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semi-supervised image classification method. The label 
propagation error rate is regarded as the evaluation crite-
rion. Experiments on image datasets show encouraging 
results of the proposed algorithm in comparison to the 
state-of-the-art algorithms in semi-supervised image classi-
fication, especially in improving LSR method significantly.

Keywords Graph construction · Semi-supervised 
learning · Label propagation · Least-squares regression · 
Non-negative constraint

1 Introduction

Mobile phones are more widely used than ever in our daily 
lives. Pictures are playing an increasingly important role in 
mobile communications. With a lot of pictures extensively 
used in mobile phones, it is a meaningful idea to mark new 
unlabeled pictures with labels. In this way, we can mark a 
new picture with some predefined labels. For example, we 
hope to recognize and tag the acquaintances in new pic-
tures based on their faces automatically in our Facebook 
account. In fact, this involves the semi-supervised image 
classification technique. In image classification, labeled 
images are often scarce and difficult to obtain compared 
with abundance unlabeled images in the real world. Actu-
ally the above image classification technique is the label 
propagation [4, 5] problem, which utilizes both labeled 
and unlabeled data. Label propagation is a part of the field 
of semi-supervised learning [1, 2], and can be treated as 
one of the graph-based semi-supervised learning methods 
[3–5].

Many researchers [7–12] find out that the construc-
tion of the graph G = (V ,E) is the key to label propaga-
tion. The vertex set V  represents the data points, while the 

Abstract Semi-supervised image classification is widely 
applied in various pattern recognition tasks. Label propa-
gation, which is a graph-based semi-supervised learning 
method, is very popular in solving the semi-supervised 
image classification problem. The most important step in 
label propagation is graph construction. To improve the 
quality of the graph, we consider the nonnegative con-
straint and the noise estimation, which is based on the 
least-squares regression (LSR). A novel graph construc-
tion method named as nonnegative least-squares regres-
sion (NLSR) is proposed in this paper. The nonnegative 
constraint is considered to eliminate subtractive combina-
tions of coefficients and improve the sparsity of the graph. 
We consider both small Gaussian noise and sparse cor-
rupted noise to improve the robustness of the NLSR. The 
experimental result shows that the nonnegative constraint is 
very significant in the NLSR. Weighted version of NLSR 
(WNLSR) is proposed to further eliminate ‘bridge’ edges. 
Local and global consistency (LGC) is considered as the 
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weight W of the edge set E represents the similarity among 
data points. The task of graph construction is to explore the 
weighted edge connection strategy. After the graph being 
constructed, we can propagate the label information to all 
unlabeled samples by the graph-based semi-supervised 
learning method.

Famous graph study methods include: (1) neighbor 
based methods, e.g., k neighbor (KNN) [6], epsilon ball 
neighbor ε(-ll) [7]. (2) Local structure based methods, e.g., 
locally linear embedding (LLE) [8]. (3) Self-representation 
based methods, e.g., sparse subspace clustering (SSC) 
[9], low-rank representation (LRR) [10–12], least-squares 
regression (LSR) [13], smooth representation clustering 
(SMR) [14].

Assume the dataset is denoted as X = [x1, x2, . . . , xn]

∈ R
d×n the objective function of the self-representation-

based graph construction method is

where Z = [z1, z2, . . . , zn] ∈ Rn×n is a square matrix, and 
I is a unit matrix. Zij denotes the similarity between xi 
and xj . Self-representation-based graph construction 
assumes that each sample can be represented by a linear 
combination of all samples, then, the similarity between 
any two samples can be measured by the linear coef-
ficients. Besides, a symmetry procedure is defined as 
[7–12]

From (1), many researchers consider about various regu-
larization terms of Z. Sparse subspace clustering (SSC) [9] 
aims to represent a sample by using the least other samples. 
The mathematic problem of SSC graph is

where ||Z||1 denotes the l1 norm of Z and ||Z||1 =
∑

n

i=1

∑

n

j
|Zij|.

Low-rank representation (LRR) [10–12] requires the 
representation matrix has a low rank structure. The math-
ematical expression of LLR graph is

where ||Z||∗ denotes the nuclear norm of Z that is, the sum 
of all eigenvalues of Z.

Least-squares regression (LSR) [13] graph solve the fol-
lowing mathematical problem

(1)X = XZ , s.t. Z �= I ,

W = (|Z| + |ZT |)/2.

