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1 Introduction

The current growth and tremendous proliferation of mobile 
devices have paved the way for capturing a variety of 
multimedia contents. Mobile devices have become a shar-
ing platform for diversified photos and videos about the 
activities in the daily life. Due to the diversity of interests, 
users of mobile devices always upload numbers of videos 
to the cloud server for their personalized social activities. 
There is an urgent need to automatically analyze and tag 
these personalized mobile videos for effective storage and 
management.

An efficient mobile video analyzing system solves the 
problem of individual activity annotation by predicting 
and classifying the activity classes of each person, which 
is to make it easy to search for interesting activities and 
actions. Traditional works mainly focus on face or person 
annotation for photos and videos. However, the tagging 
of complex behaviors or activities is also critical for con-
tent search and browsing for mobile videos. The increase 
of mobile videos shared on the internet and the growth of 
mobile devices motivate us to conduct a detailed research 
for automatic activity annotation for mobile videos.

Analyzing human activities from videos has been a chal-
lenging task in the past few years. Most of the traditional 
vision-based activity recognition works have been focusing 
on single-person activities. However, videos recorded by 
mobile devices often involve in realistic scenes of human 
activities, which contain multiple, inter-related actions at 
the same time, and the analysis of a single individual can-
not yield reliable results. The context information inside 
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these mobile videos provides lots of auxiliary informa-
tion for the analysis of human activities. As illustrated in 
Fig. 1 a girl recorded a video that two of her friends were 
queueing to buy something. To annotate the persons inside 
the video with correct labels, we need not only their own 
appearance features, but also the context information that 
a group of persons were standing in a line facing the same 
direction. In addition, the disturbance that two persons 
were passing by needs to be carefully excluded. The analy-
sis of these kinds of mobile videos in real-world scenario 
faces great challenges.

To this end, many researchers turn to analyze a group 
of persons’ behaviors with interactions among each other 
within the videos. They refer this problem as “group activ-
ity” or “collective activity” recognition problem [6, 28]. 
Researchers have explored the group–person interactions 
and person–person interaction context for better classify-
ing the activities. Based on our observation, the analysis 
of group activities from mobile videos often involves not 
only the individual action, the context information shared 
between persons, but also the concurrence of the activity 
durations. However, few of former works have made use of 
these kinds of information.

In this paper, we propose a framework for automatic 
activity annotation for mobile video. A novel concurrent 
group activity annotation approach is proposed in this 
paper. The activity duration time, the individual action 
feature and the context information that encodes person 
interactions are modeled jointly. Moreover, the interactions 
between persons belonging to different group activities are 
also considered in. By introducing carefully designed con-
text descriptors, our approach provides strong cues that the 
context information like trajectory interactions and person 

relationships improves the group activity classification per-
formance significantly.

The main contributions are summarized as below:

•	 We propose a context structure learning framework to 
model multiple context cues of person interactions for 
group activity annotation.

•	 Two context models including individual trajectories 
context model along with the activity duration model 
are proposed to improve the performance of group 
activity annotation.

•	 Through encoding interactions among persons with dif-
ferent activities, our approach can handle the situation 
with multiple group activities co-existing in the videos.

•	 The rest of this paper is organized as follows. Section 2 
introduces the related work with activity recognition. 
The automatic group activity annotation framework is 
introduced in Sect. 3. The unified discriminative model 
of group activity recognition is proposed in Sect. 4. 
Section 5 introduces the model learning techniques. 
Experimental results are reported in Sect. 6. Finally, 
Sect. 7 concludes our work.

2  Related work

Since activity classification is the core problem for mobile 
video tagging, here we review the state-of-the-arts for activ-
ity recognition and collective activity recognition. Human 
visual recognition using context information has received 
much attention recently in computer vision community. 
Researchers have done many works on exploiting con-
text information between scenes and objects [23], objects 
and objects [10, 16, 24], or human and objects [29]. These 
works focused on recognizing single person actions while 
neglecting the interactions that might exist in the scene.

