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(low-SONE), root mean square and loudness-flux. Moreo-
ver, the shrinkage methods apply in logistic regression per-
form better for classification than most of other methods. 
We get an average accuracy rate of 83.8 %.
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arousal dimension classification · Statistical learning · 
Shrinkage method

1 Introduction

Due to the explosion of vast and easily accessible digi-
tal music libraries, automatic recognition of emotion in 
musical audio has gained increasing attention in recently 
years. As a result, it is necessary to find an effective way to 
retrieve or classify them. But music, as a complex acoustic 
and temporal structure, is rich in content and expression, 
which can be highly subjective and hard to quantify [1]. 
There have much progress in machine learning method for 
estimating human emotional response to music [2], while 
little improvement has been made in terms of compact or 
interpret features. In general, most of the classification or 
regression methods use as many acoustic feature domains 
(e.g., loudness, timbre, rhythm) as possible, and perform 
dimensionality reduction techniques such as principal com-
ponent analysis (PCA) or Karhunen–Loeve (K–L) trans-
form, in order to remove the correlation among features. 
However, these methods may produce an increase in pre-
diction accuracy; the model interpretability is decreased. 
Hence, most of the previous works do not explain the rela-
tionship between emotional associations and acoustic fea-
tures clearly.

In our work we focus on the feature selection and feature 
learning in arousal dimension, which is based on Thayer’s 
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two-dimensional (energy and stress) model of mood [3]. 
The energy dimension corresponds to the arousal, and the 
stress corresponds to valence. Arousal is a physiologi-
cal and psychological state of being awake or reactive to 
stimuli (music signal in our experiment). Thayer [3] clas-
sifies emotions in terms of high arousal (arousing emo-
tion) or low arousal (calming emotion). Arousing emotions 
contain: joy, happiness, anger, frustration, hate, excitement 
and so on. Calming emotions can be expressed by content-
ment, sadness, confusion, shame, guilt and satisfaction. Lu 
[4] extracts intensity features, which are composed of the 
spectrum sum of the signal and the spectrum distribution 
in each sub-band. Then, the intensity features are used to 
classify the low arousal (Contentment and Depression) and 
high arousal (Exuberance and Anxious/Frantic) music. In 
his experiment, K–L transform is applied to remove the 
correlation among these raw features. Hence, we attend 
to make an assumption that the arousal dimension only 
depends on the intensity features in our model just as what 
Lu has done. In this paper, we will extract several inten-
sity features without PCA or K–L transform being applied 
to raw features. Then various ordinary statistical learning 
methods such as logistic regression and tree-based meth-
ods are applied to build the training model and learn the 
important features. What is more, the shrinkage methods 
[5] are applied to select the important feature, and classify 
the music signals. We also compare other feature selection 
methods to learning the relationship between the emotions 
and features. To our best knowledge, at the time of writ-
ing there are no other shrinkage methods work that have 
applied in music emotion classification.

The rest of this paper is organized as follows. A review 
of literature on feature selection and feature learning in 
music emotion recognition is given in Sect. 2. Next, we 
extract the intensity features to characterize the arousal 
dimension music clip in Sect. 3. Then feature selec-
tion algorithms are applied to select important features in 
Sect. 4. Meanwhile, we learn features in various statistical 
models, and select important features by using shrinkage 
methods in Sect. 5. Several classification algorithms are 
applied to classify the feature vector. The result and anal-
ysis are reported in Sect. 6. Finally, the conclusions and 
future work are given in Sect. 7.

2  Related work

2.1  Feature selection

The general approaches to implement emotion classifica-
tion or regression of audio are using supervised machine to 
train statistical models based on the different level of music 
features. But, these existing features may not be efficient 

for classification. Moreover, irrelevant or redundant fea-
tures may lead to inaccurate conclusion. Hence feature 
selection is an important topic in machine learning.

There are three main approaches to select important fea-
tures: filter, wrapper and dimension reduction. Filter meth-
ods select features use a model-independent heuristic such 
as Regressional Relief-F (RReliefF) [6], information gain 
evaluator and Correlation-based Feature Selection (CFS) 
[7]. Wrapper methods invoke the target learning algorithm 
to evaluate a feature set, such as: Forward Selection (FS), 
Backward Elimination (BE) and Hybrid forward and back-
ward stepwise Selection (HS). Dimension reduction meth-
ods involve projecting the p predictors into a M-dimen-
sional subspace, where M < p.