(2)argmin
Z

||Z||1. s.t.X = XZ , diag(Z) = 0,

(3)argmin
Z

||Z||∗, s.t.X = XZ ,

(4)argmin
Z

||Z||F. s.t.X = XZ , diag(Z) = 0,

where ||Z||F denotes the Frobenius norm of Z and 

||Z||F = (
∑n

i=1

∑n
j=1 Z

2
ij)

1
2 .

If the data is noisy, SSC, LRR and LSR graph con-
struction methods usually adopt the following strategy: 
extend the constraint X = XZ to X = XZ + S, where 
S ∈ Rd×n is the noise matrix. Three regularization terms 
(||S||1, ||S||2,1, ||S||F) are utilized for S in SSC, LRR, 
LSR, respectively. ||S||2,1 is the l2,1 norm of S that is, 

||S||2,1 =
∑n

j=1

√

∑n
i=1 S

2
ij . Different regularization terms 

for S mean different estimations of noise distribution, e.g., 

||S||F assumes the noise distribution which is approximated 
to Gaussian noise (others can be seen in references [9, 11, 
12] in detail). For example, LSR considers the norm ||S||F 
and its mathematical expression is

where �1 > 0 is the tuned parameter.
Smooth representation clustering (SMR) [14] extends 

the LSR graph, which requires the smoothness of the rep-
resentation, i.e., if xi → xj then zi → zj, Its mathematical 
expression can be described as

where L the Laplace matrix of the graph W, L = D−W  , 
W the KNN graph, D is the diagonal matrix with 
Dii =

∑n
j=1Wij. Notice that SMR graph relies on the KNN 

graph W. Thus, the quality of the SMR graph will decrease 
if the quality of the KNN graph W is bad.

The construction of the graph is the key issue in 
graph-based semi-supervised learning. Thus, the main 
object is to explore to construct a graph that can reflect 
the true structure of the data. Many researches have 
reported that elimination of edges between different cat-
egories is the greatest challenge in constructing graphs. 
An ideal graph should have no connected edges between 
different categories. Those undesired wrongly con-
nected edges among different categories are often called 
‘bridge’ edges. The graph will improve many properties 
such as sparsity and block property without the bridge 
edges. Note that SSC graph and LRR graph try to elimi-
nate ‘bridge’ edges by leading the graph to be sparse and 
low rank, respectively. In this paper, our main goal is to 
propose a novel method to eliminate ‘bridge’ edges more 
effectively.

Among all these self-representation-based graph con-
struction methods, we observe that the LSR graph is the 
most effective method to achieve the self-representation 

(5)argmin
Z

||X − XZ||2F + �1||Z||2F, s.t. diag(Z) = 0,

(6)argmin
Z

||X − XZ||2F + �1trace(ZLZ
T ),
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idea because LSR has the weakest regularization on Z, 
while the main disadvantage is its poor ability to eliminate 
the bridge edges, as seen in Fig. 6a. Inspired by this obser-
vation, we adopt the objective function of LSR to achieve 
the self-representation idea and combine the attempt to 
enhance the ability of eliminating ‘bridge’ edges. Based 
on LSR, we propose the nonnegative least-squares regres-
sion (NLSR) by adding nonnegative constraint on Z and 
removing the constraint diag(Z) = 0. The nonnegative 
constraint on Z can avoid the offset of positive and nega-
tive coefficients. And the nonnegative constraint can also 
improve the sparsity of Z to some extent. The constraint 
diag(Z) = 0 s removed to further increase the sparsity of Z 
In addition, the NLSR also considers the sparse corrupted 
noise E to handle noisy data and improve the robustness of 
the model. Furthermore, we propose the weighted version 
of NLSR method to further eliminate ‘bridge’ edges.

The rest of the paper is organized as follows: In 
Sect. 2, we introduce the proposed nonnegative least-
squares regression (NLSR) method. In Sect. 3, we intro-
duce the weighted NLSR method. Experimental results 
are presented in Sect. 4. Finally, conclusions are drawn in 
Sect. 5.

2  Nonnegative least‑squares regression

Assume that X = [x1, x2, . . . , xn] ∈ Rd×n denotes a dataset 
with n sample points, and each sample point has d dimen-
sions. Considering the nonnegative constraint and neglect-
ing the diagonal constraint based on the LSR graph, then 
(5) can be rewritten as

where Z = [z1, z2, . . . , zn] ∈ Rn×n is the representation 
matrix, and �1 > 0 is the tuned parameter.