Compared to single person actions, recognizing col-
lective activities is a more complicated problem. It often 
involves the identification of multiple human actions and 
recognition of human interactions with each other. Ryoo 
and Aggarwal [25] modeled the pairwise interactions 
between people to recognize complex human activities. 
Gupta et al. [12] recognized group activities in sport events 
by human roles in the scene through learning a storyline 
model with AND–OR graphs. Choi et al. [7, 8] designed 
a “crowd context” descriptor to describe the activities per-
formed by individuals in a crowd. Lan et al. [18, 20] used 
“action context” to describe the influence caused by other 
actions near a focal person and then explored the group–
person interaction and person–person interaction context 
with a high-level latent discriminative model. Choi et al. 
[6, 28] also formulated the collectivity recognition and 
multiple target tracking into a unified framework to acquire 

Fig. 1  An illustration of tagging the persons’ activity for a mobile 
video. By successfully classifying that the two girls are queueing, we 
need not only the context information that some people are standing 
behind them in a line, but also excluding the disturbance that two per-
sons are walking by. Source image comes from the Collective Activ-
ity Dataset [7]
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the performance gain. These works have achieved some 
improvements for recognizing group activities. Antic and 
Ommer [2] used multiple-instance learning to model the 
group activities. However, most of the previous approaches 
have made a strong hypothesis for activity modeling, i.e., 
there exists a dominating collective activity in the scene, 
interactions for persons with different activity labels are not 
taken into consideration. Therefore, this assumption often 
leads to miss-classification for scene with multiple activi-
ties co-occurring.

Choi et al. [8] recognized scene with multiple activities 
with an MRF model. They set one predominant activity in a 
scene and considered individuals with other activity labels 
as anomalous. Amer et al. [1] detected and localized a wide 
range of activities in an open scene, they used a three-
layered AND–OR graph to jointly model group activities, 
individual actions and the objects. This approach noticed 
the co-occurrence of multiple activities, but did not explore 
the interactions existing between persons belonging to dif-
ferent activities. Li et al. [21] modeled group interactions 
in social clutter. Zhu et al. [31] defined context information 
between activities to improve the activity recognition rate. 
They used a structural model to integrate motion features 
and context features in and between activities. The defini-
tion of activity was based on one person interacting with 
the surroundings and could hardly solve the problem of 
collective activity recognition with many persons inter-
acting with each other. To the best of our knowledge, few 
approaches has been done to explore the interactions exist-
ing between different activities. Our approach is dedicated 
to study the influence caused by different activities co-
occurring in a scene. We refer this influence as inter-class 
context information and model it in a unified framework to 
improve the performance of collective activity recognition.

Context information is often modeled by a graph model 
[14, 15, 29, 30]. Additionally, structural framework also 
is employed for its strong ability to model low-level fea-
tures and middle-level features jointly [10, 19, 20, 31]. The 
inference method on a graph model or a structural model 
often needs to search through the graphical structure to find 
the one that maximizes the potential function. This kind 
of solution is often very time consuming. Desai et al. [10] 
discarded the false detection results using a greedy search 
strategy to solve the inference problem. The same strategy 
was adopted to infer human activities in videos in [31]. 
These approaches could reduce the computational com-
plexity of the inference problems while maintaining a con-
siderable result.

3  Overview

As illustrated in Fig. 2, we propose a framework for effi-
ciently activity annotation and sharing for mobile videos. 
The recorded mobile videos are uploaded to the multimedia 
server. Then with people detection and tracking, we extract 
appearance features and contextual information for activity 
annotation. Finally, the processed videos are uploaded to 
video web site for content browsing and sharing. With the 
annotated results, users are able to manage and share these 
videos based on their personal preference more easily.

Since there are already many great works for people 
detection, here we use the DPM detector [11] for human 
localization. Group activity classification is the main step 
for video tagging, for which we need to tag each per-
son inside the video a belonged activity label based on 
their individual action features and context information. 
Besides, for concurrent group activities, we additionally 

Fig. 2  Illustration of the framework of activity annotation and sharing for mobile videos
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take into consideration of the influence among persons 
with different group activity labels. Figure 3 shows an 
example of a mobile video with concurrent group activi-
ties. Take for example those persons in Fig. 3a, we may 
easily know that the woman is standing and the man is 
walking by analyzing their low-level visual features. But 
once taking into account the context and interaction infor-
mation among them, it is clear that the woman is “wait-
ing” while the man is “crossing” the street. Therefore, con-
text modeling is necessary for recognizing these kinds of 
activities.