Miyoshi [8] uses correlation coefficients between fea-
tures and music mood scores to select important features. 
He believes that the features with high correlation against 
the mood scores are suitable for detecting the mood score. 
Meanwhile, Yang [9] believes that RReliefF takes feature 
interrelationship into account, it is better than other statis-
tical measures such as correlation coefficient in informa-
tion gaining. He adopts RReliefF for each arousal-valence 
data space, and ranks the features by importance from 114 
dimensions of features. Then, the top-18 and top-15 fea-
tures are selected as the best features dimensions. He even-
tually comes to conclusion that top features for arousal 
are related to spectral shape and pitch. The top features 
for valence are more closely related to rhythmic (beat and 
tempo) and pitch. Although he gets a slight improvement 
from using RReliefF, it may be subject to Subset Selection 
Bias (SSB) [10]. In Arefin Huq’s [11] work, feature selec-
tion algorithms including filter methods (RReliefF and 
CFS) and wrapper methods (biased FS and biased BE) are 
applied to select a subset of the 160 features to improve 
regression performance. He discovers that above feature 
selection algorithms do not improve the performance in his 
system due to the phenomenon of SSB, which make train 
model tend to over-fitting. Our propose methods (shrinkage 
methods) provide a good solution of over-fitting. Saari [12] 
presents a framework for obtaining realistic performance 
estimate of wrapper selection by taking into account the 
simplicity and generalizability of the classification mod-
els. Only four features, which contain mode major and key 
clarity, combine with dynamical, rhythmical, and struc-
tural features are selected by using backward elimination 
algorithm. And, the best classification method is k-nearest 
neighbors. Ruxanda [13] labels each song into eight emo-
tional categories according to Hevner’s emotional terms, 
and performs six dimensionality reduction algorithms: 
maximum likelihood common factor analysis (FA), infor-
mation gain (infoGain) evaluator algorithm, genetic-search 
method (GA), K–N–Match algorithm (KNM), PCA and 
pivot-based algorithm. Then, he gets the best result by 
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using infoGain evaluator algorithm with six dimensions of 
feature: perceptual tempo, rhythm motion, spectral-flux, 
roughness, articulation and pitch density. Schmidt [14] 
searches the most informative features for mood detection 
by investigating multiple sets of acoustic features, includ-
ing psychoacoustic [mel-cepstrum (MFCC) and statistical 
frequency spectrum descriptors] and music-theoretic (esti-
mated pitch chroma). The support machine regression with 
MFCCs feature set resulting in the highest performance for 
time varying musical emotion regression.

The 1-norm shrinkage (regularization/penalty) meth-
ods can also perform feature selection, as it shrinks the 
coefficient estimates towards zero. However, there are no 
relative works in music emotion recognition area. It is 
likely because 1-norm shrinkage method is younger than 
other feature selection methods. One of the most popu-
lar shrinkage methods is Least Absolute Shrinkage and 
Selection Operator (Lasso), which is first introduced by 
Tibshirani [15]. In signal processing area, it is also called 
basis pursuit (BP), which finds signal representations in 
over-complete dictionaries [16]. Hence it can also be used 
to learn the feature representation. The shrinkage can 
delete noise features and select important features on one 
hand; on the other hand, it has effect of controlling the 
variances of estimated coefficients, and hence prevents 
overfitting and possibly improves the fitted model’s pre-
diction accuracy.

2.2  Feature learning

Feature learning is receiving much attention when deep 
learning make great success in machine learning field. 
Deep learning algorithm tries to learn simple features in the 
lower layers and more complex ones in the higher layers. 
Smith’s [17] work reveals that learning a sparse representa-
tion of auditory signals is similar in early audio process-
ing in mammals. Sparse learning not only can be used to 
select important features, but also provide insight into 
direct relationship between emotion and acoustic content. 
Schmidt [18, 19] use deep belief networks (DBNs) [20] 
with three hidden layers to learn emotion-based acoustic 

representations directly from magnitude spectra. Their 
results reveal that the second layer of DBN performs better 
than other layers in terms of mean error.

3  Feature extraction

In this section, several intensity features are extracted. A 
total of eight dimension features will be analyzed in our 
study.

3.1  Pre‑processing

Each music clip is first transformed into a uniform format: 
22,050 Hz, 16 bits, mono channel, PCM signals and the 
volume is normalized to a standard value.

3.2  Intensity

Intensity is defined as sound power per unit area, and can 
be estimated using the amplitude of the music signals. 
We extract eight features (detail in Table 1): mean of total 
loudness (loudness-Mean), standard deviation of loudness 
(loudness-Std), low specific loudness sensation coefficients 
(low-SONE) rate, mean of root mean square (RMS), low 
energy rate (low-energy), the flux of loudness (loudness-
flux), centroid of loudness (loudness-centroid) and flatness 
of loudness (loudness-flatness). The extraction of loudness 
feature and SONE are based on MA toolbox [21], which 
includes an outer ear model [22], the Bark critical-band 
[23] rate scale, and spectral masking. Therefore, it better 
reflects human loudness sensation. Then, MIR toolbox [24] 
is applied to extract low-energy feature.

In order to study the relationship between feature and 
arousal response, we apply Box and whisker plots to dis-
play variation in samples of a statistical population without 
making any assumptions. Figure 1 shows the distribution 
of loudness-Mean which is spilt by the binary arousal vari-
able. It displays a very pronounced relationship between 
the predictor loudness-Mean and the response arousal. The 
high arousal has a larger median value of loudness-Mean 

Table 1  Feature description Index Feature Description

1 Loudness-Mean Mean of total loudness

2 Loudness-Std Standard deviation of loudness

3 Low-SONE The ratio of first ten critical-band loudness to total loudness

4 RMS Average energy of a signal

5 Low-energy Low energy rate

6 Loudness-flux Amount of loudness change

7 Loudness-centroid Center of mass of the loudness

8 Loudness-flatness Smooth or spiky of loudness
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and inter-quartile-range (IQR) than the low arousal. While, 
Fig. 2 shows the left box overlaps most with the right box. 
Hence, the loudness-centroid may provide little informa-
tion for arousal response.

