ = 0.075 λ = 0.10 λ = 0.125

2200

2300

2400

2500

2600

2700

2800

2900

3000

3100

2 10 18 26 34 42 50 58 66 74 82 90 98 106
114
122
130
138
146
154
162
170
178
186
194
202
210
218
226
234
242
250
258

)spbk(etarti
B

Time(s)
Instant Throughput λ = 0.05 λ = 0.075 λ = 0.10 λ = 0.125

Fig. 3   Performance of the proposed scheme as the amplitude of fluctuations changes

(a) L = 25 sec

2200
2300
2400
2500
2600
2700
2800
2900
3000
3100

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98 104110116122128134140

)spbk(
etarti

B

Time (s)
Instant Throughput λ = 0.05 λ = 0.075 λ = 0.10 λ = 0.125

(b) L = 16 sec

2200
2300
2400
2500
2600
2700
2800
2900
3000
3100

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70

)spbk(etartiB

Time (s)
Instant Throughput λ = 0.05 λ = 0.075 λ = 0.10 λ = 0.125

Fig. 4   Performance of the proposed scheme as the frequency of fluctuations changes

514	 W. u. Rahman, K. Chung

1 3

proposed estimation method becomes slow to react to large
fluctuations in throughput; therefore, we plotted the results
only for the value of λ up to 0.125. The reason behind keep-
ing a difference of 0.05 between the plotted values of λ is
that the smaller values resulted in overlapping of the curves
which makes the plot reading difficult.

The rate adaptation algorithms select the video rates on
the basis of the estimated throughput and the playback buffer
occupancy. As explained earlier, the major factors that affect
the user experience include the average video rate, play-
back interruption and frequency of video rate changes. The
purpose of the proposed throughput estimation method is
to assist the rate adaptive algorithm proposed in the next
section to select the video rates. Based on the experiments
results shown in Figs. 3 and 4, we select λ equal to 0.1 for the
proposed scheme. We observe that when λ is selected equal
to 0.1, the proposed method reacts quickly to large fluctua-
tions in the throughput; whereas, in case of small or short-
term fluctuations in the throughput, the proposed method
reacts conservatively to stabilize the estimated throughput.
When the value of ρ is less than 0.1, the proposed tech-
nique uses the mean of throughputs observed over the previ-
ous n segments. As the value of ρ increases above 0.1, the
proposed scheme selects the exponential function to react
quickly to the variations in throughput.

To evaluate the performance of the proposed method, we
implement the throughput estimation method in the network
simulator, ns-3. The server offers discrete bitrates from 400
to 3000 kbps, with a step size of 200 kbps. The duration of
each segment is 2 s, and the client starts playback after a seg-
ment has completely downloaded. Many commercial clients
[21] use the previous 10 samples to estimate the throughput;
therefore, we set the value of n equal to 10 for the proposed
method. We set the value of α equal to 0.9 to react quickly

to the large fluctuations in throughput. The video bitrate is
determined by selecting the highest video rate that is less
than the estimated throughput.

Figure 5 uses the proposed throughput estimation method
to estimate the throughput. The proposed scheme shows a
smooth response to small fluctuations; it is able to detect
small variations, and offers a stable response to small fluc-
tuations. Furthermore, the proposed scheme reacts quickly
to large drop in the throughput. The rate adaptive algorithms
select the video rates based on the estimated throughput;
therefore, a late response to a large drop increases the risk
of interruption in the playback. The proposed scheme is able
to detect a large drop, and in order to quickly react to the
drop in throughput, estimates the throughput exponentially.
As the proposed scheme shows a smooth response to small
fluctuations, it reduces the video bitrate switches. Figure 5
shows that the client does not change the video rate during
small throughput fluctuations. As the throughput suddenly
drops, the video rate drops quickly to avoid buffer underflow.
As the client selects the highest video rate that is less than
the estimated throughput, the buffer level increases gradu-
ally. When the throughput suddenly drops, the buffer ini-
tially drops, but as the client quickly drops the video rate,
the buffer level stabilizes.

To further evaluate the performance of the proposed
scheme, we compare with the method that estimates
throughput by dividing the download size by the download
time and passing it through moving average filter [21].

Figure 6 compares the performance of the proposed
scheme with the moving average throughput estimation
method. Figure 6a shows that unlike proposed scheme, mov-
ing average method reacts slowly to the actual throughput.
This not only results in underutilization of the available
throughput when the throughput increases but also risks

Fig. 5   Throughput estimation
under a predetermined network
scenario

0
2
4
6
8
10
12
14
16
18
20

0

500

1000

1500

2000

2500

3000

3500

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

B
uf

fe
r

L
ev

el
 (s

)

B
itr

at
e

(k
bp

s)

Segment Number
Available Throughput Estiamted Throughput

Video Rate Buffer Level

Small fluctuations

Large fluctuation

Small fluctuations

515SABA: segment and buffer aware rate adaptation algorithm for streaming over HTTP﻿	

1 3

playback interruption due to buffer underflow when the
throughput suddenly drops. In case of a gradual drop and
increase in the throughput, the proposed scheme accurately
estimates the throughput. The weighted average method
reacts slowly to the actual throughput which results in inef-
ficient utilization of the throughput.

4 � Proposed algorithm

In this section, we propose a segment and buffer aware
(SABA) rate adaptive algorithm. The proposed rate adap-
tive algorithm selects the video rate based on the estimated
throughput and the playback buffer level. Video rates and
rebuffering events are important factors for improving the
user experience. In addition, frequent video rate switching
has been found to annoy the viewer. The main goal of the
proposed algorithm is to adaptively select a video rate from
a set of video rates R = {R1, R2, R3,…, Rn}, to optimize the
viewing experience.

4.1 � System model

The video stream is segmented into n segments, each con-
taining τ seconds of playback, and stored at the server side.
Each segment is available in multiple bitrates. The set of
representations available for the video stream is denoted by
R. The client dynamically selects a video rate from the set
R. The client selects the kth video rate, Rk, from the set R for
each segment, to adapt the video according to the estimated
throughput and playback buffer. Rmin and Rmax are the repre-
sentations with the lowest and highest video rate in the set R.

The presented work uses a serial segment fetching
method to download segments, which requests the next seg-
ment after the current segment has completely downloaded.
Once the current segment has completely downloaded, it

adds data of τ seconds to the buffer. After the first segment
has downloaded, the client starts playing the video.

4.2 � Adaptive bitrate algorithm

Algorithm 1 provides the algorithm’s pseudo-code. We
invoke Algorithm 1 immediately after segment i-1 is down-
loaded. The algorithm selects the representation for the
download of the next segment i. The algorithm considers
the buffer level and throughput together.

To download the first segment, the client always selects
the minimum available video rate, Rmin. There are two rea-
sons for selecting Rmin as the video rate of the first segment.
First, as the buffer builds up from being empty, it carries
little information with which to select a video rate. We con-
sider a conservative approach at the start, and as the buffer
gradually increases, we start taking more risk in selecting
the video rate. Secondly, downloading the segment with the
smallest video rate reduces the initial delay. Waiting time
impairment such as initial delay is of considerable interest
in HAS systems [22].

To select the kth video rate, two conditions should be
satisfied. Firstly, the selected video rate should be less than
the estimated throughput. To avoid depletion of the buffer,
the first condition makes sure that the selected video rate
is below the estimated throughput. The throughput is esti-
mated using the estimation method described in Sect. 3. Sec-
ondly, for a client to select the kth video rate, the buffer level
should be higher than the threshold, Bk. The reason behind
this condition is to reduce the risk of playback interruption
due to buffer underflow in case the throughput is estimated
inaccurately.