4  Concurrent group activity modeling

In this section, we detail the context modeling procedure 
of our approach for efficient group activity classification. 
Our approach enables analyzing human group activities 
by looking at context information extracted from all the 
persons and their relationships in a video sequence. Given 
a video sequence, the human detection and tracking pro-
cedure ensure that the persons’ bounding boxes and their 
local trajectories can be used directly. To evaluate the 
effectiveness of different context information extracted 
from collective activities, we establish multiple con-
text models to encode the individual appearance feature, 
the activity duration time and the trajectory interactions 
among persons within the same scene. Whenever there are 
multiple group activities co-existing in a scene, our con-
text descriptors show the ability of jointly modeling all the 
interactions among all the persons with variety of group 
activity labels.

4.1  Problem formulation

Detecting people in the video frames is task specific, here 
we assume that the images have been preprocessed and 
the locations of the persons have been found. We focus on 
the task of tagging each individual with an activity label. 
Assuming there are C classes of collective activities in 
the scene, where the label yi ∈ {1, 2, . . . ,C} denotes the 
activity class of a person. Let Y = {yi : i = 1, 2, . . . ,N} 
be the label set for all N persons in a scene and 
T = {ti : i = 1, 2, . . . ,N} stand for the auxiliary time dura-
tion set, where ti is the group activity duration for the ith 
person. The task is then converted into finding the optimal 
hypothesis label set (Y, T) for all the N persons in the scene. 
We extract features X = {xi : i = 1, 2, . . . ,N} from the 
scene for all the persons. The low-level feature xi represents 
different action hi within the group activity label yi.

We use S(X, Y, T) to represent the compatibility of the 
low-level feature X, the group activity label set Y and the 
duration time set T. Since S(X, Y, T) is modeled by multiple 
context information, here we introduce each context model 
in detail.

4.2  Activity–duration potential

We start from modeling the activity–duration of the person 
for a video clip. To measure the compatibility between the 
group activity label yi and its duration ti for the ith person, 
we define the activity–duration potential wT

t �t(yi, ti) as

where wT
t  stands for the parameter needs to be learnt and 

�t means our defined feature descriptor that encodes the 
activity–duration relationship. I(ti) is the indicator for the 
ith person that with activity label yi. For the scene with N 
possible group activities, I(ti) is a N × 1 vector with ith ele-
ment marked as 1 when the activity label of ti is yi and all 
the other elements are set to be 0.

4.3  Unary action–activity potential

This potential function models the compatibility between 
the ith person’s action and its activity label. Features that 
encode the action information are represented by the indi-
vidual’s pose and average velocity. For each activity label, 
based on the average HOG [9] feature, we train a 8-class 
SVM classifier which contains eight pose categories: right, 
front-right, front, front-left, left, back-left, back and back-
right. Then the unary action feature is obtained as

where K = 8 is the number of pose categories within a 
activity, smax,i is the maximum pose classification score 

(1)wT
t �t(yi, di) = tiw

T
t I(ti)

(2)xi = (smax,i, posi, vi)

Fig. 3  An illustration of concurrent group activities. a Person inter-
actions with each other with a mobile video; b the focal person’s 
activity is influenced by the region context; c interactions between 
trajectories serve as context information (color figure online)
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with the activity label yi, v is the average velocity of the 
person. posi is the pose indicator for the ith person in the 
subregion, which generates a K × 1 vector with one for the 
(k)th element and zeros otherwise. The (k)th element rep-
resents for the pose label that smax,i belongs to. Then the 
action–activity potential is parameterized as:

where wT
u  represents the parameter needs to be learnt and 

�u is our defined feature descriptor that encodes the action–
activity relationship together with the activity duration ti. 
Here the index "u" means “unary”.

The activity of one particular person is influenced heav-
ily by the context information. As shown in Fig. 4, for an 
open scenario, persons often have varied activity labels, 
our intuition is that persons closer to each other may have 
strong interactions with each other, even if they have var-
ied activity labels. We model the context information for all 
the persons within the scene, including those with different 
activity labels. In the following, we introduce two different 
context potentials for context information modeling.