3.3  Feature representation of a music clip

A total of eight dimension features are used to represent the 
music clip. Since, the characteristics and dynamics of these 
feature components are very different. Therefore, a normal-
ization process is performed on each feature component to 
make their scale similar.

4  Feature selection algorithm

In this section, we introduce several feature selection algo-
rithms including filter methods and wrapper methods in 
great detail.

4.1  Filter methods

We investigate several filter methods: Relief-F, CFS, Corre-
lation filters (Pearson’s correlation, Spearman’s correlation) 
and Entropy-based filters (information gain, gain-ratio).

Relief-F ranks each feature based on how well it sepa-
rates points of varying output values. The distance function 
can be Manhattan distance or Euclidean distance. Šikonja 
[6] finds that there is little significant difference in the esti-
mations using these two metrics. But, Relief-F is sensitive 
to the number of nearest neighbors and sample size, which 
make hard to tune the parameters.

CFS attempts to discover sets of features that have low 
correlation with each other but high correlation with the 
output. It calculates a matrix of feature-class and feature–
feature correlations from the training data and then searches 
the feature subset space using a best first search. Hall [7] 
compares CFS to Relief-F, and the result shows that CFS 
performs more feature selection than Relief-F does.

Correlation filters are very similar to CFS, but simpler. 
The Pearson’s correlation coefficient and Spearman’s cor-
relation coefficient are used to measure the statistical 
dependence between predictor and response.

Entropy-based filters evaluate the worth of feature based 
on the information gain. In tree-based model, Gini index 
or cross-entropy is typically used to evaluate the quality 
of a particular split. We will learn the important feature by 
using entropy-based filters in next section.

4.2  Wrapper methods

In our work, three wrapper methods will be investigated: 
forward stepwise selection, backward stepwise selection 
and hybrid forward and backward stepwise selection.

4.2.1  Forward stepwise selection (FS)

Forward stepwise selection begins with no variables in the 
model, testing the addition of each variable using a chosen 
model comparison criterion, adding the variable (if any) 
that improves the model the most, and repeating this pro-
cess until none improves the model.

Fig. 1  Boxplot of loudness-mean as a function of arousal

Fig. 2  Boxplot of loudness-centroid as a function of arousal
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4.2.2  Backward stepwise selection (BS)

Backward stepwise selection involves starting with all can-
didate variables, testing the deletion of each variable using a 
chosen model comparison criterion, deleting the variable (if 
any) that improves the model the most by being deleted, and 
repeating this process until no further improvement is possible.

4.2.3  Hybrid forward and backward stepwise selection 
(HS)

Hybrid versions of forward and backward stepwise selec-
tion are available, in which variables are added to the 
model sequentially, in analogy to forward selection. How-
ever, after adding each new variable, the method may also 
remove any variables that no longer provide an improve-
ment in the model fit.

5  Feature learning in various model

In this section, we learn the features in various statistical 
models, including ordinary model—logistic regression 
model, tree-based model and our proposed model—logistic 
regression, support vector machine and linear discriminant 
analysis by using shrinkage method.

In K-class classification problems, we are given a set of 
training data (x1, c1) (x2, c2), …(xn, cn), where the input x is 
a p-vector xi = (xi1, xi2, …xip)

T, the output ci is qualitative 
and assumes values in a finite set {1, 2, …, K}. We wish 
to find a classification rule from the training data, so that 
when given a new input x, we can assign a class label k 
from {1, 2, …, K} to it.

5.1  Logistic regression (LR)

The logistic regression model arises from the desire to 
model the posterior probabilities of the K classes via lin-
ear functions in predictors x, while at the same they time 
ensuring that sum to one and remain in [0, 1]. The model 
has the form

where

LR models are usually fit by maximum likelihood, using 
the conditional likelihood of c given x. The log-likelihood 
for N observations is

(1)p(ci|x) =
efi(x)

∑K
k=1 e

fk(x)
,

(2)fk(x) = bk0 +
p∑

j=1

bkjxj, k = 1, 2, . . . ,K

where β is the estimated parameter. It is convenient to code 
the two class c via a 0/1 response yi. The log-likelihood can 
be written as

To maximize the log-likelihood, we set its derivatives to 
zero

Equation (5) is a smooth convex optimization problem, 
and can be solved by a wide variety of methods, such as 
gradient descent, steepest descent and Newton method.

LR models can be used to understand the role of input 
variables in explaining the outcome. It uses z-statistic to 
perform the hypothesis tests on the coefficients. A large 
(absolute) value of the z-statistic indicates evidence against 
the null hypothesis H0: β = 0, where β is the coefficient. 
So, the LR ranks the feature by the value of z-statistic: the 
larger value of the z-statistic, the more important of the fea-
ture is.

5.2  Decision tree

Decision tree builds classification or regression model in 
the form of a tree structure. The tree-based methods are 
simple and useful for interpretation, although they are not 
competitive with the best supervised learning approaches 
[5], such as support vector machine.