The video rate for the next segment is selected on a seg-
ment-by-segment basis. We consider the buffer dynamics
when the segment has completely downloaded. Let B(i−1)
be the buffer level at the end of the download of segment
i−1. B(i) is then given by:

0

500

1000

1500

2000

2500

3000

3500

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102

)spbk(
etarti

B

Time (s)

Instant Throguhput Estimated Throughput with Proposed method
Video Rate with Proposed Scheme Estimated Throughput with WMA
Video Rate with WMA

(b)Gradual drop and gradual increase network scenario

0

500

1000

1500

2000

2500

3000

3500

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98 104
110
116
122
128
134
140
146
152
158
164
170
176
182
188
194
200
206
212
218
224
230
236
242
248
254
260

)spbk(etartiB

Time (s)

Instant Throguhput Estimated Throughput with Proposed method
Video Rate with Proposed Scheme Estimated Throughput with WMA
Video Rate with WMA

(a)Small and large throughput fluctuations network scenario

Fig. 6   Performance comparison between proposed and moving average throughput estimation method

516	 W. u. Rahman, K. Chung

1 3

where Rk(i) is the kth video rate from the set R, and T(i) is
the video throughput observed during the download of seg-
ment i. Equation (5) shows that a video rate greater than the
throughput drains the playback buffer.

We use mathematical buffer models to select the thresh-
olds, Bk, used to select the video rates. The buffer models
are based on a mathematical function that restricts the video
bitrates based on the buffer occupancy level. We use two
buffer models to select the video rates based on the buffer
occupancy levels. Figure 7 shows that we use buffer mod-
els based on concave and linear functions to increase and
decrease the video rates as the buffer occupancy increases
and decreases, respectively. When the buffer level increases,
we use the concave buffer model to restrict the video rates;
and when the buffer level decreases, we switch to the linear
buffer model. In Fig. 7, Bck and Blk are the buffer occupancy
thresholds to select the kth video rates when the client uses
the concave and linear functions, respectively. When the

(5)B(i) = B(i − 1) + � −

[
� ×

Rk(i)

T(i)

]
,

buffer occupancy increases, the client uses the threshold Bck
to select the video rate; and when the concave wave suggests
a lower video rate, the client switches to the threshold Blk
to pick the video rate. It selects the threshold, Bk, to select
the kth video rate as:

The buffer model based on the concave function to cal-
culate the video rate restriction � for a segment si [23], is
given by:

where i ϵ [1,N] represents the segment number, δi the
buffer occupancy level, and α, b, c are the predefined param-
eters to fine-tune the model. The buffer occupancy level
ranges from 0 to 1; 0 means that the buffer is empty and
1 means that the buffer is full. The parameters can be fine-
tuned to manage the aggressiveness of the buffer model.
The reason we use a concave function is that the client can
more quickly switch to higher quality levels at the beginning,
or recover from low buffer occupancy. Now we describe
the semantics of the parameters α, b and c. The parameter
α is set to the maximum available video rate, Rmax. The
parameter c enables a minimum buffer fill state, referred
to as steady phase. This means that the client will down-
load the segments with the lowest available video rate, until
the buffer occupancy reaches the threshold Bmin. Once the
buffer occupancy increases above Bmin, the algorithm enters
the adaptation phase. The parameter c influences and modi-
fies the range of the steady state. To set the value of Bmin
equal to 20% of the buffer size (δ = 0.2), the value of c is
set to 1/δ = 5. This means that until δ ≤ 0.2, the client stays
in steady state, because for c = 5 and δ ≤ 0.2, the value of �
≤ 0. Setting the base of the logarithm function b equal to 5
would result in δ = 1. To aggressively select the video rates,
the video rate map selects the maximum available rate, Rmax,
when the buffer occupancy is 80% (δ = 0.8) of the buffer
size. Therefore, we use the base of 4 i.e. the parameter b = 4,
which results in � = Rmax (or a), when δ = 0.5 and c = 5. As
the value of δ increases, the client stays at the current video
rate, so long as the value of � suggested by (7) does not pass
the value of the next highest available video rate.

When the concave function suggests a lower video rate,
the client shifts to the linear function to select the video
rates for the upcoming segments. The buffer model based

(6)Bk =

⎧
⎪⎪⎨⎪⎪⎩

Bck when the client decides to increase

the video rate

Blk when the client decides to decrease

the video rate.

(7)�(si) = � × logb(�i × c),

517SABA: segment and buffer aware rate adaptation algorithm for streaming over HTTP﻿	

1 3

on the linear function to calculate the video rate restriction
� is given by:

As the buffer level drops, the client decides to switch
to the lower video rates, since the depletion of the buffer
indicates that the selected video rate is higher than the avail-
able throughput. One of the important objectives of the rate
adaptation algorithms is to select the highest feasible video
rate, but not at the expense of buffer underflow. The video
clients do not have control over TCP sockets, and HTTP/1.1
does not support the termination of ongoing segment trans-
fer, so the client can only switch to a different video rate
when the segment download finishes. If the throughput sud-
denly drops in the middle of a segment transfer, the buffer
may run dry before the client switches to a lower video rate.
Authors in [24] suggest that the user experience improves
when the video rate is increased aggressively as it makes the
users believes that the provider is attempting to maximize
the QoE. Figure 7 shows that the buffer threshold to select
R3 as suggested by concave function Bc3 is greater than the
buffer threshold suggested by Bl3. This means that if the
client adopts concave behaviour, it can more aggressively
select the video rate, in comparison to if it adopts linear
behaviour. When the estimated throughput and the buffer
level drops, the client decides to switch to the less aggressive
linear function, to avoid the risk of buffer underflow. Similar
to the video rate map based on the concave function, the lin-
ear rate map always selects Rmin when the buffer level drops
below Bmin, and selects Rmax when δ ≥ 0.8. As the buffer level

(8)𝜆(si) =

⎧
⎪⎪⎨⎪⎪⎩

Rmin B(i − 1) < Bmin

Rmin +
B(i − 1) − Bmin

0.8 × Bmax
× (Rmax − Rmin) Bmin ⩽ B(i − 1) < 0.8 × Bmax

Rmax B(i − 1) ⩾ 0.8 × Bmax

.

decreases, the client stays at the current video rate so long as
the value of � suggested by (8) does not drop below the value

of the next lowest available video rate. When the buffer level
drops below Bmin, Rmin is always selected.

First, we consider the scenario of an increase in through-
put, and a subsequent increase in the buffer level. To increase
the video rate in response to the increase in throughput and
buffer level, four conditions should be satisfied:

1)	 R↑< TE(i).
2)	 The buffer level should be greater than Bc↑.
3)	 R(i − 1) ≠ Rmax.
4)	 TE(i) > TE(i−1).

We denote video rates higher and lower than the current
video rate by R↑ and R↓, respectively. To avoid buffer drop,
the first condition makes sure that the selected video rate is
less than the estimated throughput. As the video rate can-
not be adapted until the download of the next segment, in
the case of a sudden drop in throughput, the second condi-
tion reduces the probability of a buffer underflow event. As
explained earlier, when the client decides to increase the
video rate, it selects Bk using the concave function. The last
condition reduces the frequency of video rate switches, by
not switching up the video rate when the client observes a
drop in throughput. This avoids the risk of a likely step down
in the near future.

Fig. 7   The video rate map based
on concave and linear buffer
models

V
id

eo
 R

at
e

Buffer level

Bmin

R2

Bl3 Bl4Bc3 Bc4

R3

R4

δ=0.8

Steady state Adaptation state

Bmax

Rmax

518	 W. u. Rahman, K. Chung

1 3

Next, we consider the scenario of a decrease in through-
put, and a subsequent decrease in the buffer level. We stay at
the current video rate, until the buffer level drops below Bck.
This is to minimize the frequency of video rate switches, by
not reacting to short-term fluctuations. Once the buffer level
falls below Bck, we shift to the linear function to select the
video rates. We continue to reduce the video rate, until the
selected video rate is less than the estimated throughput and
the buffer level is above the threshold Blk.

4.3 � Smoothing video rate switches

The proposed algorithm selects the video rate based on
both buffer occupancy and the estimated throughput. The
variations in the playback buffer level results in video rate
switches. Figure 8 shows examples of video rate switches
due to variations in buffer level. In scenario 1, as the buffer
level drops below the threshold Bck, the client steps down
the video rate from video rate. In scenario 2, as the buffer
level increases above Bck, the client steps up the video rate.
A small fluctuation in throughput may result in fluctuation
of the buffer level around Bck, which means a high frequency
of video rate switches.

