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Abstract
In many neuroscience and clinical studies, accurate and automatic segmentation of subcortical structures is an important 
and difficult task. Multi-atlas-based segmentation method has been focus of considerable research due to its promising per-
formance. In general, this technique first employs deformable image registration to construct the correspondences between 
pre-labeled atlas images and the target image. Then, using the acquired deformation field, labels in the atlas are propagated to 
the target image space. Obviously, anatomical differences between the target image and atlas images possibly affect the image 
registration accuracy, thus influencing the final segmentation performance. Another limitation is that the label propagation 
in most conventional multi-atlas based methods is implemented under a voxel-wise strategy, which cannot adequately utilize 
the local label information to determine the final label of the target sample. In this paper, we propose a patch-wise label 
propagation method based on multiple atlases for MR brain segmentation. First, each image patch is characterized by patch 
intensities and abundant texture features, to increase the accuracy of the patch-based similarity measurement. To determine 
the weights of the training patches for representing the test sample, a patch-based sparse coding procedure is employed. 
In the label propagation stage, to alleviate possible misalignment from the registration stage, we perform a patch-wise 
label propagation strategy in a nonlocal manner to predict the final label for each target sample. To evaluate the proposed 
segmentation method, we comprehensively implement our proposed method by conducting hippocampus segmentation on 
the ADNI data set. Experimental results demonstrate the effectiveness of the proposed method and show that the proposed 
method outperforms two conventional multi-atlas-based methods.

Keywords MR segmentation · Multi-atlas based method · Sparse coding · Patch-wise label propagation.

1 Introduction

Magnetic resonance (MR) plays an important role in pathol-
ogy, neuro-analysis, and clinical application [1–4]. Accurate 
segmentation of anatomical structure is usually required in 
many medical image analyses. Take the connectome applica-
tions for instance, before constructing the brain connectiv-
ity network, multiple regions which describe the network 
architecture of the brain should be identified in numerous 
brain MR images. However, the huge amounts of clinical 
MR data make the manual segmentation of MR images’ 
time-consuming and tedious. Therefore, the development 
of automatic segmentation methods has raised considerable 
interests in the field of medical image analysis.

Multiple atlases with pre-labeled images have proven 
to be effective for determining the region of interest (ROI) 
in the target image [5–8]. By fusing the propagated labels 
of multiple atlases in the target image space, multi-atlas 
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based methods can obtain accurate and robust segmenta-
tion results. Specifically, in a typical multi-atlas-based seg-
mentation method, each atlas image is first registered to 
the target image and a warping function can be obtained. 
Then, the estimated warping function is further used for 
propagating the associated atlas label to the target image 
space. Finally, the segmentation result of the target image 
can be achieved by fusing all the propagated atlas labels. 
Towards the multi-atlas based methods, the learning-based 
methods using multiple atlases have attracted great atten-
tion in recent years [9–11]. In the learning-based scheme, 
the segmentation problem is regarded as a classification 
task, in which each voxel in the target image is separated as 
the ROI or background by training a classifier. Some well-
known learning methods such as support vector machine 
(SVM), Adaboost, and artificial neural networks have been 
widely adopted in the learning-based classification [12–16]. 
Particularly, sparse representation classifier for image seg-
mentation, whose basic idea is that the target sample can be 
represented as a linear combination of the pre-labeled atlas 
image samples, has provided promising and powerful results 
[17]. The basic assumption behind the above technique is 
that, if the local appearances or other features are strongly 
similar, the target image point should bear the same label as 
the atlas image point. However, some details could be lost, 
and local variability cannot be obtained during the registra-
tion procedure. In addition, the definition of patch-based 
similarity is often handcrafted, which may not be sufficient 
for different regions of the brain structure. Another limita-
tion is the label fusion technique which usually employs a 
voxel-wise label propagation strategy to determine the final 
label of the target image. This approach does not take the 
surrounding label information into account, which is sensi-
tive to the registration error.