4.4  Region context potential

This potential measures the compatibility between the 
group activity label of the ith person and its relationships 
with the surrounding persons within the context regions. 
The context information that capture relationships of the 
persons within a region is defined as region context feature. 
Given the ith person as the focal person, the defined context 
subregions are shown in Fig. 3b, the feature is computed 
from persons inside the context subregions. For each con-
text subregion, we divide the subregion into D small bins. 
Each bin may cover many persons at the same time. For all 
the persons within the same bin, the dth bin context feature 
is defined as

where sub = 1, 2 represents the subregions, d = 1, . . . ,D 
means the dth bin in that subregion. Hence, the region con-
text feature encodes the pose score Spose,j = [s1j, . . . , sKj] , 
pose histogram 

∑

j∈Nsub(d)
posj and the velocity score 

max(vj) for the jth person falling in the dth bin. fNsub
(d) 

finds the person who shows the most influence in the dth bin. 
For all D bins within a subregion, the region context feature 
is defined as D context descriptor concatenating together:

Supposing that the context region contains two subregions, 
the region context feature is defined as

(3)wT
u�u(xi, yi, ti) = tiw

T
u · xi

(4)

fNsub
(d) =



 max
j∈Nsub(d)

(Spose,j),
�

j∈Nsub(d)

posj, max
j∈Nsub(d)

(vj)





(5)fNsub
= (fNsub

(1), . . . , fNsub
(D))

where the sub-context region N1(·) and N2(·) are circles of 
0.5h and 2h (h is the average height of the focal person i), 
respectively. Then the potential is parameterized as:

here wT
c  is the parameter needs to be learn and �c is our 

defined region context descriptor that combines the activity 
duration ti and the region context feature fci for the ith focal 
person.

4.5  Trajectory context potential

This potential models the compatibility between the ith 
and jth person for their spatial and temporal interactions. 
These interactions are presented by pairwise interaction 
features extracted from related trajectories. As illustrated in 
Fig. 3c, for a video sequence, when the context region is 
extended in time, the activity of the focal person (the red 
trajectory) is influenced by the persons nearby (the blue 
and green trajectories). For two persons i and j (the red and 
the pink trajectories in Fig. 3c), we use dynamic time warp-
ing (DTW [3]) to measure the distance between the two tra-
jectories due to their different start points or time durations. 
Together with the pose information, the pairwise interac-
tion feature is defined as:

where distij is the DTW distance between two trajectories. 
It is further divided into three bins defined as connected, 
near and far as illustrated in Fig. 4. Connected, near and 

(6)
fci =[fN1

, fN2
]

= [fN1
(1), . . . , fN1

(D), fN2
(1), . . . , fN2

(D)]

(7)wT
c �c(yi, ti) = tiw

T
c · fci

(8)fii,j = [bin(distij), pose(i, j)]

Fig. 4  A demonstration of how people influence each other within 
a certain distance. The focal person is influenced by the trajectories 
within a distance. Here we divide the trajectory distance into three 
bins: connected, near, far
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far are defined based on the statistical spatial relationship 
of the different trajectories. For the two trajectories, their 
relationship is set to be connected when the distances of 
their most frames are within 0.5h; the relationship is set to 
be near when distances are between 0.5h− h, others are set 
to be far. Here h is also the focal person height.

pose(i, j) is defined as max(�u(xi),�u(xj)). Then the tra-
jectory context potential is parameterized as:

where (ti ∩ tj) means the overlapped time duration.
It is common for a scene to contain two or more group 

activities simultaneously. Hence, analyzing the interactions 
existing among persons with different group activity labels 
has the potential of bringing further performance gain. 
Here for the designed context potentials, we allow the con-
text descriptors to encode the interactions of persons with 
different group activity labels (yi �= yj).

For the context potentials, all the parameters need to be 
tune are listed as follows.

Similar to [6, 7, 10], in this paper, instead of using 
pixel values after camera calibration or using the pixel 
values directly, our context descriptors encode these 
pixel measures to statistical features to model the inter-
actions and relative spatial relationships among persons 
within the same scene. All these context descriptors are 
encoded into the context potentials for structural model 
learning, which further guarantees the robustness of these 
descriptors. In this way, our feature encoding method is 
not strictly scene related and can guarantee certain per-
formance with varied training/testing data or similar 
scenes (Table 1).

By combining the above-mentioned four potentials, we 
can measure the compatibility between the label set (Y,T) 
and all the N persons in a video sequence as:

(9)wT
s �s(xi, xj, yi, yj, ti, tj) = (ti ∩ tj)w

T
s · fii,j

(10)

S(X, Y , T) =ωT�(X, Y , T)

=
∑

i

wT
t �t(·)+

∑

i

wT
u�u(·)

+
∑

i

wT
c �c(·)+

∑

i,j

wT
s �s(·)

Here all the individual and context information are mod-
eled jointly within one framework.