Many video streaming services encode their videos in
variable bitrate (VBR). Encoding static scenes with fewer
bits and active scene with more bits allows more flexibility
and efficient utilization of bits. While all the segments are of
equal duration, τ, the size of each segment varies. The larger
segments will take more time to download, compared with
the smaller segments. Therefore even in a stable network
environment, as the client downloads segments of variable
sizes, the buffer level may fluctuate. This results in higher
video rate switches, which impair the viewing experience
[2, 4].

To this end, we add a buffer zone around Bck, within
which, if the buffer level stays, the client avoids switch-
ing the video rate. To explain how the proposed method
smooths out the video rate switches, Fig. 9 introduces three
scenarios. In scenario (a), the buffer level before download-
ing segment i lies between B and Bck. If the buffer level
increases above Bck, the client switches up the video rate.
In scenarios (b) and (c), the buffer level before download-
ing segment i is higher than Bck. If after downloading the
ith segment, the buffer level stays between Bck and B , the
client does not switch the video rate; whereas, if the buffer
level drops below B , the client switches down the video rate.
The buffer zone should be large enough to absorb the varia-
tions in buffer level, but not at the expense of risking buffer
underflow. The larger the segment duration, the larger the
expected variation in buffer level. Therefore, we set the value
of Bto:

(9)B = Bck − �,

where τ is the segment duration.

5 � Performance evaluation

5.1 � Evaluation setup

We use network simulator, ns-3, as the experimental simu-
lation environment. Our simulation adopts three rate adap-
tive algorithms as benchmarks. Besides the rate adaptive
algorithm proposed in our previous work [7], we adopt the
algorithms proposed in [12, 13, 19], as benchmarks to dem-
onstrate the efficiency of the proposal. In the results, we
refer to the algorithms proposed in [7, 12, 13, 19] as BBAB,
AAA, SARA and MAL respectively. In the simulation, we
evaluate the algorithm under varying network conditions,
buffer sizes, and segment durations. We modified the code
available in https​://githu​b.com/djver​gad/dash to perform our
experiments.

The length of the video is 400 s. To achieve adaptive
streaming, the HTTP server offers the client seven levels of
representation to adapt the video rates. These video rates are
356, 500, 800, 1200, 1800, 2500 and 3000 kbit/s. Figure 10
shows the topology implemented in this paper. The topology
consists of an HTTP server, HTTP client, and a pair of rout-
ers. The link between the routers is our bottleneck link. To
vary the throughput across the bottleneck, we add the UDP
traffic between the routers.

5.2 � Bitrate adaptation performance

First, we demonstrate how the proposed algorithm performs
under multiple environments. For these experiments we set
buffer size to 60 s. Figure 11 demonstrates the video rate
selected by the proposed algorithm under a small throughput
fluctuation scenario. This figure plots the values from the
middle of the streaming session, as the objective is to show

Bck-1 Bck

Bck-1 Bck Bck-1 Bck

B(i-1)

B(i) B(i)

Bck-1 Bck

B(i-1)

Scenario 1 Scenario 2

Fig. 8   An example of video rate switches due to variations in the
buffer level

https://github.com/djvergad/dash

519SABA: segment and buffer aware rate adaptation algorithm for streaming over HTTP﻿	

1 3

the response to short term fluctuations. Figure 11 shows that
the proposed algorithm is stable in response to small fluctua-
tions, which reduces the frequency of video rate switches.
The reason for the stable response is that the buffer distance
between Bk(i) and Bk+1(i) and the addition of the buffer zone
provides a cushion, and reduces the frequency of video rate
switches.

Figure 12 demonstrates the response of the proposed algo-
rithm to a large throughput drop. An important property of
an adaptive algorithm is that it should have a swift response
to large fluctuations. To make sure that the throughput drop
is not due to a short-term fluctuation, the proposed algorithm
waits for the buffer level to drop below B ̅. Once the buffer
level drops further, the algorithm quickly switches down
the video rate, to avoid the risk of playback interruption.
The proposed rate adaptive method quickly switches down
the video rate, because in the case of a large variation in the
throughput, the throughput estimation method proposed in
Sect. 3 exponentially varies the throughput.

Figure 13a shows that as the throughput gradually
increases, the proposed algorithm increases the video rate.
As the algorithm adopts the concave behaviour when the
buffer level increases, it quickly switches to higher video
rates to efficiently utilize the throughput. When the through-
put gradually drops, the proposed algorithm maintains a
high video rate without risking buffer underflow. Figure 13b
shows that the proposed algorithm ensures that a small drop

in throughput doesn’t result in unnecessary stepping down
of the video rate.

5.3 � Single‑user scenario

The topology of a single-user scenario consists of an HTTP
server, an HTTP client, and a pair of routers. We analyze
the algorithms for the scenarios mentioned in Table 1. We
demonstrate the impact of the buffer size and segment dura-
tion on the performance of the algorithms. The HTTP cli-
ents offer distinct buffer sizes. The rate adaptive algorithms
should be able to guarantee QoE under different client set-
tings. We set the buffer size to 20, 40 and 60 s, and evalu-
ate the performance of the rate adaptive algorithms. Then,

Fig. 9   Selection of video rates
as the playback buffer level
fluctuates

Bck-1 Bck

B(i-1) B(i)

B(i-1) B(i)

B(i-1) B(i)

Scenario (a)

Scenario (b)

Scenario (c)

B Bck-1 BckB

Bck-1 BckB Bck-1 BckB

Bck-1 BckB Bck-1 BckB

HTTP Server
HTTP Client

Router
Bottleneck Link

Router

Fig. 10   The network topology

0
500

1000
1500
2000
2500
3000
3500

55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109

B
itr

at
e

(k
bp

s)

Segment Index

Video Rate Available Throughput

Fig. 11   The response of the proposed algorithm to small throughput
fluctuations

520	 W. u. Rahman, K. Chung

1 3

we demonstrate how the algorithms perform as the segment
duration varies. In the results, we refer to the throughput
traces shown in Fig. 14a and b employed for single-user
scenario as Scenario A and Scenario B respectively. Sce-
nario A produces bandwidth fluctuations of variable ampli-
tude. We evaluate how the algorithms adapt the video rate
as the amplitude of throughput varies. Scenario B initially
increases the video rate gradually and then produces large
drops in the throughput of gradually increasing durations.
We evaluate how the algorithms adjust the video rates when
there are small and large variations in the throughput.

5.3.1 � Scenario A

First, we set the buffer size and segment duration to 60 and
2 s respectively. Table 2 shows the statistics of the algo-
rithms over the streaming session. The SARA algorithm
results in the most fluctuating bitrate curve, and the AAA
algorithm is the most stable, but to the detriment of video
rate. The proposed method and the BBAB algorithms pro-
vide a smoother bitrate curve with higher bitrate. The pro-
posed algorithm is able to achieve a high video rate when
the network conditions improve. For downward switching,

abrupt switching impairs the QoE, as compared to smooth
switching [5, 25–27]. On average, the minimum quality
level is rated 30% better quality in case of gradual video
rate switches compared to an instantaneous switch [25].
The maximum downward switch when the client switches
down the video rate means the largest video rate difference
between any two consecutive segments over the whole ses-
sion. Although the average of the switches and the standard
deviation (STD) of the video rates selected by the proposed
algorithm are higher, the lower value of the maximum down-
ward switch shows that the proposed and AAA algorithms
smoothly switch down the video rate. Unlike downward
switching, viewers prefer abrupt increase in the video qual-
ity for upward switching [28, 29]. The higher value of the
maximum upward switch shows that the proposed algorithm
aggressively increases the video rate, to better utilize the
available throughput. The MAL algorithm achieves high
video rate and small number of video rate switches but expe-
riences playback interruption for 1.6 s. The reason behind
playback interruption is that the MAL algorithm does not
check whether the estimated throughput is lower than the
selected representation. Figure 15 shows the percentage of
mid to high video rate segments downloaded by the client
for Scenario A. As mentioned earlier that the user experi-
ence improves when the video rate is increased aggressively
[24]. In addition, long spell of good quality video improves

0

500

1000

1500

2000

2500

3000

3500

54 58 62 66 70 74 78 82 86 90 94 98 102 106 110

B
itr

at
e

(k
bp

s)