Assume that the noise estimation is S then X = XZ + S . 
Thus, the noise regularization term in (7) is actually ||S||F . 
Moreover, we assume that there is sparse corrupted noise 
E n the data, then X = XZ + S + E. Nonnegative least-
squares regression (NLSR) considers the sparse corrupted 
noise E and the normal Gaussian noise S, and its mathe-
matical expression is

where �1, �2 > 0 are the tuned parameters.

(7)
argZ min||X − XZ||2F + �1||Z||2F,

s.t.Z ≥ 0,

(8)
argmin

Z

||S| |2F + �1||Z||2F + �2||E||1,

s.t.X = XZ + S + E, Z ≥ 0,

The mathematical expression (8) can be written in 
further

We can solve problem (9) by optimizing variables 
separately, which means that we can optimize a cer-
tain parameter by fixing other parameters. Using Inex-
act ALM [15] method, we can separate variables of the 
objective function by an auxiliary variable C, then prob-
lem (9) turns to

The Lagrange function of problem (10) is

where Γ ∈ Rn×n is the Lagrange multiplier, and µ ≥ 0 is 
punishment parameter.

Fix other variables and solve Z by

then

Fix other variables and solve C, and we have

Fix other variables to solve E

where Θβ(x) = sign(x)max(|x| − β, 0) is the soft-threshold 
operator [16], and

(9)

argmin
Z

1

2
||X − XZ − E||2F +

�1

2
||Z||2F + �2||E||1.

s.t.Z ≥ 0.

(10)

argmin
Z

1

2
||X − XZ − E||2F +

�1

2
||Z||2F + �2||E||1.

s.t.C = Z , C ≥ 0,

(11)

L =
1

2
||X − XZ − E||2

F
+

�1

2
||Z||2

F
+ �2||E||1

+ < Γ ,C − Z > +
µ

2
(C − Z)2,

(12)
∂L

∂Z
= −X

T (X − XZ − E)+ �1Z − Γ + µ(Z − C) = 0

(13)Z =
(

(

X
T
X + �1I

)

µ
+ I

)−1
[

X
T
X − X

T
E + Γ

µ
+ C

]

.

(14)
∂L

∂C
= Γ + µ(C − Z) = 0, C ≥ 0,

(15)C = max

(

0, Z +
Γ

µ

)

.

(16)

E = argmin
E

�2||E||1 +
1

2
||E − (X − XZ)||2F = Θ�2

(X − XZ),

(17)sign(x) =







1,

0,

−1,

x > 0

x = 0

other.
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The whole algorithm is described in algorithm 1.

3  Weighted NLSR

Different categories of data should not exist in connected 
edges in a good graph, and wrongly connected edges are 
always named as ‘bridge’ edges. In order to further eliminate 
‘bridge’ edges in the graph, we propose weighted NLSR by 
considering a weight multiplier. Weighted NLSR (WNLSR) 
is the problem

where ||K||2F = constant > 0 is to avoid the trivial solution 
K = 0. If Kii = 0, Z will be a unit matrix which is also a 
trivial solution.

One can define the K by some other graphs such as k 
neighbor (KNN) [6] graph. In fact, the most important 
issue in graph constructing is eliminating ‘bridge’ edges. 
However, if the graph contains ‘bridge’ edges, K will also 
help Zto emerge ‘bridge’ edges.

K can also be regarded as a variable and can be 
solved automatically. Notice that constraints for K 
should be added to avoid the trivial solution K = 0 . 
Consider the instance that the dataset is denoted as 
X = [x1, x2, x3, x4] ∈ Rd×4. There are two classes and 
k = 2. x1, x2 belong to the first class, while x3, x4 belong 
to the second class.

