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consume huge storage and computation resources, but also 
degrade the total performance of a learning algorithm, i.e., 
so-called the curse of dimensionality [6, 31]. Therefore, 
feature selection has been regarded as an important and 
effective technique to weaken the affection of high dimen-
sion to classification performance, as well as to signifi-
cantly improve the comprehensibility of discovered results 
[17, 21, 30].

Feature selection aims to maintain the original features 
of the data, at the same time, seeks to identify the main 
features and weed out the irrelevant ones, so as to build 
an impactful learning model [1, 11, 23]. Traditional fea-
ture selection methods generally evaluate the features one 
by one without respect to the relationship between fea-
tures, the local structure of the data, the local structure of 
the data, and the label distribution of the data. To deal with 
these issues, sparse learning has been applied to feature 
selection algorithms. However, there are still two limita-
tions in these feature selection methods based on sparse 
learning algorithms [19]. One is that the sparse penalty 
terms, such as ℓ1-norm and ℓ2,1-norm, are not enough to 
regulate the sparseness of feature representation. Namely, 
they may not select the optimum subset features from the 
original data [33, 36]. Another is that these methods only 
consider the global structures of the data, but neglects the 
local information of the data which can also well impact on 
selecting the significant features.

Motivated by the above-observed points, we design 
a novel framework for efficiently integrating the sparse 
model and subspace learning, so as to select the important 
features for a given dataset [16, 34]. First of all, the least 
square loss function is applied to measure the correlation 
between the feature set and the label set. Furthermore, 
the ℓ2,1-norm regularization term is employed to shrink 
the least square loss function, to generate a sparse model. 

Abstract  A novel feature selection algorithm is designed 
for high-dimensional data classification. The relevant fea-
tures are selected with the least square loss function and ℓ2,1
-norm regularization term if the minimum representation 
error rate between the features and labels is approached 
with respect to only these features. Taking into account 
both the local and global structures of data distribution 
with subspace learning, an efficient optimization algorithm 
is proposed to solve the joint objective function, so as to 
select the most representative features and noise-resistant 
features to enhance the performance of classification. Sets 
of experiments are conducted on benchmark datasets, show 
that the proposed approach is more effective and robust 
than existing feature selection algorithms.
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1  Introduction

In real applications, data are often of high dimension, i.e., 
with a large number of features [18, 22, 37]. And most fea-
tures are hardly with contributions to data mining tasks. 
This kind of features is often attributed to irrelevant and 
redundant features that can affect the classification perfor-
mance. In other words, high-dimensional datasets not only 
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Because this model only takes into account the global 
structure of the data, the local structure of the data is com-
bined with manifold constraints during selecting the main 
relevant features. While the locality preserving projection 
(LPP) [5] is sensitive to outliers and noise features, the LPP 
is adopted to keep the local structure of the data. Finally, 
the Fisher’s LDA [4] is advocated to protect the global 
structure of the data. According to these measures, the pro-
posed framework can select a subset of important relevant 
features for dataset which efficiently reduces the dimen-
sionality and speeds up the learning process.

The primary contributions of the study are summarized 
as follows:

–– A novel framework is designed for feature selection for 
combining the subspace learning with the sparse graph 
representation. This framework can select the main dis-
criminative features due to taking both the local and 
global structures of the data into account.

–– A novel iterative optimization algorithm is exploited to 
solve the joint objective function and obtain the opti-
mum solution. It can also testify the optimization algo-
rithm which can quickly yet efficiently converge to the 
optimum solution.

–– Compared with the generic dimensionality reduction 
algorithms, the proposed algorithm demonstrates the 
best performed results, especially on high-dimensional 
data.

–– The rest of this paper is organized as follows: Sect. 2 
summarizes some recently works related to feature 
selection. Section 3 designs the feature selection algo-
rithm and its improvement. Section  4 experimentally 
evaluates the proposed approach and compared it with 
existing feature selection methods. Finally, this paper is 
concluded in Sect. 5.