Segment Index
Video Rate Available Throughput

Fig. 12   The response of the proposed algorithm to a large throughput
drop

(a) A gradually increasing throughput scenario (b) A gradually decreasing throughput scenario

0
500

1000
1500
2000
2500
3000
3500

1 11 21 31 41 51 61 71 81 91 101 111 121 131

)spbk(
etarti

B

Segment Index
Video Rate Available Throughput

0
500

1000
1500
2000
2500
3000
3500

1 9 17 25 33 41 49 57 65 73 81 89 97 105

)spbk(
etarti

B

Segment Index
Video Rate Available Throughput

Fig. 13   Response of the proposed algorithm to the gradually increasing throughput and decreasing throughput scenarios

Table 1   Buffer sizes and segment durations for the implemented sce-
narios

Scenario no. Buffer size (s) Segment
duration (s)

1 60 2
2 40 2
3 20 2
4 60 4
5 60 10

521SABA: segment and buffer aware rate adaptation algorithm for streaming over HTTP﻿	

1 3

the user experience [24, 26]. Figure 15 shows that only the
proposed, SARA and MAL algorithms are able to efficiently
utilize the bandwidth and download the segments encoded
with the highest available video rates. However, the SARA
and MAL algorithms stream the high quality video at the
expense of high number of video rate switches and playback
interruption respectively.

Table 3 shows the statistics of the algorithms when the
buffer size is set to 40 s. The SARA algorithm achieves the
highest average video rate, but results in the highest fre-
quency of video rate switches. The SABA, BBAB, and
MAL algorithms achieve high average video rate and low
frequency of video rate switches. The AAA algorithm sta-
bilizes the video rate curve, but achieves a low video rate.
Table 3 shows that both the proposed and AAA algorithms
smoothly switch down the video rate to improve the user
experience. As explained earlier, the proposed algorithm has
a higher average of switches, but this is due to an aggres-
sive increase in the video rate in order to efficiently utilize
the throughput. The MAL algorithm experiences playback

interruption for 3.7 s. Similar to the previous experiment,
the AAA and BBAB algorithms cannot stream the video at
the highest available video rate.

Table 4 shows the statistics of the algorithms when the
buffer size is set to 20 s. Similar to previous scenarios, the
SARA algorithm achieves the highest average video rate,
and results in the highest number of video rate switches.
The BBAB algorithm achieves a video rate similar to the
SABA algorithm when the buffer size is set to 60 and 40 s,
but in the case of a smaller buffer size, the BBAB algorithm
is nearly 400 kbps worse than the proposed method. The
reason is that the BBAB algorithm requires large buffer sizes
to select higher video rates. The AAA algorithm is the most
stable method in the case of larger buffer sizes, but as the
buffer size reduces, the frequency of the video rate switches
increases. The proposed algorithm keeps the frequency of
video rate switches low. The AAA algorithm conservatively
increases the video quality, whereas the BBAB algorithm
cannot select a video rate higher than 1800 kbps. SARA
and SABA algorithms achieve high average video rate; but

0

500

1000

1500

2000

2500

3000

3500

210 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390

)spbk(
etarti

B

Time (s)
Avialable Throughput

0

500

1000

1500

2000

2500

3000

3500

2 20 50 80 110 140 170 200 230 260 290 320 350 380

)s
p

b
k(

etarti
B

Time (s)
Avialable Throughput

(a) Throughput for scenario A (b) Trace throughput for scenario B

Fig. 14   Throughput trace employed in the evaluation

Table 2   Statistics of different adaptive methods when buffer size is 60 s and segment duration is 2 s

Metrics/algorithms Scenario A Scenario B

Proposed AAA​ SARA​ BBAB MAL Proposed AAA​ SARA​ BBAB MAL

Average video rate (kbps) 1903.29 1483.28 2169.14 1951.28 2131.00 1967.78 1281.23 2084.49 1901.35 2103.78
MAX (kbps) 3000 2500 3000 2500 3000 3000 2500 3000 2500 3000
MIN (kbps) 356 356 356 356 500 356 356 356 356 356
MAX Switch (kbps) 1444 1000 2644 1300 1700 1200 2000 2644 700 2200
Max switch downward (kbps) 1000 1000 2644 1300 1700 1200 2000 2644 700 2200
Max switch upward (kbps) 1444 1000 700 700 700 1000 1700 700 700 700
No. of switches 14 7 57 11 10 19 12 88 7 11
Avg of switches (kbps) 696 592 617.05 504 655.56 656.00 674.67 582.30 457.33 708.47
Standard deviation (kbps) 626.7 578.84 866.64 547.8 622.40 750.17 747.37 565.77 688.51 913.44

522	 W. u. Rahman, K. Chung

1 3

the SARA algorithm achieves it is at the expense of higher
changes in the video rate. The MAL is the only algorithm
that experiences playback interruption due to buffer under-
flow for 2.1 s.

Currently, video streaming services deploy segment dura-
tion differently in their services. Microsoft Smooth Stream-
ing, Netflix and Apple HTTP Live Streaming offer segment
duration of 2, 4 and 9 s respectively [30–32]. We set the
segment durations to 2, 4 and 10 s, and evaluate the perfor-
mance of the rate adaptive algorithms. The buffer size is set
to 60 s for all of the experiments.

Table 5 shows the statistics of the algorithms results
when the segment duration is set to 4 s. In comparison to
the experiment where the segment size is set to 2 s, all of
the algorithms except the AAA algorithm achieve similar
average video rates. The average video rate of the AAA algo-
rithm drops by roughly 200 kbps. The AAA algorithm has
the most stable video rate curve followed by the MAL algo-
rithm, whereas the SARA algorithm results in the highest

frequency of video rate switches. Table 5 shows that the
SABA algorithm has a slightly higher number of video rate
switches as compared to the BBAB algorithm, but switches
down the video rate more smoothly. In case of the SABA
algorithm, the majority of video rate switches are between
high and mid-quality. The experiments have shown that
limited noticeable difference in quality is observed between
high and mid-quality switches during video playback [25].
The AAA algorithm downloads the highest percentage of
low quality segments.

In the next experiment, we increase the segment duration
to 10 s. Table 6 shows that the BBAB algorithm has a sta-
ble response, but the average video rate drops. Furthermore,
BBAB algorithm does not experience a downward switch.
Figure 15 shows that the BBAB algorithm streams more
than 70% of the video at 1800 kbps. It means that the algo-
rithm does not efficiently utilize the bandwidth. The SABA
algorithm outperforms BBAB by almost 227 kbps. Also, it
smoothly changes the video rate to minimize the degradation

0
10
20
30
40
50
60
70
80

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Proposed AAA BBAB SARA MAL

1800 kbps 2500 kbps 3000 kbps

Fig. 15   The percentage of the time the client downloads the segments encoded at 1800, 2500 and 3000 kbps during the implementation of Sce-
nario A

Table 3   Statistics of different adaptive methods when buffer size is 40 s and segment duration is 2 s

Metrics/algorithms Scenario A Scenario B

Proposed AAA​ SARA​ BBAB MAL Proposed AAA​ SARA​ BBAB MAL

Average video rate (kbps) 1901.78 1460.82 2169.14 1922.67 1944.64 1964.33 1343.34 2089.28 1901.38 2103.28
MAX (kbps) 3000 2500 3000 2500 300 3000 2500 3000 2500 3000
MIN (kbps) 356 356 356 356 356 356 356 356 356 500
MAX Switch (kbps) 1444 1000 2644 1300 2000 1300 2000 2644 1000 2200
Max switch downward (kbps) 700 700 2644 1300 2000 1300 2000 700 1000 2200
Max switch upward (kbps) 1444 1000 700 700 700 1000 1300 2644 700 700
No. of switches 13 11 59 12 13 22 18 88 9 13
Avg of switches (kbps) 711.07 521.09 596.13 512 565.67 648.00 686.00 575.68 527.11 768
Standard deviation (kbps) 581.26 590.37 866.64 557.76 707.58 879.40 746.07 1005.67 781.94 939

523SABA: segment and buffer aware rate adaptation algorithm for streaming over HTTP﻿	

1 3

of the user experience, and has a low average video rate
switch. Like the previous experiments, the SARA algorithm
achieves a higher average video rate, and experiences higher
video rate switches, while MAL algorithm achieves the low-
est average video rate. Figure 15 shows that only the pro-
posed and SARA algorithms are able to stream the video
at the highest available video rate. The SARA algorithm
streams the video at the highest available video rate at the
expense of high number of video rate switches and playback
interruptions. The SARA and MAL algorithms experience
playback interruptions for 20.8 and 0.8 s, respectively. The
SABA algorithm downloads a high percentage of high qual-
ity segments, and smoothly switches the video rate.