For a classification tree, we use Gini index to measure 
the total variance across the K classes. The Gini index is 
defined by

where p̂mk represents the proportion of training observa-
tions in the mth region that are from the kth class.

In order to avoid the overfitting phenomenon, we take ten-
fold cross-validation to determine the optimal level of tree 
complexity. Then the cost complexity pruning is used to 
select a sequence of trees for consideration. Figure 3 shows 
the tree with 5 terminal nodes results in the lowest cross-
validation error rate. In Fig. 4, we start with the loudness-
flux node, and look for the binary distinction which gives 
us most information about the class. The top split assigns 

(3)ℓ(β) =
N∑

i=1

log p(ci|xi;β),

(4)ℓ(β) =
N∑

i=1

{
yiβ

T xi − log(1+ eβ
T xi)

}
.

(5)
∂ℓ(β)

∂β
=

N∑

i=1

xi

(
yi −

exp(βTxi)

1+ exp(βTxi)

)
= 0

(6)G =
K∑

k=1

p̂mk(1− p̂mk),
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observations having loudness-flux <0.11 to the left branch. It 
means that the low arousal music pieces have a lower value 
of loudness-flux than the high arousal pieces have. We then 
take low-SONE to new nodes, and repeat the process until 
some stopping criterion is met. In our decision tree we use 
three features: loudness-flux, low-SONE and low-energy.

5.3  Bagging

When we split the training data into two parts at random 
and fit a decision tree to both halves, the result could be 
quite different. So, it may suffer from high variance. How-
ever, bagging is a general-purpose procedure for reducing 
the variance. The key to bagging is that trees are repeat-
edly fit to bootstrapped subsets of the observations. The 
bagging typically results in improved accuracy over pre-
diction using a single tree, but, it can be difficult to inter-
pret the resulting model. However, there are two measures 
to obtain an overall summary of the importance of each 
feature.

5.3.1  Variable importance measure using mean decrease 
in accuracy

The first measure is based upon the mean decrease of accu-
racy in predictions on the out of bag samples when a given 
variable is excluded from the model. In bth bootstrapped 
classification decision tree, it is measured by classification 
error rate:

Fig. 3  Tenfold cross-validation error rate as a function of the value 
of the cost complexity parameter
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Fig. 4  The pruned tree corresponding to the minimal cross-validation 
error
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Fig. 5  Variable importance plot by using mean decrease in accuracy 
for arousal dimension
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Fig. 6  Variable importance plot by using mean decrease in node 
impurity for arousal dimension
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where p̂mk represents the proportion of training 
observations in the mth region that are from the kth class. 
Finally, we average all classification error rates on the out 
of bag samples.

Figure 5 indicates that among all of the trees consid-
ered in bagging, the level of low-SONE is by far the most 
important variable. What is more, loudness-flux, loudness-
Mean and RMS are almost equally important.

5.3.2  Variable importance measure using mean decrease 
in node impurity

The second measure is the total decrease in node impurities 
from splitting on the variable. In the case of bagging 
classification tree, we add up the total amount that the Gini 
index is decreased by splits over a given predictor, and 
average all trees.

A graphical representation of the variable importance for 
arousal dimension is shown in Fig. 6—the mean decrease 
in Gini index for each feature, relative to the smallest. The 
features with large mean decrease in Gini index are low-
SONE, RMS, loudness-flux and loudness-centroid.

5.4  Shrinkage methods

In order to give an interpretable model, we make hypoth-
esis that the response is dependent on small number of vari-
ables (features). There are various forms of norm shrinkage 
methods: l1-norm (lasso), l2-norm (ridge), l∞-norm, hybrid 
l1, l2-norm and so on. We only focus on lasso and ridge 
penalty in work. Lasso is a regression method that mini-
mizes the sum of squared error loss subject to an l1-norm 
constraint on the coefficients. Because of the nature of this 
constraint it tends to produce some coefficients that are 
exactly zero and hence selects important features and gives 
interpretable models. Moreover, the regularization method 
can prevent over-fitting, while the simple linear models are 
easily leading to. The Lasso estimate is defined by

where N is the sample size, p stands for the number of feature, 
and the parameters (β0, β) indicate estimate coefficients.

The Lasso problem can also be written in the equivalent 
Lagrangian form

(7)Eb = 1−max
k

(p̂mk),

(8)

�β = argmin
β

N�

i=1


yi − β0 −

p�

j=1

xijβj




2

,

subject to

p�

j=1

βj ≤ t

Here, λ ≥ 0 is a complexity parameter that controls 
the amount of shrinkage: the larger value of λ, the greater 
amount of shrinkage.

5.4.1  Regularized logistic regression

Linear regression uses least squares (LS) approach to esti-
mate the unknown linear regression coefficients, while to 
fit the logistic regression model, the maximum likelihood 
is preferred. So the optimization problem of L1-regularized 
logistic regression (L1-LR) can be given by:

where l(β) is defined in Eq. (4). The objective function in 
L1-LR is convex, but not differentiable, so the solution of 
the L1-LR must exist, but it need not to be unique. It can 
be solved by a generalized Lasso method [25], least angle 
regression paths (LARS) algorithm [26] or coordinate 
descent methods [27].