2 � Related works

This section briefly recalls the recent studies concerning 
both feature selection algorithm and sparse representation 
which have been successfully applied in high-dimensional 
data. Nie et al.   employed joint ℓ2,1-norm minimization on 
both loss function and regularization to select the most rel-
evant features. Moreover, they proposed an efficient method 
to solve the objective function of the feature selection [9]. 
With the graph-theoretic clustering technique, the origi-
nal features are divided into different clusters. Features in 
different clusters are relatively independent. And then, the 
most representative features from each cluster are selected 
to makeup a subset of features. Based on the above two 
ideas, Song et al.  proposed a fast feature selection algorithm 
[12]. Liu et al.  proposed a novel feature selection algorithm 

that considered not only both maximal relevance to the class 
labels and minimal redundancy to the selected features, but 
also an agglomerative way to enhance the performance of 
pattern classification [6]. Qiao et al.  advocated of preserv-
ing the sparse reconstructive structures of the data via mini-
mizing a ℓ1-norm regularization-related objective function, 
called sparsity preserving projection (SPP). Moreover, SPP 
can automatically choose the neighborhood of the features 
by the natural discriminating information [10]. Wang et al.  
integrated multiple kernel learning, sparse coding and graph 
regularization for feature selection, and developed a novel 
data representation algorithm to optimize the feature selec-
tion objective function [13]. Hence, this algorithm could 
consider the local manifold structure of the data. Zhu et al.  
utilized the relationship between indicator vectors, as well 
as considers the canonical correlations between features of 
different modalities via projecting them into a canonical 
space [35]. The framework has successfully been applied 
in Alzheimer’s disease diagnosis. Zhou et  al.   proposed to 
recover the true sparse centroid from the data and advocated 
the approximation set coding approach [24].

3 � Approach

Throughout the paper, we denote matrices as boldface 
uppercase letters, vectors as boldface lowercase letters, 
and scalars as normal italic letters, respectively. For a 
matrix X = [xij], its ith row and jth column are denoted as 
xi and xj, respectively. We denote ℓ2-norm and ℓ2,1-norm 

as 
∥∥xj

∥∥
2
=

√∑n
i=1 x

2
i,j and �X�2,1 =

∑n
i=1

√∑m
j=1 x

2
i,j, 

respectively. We further denote the transpose operator, the 
trace operator and the inverse of a matrix X as XT, tr(X) 
and X−1, respectively.

3.1 � Proposed algorithm

In this section, we present an efficient supervised feature 
selection algorithm to improve the classification perfor-
mance. Given X ∈ Rp×s, where p is the number of feature 
variables and s is the number of samples. The samples 
corresponding to label matrix is Y ∈ R

c×s, where c is the 
number of classes, i.e., 0–1 encoding. The proposed feature 
selection algorithm aims to seek a functional dependence 
between X and Y. First of all, we use the linear represen-
tation method to describe the relation between the feature 
sets X and the indicator matrix Y [28, 34]. Moreover, the 
least squares method is a classical estimator in which the 
method is chosen to minimize the reconstruction error. The 
objective function of least square is defined as follows:

(1)A = argmin
A

∥∥∥AT
X− Y

∥∥∥
2,1
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where A ∈ R
p×c denotes the coefficient representation 

matrix, namely, the relation between the feature sets and 
the labels of class. The solution A cannot respond to the 
information, features of which are main relevant features 
and the others are the irrelevant or low-relevant features. 
Moreover, a multi-task learning formula with a sparse least 
square regression model has been successfully applied for a 
binary classification [20, 29]. Therefore, we use the follow 
formula instead of Eq. (1).

where ρ is a positive parameter and controls the sparsity. 
Therefore, we can assign a large weight to the main rel-
evant features and a small or zero weight to the weak-
relevant features via Eq. (2). Equation (2) has been 
proved efficient for binary classification [25, 26]. In this 
paper, we utilize the correlation of different classes via 
regarding each class as one task to make it deal with the 
multi-class classification. Nevertheless, it cannot guar-
antee to be selected which is conductive to better clas-
sification performance due to that Eq. (2) cannot ensure 
that the neighborhood structure of the selected features is 
preserved.