5  Structural model learning

In this section, we describe in detail the optimization of the 
proposed discriminative model from two aspects: model 
learning and inference.

5.1  Inference

The inference procedure is to find the best label set Y∗ 
together with time duration T∗ for each labeled activity 
with an input video X. The task is to solve the following 
optimization problem:

The optimum label vectors Y∗ and T∗ are obtained by a 
greed search approach as [31]. Although this greedy search 
algorithm cannot guarantee a globally optimum solution, in 
practice it works well to find good solutions.

Firstly, we initialize the label vector Y to be 0 for all per-
sons. Then we greedily select the ith single person that, when 
labeled as a particular activity class a, increases the score 
S by the largest amount. After that we have yi = a, and its 
belonged duration ti is acquired by the tracing procedure of 
the ith person. The ith person is added to the labeled set I. We 

(11)(Y , T)∗ = argmax
Y ,T

S(X, Y , T)

Table 1  Detailed parameters for context descriptors

Description Parameter Value/heuristics

Focal person’s height h Pixels in the image

Pose category number K 8

Region context subarea N1(·) 0.5h

radius (Fig. 3b) N2(·) 0.5h− 2h

Region context section 
number

for each subarea (Fig. 3b) D 8

trajectory relationship Near: distance < 0.5h

Connected, near, far bin(distij) Connected: 
0.5h < distance < h

(Eq. 8) (Fig. 4) Far: otherwise
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repeat this procedure until all the N persons are re-assigned 
with new labels. The whole computation can be very effi-
cient by tracking the potential gain of adding label assign 
incrementally. Algorithm 1 describes the inference process. 

5.2  Model learning

In the procedure of model learning, given a set of N train-
ing samples {(Xi, Yi, Ti)} (i = 1, 2, . . . ,N), the goal is to 
estimate the optimal parameters of duration model wt, 
unary action model wu, the region context model wc and the 
trajectory context model ws that tend to produce the cor-
rect group activity label set Y and T for a new test video X. 
Equation 10 can be rewritten as follows under the structural 
SVM framework:

where w is the model parameter we need to learn and our 
inference procedure solves Eq. 11.

Assuming that we have the training video Xi and their 
corresponding label set Yi, we want to train a model w that, 
with a new video Xj, tends to produce the true label vectors 
Y∗
j ≃ Yj and T∗

j ≃ Tj. The objective function can be con-
verted to a regularized learning problem as follows:

(12)S(X, Y) = wT�(X , Y)

w =









wt

wu

wc

ws









, �(X, Y) =









�

i �t(xi, yi)
�

i �u(xi, yi)
�

i �c(yi)
�

i,j �s(xi, xj, yi, yj)









(13)

arg min
w,ξi≥0

wTw+ C
∑

i

ξi

s.t. ∀i wT��(Xi, Yi,Hi, Ti,HTi)

≥ l(Yi,Hi, Ti,HTi)− ξi

where ��(·) = �(Xi, Yi, Ti)−�(Xi,Hi,HTi), l(·) is the 
loss function to measure the difference between ground 
truth and the hypothetical activity label Hi and duration 
HTi , and C and ξi are the penalty factor and the slack vari-
able, respectively.

The problem in Eq. 13 can be converted to an uncon-
strained convex optimization problem [10, 27]. It can itera-
tively search for the increasingly tight quadratic upper and 
lower cutting planes of the objective function until the 
gap between the two bounds reaches certain thresholds. 
We adopt the cutting plane optimization algorithm [10] to 
solve our problem and set all weights related to background 
activities to be zeros.

6  Experiments

6.1  Group activity classification for mobile videos

There are some standard benchmarks such as the KTH 
[26] and Weizmann [4] for human action understand-
ing. However, the videos in those datasets were recorded 
in controlled settings and seldom involved in complex 
human group activities. In this paper, to evaluate the per-
formance of the proposed approach, especially for the 
group activity classification algorithm, we carry out our 
experiments on Collective Activity Dataset [7]. This data-
set contains 44 video clips acquired using low-resolution 
handled cameras, which serve as perfect simulation for 
videos shot by mobile devices. All the people in every 
10th frame of the videos are assigned with one of the fol-
lowing collective activity labels: waiting, queuing, walk-
ing, and talking, together with one of the eight pose cat-
egories: right, front-right, front, front-left, left, back-left, 
back and back-right.