L2-regularized logistic regression (L2-LR) is similar to 
L1-LR, unless the penalized function. The optimization 
problem of L2-regularized logistic regression [28] can be 
given by:

The coefficients are regularized in the same manner as 
in ridge regression. And the objective function in Eq. (11) 
is convex and smooth, so it can not produce sparse model. 
The solution can be solved by repeating the Newton–
Raphson steps.

5.4.2  Regularized support vector machine

The SVM is a powerful classification tool and has a great 
success in many applications. In standard two-class classi-
fication problem, we encode response yi ∊ { −1, 1} rather 
than {0, −1} in LR model. The standard 2-norm SVM 
(L2-SVM) is equivalent to

where {h1(x), …, hp(x)} is a dictionary of basic functions, 
and the loss (1 − yf)+ is hinge loss. The 2-norm penalty 
shrinks the coefficients and helps to stabilize the solution. 

(9)

β̂ = argmin
β





1

2

N�

i=1


yi − β0 −

p�

j=1

xijβj




2

+ �

p�

j=1

βj

(10)θ̂ = argmin
β

ℓ(β)+ ��β�1,

(11)β̂ = argmin ℓ(β)+ ��β�22

(12)

�β = argmin
β0,βj

n�

i=1


1− yi


β0 +

p�

j=1

βjhj(xi)





+

+ ��β�22,
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However, just as ridge regression, it does not produce 
sparse coefficient.

SVM with 1-norm penalty (L1-SVM) can be used to 
select variable [29]. Zhu et al. [30] propose a solution path 
algorithm for the 1-norm SVM. L1-SVM is equivalent to fit 
a model that

In this paper, we assume the model is linearly separable. 
So, we will concentrate on basic representation rather than 
a kernel representation.

Note that 1-norm penalty is not differentiable at zero. 
This important singularity property ensures that the 
L1-SVM is able to delete many noise features by assign-
ing their coefficients to zero [31], so it can select important 
features.

5.4.3  Shrunken centroids regularized discriminant analysis 
(SCRDA)

Linear Discriminant Analysis (LDA) assumes each classes 
have a multivariate normal distribution with common 
covariance matrix ∑(p × p) and different mean vectors 
μk(p × 1). According the Bayes’ theorem

we maximize the posterior probability that the observation 
belongs to a particular group. Therefore, in two class con-
dition, the discriminant function can be given

In order to stabilize the sample covariance estimate and 
solve the singularity problem, some forms of regularization 
are imported on ∑

where 0 < α < 1. And Tibshirani proposes Nearest 
Shrunken Centroids (NSC) [32] as prototypes for each 
class to identify the subsets of the variables that best char-
acterize each class. His basic idea is to shrink the class 
centroids xik =

∑
j∈Ck

xij/nk toward the overall centroid 
xi =

∑
n
j=1xij/n, after normalizing within-class standard 

deviation s2i = (1/(n− K))
∑

K
k=1

∑
j∈Ck

(xij − xik)
2
 for 

each variable. We can write

(13)�β = argmin
β0,βj

n�

i=1


1− yi


β0 +

p�

j=1

βjhj(xi)





+

+ ��β�1

(14)p(Y = k|X = x) = πkfk(x)∑K
l=1 πlfl(x)

(15)δk(x) = xT
−1∑

µk −
1

2
µT
k

−1∑
µk + logπk

(16)
∑̂

= α
∑

+(1− α)Ip

(17)xik = xi + mksidik

where mk =
√
1/nk − 1/n. Then, the soft thresholding 

is applied for each dik to reduce by an amount Δ. This is 
expresses as

if Δ cause dik to shrink to zero for all classes k, then 
the variable i does not contribute to response. SCRDA 
is shrinks the centroids in (15) before calculating the 
discriminant score [33].

6  Experimental evaluation

In this section, the above approaches are evaluated with 
database. Then, we present the performance of mood detec-
tion in arousal dimension and analyze the result.

6.1  Data set

There are several datasets that are designed with the music 
emotion detection. Goto’s RWC database [34] contains 
some original recordings for use in research. But the data-
base has no arousal dimension classification. 1000 songs 
[35] is set up for music emotion recognition research, 
while it is suitable for temporal dynamic regression model. 
SOUNDTRACKS [36] is designed by Tuomas Eerola, 
which including three dimension (valence, energy, tension) 
quantitative value and five basic emotions (anger, fear, 
happy, sad, tender) quantitative value. These data sets are 
not suitable in our experiment.

The perception of emotion may vary not only between 
the genres of music but also across different language, cul-
tural, so, in our research, we focus on detecting the Chinese 
popular music emotion and limiting cultural backgrounds 
of annotators to one cultural group. We collect 200 Chi-
nese popular songs randomly from a popular Commercial 
website. The annotation can be grouped into expert-based 

(18)d
′
ik = sign(dik)(|dik| −�)+

Fig. 7  Music emotion taxonomy in our subjective test
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[4, 34] and subject-based [9, 35, 37]. In our experiment, 
subject-based method is applied, because most of the 
people do not have the experience of professional music 
train. We design several rules to enhance the reliability of 
annotations.