5.3.2 � Scenario B

In this section we evaluate the algorithms for Scenario B.
Table 2 shows that the SARA and MAL algorithms achieve
high video rate but at the expense of higher video rate
changes and playback interruptions, respectively. The MAL
algorithm experiences playback interruptions six times dur-
ing the streaming session. The proposed algorithm achieves
high average video rate. It experiences a slightly higher num-
ber of video rate switches because the proposed algorithm
aggressively reduces the video rate when the throughput
suddenly drops to mitigate the risk of buffer underflow. The
BBAB algorithm has a lower average video rate and lower
number of video rate switches than the proposed algorithm.
Figure 16 shows that similar to Scenario A, only the pro-
posed, SARA and MAL algorithms stream the video at the
highest available video rate. The SARA and AAA algo-
rithms download high percentage of video rates encoded
at 3000 kbps, but to the detriment of the user experience
as they result in high number of video rates switches and
playback interruption, respectively. Figure 17 shows that
the BBAB algorithm achieves the highest eMOS values fol-
lowed by the proposed algorithm. The eMOS of the SABA
algorithm is 0.04 worse than the BBAB algorithm.

Then we evaluate the algorithms for the scenario when
the buffer size is set to 40 s. The SARA algorithm results
in the highest number of video rate of switches, whereas
the MAL algorithm results in three playback interruptions,
which degrade the user’s experience. The BBAB algorithm
has slightly less number of video rate switches because it
takes a conservative approach in selecting higher video
rates; therefore, it never selects the highest available video
rate. The BBAB algorithm is nearly 60 kbps worse than
the proposed method. Similar to the previous scenario, the
BBAB and AAA algorithms cannot stream the video at the
highest available video rate. The AAA algorithm achieves
the lowest video rate among the compared algorithms. The
SABA algorithm achieves the highest eMOS value followed
by the BBAB algorithm.Ta

bl
e 

4  
S

ta
tis

tic
s o

f d
iff

er
en

t a
da

pt
iv

e
m

et
ho

ds
 w

he
n

bu
ffe

r s
iz

e
is

 2
0

s a
nd

 se
gm

en
t d

ur
at

io
n

is
 2

 s

M
et

ric
s/

al
go

rit
hm

s
Ex

pe
rim

en
t A

Ex
pe

rim
en

t B

Pr
op

os
ed

A
A

A
​

SA
R

A
​

B
BA

B
M

A
L

Pr
op

os
ed

A
A

A
​

SA
R

A
​

B
BA

B
M

A
L

A
ve

ra
ge

 v
id

eo
 ra

te
 (k

bp
s)

19
48

.2
9

14
37

.1
9

21
69

.1
4

15
58

.7
8

19
13

19
37

.6
6

12
88

.1
9

20
88

.9
7

17
74

.7
66

19
68

.6
1

M
A

X
 (k

bp
s)

30
00

25
00

30
00

18
00

30
00

30
00

25
00

30
00

25
00

30
00

M
IN

 (k
bp

s)
35

6
35

6
35

6
35

6
50

0
35

6
35

6
35

6
35

6
35

6
M

A
X

 sw
itc

h
(k

bp
s)

14
44

70
0

26
44

60
0

20
00

12
00

21
44

26
44

17
00

22
00

M
ax

 sw
itc

h
do

w
nw

ar
d

(k
bp

s)
10

00
70

0
26

44
60

0
20

00
10

00
21

44
26

44
17

00
22

00
M

ax
 sw

itc
h

up
w

ar
d

(k
bp

s)
14

44
70

0
70

0
60

0
70

0
12

00
17

00
12

00
70

0
70

0
N

o.
 o

f s
w

itc
he

s
12

16
59

10
11

29
19

87
22

17
A

vg
 o

f s
w

itc
he

s (
kb

ps
)

77
0.

33
51

4.
5

59
6.

13
40

4.
4

60
4

62
4.

82
93

3.
26

58
2.

30
70

2.
10

72
1.

74
St

an
da

rd
 d

ev
ia

tio
n

(k
bp

s)
62

6.
48

61
8.

33
86

6.
64

45
6.

87
74

8.
41

91
1.

51
75

4.
83

10
16

.3
6

76
0.

86
95

9.
46

524	 W. u. Rahman, K. Chung

1 3

In the next experiment we set the buffer size to 20 s. Like
the previous experiments, SARA and MAL algorithms result
in high number of video rate switches and playback inter-
ruptions, respectively. The MAL algorithm experiences nine
playback interruptions, which degrade the user’s experience.
The proposed algorithm achieves a high average video rate.
It experiences slightly high number of video rate switches.
The reason is that due to small buffer size and the ability
of the proposed algorithm to efficiently utilize the band-
width, when the throughput increases the proposed algo-
rithm quickly increases the video rate and as the throughput
drops, it decreases the video rate, while making sure that it
does not experience buffer underflow. Figure 16 shows that
the proposed algorithm streams the majority of the video at
high video rates. The SABA algorithm achieves the highest
eMOS value followed by the BBAB algorithm.

Next, we set the buffer size to 60 s and increase the seg-
ment duration to 4 s. The proposed algorithm selects high
video rate while avoiding the playback interruption. The
MAL algorithm experiences three playback interruptions
due to buffer underflow. The BBAB algorithm results in the
lowest number of video rate changes but it achieves aver-
age video rate 150 kbps worse than the proposed algorithm.

Figure 17 shows that the proposed algorithm achieves the
best eMOS among the compared algorithms.

Next, we increase the segment duration to 10 s. The pro-
posed algorithm achieves the highest average video rate
followed by MAL. The MAL algorithm experiences four
playback interruptions. The AAA algorithm results in the
lowest average video rate, whereas the SARA algorithm
experiences the highest number of video rate changes. Simi-
lar to Scenario A, in case of BBAB algorithm, the average
video rate drops significantly. Figure 16 shows that only the
proposed and SARA algorithm is able to select the segments
encoded at the highest available video rate. The AAA and
BBAB algorithms stream majority of the video at low video
rates. Figure 17 shows that the eMOS value of the BBAB
algorithm drops sharply as the segment duration is increased
to 10 s. The proposed algorithm achieves the highest eMOS
value.

The experiments show that the BBAB algorithm keeps
the frequency of video rate switches low, but when the buffer
size drops to 20 s or the segment duration is increased to
10 s, the average video rate drops significantly. The SARA
algorithm achieves a high average video rate, but at a high
frequency of video rate switches. On the other hand, the

Table 5   Statistics of different adaptive methods when buffer size is 60 s and segment duration is 4 s

Metrics/Algorithms Scenario A Scenario B

Proposed AAA​ SARA​ BBAB MAL Proposed AAA​ SARA​ BBAB MAL

Average video rate (kbps) 1934.92 1280.96 2161.92 1927.56 2020.00 1962.56 1240.65 2096.65 1807.71 2048.94
MAX (kbps) 3000 1800 3000 2500 3000 300 2500 3000 2500 3000
MIN (kbps) 356 356 356 356 800 356 356 356 356 356
MAX switch (kbps) 1444 1444 2644 2500 700 700 2000 2644 1000 2200
Max switch downward (kbps) 1444 1444 2644 1700 700 700 2000 2644 1000 2200
Max switch upward (kbps) 844 844 700 700 700 700 2000 700 700 700
No. of switches 15 6 51 8 7 17 11 44 7 9
Avg of switches (kbps) 655.46 722.00 694.03 693.00 600.00 585.78 802.67 675.18 549.14 649.33
Standard deviation (kbps) 626.70 499.01 982.17 502.77 576.83 692.24 758.59 1001.40 732.22 960.17