The ideal Z could be

(18)
argZ min

1

2
||X − XZ − E||2F +

�
′
1

2
||K · Z||2F + �||E||1,

s.t.Z ≥ 0, ||K||2F = constant, Kii �= 0,

Each element denotes an edge between a pair of points. 
The weight matrix K is designed to help wipe off wrong 
connections in Z. Concretely, K should punish two points, 
which do not belong to the same class, and the correspond-
ing value in Z should be 0. Thus, the ideal K (set Kii = 1 to 
avoid trivial solution) could be

Pivotal elements in K are displayed in green. These 
green elements can avoid emerging ‘bridge’ edges, which 
are the wrongly connected edges among different catego-
ries. However, the value of K does not depend on X but 
depends on Z. In the process of solving this problem, Z 
always has wrong connections. For example, Z could be

Wrong connections in Z are displayed in purple. When 
minimizing ||K · Z||2F, Z will lead K be

Z =









1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1









.

K =









1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1









.

Z =









1 1 0 1

1 1 0 0

1 0 1 1

0 0 1 1









.
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On the other hand, purple elements in K have no con-
straints on the wrong connections (displayed in purple) in 
Z. Wrong connections in Z cannot be eliminated by mini-
mizing ||K · Z||2F. Thus, update K automatically cannot help 
improve the quality of Z.

For this problem, we start from the original problem (9). 
Formula (9) is a special case of (18) when K = 1n×n, where 
1n×n is the n × n matrix in which all elements equal one. In 
this instance, i.e.,

Next, we define K by giving the variable p ≥ 0

where I is the unit matrix, A is a random matrix contain-
ing values drawn from the standard uniform distribution 
on the open interval (0,1). (A ≥ p) is a binary matrix that 
(A ≥ p)ij = 1 if Aij ≥ p and (A ≥ p)ij = 0 otherwise. Notice 
that Kii = 1 is required to avoid the trivial solution Z = I.

Edge connections among samples can be divided into 
right connections and wrong connections. Our goal is to 
construct the ideal K, which only has constraints on the 
wrong connections, i.e., elements in K equal to 1 when the 
corresponding connections are wrong connections, while 
elements in K equal to 0 when the corresponding con-
nections are right connections. If p = 0, then K = 1n×n. 
Constraints on the right connections may reduce the abil-
ity of self-representation, while constraints on the wrong 

K =









1 0

0 1

0 1

1 0

1 1

1 0

1 1 0 1









.

K =









1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1









.

(19)K = max[I , (A ≥ p)],

connections are always concealed due to the coefficients of 
the right connections are always nonzero.

If p becomes a little larger, then a few elements in K 
will equal zero. The constraints on some right connec-
tions are removed, and the self-representation ability can 
be improved. Though constraints on some wrong connec-
tions are also removed, we still have constraints on the 
other wrong connections, which gain more attention due to 
constraints on the right connections become less. Thus, a 
proper p will not only improve the self-representation abil-
ity of the model, but also improve the constraint ability on 
a certain number of wrong connections.

Define K by (19), we can solve problem (18) by optimiz-
ing variables separately. Using Inexact ALM [15] method, 
we can separate variables of the objective function by an 
auxiliary variable C, then problem (18) turns to

The Lagrange function of problem (20) is

where Γ ∊ Rn×n is the Lagrange multiplier, and μ ≥ 0 is 
punishment parameter.

Fix other variables and solve Z by

then

(20)
argmin

Z

1

2
||X − XZ − E||2F +

�
′
1

2
||K · C||2F + �2||E1,

s.t.C = Z , C ≥ 0.

(21)
L =

1

2
||X − XZ − E||2

F
+

�
′
1

2
||K · C||2

F

+ �2||E||1 + �Γ ,C − Z� +
µ

2
(C − Z)2,

(22)
∂L

∂Z
= −XT (X − XZ − E)− Γ + µ(Z − C) = 0,

(23)
Z =

(

XTX

µ
+ I

)−1[
XTX − XTE + Γ

µ
+ C

]

.

Fig. 1  Sample images from 
YaleB dataset. Each row 
belongs to the same person
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Fix other variables and solve C, and we have

Then

We can update C by

where ./ and· are element-wise division and multiplication, 
respectively.

(24)
∂L

∂Cij

= �
′
1K

2
ij · Cij + Γij + µ(C − Z)ij = 0,Cij ≥ 0.

(25)Cij =
Zij −

Γij

µ
(

�
′
1
µ
K2
ij + 1

) .

(26)C =
[

1./

(

�
′
1

µ
K · K + 1

)]

·
(

Z −
Γ

µ

)

,

Fix other variables to solve E

where Θβ(x) = sign(x)max(|x| − β, 0) is the soft-threshold 
operator [16], and

The whole algorithm is described in algorithm 2.