In this work, we propose a patch-wise label propaga-
tion method along with a sparse coding scheme, where the 
weight of each sample is driven by the sparse coding proce-
dure. Here, patch-wise refers to the process in which each 
voxel in an atlas is assigned with one label patch, instead of 
a single label, for label propagation. Specifically, the target 
image is first linear registered to each atlas. Then, for each 
voxel to be segmented in the target image, voxels with simi-
lar features are considered to generate a training set from the 
voxels of registered atlases. Features we used in this paper 
are extracted from image patch with abundant texture infor-
mation and intensity information. After that, the weight of 
each training sample is determined using the sparse encod-
ing procedure. To preserve local anatomical structure infor-
mation in the segmentation, we utilize label patches as the 
structured class label. That is, the label patch centered at 
the voxel on the label map of the corresponding registered 
atlas is extracted as the structured class label of the voxel. 
The training set then consists of feature representations for 

sampled voxels and their corresponding structured class 
labels (i.e., label patches centered at the corresponding vox-
els). Finally, the final label of the target voxel can be deter-
mined by applying the weight of each training sample on the 
structured patch labels.

Below, we first introduce the multi-atlas-based segmenta-
tion method as the basis of the proposed method in Sect. 2. 
Then, Sect. 3 presents the details of sparse coding scheme 
along with a patch-wise label propagation. Finally, the 
experimental results are shown in Sect. 4, and conclusion 
is drawn in Sect. 5.

2  Multi‑atlas based segmentation method

The goal of our patch-wise label propagation using multiple 
atlases is to accurately label each voxel in the target image 
as either a positive (i.e., region of interest) or a negative 
(i.e., background) voxel. We first introduce the typical multi-
atlas-based segmentation method which serves as the basis 
of our method.

Given a target image I to be segmented and N atlases 
Ã = {Ãi = (Ĩi, L̃i)|i = 1, 2,… ,N } , where Ĩi(i = 1, 2,… ,N) 
represents an atlas image and L̃i(i = 1, 2,…N) is its corre-
sponding segmentation label with a value of + 1 indicating 
ROI and − 1 indicating background. In the multi-atlas-based 
segmentation method, each atlas image is first spatially 
registered to the target image, thereby the warping func-
tion can be obtained. Then, the associated atlas labels are 
further propagated to the target image space based on the 
acquired warping function. Finally, all the propagated atlas 
labels are fused to generate a segmentation result for the 
target image using a specific label propagation strategy. Let 
A = {Ai =

(
Ii, Li

)|i = 1, 2,…N } denotes the set of N atlas 
images and their corresponding labels which have been reg-
istered to the target image. To alleviate possible misalign-
ment from registration, most patch-based label propagation 
methods are performed in a nonlocal manner. Figure 1 shows 
an overview of a typical patch-based segmentation method 
in the multi-atlas scenario.

Particularly, to label a patch of the target image, the can-
didate training set from voxels of registered atlases within 
a spatial neighborhood of the target voxel (blue solid block 
in Fig. 1) is generated. Then, using the patch similarity as 
weights, all possible candidate patches from different atlases 
are fused to estimate the final label of the target voxel using 
a specific fusion strategy. Specifically, for each target image 
voxel x, all the atlas patches within a certain search neigh-
borhood V  are used to compute the patch-wise similarities 
with the target image patch. Each patch is arranged into a 
column vector. The estimation of the label for the target 
voxel x can be obtained by the following: 
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where L(xs,j) is the label of voxel xs,j at location j in atlas s , 
V is the a relatively small search neighborhood, and w

(
x, xs,j

)
 

is the weight assigned to L(xs,j) . As the description above, 
the weights for different atlases are typically determined by 
a similarity measure of patch appearance between the atlas 
image patches of xs,j and the target image patch of x , which 
can be obtained as follows: 

where P(x) and P
(
xs,j

)
 are the cubic patches centered at x 

and xs,j , respectively. || ⋅ ||2 represents the L2 norm between 
each intensity of the elements of the patches P(x) and P

(
xs,j

)
 . 

�x is the decay parameter controlling the strength of penalty 
in the exponential way. If the structural similarity ss is less 
than the threshold th , the weight of this patch will not be 
computed. Finally, the label of the target voxel can be deter-
mined as follows: 

(1)L̂(x) =

∑N

s=1

∑
j∈V w

�
x, xs,j

�
L(xs,j)∑N

s=1

∑
j∈V w

�
x, xs,j

� ,

(2)w
�
x, xs,j

�
=

⎧
⎪⎨⎪⎩
e
−

P(x)−P(xs,j)
2

2

𝜎x if ss > th

0 else,

(3)L(x) =

{
1 L̂(x) > 0

−1 L̂(x) < 0.