To compare our model with the state-of-the-art 
approaches, we count the activity labels assigned for each 
person in every 10th frame and measure the performance by 
the classification accuracy. 33 video sequences are randomly 
selected to train the model and the rest are used as the testing 
set. We repeat the process ten times and report the average 
results.

For the Collective Activity Dataset, more than 31 % of 
the labeled images contain two or more collective activi-
ties in the scene. Hence, the interactions existing among 
persons with different group activity labels provide impor-
tant cues for activity annotation. However, most exist-
ing approaches ignored this kind of information. In this 
paper, we consider the situation with multiple group activi-
ties co-existing. In the experiments, we will analyze the 

Algorithm 1 The Greedy Forward Search Inference
Input:

A test image with N total persons.
Output:

The optimal re-assigned label vector Y ∗ and T ∗.
1: Initialization:

I = ∅, S = 0
∆(i, a) = ωT

t Ψt(·) + ωT
u Ψu(·) + ωT

c Ψc(·) + ωT
s Ψs(·)

2: Repeat:
(i, a)opt = argmax(i,a)/∈I ∆(i, a);
I = (i, a)opt ∩ I;
S = S +∆(i, a)opt;
Y ∗ = Y (I), T ∗ = T (Y ∗);
∆(i, a) = ∆(i, a) + ωT

s Ψs(xi, xi∗ , a, a
∗)

3: Until ∆(i, a)opt < 0 or all N persons are labeled.
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interactions between the co-occurring activities by testing 
different context information.

6.1.1  Evaluation of different feature fusion strategies

We first evaluate the performance of several feature 
fusion strategies. The confusion matrices of the group 
activity classification accuracy are shown in Fig. 5. 
We can see that the approach without context informa-
tion yields the worst result as shown in Fig. 5a. By add-
ing the “action context” [18], the performance shown 
in (b) improves more than 30 % on average precision, 
which indicates the positive effect of the context infor-
mation. Figure 5c presents the further improvement 
with our region context. From Fig. 5d, f, we can see the 

importance of pose(i, j) in Eq. 9. Our trajectory context 
potential in (f) also outperforms the spatial context [10] 
in Fig. 5e. Compared with “our approach without mul-
tiple activities” in Fig. 5g, the classification accuracy 
in Fig. 5h benefits from modeling the inter-group inter-
actions especially when multiple activities co-exist in 
a scene. Our final model “our approach with multiple 
activities” in Fig. 5h archives the best result over all the 
approaches. For “our approach without multiple activi-
ties”, we only consider the influence existing among per-
sons with the same activity label and ignore the influence 
caused by other persons for all the potentials designed 
in this paper. On the other hand, for “our approach with 
multiple activities”, we bring in the influence that may 
exist among all the persons in the scene. The context 
descriptors encode the interactions among all the persons 
with different activity labels.

6.1.2  Comparison with state-of-the-arts

The comparison results with state-of-the-arts are presented 
in Table 2. The “ActionContext model” [18] used the action 
context feature. The “RandomForest model” [8] used a ran-
dom forest classifier to model the spatial–temporal infor-
mation. The “Latent Model” [20] used a hierarchical latent 
model to formulate the group activity. The “Our approach 
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Fig. 5  Confusion matrices for activity classification accuracy with 
different feature fusion strategies: a duration and unary feature; b 
duration, unary feature and action context in [18]; c duration, unary 
feature and region context; d duration, unary feature and trajectory 
context with pose(i, j) in Eq. 9; e duration, unary feature and spatial 

context in [10]; f duration, unary feature and trajectory context; g 
duration, unary feature, region and trajectory context without multi-
ple activities co-existing; h duration, unary feature, region and trajec-
tory context with multiple activities co-existing

Table 2  Comparison results with state-of-the-arts

Best performance result is in bold

Approaches Average accuracy (%)

ActionContext model [18] 68.2

RandomForest model [8] 70.9

Latent model [20] 79.1

Our approach without multiple activities 82.6

Person–person interaction model [5] 83.3

Our approach (with multiple activities) 89.9
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without multiple activities” stands for the model described 
in Fig. 5g. Without considering the interactions across dif-
ferent activities, its result already outperforms most of 
the approaches, which suggests the effectiveness of our 
designed context descriptors. By considering the situation 
of multiple group activities co-existing, our approach out-
performs current state-of-the-art [5] by 6 % (Table 2).