For the purpose of realizing multi-class classification, 
we consider the global and the local topological structures 
of the data according to the distribution of the data features 
into the proposed framework. Firstly, we employ a Fisher’s 
LDA [4, 27], which considers the global data distribution 
based between within-class variance and between-class 
variance to find the main relevant class. But the Fisher’s 
LDA penalize term 

A
T
∑

gA

AT
∑

hA
 is the non-convexity, where ∑

g denotes the within-class variance and 
∑

h denotes the 
between-class variance. Fortunately, Ye [20] proposed to 
utilize a multivariate linear regression model that defines 
the class label matrix Y = [yi,k] to replace the Fisher’s 
LDA penalized term.

where nk denotes the sample size of the class k and l(xi) is 
a class label of xi. So we can efficiently utilize the global 
structure of the data via the class indicator matrix Y, and 
cannot transform the original features space into a low-
dimensional space. Secondly, we employ Locality pre-
serving projection (LPP) [5], which is a subspace learning 
method to preserve the local structure of the features. The 
purpose of LPP is to seek an embedding space where the 
preserved local structure, i.e., maintain the local structure 
of the data. We briefly describe the definition of LPP as 
follows:

(2)A = argmin
A

∥∥∥AT
X− Y

∥∥∥
2,1

+ ρ�A�2,1

(3)yi,k =





�
n
nk

−
�

nk
n

if l(xi) = k

−
�

nk
n

otherwise

where the y = A
T xi , i = 1, 2, . . . , p. and wi,j is a heat kernel 

wi,j = exp

(
−�xi−xj�2

δ

)
, δ is a positive parameter. Substi-

tuting the y = A
T xi into Eq. (2), we obtain:

where D = [di,i =
∑

j wi,j] is a diagonal matrix, and 
L = D−W is a Laplacian matrix. Therefore, we use the 
tr(AT

XLX
T
A) term to describe the topological relation of 

the data [32]. Hence, we present an efficient supervised 
feature selection algorithm and the objective function as 
follows.

where ρ1 and ρ2 are the positive tuning parameters, and the 
class indicator matrix Y is defined in Eq. (3). Therefore, 
according to the objective function, we can know that the 
proposed algorithm is the integration of subspace learning 
(i.e., LDA and LPP) and feature selection as a consolidated 
framework. In addition, we develop an optimal algorithm 
to solve the optimum solution of the objective function. 
The proposed optimal algorithm could very efficiently and 
quickly converge to the global optimum solution and the 
experiments also testify this.

3.2 � Optimization

Note that Eq. (6) is a convex function and the last two 
terms are non-smooth, we cannot solve it straightforwardly. 
Therefore, we propose an efficient optimization algorithm 
to solve the objective function.

Denote AT
X− Y =

[
v1, . . . , vs

]
, and we also define the 

diagonal matrixes as D̄ and D̃ with the kth diagonal element 

as D̄i = 1
2||vk ||2

 and D̃i = 1
2||ak ||2

, respectively. The objective 

function in Eq. (6) is equivalent to

Specifically, we take the derivative about each row 
ai(1 ≤ i ≤ s) and setting it to zero, we can obtain:

(4)
min
A

∑

i,j

(yi − yj)
2wi,j

(5)

∑
i,j

(AT xi − A
T xj)

2

wi,j

=
∑
i

A
T xidi,ixi

T
A−

∑
ij

A
T xiwi,jxi

T
A

= tr(AT
XDX

T
A)− tr(AT

XWX
T
A)

= tr(AT
XLX

T
A)

(6)argmin
A

∥∥∥AT
X− Y

∥∥∥
2,1

+ ρ1tr(A
T
XLX

T
A)+ ρ2�A�2,1

(7)
argmin

A

tr((AT
X− Y)T D̄(AT

X− Y))

+ ρ1tr(A
T
XLX

T
A)+ ρ2�A�2,1
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Thus, we can know the following formula:

We can know that the D̄ and D̃ are unknown and depend on 
A. For the purpose of solving Eq. (9), we present an itera-
tion algorithm as follows, the pseudo of the optimal algo-
rithm is as shown in Algorithm 1.

Lemma 1  For any nonzero vectors a, b ∈ Rm, the follow-
ing inequality is always true.