3  Proposed method

The proposed method mainly consists of feature extraction, 
local-search based sparse coding, and label propagation. In 
the following subsections, we will discuss the detail of each 
step of the proposed method.

3.1  Feature extraction

Most conventional multi-atlas-based methods often use 
handcrafted features (e.g., image intensity) as the identifica-
tion of patch-based similarity. However, since the structures 
of MR brain images usually share similar intensity pattern, 
only using the handcrafted features may be not sufficient for 
segmentation. Thereby, it is necessary to develop an effec-
tive feature extraction method to strengthen the description 
for each voxel. In this paper, along with the patch-based 
intensity information, we also extract abundant texture infor-
mation. Specifically, given a sampled voxel z , the intensity 
information is extracted using the patch-wise strategy. The 
texture information that we extract in this paper includes:

• Outputs of the first-order difference filters (FODs):

• Outputs of the second-order difference filters (SODs):

• Outputs of 3D Hyper plan filters:

• Outputs of 3D Sobel filters:

(4)
{H(z + u) − H(z − u), u = (r cos � sin�, r sin � sin�, r cos�)}.

(5)
{H(z + u) + H(z − u) − 2H(z),

u = (r cos � sin�, r sin � sin�, r cos�)}.

(6)

⎧⎪⎨⎪⎩
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�
H
�
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�
− H

�
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,
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Atlas A1 Atlas ANAtlas A2

Target image I

patch
neighbor

Fig. 1  Typical patch-based segmentation method in multi-atlas sce-
nario
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• Outputs of Laplacian filters:

• Outputs of range-difference filters:

  where Ca,b,c(z) represents a cube centered at z with 
size of a × b × c , u is the offset vector, r is the length 
of u , � and � are two rotation angles of u , Op(z) denotes 
the voxels in the p-neighborhood of z , and ∗ denotes 
convolution operation. In the texture features, FODs 
and SODs detect intensity change along a line segment. 
Here, we set r ∈ {1, 2, 3} , � ∈ {0,�∕4,�∕2, 3�∕4} , and 
� ∈ {0,�∕4,�∕2} . 3D Hyperplane filters and 3D Sobel 
filters are the extensions of FODs and SODs in the plane. 
Filters along two other directions are also implemented. 
Laplacian filters are isotropic and detect the second-order 
intensity changes. Range-difference filters compute the 
difference between maximal and minimal values in a 
given neighborhood for each voxel. In this paper, we 
determine the size of a neighborhood p ∈ {7, 19, 27}.

By comparing the features similarity between the target 
sample and the multi-atlas samples, we can employ a pre-
selection method to generate the candidate training set, thus 
obtaining the coding dictionary which can be used in the 
sparse coding procedure of the next step.

3.2  Local‑search‑based sparse coding

To encode an image sample for each voxel of the target 
image, a set of training samples should be identified from the 
registered atlas images. Since linear image registration can-
not achieve perfect alignment of all voxels across images, the 
direct usage of the corresponding voxel of the voxel consid-
ered in the atlases as the training sample is not appropriate. 
To achieve better correspondence between the target voxel 
and voxels in atlases, we employ a local-search strategy to 
find the best match in each atlas for the target voxel and thus 
obtain the coding dictionary.

Specifically, given a target voxel x , we first define 
a neighborhood V(x) centered at the target voxel with 
the size � × � × � of all registered atlas samples. This 
can produce N × � × � × � candidate training samples 
{(f⃗i,j, li,j)|i = 1, 2,… ,N , j ∈ V(x)} from N registered atlases, 
where f⃗i,j represents a feature vector extracted from voxel 
j of the ith atlas based on the feature extraction method 
which has been discussed in the above subsection, and 

(8)
∑

z1∈Op(z)

(
H
(
z1

)
− H(z)

)
,Op(z) ⊆ C3,3,3(z).

(9)

max
z1∈Op(z)

(
H
(
z1

))
− min

z1∈Op(z)

(
H
(
z1

))
,Op(z) ⊆ C3,3,3(z).

li,j ∈ {+1,−1} is the label information of the corresponding 
atlas image sample.