Table 6   Statistics of different adaptive methods when buffer size is 60 s and segment duration is 10 s

Metrics/algorithms Scenario A Scenario B

Proposed AAA​ SARA​ BBAB MAL Proposed AAA​ SARA​ BBAB MAL

Average video rate (kbps) 2018.9 1540.3 2310.9 1791.61 1497.5 2003.80 1335.3 1963.1 1521.4 1974.53
MAX (kbps) 3000 2500 3000 2500 2500 3000 2500 3000 2500 3000
MIN (kbps) 356 356 356 356 800 356 356 356 356 356
MAX switch (kbps) 1444 1000 2644 2500 1700 700 1700 2644 1300 700
Max switch downward (kbps) 700 1000 2644 1700 1700 700 1700 2500 1300 700
Max switch upward (kbps) 1444 1000 2500 844 700 700 1700 2644 700 700
No. of switches 10 5 14 3 7 11 8 22 10 12
Avg of switches (kbps) 714.40 828.80 1493.43 714.67 728.57 570.33 1027.11 1041.82 614.40 570.33
Standard deviation (kbps) 534.99 643.48 1114.00 381.66 775.09 709.51 750.77 1059.59 717.02 709.51

525SABA: segment and buffer aware rate adaptation algorithm for streaming over HTTP﻿	

1 3

AAA algorithm stabilizes the video rate curve, but achieves
the lowest video rate among all the algorithms. The MAL
algorithm stabilizes video rate changes but at the expense
of playback interruptions, which degrades the user’s experi-
ence. The proposed algorithm irrespective of the buffer size
and segment duration achieves high video rate and mini-
mizes video rate switches while avoiding playback interrup-
tion. Furthermore, assures a smooth switch from the higher
rate to the lower video rate.

5.4 � Multi‑client scenario

In this section, we analyze the performance of the algorithms
when multiple clients share the bottleneck. Figure 18 shows
the topology implemented for the multi-user scenario. The
bandwidth of the bottleneck link is 10 mbps for all experi-
ments. The algorithms are evaluated for varying number of
clients, buffer sizes, and segment durations. Similar to the
single client-scenario, we set the buffer size to 20, 40 and
60 s and set the segment duration to 2, 4 and 10 s.

0

10

20

30

40

50

60

Sc
en

ar
io

 1

Sc
en

ar
io

 2

Sc
en

ar
io

 3

Sc
en

ar
io

 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1

Sc
en

ar
io

 2

Sc
en

ar
io

 3

Sc
en

ar
io

 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1

Sc
en

ar
io

 2

Sc
en

ar
io

 3

Sc
en

ar
io

 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1

Sc
en

ar
io

 2

Sc
en

ar
io

 3

Sc
en

ar
io

 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1

Sc
en

ar
io

 2

Sc
en

ar
io

 3

Sc
en

ar
io

 4

Sc
en

ar
io

 5

Proposed AAA BBAB SARA MAL

1800 kbps 2500 kbps 3000 kbps

Fig. 16   The percentage of the time the client downloads the segments encoded at 1800, 2500 and 3000 kbps during the implementation of Sce-
nario B

3.02
2.83

2.68

3.16
3.17

1.67
1.73

1.561.52
1.87

3.06
2.65

2.562.74
2.27

2.54
2.542.49

2.46

2.16

1.04
0.88

0.45

1.81
1.92

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Proposed AAA BBAB SARA MAL

QoE

Fig. 17   eMOS values of the algorithms for scenario B

526	 W. u. Rahman, K. Chung

1 3

In an environment where multiple clients compete for the
bottleneck, the clients are inefficient and select low-quality
video rates and bandwidth is shared unfairly among the
competing clients. The inefficiency at time t is given by the
following [15]:

where W is the bandwidth, and each client x selects bit rate
bx,t. [33] defines the unfairness metric for two competing
clients as the average of the absolute bit rate differences
between the corresponding segments requested by each cli-
ent. To evaluate unfairness, this is generalized to multiple
players as

√
1 − JainFair , where JainFair is the Jain fairness

index [34] of bx,t over all players. Let RA={RA
1,RA

2,…,RA
n}

denote the set that contains the video rates achieved by n
competing clients. Additionally, to evaluate the unfairness
metric for more than two users, we define the parameter diff
as follows:

Ideally, the values of inefficiency, unfairness and diff
should be zero. Low values of inefficiency, unfairness and
diff are desired; a low value of inefficiency means that the cli-
ent selects the highest feasible bit rates lower than the actual
throughput and low values of diff and unfairness means that
the competing clients achieve equitable video rates.

(10)Inefficiency =

��
∑

x bx,t −W��
W

,

(11)diff = Max
(
RA

)
−Min

(
RA

)
.

5.4.1 � Five‑clients scenario

In this section we compare the adaptive algorithms when
five clients share the bottleneck. We evaluate the algorithms
for scenarios mentioned in Table 1. The results show that
the proposed scheme provides the best performance among
the compared algorithms overall. The proposed algorithm
results in low inefficiency, unfairness and diff values. Fig-
ure 19 shows that the SARA and SABA algorithm are the
least inefficient whereas the AAA algorithm is the most
inefficient algorithm. Figure 20 shows the diff values of the
compared algorithms for each scenario. Figure 21 shows the
average diff value of the compared algorithms. Figures 19
and 20 show that the proposed algorithm has the lowest
unfairness and diff values. Figures 21 and 22 show that the
proposed algorithm makes sure that the client switches the
video rate gradually while keeping the video rate switches
low. The performance of the BBAB algorithm fluctuates
from one environment to another. The BBAB algorithm
shows improved performance for large buffer sizes and
small segment durations, but when the segment duration is
increased or buffer size is decreased, the performance of the
BBAB algorithm degrades. The SARA algorithm has a low
inefficiency value but results in a high unfairness and diff val-
ues. Furthermore, it experiences most number of video rate
changes. The AAA algorithm has a high inefficiency, unfair-
ness and diff values. Figure 22 shows the video rate switches
experienced by the algorithms. The BBAB algorithm has the

Fig. 18   Multi-client network
topology

HTTP
Server

HTTP
Client 1

Network
Element

Network
ElementBottleneck

HTTP
Client 2

HTTP
Client 3

HTTP
Client 4

HTTP
Client 5

10mbps

527SABA: segment and buffer aware rate adaptation algorithm for streaming over HTTP﻿	

1 3

lowest number of video rate switches. As explained earlier,
a large downward video rate switch affects user’s experience
more than a gradual downward switch. The proposed algo-
rithm on average experiences 1.25 more video rate switches
per 100 s compared to BBAB algorithm but the proposed
algorithm results in lower average downward switch. The
MAL algorithm performs the worst among the compared
algorithms as it experiences a high number of video rate
switches. The clients experience on average 10 playback
interruptions during the implementation of the MAL algo-
rithm for each scenario. The rest of the algorithms streamed
the video without experiencing playback interruption.

Proposed AAA BBAB SARA MAL
Inefficiency 0.13 0.22 0.14 0.13 0.17
Unfairness 0.13 0.25 0.15 0.32 0.19

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32

Fig. 19   Inefficiency and unfairness of the compared algorithms

Fig. 20   diff values of the
compared algorithms for each
scenario mentioned in Table 1

0

100

200

300

400

500

600

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Proposed AAA BBAB SARA MAL

B
itr

at
e

(k
bp

s)

0

200

400

600

800

1000

1200

Proposed AAA BBAB SARA MAL

B
itr

at
e

(k
bp

s)

Average Diff Average downward switch

Fig. 21   Average diff and downward switch values of the compared
algorithms

528	 W. u. Rahman, K. Chung

1 3

6 � Conclusion

In this paper, we propose a throughput estimation method
and a rate adaptive algorithm for HTTP adaptive streaming.
The proposed throughput estimation method can accurately
estimate the throughput of the upcoming segment based on
previous samples. We show that the throughput estimation
method is sensitive to large fluctuations, and robust to small
fluctuations. The objective of the adaptive bitrate streaming
algorithm is to improve the viewing experience of multi-
media streaming applications. The proposed rate adaptive
algorithm offers stable response during small variations
in the throughput to minimize the video rate switches, and
quickly reacts when there are large variations in throughput
to minimize the risk of buffer underflow. The proposed algo-
rithm provides high quality video by achieving a high video
rate while preventing interruption in playback. We show
that the algorithm minimizes the video rate switches, and
makes sure that the video rate changes smoothly to improve
the user experience. Furthermore, we show that in a multi-
client scenario, the proposed algorithm efficiently utilizes
the bandwidth and the competing clients achieve comparable
video rates.