6.2  Examples of activity annotation

The group activity classification provides us relatively 
accurate classification results. Based on these classification 
results, we can then tag each person a belonged activity 
label, thus helping to classify the videos. Figure 6 shows 
some intuitional results, in which persons are labeled by 
their group activities. These results can help the users to 
automatically categorize to different classes for effective 
content management. The visualized activity recognition 

results can also be easily delivered to a variety of client ter-
minals by the server for information sharing.

6.3  Group activity classification for surveillance videos

Though we design our approach for classifying group activ-
ities in mobile videos, we also test its generalization abil-
ity for surveillance videos. We carry out our experiment in 

Fig. 6  Illustration of group activity tagging results. Persons are labeled with different group activity labels and their belonging groups
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Fig. 7  Confusion matrices for activity classification accuracy in UCLA Courtyard dataset. a Using only unary action–activity potential; 
b combing unary and time duration potential; c combing unary, time duration and region context potential; d combining all the potentials

Table 3  Average classification accuracy for different context infor-
mation fusion strategies in UCLA Courtyard dataset

Approaches Overall (%) Mean per-class (%)

Unary potential 39.7 38.8

+Activity duration 46.8 45.3

+Region context 52.5 52.8

+Trajectory context 56.5 58.7
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UCLA Courtyard Dataset [1], which consists of high-reso-
lution videos that recorded multiple co-occurring activities 
which took place in a courtyard of the UCLA campus. The 
person together with their belonged activities are labeled 
in each frame. Each group activity consists of individual 
actions, pose and the orientations of the group participants. 
The annotated group activities include: walking-together 
(walking), standing-in-line (standing), discussing-in-group 
(talking), sitting-together (sitting), waiting-in-group (wait-
ing) and guided-tour (touring).

Since few of the previous works evaluated the group 
activity classification models on this dataset, here we 
test our approach on this dataset to evaluate the influence 
caused by different context information. We extract the 
labeled images every 30th frame and extract the trajecto-
ries for each person. We then split the data by 50–50 % into 
training and testing sets. We also report both the overall 
and mean per-class accuracies computed from all the test-
ing images.

Figure 7 shows the confusion matrixes of activity clas-
sification with different context potentials implementation. 
We can see that the results show similar properties com-
pared to the results for mobile videos in Sect. 6.1. Without 
the context information, we can only derive poor results 
as shown in Fig. 7a. “walking” and “touring” are hard to 
be separated from each other without the help of context 
information. From Fig. 7b–d, we can observe that the clas-
sification performance is improved steadily with the care-
fully designed context potentials involved. Table 3 shows 
the corresponding average classification results for the 
UCLA dataset, which also shows that the modeling of con-
text information can bring remarkable performance gain for 
these kinds of group activity classification problems.

The approach in [1] modeled the group activity, primi-
tive action, and object labels together with the AND–OR 
graph model. It used much more label information than 
our approach to obtain an average accuracy higher than 
65 %. However, our experiments carried on the UCLA 
Courtyard Dataset predict the group activity labels with-
out the help of any other auxiliary information such as 
action label or object label. When there is no auxiliary 
information, our approach shows better classification 
result than the AND–OR model on Collective Activity 
Dataset (84.8 % for first five class average classification 
accuracy in Table 2 in [1]).

7  Conclusion

In this paper, we present a framework for automatic activ-
ity classification and annotation for mobile videos. A 
novel concurrent group activity classification approach 

is proposed for efficient mobile video content analysis. 
By formulating the activity time durations, the individual 
action features and the trajectory interactions jointly, our 
concurrent activity model exploits the effective context 
information, especially for the situations of multiple activi-
ties co-existing scenes. Experimental and comparison 
results on public mobile video dataset demonstrate that 
jointly modeling the individual appearance feature and 
the activity context features can significantly improve the 
recognition accuracy of collective activities. The efficient 
activity annotation approach for the mobile videos helps 
the users to easily browse and search their favorite content 
on the internet.
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