One of the critical problems in sparse representation is 
that how to effectively construct the coding dictionary. A 
small neighborhood size will result in a small dictionary, but 
may not be reliable enough for encoding the target sample. 
On the other hand, a large neighborhood size will lead to a 
redundant dictionary, which may increase the computational 
time and also introduce some irrelevant patches. To address 
this issue, we perform a pre-selection strategy based on a 
threshold strategy before sparse coding procedure. The fea-
ture similarity between patches is used as the criterion for 
patch selection, which can be determined by the following 
well-known structural similarity ( ss ) measure: 

where � is the mean and � is the standard deviation of 
patches centered at the target voxel x and voxel j of the ith 
atlas.

The coding dictionary is further used to represent the 
target sample via sparse representation. Figure 2 shows 
the sparse coding procedure. Specifically, given a target 
image, it is assumed that each patch in the target image can 
be sparsely represented by a linear combination of the con-
structed coding dictionary. To estimate the label of the patch 
centered at x of the target image, a set of sparse weights, 
w
(
x, xj

)
 , is calculated by minimizing the following nonnega-

tive problem: 

where f⃗x is a feature vector containing the intensity features 
and texture features extracted at x from the target image. 
The first term in Eq. (11) enables the feature vector f⃗x which 
should be represented by the coding dictionary. The second 
term enhances the sparsity on the weights via l1 regulariza-
tion, and the last term ensures that similar patches should 
have similar weights. �1 and �2 are the weights to balance 
three terms in Eq. (11). After the sparse coding procedure, 
we can obtain the sparse weights, and the weights are further 
used to perform the patch-wise label propagation to get the 
final segmentation results.

3.3  Patch‑wise label propagation

To preserve local anatomical structure information in the 
segmentation, we perform label propagation procedure in a 
patch-wise manner. For the voxel-wise label propagation, we 
can directly extract voxel labels from the label map accord-
ing to the selected atlas samples, and use them as class labels 

(10)ss =
2�x�i,j

�x
2 + �i,j

2
×

2�x�i,j

�x
2 + �i,j

2
,

(11)min
w(x,xj)

f⃗x − D
x
w
(
x, xj

)2
2
+ �1w

(
x, xj

)
1
+ 𝜆2w

(
x, xj

)2
2
,
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to conduct label fusion. However, for local-search-based 
sparse coding procedure, each voxel is assigned with one 
image patch. To preserve local anatomical structure in the 
label map, we extend the class label yj ∈ ℝ (j = 1,… ,M) 
of each voxel to the structured class label patch j ∈ ℝ

t×t×t 
corresponding to the label patch centered at the voxel, where 
t × t × t is the size of the label patch and M is the number of 
samples. Let � denote the voxel set of the label patch of the 
dictionary samples. Then, the estimation of the label patch 
centered at the target voxel x can be obtained as follows: 

Here, j(a) is the corresponding label patch centered at the 
voxel x on the label maps of the jth sample, Dx is the coding 
dictionary of the voxel x , and w

(
x, xj

)
 is the sparse weights 

calculating by the sparse coding procedure. When testing 
the neighbor voxels of the voxel x , their corresponding label 
patches are also estimated, which can load the overlapped esti-
mations for the voxel x from the estimated label patches of its 
neighbor voxels. Therefore, we adopt an averaging method to 
fuse the overlapped estimations and use it as the final label 
estimation L(x) . Compared with voxel-wise label propagation, 
patch-wise label propagation uses the whole label patches to 
estimate the final label, which can take advantage of local ana-
tomical structure information in the segmentation.