(27)C = max(0,C).

(28)

E = argmin
E

�2||E||1 +
1

2
||E − (X − XZ)||2

F
= Θ�2

(X − XZ),

(29)sign(x) =







1,

0,

−1,

x > 0

x = 0

other.

Fig. 2  Sample images from Hopkins155 datasets. Different colors indicate different motions
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4  Experiments

In this section, the semi-supervised learning task is used to 
evaluate the performance of the proposed NLSR method. 
We measure different graph construction algorithms by the 
classification error of the unlabeled data. Datasets include 
face dataset and motion dataset (as seen in Figs. 1, 2).

Table 1  Average classification error rates of different graph construction methods on ORL dataset

Bold means best performance, while italics means second best performance

NL LSR SMR SCC Knn NLSR WNLSR2 (p = 0.75) WNLSR2 (p = 0.3) WNLSR1 (p = 0.75) WNLSR1 (p = 0.3)

3 68.2 51.0 17.2 53.1 11.0 9.85 9.92 9.98 11.0

5 63.5 48.7 10.7 49.1 7.40 6.44 6.63 7.05 7.37

7 50.1 41.3 6.66 47.6 4.00 3.71 3.75 4.02 3.83

9 42.5 42.5 3.50 46.5 3.00 2.52 3.30 3.12 2.90

Table 2  Average classification error rates of different graph construction methods on Yale dataset

Values in bold indicate the best performance

Values in italic indicate the second best performance

NL LSR SMR SCC Knn NLSR WNLSR2 (p = 0.75) WNLSR2 (p = 0.3) WNLSR1 (p = 0.75) WNLSR1 (p = 0.3)

3 85.7 84.5 68.7 69.6 38.9 39.7 39.2 39.3 39.0

5 86.1 86.2 72.0 65.9 30.8 31.8 31.1 31.1 30.8

7 84.3 86.5 72.0 67.6 25.6 24.7 24.9 26.0 25.9

8 84.4 86.5 71.6 66.3 23.3 23.3 23.6 23.9 23.7

10 87.6 88.0 73.6 73.3 23.3 22.9 23.5 23.9 23.1

Table 3  Average classification error rates of different graph construction methods on Extend YaleB dataset

Values in bold indicate the best performance

Values in italic indicate the second best performance

NL LSR SMR SCC Knn NLSR WNLSR2 (p = 0.75) WNLSR2 (p = 0.3) WNLSR1 (p = 0.75) WNLSR1 (p = 0.3)

3 65.5 63.6 12.8 28.2 10.4 6.26 7.41 7.32 7.97

5 66.7 58.7 10.1 25.5 7.76 4.87 5.84 5.59 6.22

10 51.4 43.7 6.00 21.8 5.29 3.83 4.25 4.33 4.48

15 43.5 38.0 4.51 19.9 3.89 2.81 3.20 3.26 3.37

20 48.8 37.8 4.45 19.0 3.65 2.85 3.15 3.21 3.35

30 37.6 28.2 2.67 16.8 2.38 1.95 2.13 2.00 2.24

50 30.2 24.5 2.07 15.5 1.57 1.28 1.41 1.47 1.69

Table 4  Average classification error rates of different graph construction methods on Hopkins155 datasets (100 datasets)

Values in bold indicate the best performance

Values in italic indicate the second best performance

NL LSR SMR SCC Knn NLSR WNLSR2 (p = 0.75) WNLSR2 (p = 0.3) WNLSR1 (p = 0.75) WNLSR1 (p = 0.3)

3 52.0 53.6 31.6 8.57 4.29 4.35 4.16 4.45 4.19

5 52.4 54.3 27.9 6.32 3.37 3.51 3.04 3.58 3.01

8 52.0 54.6 24.0 4.73 2.78 2.74 2.77 2.76 2.77

10 52.3 53.2 22.2 4.44 2.48 2.53 2.44 2.55 2.43

12 53.2 56.1 21.7 4.21 2.55 2.55 2.46 2.57 2.46

14 53.6 56.1 20.6 3.79 2.29 2.29 2.26 2.29 2.26

Table 5  A finite grid of parameter values

We find the best performance of our algorithm on this finite grid. The 
bold fonts indicate the adopted parameter values

Parameter Value

λ1 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 1, 10

λ2 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 1, 10
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4.1  Datasets

ORL dataset The ORL dataset1 consists of 10 different 
images for each of 40 distinct subjects, which are taken at 
different times, under different lighting condition, with dif-
ferent facial expression and with/without glasses. Each 
image is 32 × 32 pixels with 256 gray levels per pixel. The 
first ten people are selected for constructing the data matrix 
for experiment.