Acknowledgements  This work was supported by Institute for Informa-
tion & communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT) (No. 2017-0-00224, Development
of generation, distribution and consumption technologies of dynamic
media based on UHD broadcasting contents). It has also been con-
ducted by the Research Grant of Kwangwoon University in 2018.

References

	 1.	 Dobrian, F., Awan, A., Joseph, D., Ganjam, A., Zhan, J., Sekar, V.,
Stoica, I., Zhang, H.: Understanding the impact of video quality
on user engagement. ACM SIGCOM Comput. Commun. Review.
56(3), 91–99 (2013). https​://doi.org/10.1145/20184​36.20184​78

	 2.	 Ni, P., Eg, R., Eichhorn, A., Griwodz, C., Halvorsen, P.: Flicker
effects in adaptive video streaming to handheld devices. In: Pro-
ceedings of ACM Int. Conf. on Multimedia, pp. 463–472. Ari-
zona, USA (2011). https​://doi.org/10.1145/20722​98.20723​59

	 3.	 Liu, Y., Dey, S., Gillies, D., Ulupinar, F., Luby, M.: User experi-
ence modeling for DASH video. In: Proceedings of IEEE Packet
Video Workshop, pp. 1–8. San Jose, USA, (2013). https​://doi.
org/10.1109/pv.2013.66914​59

	 4.	 Shen, Y.., Yitong, L., Yang, H., Yang, D.: Quality of Experience
study on dynamic adaptive streaming based on HTTP. IEICE
Tran. Commun. 98(1), 62–70 (2015). https​://doi.org/10.1587/
trans​com.e98.b.62

	 5.	 Egger, S., Gardlo, B., Seufert, M., Schatz, R.: The impact of adap-
tation strategies on perceived quality of http adaptive streaming.
In: Proceedings of ACM Workshop Design, Quality and Deploy-
ment Adaptive Video Streaming, pp. 31–36. Sydney, Australia:
(2014). https​://doi.org/10.1145/26766​52.26766​58

	 6.	 Dubin, R., Hadar, O., Dvir, A.: The effect of client buffer and
MBR consideration on DASH adaptation logic. In: Proceed-
ings of IEEE Wireless Commun. and Networking Conference,
pp. 2178–2183. Shanghai, China: (2013). https​://doi.org/10.1109/
wcnc.2013.65549​00

	 7.	 Rahman, W., Chung, K.: Buffer-based adaptive bitrate algorithm
for streaming over HTTP. KSII Tran. Internet and Inform. Syst.
9(11), 4585–4622 (2015). https​://doi.org/10.3837/tiis.2015.11.019

	 8.	 VideoLAN. (2013). Vlc sourece code. [Online]. Available: http://
www.video​lan.org/ vlc/downl​oad-sourc​es.html

	 9.	 Akhshabi, S., Begen, A.C., Dovrolis, C.: An experimental
evaluation of rate-adaptation algorithms in adaptive stream-
ing over HTTP. In: Proceedings of ACM Conf. on Multime-
dia System, pp. 157–168. California, USA: (2011). https​://doi.
org/10.1145/19435​52.19435​74

0
20
40
60
80

100
120
140
160

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Sc
en

ar
io

 1
Sc

en
ar

io
 2

Sc
en

ar
io

 3
Sc

en
ar

io
 4

Sc
en

ar
io

 5

Proposed AAA BBAB SARA MAL

Video rate switches

Fig. 22   Video rate switches for each scenario mentioned in Table 1

https://doi.org/10.1145/2018436.2018478
https://doi.org/10.1145/2072298.2072359
https://doi.org/10.1109/pv.2013.6691459
https://doi.org/10.1109/pv.2013.6691459
https://doi.org/10.1587/transcom.e98.b.62
https://doi.org/10.1587/transcom.e98.b.62
https://doi.org/10.1145/2676652.2676658
https://doi.org/10.1109/wcnc.2013.6554900
https://doi.org/10.1109/wcnc.2013.6554900
https://doi.org/10.3837/tiis.2015.11.019
http://www.videolan.org/%20vlc/download-sources.html
http://www.videolan.org/%20vlc/download-sources.html
https://doi.org/10.1145/1943552.1943574
https://doi.org/10.1145/1943552.1943574

529SABA: segment and buffer aware rate adaptation algorithm for streaming over HTTP﻿	

1 3

	10.	 Thang, T.C., Ho, Q.D., Kang, J.W., Pham, A.T.: Adaptive stream-
ing of audiovisual content using MPEG DASH. IEEE Trans. Con-
sumer Electron. 58(1), 78–85 (2012). https​://doi.org/10.1109/
tce.2012.61700​58

	11.	 Liu, C., Bouazizi, I., Gabbouj, M.: Rate adaptation for adaptive
HTTP streaming. In: Proceedings of ACM Conf. on Multime-
dia Syst., pp. 169–174. California, USA: (2011). https​://doi.
org/10.1145/19435​52.19435​75

	12.	 Miller, K., Quacchio, E., Gennari, G., Wolisz, A.: Adaptation
algorithm for adaptive streaming over HTTP. In: Proceeding of
IEEE Packet Video Workshop, pp. 173–178. Munich, Germany:
(2012). https​://doi.org/10.1109/pv.2012.62297​32

	13.	 Juluri, P., Tamarapalli, V., Medhi, D.: SARA: Segment aware
rate adaptation algorithm for dynamic adaptive streaming over
HTTP. In: Proceedings of IEEE Int. Conf. on Commun. Work-
shop, pp. 1765–1770. London, United Kingdom: (2015). https​://
doi.org/10.1109/iccw.2015.72474​36

	14.	 Le, H.T., Nguyen, D.V., Ngoc, N.P., Pham, A.T., Thang, T.C.:
Buffer-based bitrate adaptation for adaptive HTTP streaming. In:
Proceedings of IEEE Conf. on Advanced Technol. Commun.,
pp. 33–38. Hochiminh, Vietnam: (2013). https​://doi.org/10.1109/
atc.2013.66980​72

	15.	 Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive. In:
Proceedings of ACM Int. Conf. on Emerging Networking Experi-
ments and Technol., pp. 97–108. Nice, France: (2012). https​://doi.
org/10.1145/24131​76.24131​89

	16.	 Huang, T.Y., Johari, R., McKeown, N., Trunnell, M., Watson,
M.: A buffer-based approach to rate adaptation: evidence from a
large video streaming service. ACM SIGCOM Comput. Commun.
Review. 44(4), 187–198 (2015). https​://doi.org/10.1145/26192​
39.26262​96

	17.	 Rahman, W., Chung, K.: Chunk size aware buffer-based algo-
rithm to improve viewing experience in dynamic HTTP streaming.
IEICE Tran. Commun. E99-B(3), 767–775 (2016). https​://doi.
org/10.1587/trans​com.2015e​bp339​8

	18.	 Sieber, C., Hossfeld, T., Zinner, T., Tran-Gia, P., Timmerer, C.:
Implementation and user-centric comparison of a novel adaptation
logic for dash with SVC. In: Proceedings of IEEE Int. Symposium
on Integrated Network Management, pp. 1318–1323. Ghent, Bel-
gium: (2013). https​://doi.org/10.1109/inm.2005.14407​52

	19.	 Dubin, R., Dvir, A., Hadar, O., Harel, N., Barkan, R.: Multicast
adaptive logic for dynamic adaptive streaming over http network.
In: Proceedings of IEEE Conf. on Comput. Commun. Workshops,
pp. 269–274. Hong Kong: (2015). https​://doi.org/10.1109/infco​
mw.2015.71793​96