Proof   There is an obviously right inequality: 
(
√
l −

√
m)2 ≥ 0, then we have

And we utilize the vectors a and b to replace the vectors l 
and s in Eq. (11) respectively. Hence, we can arrive at Eq. 
(10).

Theorem 1  Algorithm 1 decreases the objective value in 
Eq. (9) in each of iterations.

Proof   In terms of Step 2 in Algorithm 1, we have

Therefore, we have

(8)XD̄X
Tai − XD̄yi + ρ1Lai + ρ2D̃ai = 0

(9)ai = (XD̄XT + ρ1L+ ρ2D̃)
−1

XD̄yi

(10)�a�2 −
�a�22
�b�2

≤ �b�2 −
�b�22
�b�2

(11)

(
√
l −

√
m)2 ≥ 0 ⇒ l − 2

√
lm+ m ≥ 0

⇒
√
l −

l

2
√
m

≤
√
m

2
⇒

√
l −

l

2
√
m

≤
√
m −

m

2
√
m

(12)
A
(t+1) = min

A

tr((AT
X− Y)T D̄(t)(AT

X− Y))+ ρ1L

+ ρ2tr(A
T
D̃
(t)
A)

According to Lemma 1, the term 

||a||2 −
||a||22
2||a0||2 ≤ ||a0||2 −

||a0||22
2||a0||2 is always true for any 

nonzero vectors a and a0. Therefore, the objective value can 
be decreased in each of iteration in Algorithm 1. Moreo-
ver, A(t) and D(t)

i  will be satisfied when Eq. (12) converges. 
Thanks to Eq. (6) which is a convex function, so the matrix 
A is a global optimal solution of Eq. (6) when it satisfies 
Eq. (12). Thus, Algorithm 1 will converge to the global 
optimum of Eq. (6), and the experiment also demonstrates 
that the optimization method can quickly converge to the 
optimized solution.

4 � Experiments

In this section, we adopt extensive experiments to test the 
performance of our feature selection algorithm for pattern 
classification. Furthermore, we compare our algorithm with 
the other dimension reduction methods from MATLAB 
toolbox.1 The compared methods are used to getting the 
subset of attributions for pattern classification. The com-
pared methods follow principal component analysis (PCA), 
multidimensional scaling (MDS), Sammon mapping (Sam-
mon), Laplacian eigenmaps (Laplacian), diffusion maps 
(D-maps), kernel PCA (KPCA), stochastic neighbor 
embedding (SNE), symmetric stochastic neighbor embed-
ding (SymSNE), t distributed stochastic neighbor embed-
ding (tSNE), neighborhood components analysis (NCA), 
maximally collapsing metric learning (MCML). To evalu-
ate the validity of the proposed algorithm, we employ the 

tr((XT
A
(t+1) − Y

T )D̄(t+1)(XT
A
(t+1) − Y

T )T )+ ρ1L

+ ρ2tr((A
(t+1))T D̃(t+1)

A
(t+1))

≤ tr((XT
A
(t) − Y

T )D̄(t)(XT
A
(t) − Y

T )T )+ ρ1L

+ ρ2tr(A
(t))T D̃(t)

A
(t)

⇒ tr((XT
A
(t+1) − Y

T )D̄(t+1)(XT
A
(t+1) − Y

T )T )+ ρ1L

+ ρ2

d∑

k=1

(
||(a(t+1))

k ||2
2

2||(a(t))k ||2
− ||(a(t+1))

k ||2 + ||(a(t+1))
k ||2

)

≤ tr((XT
A
(t) − Y

T )D̄(t)(XT
A
(t) − Y

T )T )+ ρ1L

+ ρ2

d∑

k=1

(
||(a(t))k ||2

2

2||(a(t))k ||2
− ||(a(t))k ||2 + ||(a(t))k ||2

)

⇒ tr((XT
A
(t+1) − Y

T )D̄(t+1)(XT
A
(t+1) − Y

T )T )+ ρ1L

+ ρ2

d∑

k=1

||(a(t+1))
k ||2

≤ tr((XT
A
(t) − Y

T )D̄(t)(XT
A
(t) − Y

T )T )+ ρ1L

+ ρ2

d∑

k=1

||(a(t))k ||2

1  http://lvdmaaten.github.io/drtoolbox/.

http://lvdmaaten.github.io/drtoolbox/
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SVM classifier from the LIBSVM toolbox2 with the param-
eter spaces of c and g as 

{
2−5, . . . , 25

}
. Moreover, we also 

utilize the original data to be classified via the SVM classi-
fier as the baseline algorithms (Original for short).