Yale dataset The Yale dataset2 contains 165 grayscale 
images of 15 individuals. There are 11 images per subject, 
one per different facial expression or configuration. Each 
image is also represented by a 1024-dimensional vector in 
image space.

Extended YaleB dataset [17] This database is challeng-
ing due to large noise and corruptions. It contains 2414 
frontal face images of 38 subjects. Each subject has 64 face 
images. We choose the cropped images of first five individ-
uals, and resize them to 32 × 32 pixels. The data are pro-
jected into a 10 × 6-dimensional subspace by PCA.

Hopkins155 motion dataset [18] This dataset is a motion 
segmentation dataset, consisting of 156 video sequences 
with extracted feature points and their tracks across frames. 
It contains board sequences, traffic sequences and pedes-
trian movement sequences. The first 100 two-motion video 
sequences are selected for constructing the data matrix 
for experiment. We use PCA to project the data into a 
12-dimensional subspace.

4.2  Semi‑supervised image classification

To demonstrate how the classification performance can be 
improved by our method, we compare the proposed algo-
rithm with four algorithms: KNN graph [6], SSC graph 
[9], LSR graph [13] and SMR graph [14]. The parameters 
are set according to corresponding references and the best 

1 http://www.uk.research.att.com/facedatabase.html.
2 http://cvc.yale.edu/projects/yalefaces/yalefaces.html.

parameters are determined by the finite grid [19]. We do 
not consider the LRR graph as the compared algorithm 
because it always performs poorly in the experiments.

The parameter �′1 in WNLSR is always set as �′1 = �1 , 
which is denoted as WNLSR1. In addition, we can set 
�
′
1 = �1(1− p+ p/n) by considering the number of ele-

ments in K · Z, which is denoted as WNLSR2. Besides, λ1 is 
set as 0.01 throughout the whole paper.

We choose the famous local and global consistency (LGC) 
[5] method as the semi-supervised learning method to com-
pare the performance of different graph construction methods. 
Assume that dataset X = [x1,x2,…,xn] ∊ Rd×n, and the first l 
samples x1,x2,…, xl are labeled. The label L comes from k 
categories, L = [1,2,…,k]. Y = [YlYu]

T ∈ Rn×k is the label 
matrix. If sample xi is labeled by j, j ∈ {1, 2 . . . , k}, then 
Yij = 1, otherwise Yij = 0. The optimization function of LGC is

where β ∈ [0,+∞) balances the local adaptation term and 
the overall smooth term of the objective function. Generally, 
we set β = 0.99. F = [FlFu]

T ∈ Rn×k is the desired clas-
sification function while L̃W is the standard Laplacian graph of 
W and L̃W = D− 1

2 (D−W)D− 1
2 .

Datasets include three face datasets (ORL, Yale, and 
YaleB) and 100 small datasets in Hopkins155. The 
face datasets need to be normalized first (xi = xi/||xi||2, 
i = 1, 2, . . . n). There are 103 datasets used in the semi-
supervised learning experiments in total. For each data 
set, the evaluations are conducted with different labeled 
samples NL. For the fixed labeled samples NL, we run the 
experiments as follows:

1. Construct graphs by different methods.
2. Randomly choose NL points as labeled data from the 

data set as the collection for experiment.
3. Apply the LGC method to learn the label propagation.
4. Calculate the classification error on all unlabeled data.
5. Repeat the above process for 20 times.

(30)argmin
F

tr{ FT L̃WF + β(F − Y)T (F − Y)} ,

1:ORL dataset; 2:Yale dataset; 3: Extended YaleB dataset.
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4.3  Experimental results

Experimental results are shown in Tables 1, 2, 3, and 4. 
From these results, we can observe that: (1) in most cases, 
NLSR consistently achieves good performance compared 

with LSR while WNLSR performs good. (2) SSC also per-
forms well on ORL, Yale and extended YaleB face data-
sets. (3) Though LSR and SMR always have good per-
formance on unsupervised learning experiments [13, 14], 
they perform poorly on 100 small datasets of Hopkins155. 