•	 Reduce the emotion variation within the segment. 30-sec-
ond segment starting from the 30th second of a song.

•	 Introduce basic knowledge of music emotion taxonomy 
in our annotation (in Fig. 7).

•	 Listen and annotate the music in a quiet and peaceful 
environment.

•	 Allow the user to skip songs when none of the candidate 
emotion is appropriate to describe the affective content 
of the song.

•	 Design a user-friendly annotation interface (in Fig. 7)
•	 Provide the music cue (in Table 2 last column) that may 

affect the expression of emotion.

Firstly, each song is annotated by ten subjects. Then, 
we remove the songs which have ambiguous emotion 
(the songs do not get the consensus among 50 % people). 
Lastly, 171 pieces of music with the length of 30s are 
selected as the data set.

6.2  Experimental result analysis

In our experiments, we randomly choose 100 pieces of 
music for ten-fold cross-validation, and the left 71 pieces of 
music for testing.

6.2.1  LR model versus L2‑LR

Table 3 shows the coefficient estimates and relative infor-
mation, which are estimated in LR model and L2-LR 
model. The first column stands for the features used in the 
model, the second column denotes the estimated coeffi-
cients, the third column stands for the estimated standard 
error, and the last column stands for the p value.

Hypothesis test is performed in LR model and L2-LR 
model. And a p value which is the estimated probabil-
ity of rejecting the null hypothesis can helps us to deter-
mine the significance of results. A small p value indicates 
that there is an association between the predictor and the 
response. Typical p value cutoffs for rejecting the null 
hypothesis are 5 or 1 %. We can see that the p value of low-
SONE and loudness-flux are less than 5 % in LR model. 
But we cannot infer the other features are less significant, 
because, some relationships exist among these features. 
Notice that the p values in L2-LR model associated with 
low-SONE, RMS and loudness-flux are 0.2, 0.8 and 2.3 %, 
respectively, which indicates that each of these features is 
associated with the probability of arousal response. Low-
SONE and loudness-flux are significant features, which 
are estimated both by LR and L2-LR method, while, the 
importance of RMS can’t be detected in LR model. This is 
because loudness-flux and loudness-Mean are correlated to 
the variable RMS, which can be seen in Table 4. The cor-
relation between loudness-Mean and RMS is 0.87. What is 
more, we can see in the Table 3: the loudness-Mean and 
loudness-flux have a large negative coefficient, which can 
be canceled by a similarly positive coefficient on its corre-
lated RMS. However, LR model can prevent this phenom-
enon by using shrinkage methods. Hence the importance of 
RMS can be detected in L2-LR model while cannot be in 
LR model.

The standard errors estimated in L2-LR model are 
smaller than in LR model—average 0.29 versus average 
0.72. It means that the performance of LR can be improved 

Table 2  Subjective test table

Index Title Emotion Cue

1 ……. A Exuberance √
B Anxious
C Depression
D Contentment

A Timbre
B Rhythm √
C Lyric √
D Background

Table 3  Estimated coefficient 
of the LR model and L2-LR 
model feature

Typical p value cutoffs for rejecting the null hypothesis are 5 or 1 % (in italics)

Feature LR results L2-LR results

Coefficient Standard error Pr(>|z|) Coefficient Standard error Pr(>|z|)

Loudness-Mean −2.25 1.31 0.085 −0.30 0.27 0.27

Loudness-Std 0.88 0.57 0.12 0.055 0.29 0.85

Low-SONE 1.48 0.43 0.0005 0.94 0.30 0.002

RMS 1.44 1.08 0.18 −0.83 0.31 0.008

Low-energy 0.28 0.41 0.50 0.14 0.28 0.61

Loudness-flux −1.66 0.79 0.046 0.14 0.28 0.023

Loudness-centroid 0.29 0.39 0.46 −0.73 0.32 0.92

Loudness-flatness −0.77 0.82 0.35 −0.03 0.30 0.20

Absolute average 1.13 0.72 0.22 0.39 0.29 0.36
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by using shrinkage method. Moreover, the coefficients esti-
mated by L2-LR are shrunk from absolute average 1.13 to 
absolute average 0.39, which can reduce the variance of the 
predicted value.

6.2.2  Applying wrapper methods in LR

Then, the wrapper methods are applied in LR model. 
We use the Akaike information criterion (AIC) [38] as 
a measure of relative quality of a statistical model. The 
results are quite similar by using FS, BS and HS meth-
ods. FS method selects low-SONE as the most important 
feature, following by loudness-flux. While, BS and HS 
method drop out the loudness-centroid features firstly, fol-
lowing by RMS, low-energy, loudness-Mean, loudness-
flatness, and loudness-Std, lastly, leaving low-SONE and 
loudness-flux. The wrapper methods give a more easily 
interpreted model than LR without using wrapper meth-
ods, and show that only two features are enough for LR 
model classification.

The wrapper methods and shrinkage method with 
1-norm produce a model that is interpretable. But the wrap-
per methods have possibly lower prediction error than the 
full model. Moreover, because it is a discrete process—
variables are either retrained or discarded—it often exhib-
its high variance. Hence, the shrinkage methods are more 
continuous than wrapper methods, and do not suffer high 
variance.