4  Experiments

Many neuroscience studies have shown that the hippocampus 
structure plays a crucial role in human memory and orien-
tation. Besides, hippocampus dysfunction involves a variety 
of diseases, such as Alzheimer’s diseases, schizophrenia, 
dementia, and epilepsy [18]. However, due to its small size, 

(12)Ŝx(a) =

∑
j∈Dx

w
�
x, xj

�
j(a)∑

j∈Dx
w
�
x, xj

� , a ∈ Ω.

high variability, low contrast, and the discontinuous bounda-
ries in MR brain images, the hippocampus structure is espe-
cially difficult to be segmented. To evaluate the performance 
of the proposed method, we conduct several experiments for 
hippocampus segmentation. All 3D MR scans are obtained 
from the publicly available ADNI database (https://ida.
loni.usc.edu). The manual hippocampal segmentations are 
regarded as the ground truth from the preliminary release of 
EADC–ADNI Harmonized Protocol training labels, which can 
be downloaded from http://www.hippocampal-protocol.net/
SOPs/label.php. In the experiments, 29 Normal Control (NC) 
subjects, 34 Mild Cognitive Impairment (MCI) subjects, and 
37 Alzheimer’s disease (AD) subjects are randomly selected 
from the ADNI data set. The detailed demographic informa-
tion of the selected subjects is summarized in Table 1. We first 
perform the preprocessing procedure for all selected subjects, 
including: (1) skull-stripping using a learning-based meta-
algorithm to remove nonbrain tissues [19], (2) N4-based bias 
field correction [20], and (3) histogram matching to normal-
ize the intensity range [21]. A leave-one-out cross-validation 
(LOOCV) strategy is used to evaluate the performance of our 
method. To align each atlas image to the target image, we per-
form affine registration using FLIRT in the FSL toolbox, with 
12 degrees of freedom and default parameters.

To quantitatively evaluate the performance of the proposed 
segmentation method, we compare the segmentation results 
Os with the ground truth Og . Specifically, we use the dice 

Intensity
Features

Texture
Features

Sparse Coding

Registered Atlas Images
Target Image

Local-Search based Coding Dictionary

Patch

Neighborhood

Fig. 2  Local-search-based sparse coding procedure

Table 1  Demographic information of selected subjects of ADNI data

Group No. of subjects Gender (male/
female)

Age (mean ± SD)

NC 29 17/12 73.6 ± 6.3
MCI 34 14/20 75.2 ± 7.1
AD 37 21/16 74.8 ± 7.9

https://ida.loni.usc.edu
https://ida.loni.usc.edu
http://www.hippocampal-protocol.net/SOPs/label.php
http://www.hippocampal-protocol.net/SOPs/label.php
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coefficient (DC) and Hausdorff distance (HD) for evaluation. 
DC is a comprehensive similarity metric which measures the 
overlap degree between ROI Os and ROI Og , and HD measures 
the surface distance between two ROIs: 

where |⋅| is the volume of particular ROI, and d(a, b) repre-
sents the Euclidean distance between a and b . Theoretically, 
segmentation results with higher DC and lower HD repre-
sent better segmentation performance.

To determine the optimal parameters, we conduct a set of 
experiments. We set the patch size with 5 × 5 × 5 based on 
the empirically validated in our experiments. In the sparse 
coding procedure, �1 and �2 are set to be 0.1 and 0.01, 
respectively. The above parameters are fixed throughout all 
the experiments. For the candidate training set, the search 
neighborhood Vx is selected from 5 × 5 × 5 to 13 × 13 × 13, 
with a step of 2 × 2 × 2. The number of samples in the coding 
dictionary is set from 200 to 1000, with a step of 200. For 
the patch-wise label propagation, we select the side length 
of label patches from 1 to 9 with a step of 2.

4.1  Influence of elements in the proposed method

Some important elements and parameter setting of the 
proposed method are investigated in this section. Such ele-
ments or parameters include patch-based intensity features 
and texture features, search neighborhood size, number of 

(13)DC = 2 ×

|||Os ∩ Og
|||

||Os
|| + |||Og

|||
,

(14)HD = max

{
max
a∈Os

min
b∈Og

d(a, b), max
b∈Og

min
a∈Os

d(a, b)

}
,

pre-selected samples in the sparse coding dictionary, and 
patch-wise label propagation.

We first evaluate the performance of the features used in 
our method including intensity features and multiple tex-
ture descriptors. To evaluate each feature type, we test our 
method with only using intensity patches (Intensity), tex-
ture descriptors (Texture), and the combination of intensity 
patch and texture descriptors (Intensity + Texture). Moreo-
ver, we vary the size of search neighborhood from 5 × 5 × 5 
to 13 × 13 × 13, and use DC measure by performing voxel-
wise label propagation to evaluate the performance. Fig-
ure 3 shows the mean DC for the left and right hippocampus 
segmentation for three feature types plotted against different 
neighborhood size.