Fig. 4  Error rates vs p (WNLSR) on different datasets with NL = 5. y-axis denotes the error rate (ER %) of the method, x-axis denotes the vari-
able p. a, b ORL dataset. c, d Yale dataset. e, f Extend YaleB dataset. g, h Hopkins155 datasets
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Meanwhile, KNN and NLSR graph perform well on these 
datasets. The results show that NLSR achieved good per-
formance based on the nonnegative constraint and the 
design of the error estimation.   

4.4  Algorithm analysis

Parameter selection is important for algorithms. We 
use the finite grid [19] method to select parameters for 
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NLSR, as seen in Table 5. Notice that parameters λ1, 
λ2 control the nonnegative constraint term and the error 
design term in NLSR problem [as seen in (8) and (7)]. 

When λ2 = +∞, we set E = 0, then formula (8) turns 
to formula (7), i.e., only the nonnegative constraint is 
considered.

Figure 3 shows the influence of parameter λ2 when λ1 
is fixed. We can find that a suitable λ2 will help reduce the 
classification error rate, but the reduction extent is limited. 
Notice that when λ2 is small, the performance of the model 
will be affected. It suggests that the key role in NLSR 
model is the nonnegative constraint, and it also shows that 
the error estimation is more difficult.

In our experiments, we simply set p = 0.3 and p = 0.75 
for WNLSR. Figure 4 shows the average performance (100 
running times) of various p on different datasets when 
NL = 5. For simplicity, we set λ1 = 0.01 and �2 = +∞

Since the proper p is different in different datasets, it is 
important to find a way to estimate it. We can estimate p as 
follows:

Table 6  The mean sparseness of the representation coefficient Z 
obtained by different methods on different datasets

The sparsity value tends to one when Z becomes more sparse. Z of 
Knn is the original Knn graph before symmetrization

Values in bold indicate the best performance

Values in italic indicate the second best performance

LSR SMR SSC Knn NLSR

Hopkins155 0.30 0.31 0.85 0.89 0.81

Yale 0.29 0.51 0.82 0.85 0.98

YaleB 0.42 0.45 0.91 0.90 0.89

ORL 0.38 0.50 0.90 0.82 0.92

(a) LSR (b) SMR

(c) SCC

(e) (f) 

(d) Knn
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Fig. 6  Graphs by different graph construction methods on ORL dataset. Values of graph are normalized and they varies from [0,1], the diagonal 
of the graph is also set to 0 to display
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1. Give a semi-supervised problem.
2. Randomly select one labeled sample in each class as 

the testing samples, and regard them as unlabeled sam-
ples in graph learning.

3. Give a random matrix and compute the predict error of 
testing samples with different p.

4. Repeat the whole procedure 100 times for the ORL 
dataset, the Yale dataset and the YaleB dataset, while 
compute the average predict error of 100 Hopkins155 
datasets.

Figure 5 shows the average predicted error rates (100 
running times) of testing samples with various p on dif-
ferent datasets when NL = 5. We can observe that the 

estimated proper p in Fig. 5 is roughly consistent with the 
proper p in Fig. 4 on different datasets.

Now we analyze the sparsity of the representation coef-
ficient matrix Z. The sparsity of a matrix Z can be defined 
as follows:

The sparsity(Zi) of the vector Zi can be calculated as [20] 

where Zij is the jth element of Zi.
The sparsest possible vector will have a sparseness 

of one, whereas a vector with all elements equal should 
have a sparseness of zero. As seen in Table 6, the repre-
sentation coefficient matrices Z of KNN and SSC have 
high sparsity, while the sparsity of representation coeffi-
cient matrices of LSR and SMR have low sparsity. NLSR 
can obtain more sparse representation coefficient matrix 
than LSR.

The sparsity of the representation coefficient matrix 
Z will directly lead to the sparsity of the corresponding 
weight matrix W. By observing experimental results and 
the sparsity of graphs, we can find that the sparsity of 
the graph has an important influence on semi-supervised 
learning. In fact, the most important factor of the good 
performance of NLSR is that the nonnegative constraint 

(31)sparsity(Z) =
∑n

i=1 sparsity(Zi)

n
.