6.2.3  Coefficient path estimated by L1‑LR

Figure 8 shows the Lasso estimates coefficients as a 
function of L1 norm of the coefficients in LR model. 
The L1-norm of the coefficients forms the x-axis, and 
the vertical breaks indicate where the coefficients are 
shrunk to zero. When λ = 0, the L1-LR simply gives LR 
fit, when λ becomes sufficiently large, the L1-LR gives 

the null model in which all coefficient estimates equal 
to zero. Moving from left to right in Fig. 8, each curve 
represents a coefficient (labeled on the right) as a func-
tion of L1 norm of the coefficients. We observe that at 
first the L1-LR results in a model that contains only the 
RMS predictor. And the low-SONE enters the model 
simultaneously, shortly followed by loudness-flux. Even-
tually, the remaining variables enter the model. The verti-
cal breaks indicate where the active set (labeled on the 
top) is modified. Hence, depending on the value of λ, 
the L1-LR can produce a model involving any number 
of variables. If β ≤ 1, only three features (RMS, low-
SONE and loudness-flux) will be selected, the other coef-
ficients are assigned to zero. So, it can produce a sparse 
model, while L2-LR can not. Moreover, the L1-LR pro-
vides more detail than LR and L2-LR model. The RMS 
and low-SONE are almost equally important, so as low-
energy and loudness-flatness.

Table 4  The correlation matrix that contain all of the pair-wise correlations among the predictors in training data

Typical p value cutoffs for rejecting the null hypothesis are 5 or 1 % (in italics)

Feature Loudness-Mean Loudness-Std Low-SONE RMS Low-energy Loudness-flux Loudness-
centroid

Loudness-
flatness

Y

Loudness-Mean 1.0 0.72 −0.52 0.87 −0.44 0.69 −0.43 −0.92 −0.55

Loudness-Std 1.0 −0.39 0.63 −0.25 0.65 −0.46 −0.70 −0.40

Low-SONE 1.0 −0.54 0.05 −0.58 0.11 0.41 0.60

RMS 1.0 −0.40 0.75 −0.40 −0.84 −0.63

Low-energy 1.0 −0.20 0.36 0.44 0.18

Loudness-flux 1.0 −0.36 −0.63 −0.60

Loudness-centroid 1.0 0.43 0.22

Loudness-flatness 1.0 0.45

Y 1.0

Fig. 8  Profiles of L1-norm coefficients
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We can get relationship between features and response 
from the sign of feature coefficient. The sign of low-SONE 
coefficient is positive which indicates that for fixed value 
of other features, the higher value of low-SONE, the 
more likely the music signal is low arousal. Maybe, less 
brightness music produce low arousal emotion. In the same 
way, the high arousal music signal has high value of RMS, 
loudness-flux and so on. This is because a high volume 
or fast and large change in the loudness music could lead 
one to increase heart rate and blood pressure, which make 
people produce high arousal emotion.

The value of λ is very important for L1-LR model, and 
we need a method to determine which models is the best. 
One general approach is to use K‑fold cross-validation, 
where the training data is used for both training and test-
ing in an unbiased way. Figure 9 illustrates tenfold cross-
validation on training data set. For classification model, the 
binomial deviance is selected as the measure of risk. The 
left vertical line corresponds to the minimum error, while 
the right vertical line the largest value of lambda such that 
the error is within one standard error of the minimum. 
Then, we select the tuning parameter value λ = 0.225 for 
which the cross-validation error is the smallest.

6.2.4  Model‑based feature rank

Various training models are used to learn the relationship 
between features and response, the results of which are 
shown in Table 5. The LR and L2-LR model rank the fea-
ture by z-statistic, the descriptions of which are shown in 
Sect. 5.1. And L1-LR method ranks the features by the time 
when features enter the model, where λ varies from suffi-
ciently large to zero: the earlier the sequence feature enters 
the model, the more important the feature will be. The 
bagging methods use two metric—classification accuracy 
(Bagging-A) and Gini index (Bagging-G). Most methods 
exclude L1-LR method evaluate that the low-SONE is the 
most important feature. And in Sect. 6.2.3, we show that 
low-SONE and RMS are almost equally important. Only 
L1-LR, L2-LR and Bagging-G methods estimate RMS as 
another important feature, while the remaining three meth-
ods can not. The reason for LR and LR by using forward 
selection algorithm (LR-FS) is stated in Sect. 6.2.1. And 
Bagging-A is measured by misclassification rate, which is 
less sensitive to changes in the node probabilities.