From Fig. 3, we can see that, compared to the Intensity 
and Texture features, the combination of two features con-
sistently outperforms across different search sizes. Only 
using texture descriptors as the feature representation leads 
to the worst performance. Though only using intensity fea-
tures can lead to a better result, however, it is still not as 
good as that using both intensity features and texture fea-
tures. It indicates that the texture information extracted from 
the atlas images does help the sparse coding to enhance the 
segmentation performance. We can also see that, when using 
search size of 11 × 11 × 11, all three types of features yield a 
better performance than that of the other search size. In the 
following experiments, we use search size of 11 × 11 × 11 
to investigate other elements or parameter of the proposed 
method.

Table 2 lists the mean of DC and HD for the left and 
right hippocampus segmentation for the Intensity, Texture, 
and Intensity + Texture features. We can see that the com-
bination of intensity and texture features achieves the best 
performance in terms of DC and HD.

Fig. 3  Left: mean DC for left hippocampus segmentation produced by Intensity, Texture, Intensity + Texture; Right: mean DC for right hip-
pocampus segmentation produced by the corresponding methods
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In the sparse coding procedure, we also investigate the 
influence of the number of samples in the sparse coding 
dictionary. Pre-selection can improve the robustness of 
sparse coding by excluding the unrelated samples as well 
as speed up the coding procedure. Figure 4 shows the 
mean DC curve by our method using a different num-
ber of selected samples. It can be seen in the figure that 
increasing the number of training samples can improve 
segmentation accuracy. To balance the segmentation 
accuracy and computational time, we set 800 as the num-
ber of selected samples.

To evaluate patch-wise label propagation performed 
in our method, we further analyze the influence of label 
patch size on segmentation performance. Specifically, we 
varied the label patch size from 1 × 1 × 1 to 9 × 9 × 9 with 
a step of 2 for each side. When 1 × 1 × 1 label patch is 
used, patch-wise label propagation becomes voxel-wise 
label propagation. Figure 5 shows the mean DC using 
different label patch sizes.

From Fig. 5, it is apparent that when 7 × 7 × 7 label 
patch is used, our method yields the best performance 
(0.874 for left hippocampus and 0.883 for right hip-
pocampus). It demonstrates the superiority of our method 
using patch-wise label propagation, compared with the 
use of voxel-wise label propagation. With the increasing 
of label patch size from 1 × 1 × 1 to 7 × 7 × 7, the seg-
mentation accuracy is gradually improved. However, for 
patch size of 9 × 9 × 9, the DC decreases slightly. Thus, 
label patch size of 7 × 7 × 7 is preferred for our method.

4.2  Comparison with conventional methods

In this section, we compared our method with two conven-
tional multi-atlas-based segmentation methods, i.e., patch-
based method by nonlocal weighting (nonlocal-PBM) [22] 
and sparse patch-based labeling method (sparse-PBM) [18]. 
We set the search neighbor size to 11 × 11 × 11 and the label 
patch size for label propagation to 7 × 7 × 7. For sparse cod-
ing, we selected 800 samples to construct the coding diction-
ary. Figure 6 shows box plots of segmentation performance 
measures in terms of DC and HD for nonlocal-PBM, sparse-
PBM, and our method, respectively. For visual inspection, 
Fig. 7 shows the segmentation results for a subject randomly 
chosen from the data set. It is evident that, compared to 
the nonlocal-PBM and sparse-PBM methods, the segmen-
tation result of our method is more similar to the ground 
truth. For the sparse-PBM, over-smoothing appears in some 
regions, which result in losing some detailed information, 
as indicated by white arrows in Fig. 7. From the experi-
mental results of Figs. 6 and 7, we can see that both the 
qualitative and quantitative results indicate that the proposed 
method performs consistently better than other segmentation 
methods.