4.1 � Experiments verification and setup

Datasets in our experiments are detailed as follows:
Arcene and Train sets were downloaded from UCI3 

Breast cancer1, Breast cancer2, Breast cancer3, Breast can-
cer4 were obtained from works by West et al.  [15], Laura 
J. van’t Veer et  al.   [7], Mj van de Vijver et  al.   [8] and 
Wang et  al.   [14], respectively. GDS531, GDS1027, 
GDS1319, GDS1-454 are publicly available4 Colon Cancer 
and Ovarian Cancer adopted came from the reports by Alon 
et al.  [2] and Berchuck et al.  [3], respectively.

Hence, we utilize the above twelve datasets to validate 
our feature selection algorithm. The detailed description of 
all datasets concerning samples, features and the number of 
classes is summarized in Table 1. The compared algorithm 
is also performed in the same experimental environment 
with the proposed algorithm. The original data are ran-
domly divided into ten subsets. A single subset is regarded 
as the test sample and the rest subsets are used as train-
ing samples. Hence, we utilize tenfold cross validation in 
all experiments and repeat the whole process ten times to 
avoid the sample.

The parameters ρ1 and ρ2 are set to 0.001, 0.01, 0.1, 
1, 10, 100 in Eq. (6). We are also setting the appropriate 
parameters for the other compared algorithms. The number 
of selected features is obtained by the maximum likelihood 
estimator (MLE) to select the optimum feature dimension 

2  http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/.
3  http://archive.ics.uci.edu/ml/.
4  http://www.ncbi.nlm.nih.gov/sites/GDSbrowser.

for compared algorithms. We employ the classification 
accuracy to evaluate all the algorithms and report the best 
results of all algorithms using different optimal parameters. 
Finally, we summarize the results with the average value of 
10 times plus or minus the standard deviation.

4.2 � Experimental results

We summarize the classification accuracy results of all 
algorithms both binary classification and multi-class clas-
sification problems in the Tables  2 and 3. As shown in 
Tables  2 and 3, compared with the other algorithms, our 
proposed algorithm could yield the best performance. 
Our proposed algorithm had averagely improved at least 
11.12  % of accuracy performance than simply classify-
ing without any feature selection method (i.e., Original). 
Our proposed algorithm gained the best precision on gene 
dataset GDS1319, and improved about 34.18  % accuracy 
than SNE; moreover, the performance is best than the other 
algorithms. The reason is that our proposed algorithm takes 
into account the global and local structure of the original 
data space, the similarity of the data is preserved by our 
proposed framework during feature selection.

About compared algorithms, most of the results with 
feature selection algorithms are better than the results with-
out feature selection. The reason is that feature selection 
algorithms not only wipe off the redundancy, noise samples 
and accelerated computing, but also obtained a better per-
formance. However, there are some data sets with feature 
selection methods that obtain a worse performance than 
without feature selection algorithm, which is not surpris-
ing; many articles also said that feature selection algorithm 
could speed up computation and reduced storage cost.

The compared algorithms could be divided into two cat-
egories, i.e., manifold learning and others. Manifold learn-
ing contains MDS, Sammon, Laplacian, Dmaps et al. These 
algorithms recover the low-dimensional manifold structure 
from high-dimensional data, namely the high-dimensional 
space to find low-dimensional manifold, and to find the 
corresponding embedding maps. Analyzing these results, 
we can know that the proposed algorithm is best than these 
algorithms due to which these algorithms may ignore the 
global structure of the data.