6.2.5  Filter‑based feature rank

Then, we apply the filter methods which are described in 
Sect. 4.1 to measure the importance of features and rank 
the features. The ranking results are shown in Table 6. 
The number in “Relief-F-2” means the nearest neighbor 
number is two. The Relief-F algorithms are sensitive to the 

number of nearest neighbors and sample size. We choose 
different nearest neighbors but same sample size, and the 
results are different. CFS only chose one feature—low-
SONE, which does not have enough information to build a 
good model. And the two correlation methods get the same 
results—loudness-flux is more important than RMS. It is 
interesting to see that information gain filter gets the same 
result as Bagging-G method and L2-LR method. Because, 
in tree-based model, Gini index can be replaced by cross-
entropy, which bases on information gain. Meanwhile, 
gain-ratio filter gets the same result as L1-LR method. And 

Fig. 9  Binomial deviance as a function of log (Lambda)

Table 5  The results of feature learning in various models, which 
only show first three features

The blank entries correspond to null feature

Method 1st 2nd 3rd

LR Low-SONE Loudness-flux Loudness-Mean

LR-FS Low-SONE Loudness-flux

Bagging-A Low-SONE Loudness-flux Loudness-Mean

Bagging- G Low-SONE RMS Loudness-flux

L1-LR RMS Low-SONE Loudness-flux

L2-LR Low-SONE RMS Loudness-flux

Table 6  The results of feature ranking in various methods, which 
only show first three features

The blank entries correspond to null feature

Method 1st 2nd 3rd

Relief-F-2 Low-energy Low-SONE RMS

Relief-F-3 Low-energy Loudness-centroid RMS

CFS Low-SONE

Pearson Low-SONE Loudness-flux RMS

Spearman Low-SONE Loudness-flux RMS

Information gain Low-SONE RMS Loudness-flux

Gain-ratio RMS low-SONE Loudness-flux
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most of filter methods can detect the important of RMS. 
Furthermore, the features selected by entropy-based filter 
methods are similar to shrinkage method.

6.2.6  Classification

We imply various classification methods including the 
shrinkage methods (which present above) in arousal dimen-
sion to test the performance of models. The classification 
methods include: LR, LDA, Quadratic Discriminant Analy-
sis (QDA), K-Nearest Neighbor (KNN), Tree, Random-
Forest (RF), Bagging (Bag), Boosting (Boost), Support 
Vector Machine with Radial kernel (SVM-R), Support 
Vector Machine with Polynomial kernel (SVM-P), Sup-
port Vector Machine with Linear kernel (SVM-L), L1-LR, 
L2-LR, L1-SVM, L2-SVM and Shrunken Centroids Regu-
larized Discriminant Analysis (SCRDA). The parameters 
in various classification methods are determined by cross-
validation. For example, we chose K value as 6 in KNN 
model. The accuracy rates are shown in Fig. 10, where 
X-axis denotes the classification methods, and Y-axis 
denotes the accuracy rate. In each box, the central mark is 
the median value, and the edges of each box are the 25th 
and 75th percentiles.

We see that the L1-LR model gets the highest median 
value, average accuracy rate of 84 %, and its box range 
is rather narrow. It means that the L1-LR model is quite 
stable. We find that the results with shrinkage methods 
are more stable than without having them. Moreover, the 
L2-LR, L1-SVM and RDA methods also get promising 
average result of 83 %. While in LR model, the average 
accuracy is only 80 %. The advantage of shrinkage methods 
are rooted in the bias-variance trade off. By controlling the 
tuning parameter, shrinkage can perform well by trading 
off a small increase in bias for a large decrease in variance.

The best accuracy rate of other no penalized methods 
is KNN’s—82 % on average, and 80 % as median. The 
tree-based methods including pruning tree, Random-
Forest, Bagging and Boosting have nearly the same 
median accuracy rate, and the Boosting performs a little 
better than the other tree-based methods. Then, we see 
that linear kernel may be more suitable than polynomial 
kernel in our model. SVM-P gets an average accuracy rate 
of 77.4 %, while SVM-L gets 81.4 %. Moreover, SVM 
with penalty performs better than SVM without penalty. 
We find that the performance of LDA is better than 
QDA, but a litter poorer than LR. And the regularized 
LDA achieves 5 % higher accuracy than LDA. Because 
by using regularization not only stabilizes the variance 
but also reduces the bias of discriminant function. As a 
result, the prediction accuracy is improved. And linear 
model may be more suitable than quadratic model in 
music arousal response.

7  Conclusion and future work directions

In this paper, we focus on the feature selection and learning 
in arousal dimension by using various methods. We study 
the features in Logistic Regression model firstly. Then 
the most commonly used methods—wrapper (forward 
selection, backward selection, hybrid selection), are applied 
to select the important features. In order to produce a more 
interpretable model, the tree-based methods are used to 
build the model and give the important features. Lastly, the 
shrinkage methods are applied in LR, SVM and LDA model.

Experimental results show that shrinkage methods are 
powerful methods for both learning informative feature as 
well as making classification. We get a more interpretable 
and continuous model than other wrapper methods, which 

Fig. 10  Performance data for various classification methods
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only three features—low-SONE, RMS and loudness-flux 
are selected in L1-LR and L2-LR models. What is more, 
LR using shrinkage methods makes an average promotion 
of 3–4 % than LR. Lastly, we find that the accuracy 
performance by shrinkage methods is better than most of 
the other no-penalty classification methods.

There is still much room for feature improvement of 
our work. In this paper, we only focus our work on arousal 
dimension, while the other dimension—valence, is also 
very important for music emotion recognition. Then we 
still do not understand why feature selection results by 
using shrinkage methods are quite similar to use entropy-
based filter methods. Lastly, new classification method 
such as deep learning (deep belief networks) can also be a 
good direction in our feature work.
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