Table 2  Mean of DC and HD (mm) of left and right hippocampus 
on ADNI data set, produced by the Intensity, Texture, and Inten-
sity + Texture, respectively

The value in the left ‘/’ denotes the segmentation accuracy of the left 
hippocampus, while the value in the right ‘/’ denotes the segmenta-
tion accuracy of the right hippocampus

Intensity Texture Intensity + Texture

DC 0.841/0.847 0.760/0.771 0.859/0.860
HD (mm) 4.13/3.97 4.36/4.28 4.02/3.91

Fig. 4  Mean DC for segmentation of left and right hippocampus gen-
erated using different numbers of selected samples

Fig. 5  Using different label patch sizes for left and right hippocampus
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5  Conclusion

In this paper, we propose a patch-wise label propagation 
for MR brain segmentation. Specifically, each image patch 
is first characterized by patch intensities and abundant tex-
ture features, to increase the presentation of the patch-
based similarity. The experiment results in subsection 4.1 
demonstrated that the texture features provide contribu-
tion in improving the segmentation accuracy. Then, each 
weight of the training samples for representing the target 
sample is determined based on a sparse coding procedure. 

In the label propagation stage, to preserve local anatomical 
structure information for the segmentation and alleviate 
possible misalignment from the registration stage, we uti-
lize label patches as the structured class label to perform 
label propagation. The segmentation performance is evalu-
ated based on the ADNI data set for hippocampus seg-
mentation. Compared to the traditional multi-atlas-based 
segmentation methods, the experimental results show 
that the proposed method can achieve better segmenta-
tion performance. However, we just conduct our method 
on hippocampus segmentation in this paper. In the future, 
we will test our method on other significant anatomical 

Fig. 6  Box plots of mean DC and HD (mm) for left and right hip-
pocampus. In each box, the central mark is the median and edges of 
the box denote the 25th and 75th percentiles. The left box in each pat-

tern denotes the result of left hippocampus, while the right box is the 
result of right hippocampus

Nonlocal PBMManual Sparse PBM         Our method

Fig. 7  Comparison of segmented hippocampus regions by different 
methods. One subject was randomly chosen from each data set (red: 
results of manual segmentation, yellow: results by nonlocal-PBM, 
blue: results by sparse-PBM, purple: results by our method). The first 

row shows segmentation results produced by different methods; the 
second row shows their corresponding surface rendering results. Our 
method shows the best segmentation performance (especially for the 
area depicted by white arrows)
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structures of human brain, such as corpus callosum, amyg-
dala, and insula.

Acknowledgements This work is supported by the by National Natural 
Science Foundation of China (NSFC61701324), Science and Technol-
ogy Department of Sichuan Province 2016JZ0014, and Open Fund 
Project of Fujian Provincial Key Laboratory of Information Processing 
and Intelligent Control (Minjiang University) (No. MJUKF201715).

Compliance with ethical standards 

Conflict of interest The authors declare no conflict of interest.

References

 1. Bertolino, A., Frye, M., Callicott, J.H., Mattay, V.S., Rakow, R., 
Shelton-Repella, J., et al.: Neuronal pathology in the hippocampal 
area of patients with bipolar disorder: a study with proton mag-
netic resonance spectroscopic imaging. Biol. Psychiat. 53(10), 
1177–1194 (2003)

 2. Zu, C., Wang, Z., Zhang, D., Shen, D., Wu, G.: Robust multi- atlas 
label propagation by deep sparse representation. Pattern Recogn. 
63, 511–517 (2017)

 3. Zhang, J., Liu, M., An, L., Gao, Y., Shen, D.: Alzheimer’s Dis-
ease diagnosis using landmark-based features from longitudinal 
structural MR images. IEEE J. Biomed. Health Inform. 21(6), 
1607–1616 (2017)

 4. Wang, Y., Zhang, P., An, L., Ma, G., Kang, J., Wu, X., et al.: 
Predicting standard-dose pet image from low-dose pet and mul-
timodal MR images using mapping-based sparse representation. 
Phys. Med. Biol. 61(2), 791–812 (2016)

 5. Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueck-
ert, D.: Multi-atlas based segmentation of brain images: atlas 
selection and its effect on accuracy. Neuroimage 46(3), 726–738 
(2009)

 6. Zu, C., Jie, B., Liu, M., Chen, S., Shen, D., Zhang, D.: Label-
aligned multi-task feature learning for multimodal classification of 
Alzheimer’s disease and mild cognitive impairment. Brain Imag-
ing Behav. 10(4), 1148–1159 (2015)