Our algorithm has been successfully validated and 
can be applied in binary-class and multi-class classifica-
tion problems. For example, the proposed algorithm can 
obtain a best performance than Original, PCA, MDS, Sam-
mon, Laplacian, DMaps, KPCA, SNE, SymSNE, tSNE, 
NCA, MCML on multi-class datasets such as GDS1027, 
GDS1319, GDS1454, Train. And the performance of the 
proposed algorithm is outstanding. Moreover, our proposed 
algorithm could obtain some more stable results than the 
other compared algorithms.

Table 1   Dataset description

Dataset Samples Features Classes

Arcene 100 9920 2

Breast cancer1 49 2166 2

Breast cancer2 78 24,481 2

Breast cancer3 295 24,496 2

Breast cancer4 286 22,283 2

Colon cancer 62 2000 2

GDS531 173 12,651 2

GDS1027 154 26,923 4

GDS1319 123 22,625 4

GDS1454 180 54,613 4

Ovarian cancer 54 22,283 2

Train 168 147 9

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
http://archive.ics.uci.edu/ml/
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser
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5 � Conclusions

In this paper, we have formulated a novel feature selection 
algorithm and focused on integration the subspace learning 
and feature selection method as a unified framework. The 
proposed algorithm is called as sparse graph representa-
tion feature selection for supervised classification. The pro-
posed algorithm has two advances compared with the state-
of-the-art methods: (1) the framework is based on sparse 
learning model and use an efficient optimization algorithm 
to solve it; (2) take into account both global and local struc-
tures of the data. The proposed feature selection can effi-
ciently select the important features and apply the selected 
features for SVM classification, the performance is much 

better than other compared algorithms. Therefore, we could 
validate the performance of the proposed algorithm by ana-
lyzing the classification accuracies of both binary classifi-
cation and multi-class classification problems.
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Table 2   Experimental results

Method Arcene Breast cancer 1 Breast cancer 2 Breast cancer 3 Breast cancer 4 Colon cancer

Original 0.7533 ± 3.4e−3 0.8932 ± 4.6e−3 0.9217 ± 1.8e−3 0.7399 ± 1.4e−3 0.7348 ± 1.4e−3 0.9010 ± 9.1e−5

PCA 0.8330 ± 9.2e−3 0.9183 ± 1.2e−2 0.9482 ± 4.5e−3 0.7407 ± 2.1e−3 0.7425 ± 2.1e−3 0.9174 ± 4.5e−4

MDS 0.8541 ± 8.6e−3 0.9233 ± 1.3e−2 0.9357 ± 4.3e−3 0.7607 ± 2.5e−3 0.7563 ± 2.2e−3 0.9307 ± 1.3e−3

Sammon 0.8503 ± 5.2e−3 0.9142 ± 1.2e−2 0.9228 ± 4.5e−3 0.7543 ± 2.8e−3 0.7605 ± 2.8e−3 0.9121 ± 7.2e−4

Laplacian 0.7928 ± 7.3e−3 0.9083 ± 9.9e−3 0.9273 ± 8.8e−3 0.7418 ± 2.0e−3 0.7655 ± 1.9e−3 0.9045 ± 1.2e−4

DMaps 0.7562 ± 6.7e−3 0.9533 ± 2.7e−3 0.9403 ± 4.0e−3 0.7544 ± 4.4e−3 0.7390 ± 4.3e−3 0.9176 ± 6.2e−3

KPCA 0.8441 ± 1.1e−2 0.9183 ± 1.1e−2 0.9482 ± 4.5e−3 0.7544 ± 1.2e−3 0.7416 ± 1.2e−3 0.9281 ± 1.0e−3

SNE 0.7832 ± 1.6e−2 0.9350 ± 1.1e−2 0.8496 ± 1.3e−2 0.7438 ± 2.0e−3 0.7380 ± 2.0e−3 0.9138 ± 6.7e−4

SymSNE 0.7921 ± 7.2e−3 0.8933 ± 1.3e−2 0.6952 ± 1.4e−2 0.7667 ± 7.9e−3 0.7371 ± 7.8e−3 0.9160 ± 1.1e−3

tSNE 0.8732 ± 3.7e−3 0.9183 ± 1.2e−2 0.9464 ± 4.8e−3 0.7432 ± 8.0e−3 0.7452 ± 8.0e−3 0.9141 ± 4.7e−4