	20.	 Dubin, R., Dvir, A., Pele, O., Hadar, O., Katz, I., Mashiach, O.:
Adaptation logic for HTTP dynamic adaptive streaming using
geo-predictive crowdsourcing for mobile users. Multimedia Syst.
(2016). https​://doi.org/10.1007/s0053​0-016-0525-6

	21.	 Huang, T.Y., Nikhil, H., Brandon, H., Nick, M., Ramesh, J.: Con-
fused, timid, and unstable: picking a video streaming rate is hard.
In: Proceedings of ACM Int. Conf. on Internet Measurement,
pp. 225–238. Boston, USA: (2012). https​://doi.org/10.1145/23987​
76.23988​00

	22.	 Egger, S., Hossfeld, T., Schatz, R., Fiedler, M.: Waiting times
in quality of experience for web based services. In: Proceed-
ings of IEEE Int. Workshop on Quality Multimedia Experience,
pp. 86–96. Melbourne, Australia: (2012). https​://doi.org/10.1109/
qomex​.2012.62638​88

	23.	 Mueller, C., Stefan, L., Grandl, R., Timmerer, C.: Oscillation com-
pensating dynamic adaptive streaming over HTTP. In: Proceed-
ings of IEEE Int. Conf. on Multimedia and Expo, pp. 1–6. Torino,
Italy: (2015). https​://doi.org/10.1109/icme.2015.71774​35

	24.	 Moorthy, K., Choi, L.K., Bovik, A.C., De Veciana, G.: Video
quality assessment on mobile devices: subjective, behavioral
and objective studies. IEEE J. Sel. Topics Signal Process. 6(6),
652–671 (2012). https​://doi.org/10.1109/jstsp​.2012.22124​17

	25.	 Staelens, N., De Meulenaere, J., Claeys, M., Van Wallendael, G.,
Van den Broeck, W., De Cock, J., Van de Walle, R., Demeester,
P., De Turck, F.: Subjective quality assessment of longer duration
video sequences delivered over HTTP adaptive streaming to tablet
devices. IEEE Trans. Broadcast. 60(4), 707–714 (2014). https​://
doi.org/10.1109/tbc.2014.23592​55

	26.	 Hoßfeld, T., Seufert, M., Sieber, C., Zinner, T.: Assessing effect
sizes of influence factors towards a QoE model for HTTP adaptive
streaming. In: Proceedings of IEEE Int. Conf. on Multimedia and
Expo, pp. 111–116. Singapore: (2014). https​://doi.org/10.1109/
qomex​.2014.69823​05

	27.	 Zink, M., Jens, S., Ralf, S.: Layer-encoded video in scalable adap-
tive streaming. IEEE Trans. Multimedia 7(1), 75–84 (2005). https​
://doi.org/10.1109/TMM.2004.84059​5

	28.	 Zink, M., Künzel, O., Schmitt, J., Steinmetz, R.: Subjective
Impression of Variations in Layer Encoded Videos. In: Proceeding
of Int. Workshop on Quality of Service, pp. 137–154. Berkeley,
CA, USA: (2003). https​://doi.org/10.1007/3-540-44884​-5_8

	29.	 Grafl, M., Timmerer, C.: Representation switch smoothing for
adaptive HTTP streaming. In: Proceedings of the Int. Workshop
on Perceptual Quality of Systems, pp. 178–183. Vienna, Austria:
(2013). https​://doi.org/10.21437​/PQS.2013-32

	30.	 Zambelli, A.: Microsoft Corporation. IIS smooth streaming tech-
nical overview. [Online]. Available: https​://docs.micro​soft.com/
en-us/iis/media​/on-deman​d-smoot​h-strea​ming/smoot​h-strea​ming-
techn​icalo​vervi​ew. Accessed 10 Feb 2018

	31.	 Adobe. Configure HTTP Dynamic Streaming and HTTP Live
Streaming. [Online]. Available: https​://helpx​.adobe​.com/adobe​
-media​-serve​r/dev/confi​gure-dynam​ic-strea​ming-live-strea​ming.
html. Accessed 10 Feb 2018

	32.	 Pantos, R.: HTTP Live Streaming. [Online]. https​://tools​.ietf.org/
html/rfc82​16. Accessed 10 Feb 2018

	33.	 Akhshabi, S., Anantakrishnan, L., Begen, A.C., Dovrolis, C.:
What happens when HTTP adaptive streaming players compete
for bandwidth?. In: Proceedings of ACM Workshop Netw. and
Operating Syst. Support for Digital Audio and Video, pp. 9–14.
Toronto, Canada: (2012). https​://doi.org/10.1145/22290​87.22290​
92

	34.	 Jain, R., Chiu, D., Hawe, W.: A quantitative measure of fairness
and discrimination for resource allocation in shared computer sys-
tem. Technical Report, DEC, 1984

https://doi.org/10.1109/tce.2012.6170058
https://doi.org/10.1109/tce.2012.6170058
https://doi.org/10.1145/1943552.1943575
https://doi.org/10.1145/1943552.1943575
https://doi.org/10.1109/pv.2012.6229732
https://doi.org/10.1109/iccw.2015.7247436
https://doi.org/10.1109/iccw.2015.7247436
https://doi.org/10.1109/atc.2013.6698072
https://doi.org/10.1109/atc.2013.6698072
https://doi.org/10.1145/2413176.2413189
https://doi.org/10.1145/2413176.2413189
https://doi.org/10.1145/2619239.2626296
https://doi.org/10.1145/2619239.2626296
https://doi.org/10.1587/transcom.2015ebp3398
https://doi.org/10.1587/transcom.2015ebp3398
https://doi.org/10.1109/inm.2005.1440752
https://doi.org/10.1109/infcomw.2015.7179396
https://doi.org/10.1109/infcomw.2015.7179396
https://doi.org/10.1007/s00530-016-0525-6
https://doi.org/10.1145/2398776.2398800
https://doi.org/10.1145/2398776.2398800
https://doi.org/10.1109/qomex.2012.6263888
https://doi.org/10.1109/qomex.2012.6263888
https://doi.org/10.1109/icme.2015.7177435
https://doi.org/10.1109/jstsp.2012.2212417
https://doi.org/10.1109/tbc.2014.2359255
https://doi.org/10.1109/tbc.2014.2359255
https://doi.org/10.1109/qomex.2014.6982305
https://doi.org/10.1109/qomex.2014.6982305
https://doi.org/10.1109/TMM.2004.840595
https://doi.org/10.1109/TMM.2004.840595
https://doi.org/10.1007/3-540-44884-5_8
https://doi.org/10.21437/PQS.2013-32
https://docs.microsoft.com/en-us/iis/media/on-demand-smooth-streaming/smooth-streaming-technicaloverview
https://docs.microsoft.com/en-us/iis/media/on-demand-smooth-streaming/smooth-streaming-technicaloverview
https://docs.microsoft.com/en-us/iis/media/on-demand-smooth-streaming/smooth-streaming-technicaloverview
https://helpx.adobe.com/adobe-media-server/dev/configure-dynamic-streaming-live-streaming.html
https://helpx.adobe.com/adobe-media-server/dev/configure-dynamic-streaming-live-streaming.html
https://helpx.adobe.com/adobe-media-server/dev/configure-dynamic-streaming-live-streaming.html
https://tools.ietf.org/html/rfc8216
https://tools.ietf.org/html/rfc8216
https://doi.org/10.1145/2229087.2229092
https://doi.org/10.1145/2229087.2229092

	SABA: segment and buffer aware rate adaptation algorithm for streaming over HTTP
	Abstract
	1 Introduction
	2 Overview of HTTP streaming
	2.1 HTTP adaptive streaming
	2.2 Related work

	3 The throughput estimation method
	3.1 Throughput detection method
	3.2 Throughput estimation method

	4 Proposed algorithm
	4.1 System model
	4.2 Adaptive bitrate algorithm
	4.3 Smoothing video rate switches

	5 Performance evaluation
	5.1 Evaluation setup
	5.2 Bitrate adaptation performance
	5.3 Single-user scenario
	5.3.1 Scenario A
	5.3.2 Scenario B

	5.4 Multi-client scenario
	5.4.1 Five-clients scenario

	6 Conclusion
	Acknowledgements
	References