(32)sparsity(Zi) =

√
n−

∑

∣

∣Zij
∣

∣

/√

∑

Z2
ij

√
n− 1

,
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Fig. 7  Graphs by WNLSR1 with different p on the ORL dataset. If p = 0, WNLSR1 becomes NLSR method. Values of graph are normalized and 
they varies from [0,1], the diagonal of the graph is also set to 0 to display

Table 7  The average running time of different graph construction 
methods

ORL (s) Yale (s) YaleB (s) Hopkins155 
(s)

LSR 7.0 × 10−4 2.3 × 10−3 8.6 × 10−3 8.7 × 10−3

SMR 9.8 × 10−3 3.4 × 10−2 1.2 × 10−1 1.1 × 10−1

Knn 2.0 × 10−3 5.5 × 10−3 3.9 × 10−3 3.8 × 10−3

SCC 8.7 × 10−1 2.7 1.4 3.9

NLSR 3.7 × 10−1 1.1 6.2 15

Weight 
NLSR

3.8 × 10−1 1.2 6.3 30
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can help improve the sparsity of the LSR graph. The 
sparsity, of course, is not the only factor in determining 
the classification performance. For example, KNN and 
SCC graphs have the highest sparsity on the Hopkins155 
and the YaleB datasets, but their classification perfor-
mances are not so good as NLSR. Figure 6 shows graphs 
obtained by different graph construction methods on the 
ORL dataset (40 categories). We can find that NSLR is 
more “clean” than LSR graph, which means that NLSR 
has less incorrect edges between points than LSR. 
Notice that SCC graph also has not too many incorrect 
edges between points. However, the aggregation degree 
of each category of SCC graph is lower than LSR graph 
or NLSR graph. Figure 7 shows the difference between 
NLSR (p = 0) and WNLSR (p = 0.3). We magnify par-
tial area of the graph obtained by WNLSR. We can find 
out that WNLSR can eliminate more ‘bridge’ edges than 
NLSR.

In Table 7, we report the average running time of dif-
ferent graph construction methods. The LSR graph and 
the Knn graph usually have short running time. The SCC 
graph, the NLSR graph and the WNLSR graph, which 
always perform well, usually have long running time. 
The NLSR graph and the WNLSR graph run faster than 
the SCC graph on ORL, Yale and YaleB datasets, and run 
slower than the SCC graph on Hopkins155 datasets. The 
computer configuration is Intel(R) Core(TM) i5-3470 CPU 
@ 3.20 GHz, 4G of memory, Microsoft Windows7 system, 
and Matlab 2010b software.

The major computational burden of NLSR and WNLSR 
(both are iterative algorithms) lie in the computation of the 
inverse of matrix (formula 13), with a computational com-
plexity of O(n3).

5  Conclusion and future work

Inspired by the idea of the self-representation of data, 
we propose a novel graph construction method named as 
NLSR graph based on the LSR graph. The biggest advan-
tage of LSR is that it can directly adopt the self-representa-
tion idea. However, its poor ability to eliminate the wrong 
edges among samples limits its application. Based on LSR, 
we emphasize the nonnegative constraint on Z without 
increasing other regularizations on Z. In this way, NLSR 
not only maintains the inherent advantage of LSR, but also 
improves its ability to eliminate the bridge edges. In fact, 
the nonnegative constraint can avoid the offset of positive 
and negative coefficients, and improve the sparsity of the 
constructed graph. Weighted version of NLSR (WNLSR) is 
also proposed to further eliminate ‘bridge’ edges by con-
structing the proper weighted multiplier. At last, we rede-
sign the noise estimation by taking both the small Gaussian 

noise and the sparse corrupted noise into consideration 
at the same time. Image classification experiments have 
showed encouraging results of the NLSR algorithm when 
compared with the state-of-the-art algorithms in semi-
supervised learning, especially in improving LSR method.

The construction of the graph is the key issue in graph-
based semi-supervised learning. Thus, constructing a good 
graph is a meaningful task. In constructing a graph, we can 
focus on the following issue: a pair of samples are close 
in distance space but belong to different classes. The edges 
between those sample pairs are usually ‘bridge’ edges. We 
can study how to pull those samples far away from each 
other by considering Mahalanobis space [21–23]. It is also 
a meaningful task to develop more efficient algorithms for 
NLSR and WNLSR in future work.
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