NCA 0.8432 ± 6.6e−3 0.9183 ± 1.2e−2 0.9260 ± 4.1e−3 0.7491 ± 1.9e−3 0.7495 ± 1.9e−3 0.9131 ± 9.4e−4

MCML 0.8534 ± 9.1e−3 0.9267  ± 9.1e−3 0.9228 ± 4.5e−3 0.7708 ± 4.3e−3 0.6554 ± 4.3e−3 0.9305 ± 1.3e−3

Proposed 0.9716  ±  3.5e−3 0.9577  ±  4.1e−3 0.9707  ±  1.3e−3 0.9080  ±  2.2e−4 0.9668  ±  2.2e−4 0.9669  ±  1.2e−4

Table 3   Experimental results

Method GDS531 GDS1027 GDS1319 GDS1454 Ovarian cancer Train

Original 0.8197 ± 1.8e−4 0.8237 ± 2.2e−3 0.9399 ± 8.4e−4 0.8189 ± 1.9e−4 0.8773 ± 5.6e−4 0.8314 ± 1.6e−4

PCA 0.8193 ± 8.2e−4 0.8370 ± 8.7e−3 0.9750 ± 3.2e−3 0.9010 ± 2.4e−3 0.8933 ± 8.6e−3 0.8327 ± 1.1e−4

MDS 0.7923 ± 5.9e−4 0.8667 ± 4.4e−3 0.9755 ± 3.1e−3 0.9173 ± 1.2e−3 0.8900 ± 9.1e−3 0.8394 ± 2.1e−4

Sammon 0.8141 ± 6.1e−3 0.8593 ± 4.4e−3 0.9500 ± 1.8e−3 0.9307 ± 2.2e−3 0.8977 ± 8.2e−3 0.8413 ± 5.4e−4

Laplacian 0.8211 ± 6.9e−5 0.8667 ± 5.4e−3 0.9442 ± 1.5e−3 0.9121 ± 1.4e−3 0.8967 ± 8.0e−3 0.8400 ± 1.0e−4

DMaps 0.8214 ± 1.9e−3 0.8845 ± 4.4e−3 0.9434 ± 2.9e−3 0.9045 ± 2.3e−3 0.8967 ± 1.4e−3 0.8383 ± 2.3e−4

KPCA 0.8343 ± 5.1e−3 0.8993 ± 3.4e−3 0.9820 ± 1.2e−3 0.9176 ± 3.0e−3 0.9000 ± 1.3e−2 0.8439 ± 1.9e−4

SNE 0.8284 ± 2.2e−3 0.8444 ± 5.4e−3 0.6413 ± 6.4e−3 0.9281 ± 2.2e−3 0.8833 ± 4.8e−3 0.8388 ± 7.4e−5

SymSNE 0.8204 ± 2.0e−4 0.8741 ± 6.0e−3 0.6565 ± 9.3e−3 0.9138 ± 1.0e−3 0.8863 ± 2.6e−3 0.8403 ± 1.7e−4

tSNE 0.8402 ± 2.8e−3 0.8519 ± 5.0e−3 0.9417 ± 4.7e−3 0.9160 ± 8.4e−4 0.8800 ± 7.0e−3 0.8498 ± 5.4e−4

NCA 0.8214 ± 1.7e−3 0.8704 ± 3.8e−3 0.9404 ± 1.1e−3 0.9141 ± 2.4e−3 0.9177 ± 2.8e−3 0.8470 ± 3.8e−4

MCML 0.8396 ± 9.6e−4 0.8733 ± 6.1e−3 0.9403 ± 2.7e−3 0.9131 ± 2.3e−3 0.9100 ± 9.1e−3 0.8510 ± 8.1e−4

Proposed 0.9272  ±  7.9e−5 0.9356  ±  1.1e−3 0.9831  ±  2.1e−4 0.9305  ±  8.9e−4 0.9830  ±  3.4e−4 0.8882  ±  2.4e−4
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