 7. Wang, L., Gao, Y., Feng, S., Li, G., Gilmore, J.H., Lin, W., et al.: 
Links: learning-based multi-source integration framework for 
segmentation of infant brain images. Neuroimage 108, 160–172 
(2015)

 8. Wang, H., Suh, J.W., Das, S.R., Pluta, J.B.: Multi-atlas segmen-
tation with joint label fusion. IEEE Trans. Pattern Anal. Mach. 
Intell. 35(3), 611–23 (2013)

 9. Hao, Y., Wang, T., Zhang, X., Duan, Y., Yu, C., Jiang, T., et al.: 
Local label learning (lll) for subcortical structure segmentation: 
application to hippocampus segmentation. Hum. Brain Mapp. 
35(6), 2674–2697 (2014)

 10. Tu, Z., Bai, X.: Auto-context and its application to high-level 
vision tasks and 3d brain image segmentation. IEEE Trans. Pat-
tern Anal. Mach. Intell. 32(10), 1744–1757 (2010)

 11. Darko, Z., Glocker, B., Criminisi, A.: Atlas encoding by rand-
omized forests for efficient label propagation. In: International 
Conference on Medical Image Computing and Computer-Assisted 
Intervention, pp. 66–73. Springer, Berlin (2013)

 12. Zhang, J., Liang, J., Zhao, H.: Local energy pattern for texture 
classification using self-adaptive quantization thresholds. IEEE 
Trans Image Process 22(1), 31–42 (2013)

 13. Fan, Y., Shen, D.: Integrated feature extraction and selection for 
neuroimage classification. In: Proceedings of SPIE—The Interna-
tional Society for Optical Engineering, San Diego, CA, vol. 7259, 
pp. 155–160 (2009)

 14. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of 
on-line learning and an application to boosting. J Comput. Syst. 
Sci. 55(7), 119–139 (1999)

 15. Zhang, J., Liu, M., Shen, D.: Detecting anatomical landmarks 
from limited medical imaging data using two-stage task-oriented 
deep neural networks. IEEE Trans. Image Process. 26(10), 4753–
4764 (2017)

 16. Gao, Y., Zhang, H., Zhao, X., Yan, S.: Event classification in 
microblogs via social tracking. ACM Trans. Intell. Syst. Technol. 
(TIST) 8(3), Article No. 35 (2017)

 17. Wang, Y., Ma, G., An, L., Shi, F., Zhang, P., Lalush, D.S., et al.: 
Semisupervised tripled dictionary learning for standard-dose PET 
image prediction using low-dose PET and multimodal MRI. IEEE 
Trans. Biomed. Eng. 64(3), 569–579 (2017)

 18. Tong, T., Wolz, R., Coupé, P., Hajnal, J.V., Rueckert, D.: Segmen-
tation of mr images via discriminative dictionary learning and 
sparse coding: application to hippocampus labeling. Neuroimage 
76(1), 11–23 (2013)

 19. Feng, S., Li, W., Dai, Y., Gilmore, J.H., Lin, W., Shen, D.: Label: 
pediatric brain extraction using learning-based meta-algorithm. 
Neuroimage 62(3), 1975–1986 (2012)

 20. Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., 
Yushkevich, P.A., et al.: N4itk: improved n3 bias correction. IEEE 
Trans. Med. Imaging. 29(6), 1310–1320 (2010)

 21. Madabhushi, A., Udupa, J.K.: New methods of mr image intensity 
standardization via generalized scale. Med. Phys. 33(9), 3426–
3434 (2006)

 22. Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Col-
lins, D.L.: (2011). Patch-based segmentation using expert priors: 
application to hippocampus and ventricle segmentation. Neuroim-
age 54(2), 940–954


	Patch-wise label propagation for MR brain segmentation based on multi-atlas images
	Abstract
	1 Introduction
	2 Multi-atlas based segmentation method
	3 Proposed method
	3.1 Feature extraction
	3.2 Local-search-based sparse coding
	3.3 Patch-wise label propagation

	4 Experiments
	4.1 Influence of elements in the proposed method
	4.2 Comparison with conventional methods

	5 Conclusion
	Acknowledgements 
	References


