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and CPU response time) and also demonstrate the superior-
ity over other exact NN indexes.
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1  Introduction

Large-scale image retrieval plays an important role in both 
the database community and the computer vision commu-
nity. Recently, researchers have diverted more attention to 
supervised (or weakly supervised) hashing methods due to 
the concern of semantic similarity. These methods enable 
users to specify query through a natural language descrip-
tion of the visual concepts of interest [1], which appears 
to be more precise in the semantic perspective. However, 
this does not cause the unsupervised similarity retrieval 
methods to be disfavored. In fact, unsupervised methods 
use just the unlabeled data to quantify the given points and 
usually show good performance with metric distances. The 
most typical paradigm of unsupervised similarity retrieval 
is the nearest neighbor (NN) search or k-nearest neighbor  
(k-NN) search problem. Figure 1 shows a brief introduction 
of image retrieval progress supported by NN search.

According to Fig. 1, we can see that image retrieval is 
composed of two processing stages. The first one is the 
image representation stage (the blue arrow part) during 
which we extract high-quality feature vectors to represent 
the original images with sufficient accuracy. It directly 
determines the accuracy of image retrieval. Images from 
the image database are represented by kinds of feature vec-
tors which are usually correlated and high dimensional, 
such as color histogram, textures, shape, graphlet or mul-
timodal features. All these extracted feature vectors form 
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a feature vector data set which will be handed over to the 
second processing stage (i.e. NN search, the green arrow 
parts in Fig. 1) to deal with. Therefore, image retrieval in 
large-scale image database is conveniently transformed into 
NN search in large-scale high-dimensional vector space. 
In other words, NN search is a fundamental paradigm of 
image retrieval. It supports image retrieval and directly 
affects the efficiency and accuracy of image retrieval.

We devote this paper to solving the NN search problem. 
The following is a formulated description of it:

where q represents a query vector extracted from a query 
image, D represents the feature vector data set where 
D ⊂ R

d and ‖q, x‖p is the p-norm distance between q and x. 
The goal of NN search is to find the closest point NN(q) to 
the query from the data set.

It is noted that NN search in large-scale high-dimen-
sional vector space usually consists of two procedures as 
depicted in Fig. 1. The first one is the off-line procedure, 
which seeks efficient high-dimensional index structures for 
the data set which will reduce expensive I/O operations. 
The other one is the online procedure, which seeks efficient 
searching methods that will cut down CPU computation 
tasks. Both of these are essential for NN search.

Research on NN search problem can be divided into 
exact retrieval and approximate retrieval. The approxi-
mate nearest neighbor (ANN) search problem has been 
adequately addressed. Hashing is demonstrated to be effec-
tive for similarity search in multimedia databases. Local-
ity-sensitive hashing (LSH) is one typical hashing method 
[2]. Its basic idea is to use a family of locality-sensitive 
hashing functions based on random projections. Several 
heuristic variants of LSH have also been suggested [3–5]. 

(1)NN(q) = argmin
x∈D

�q, x�p,

Vector quantization, especially using product quantization 
and residual quantization, can also support efficient ANN 
search combined with an inverted file system [6].

In comparison, exact NN search has much slower pro-
gress due to the strict requirement of returning accurate 
nearest neighbors. This causes inevitable expensive dis-
tance computation on real data points, which makes I/O a 
major performance bottleneck in current storage system. 
Techniques that address this issue have to seek efficient 
index structure and search methods simultaneously, which 
brings considerably more difficulty to algorithm designing.

In this paper, we focus on the exact k-NN search algo-
rithm and the corresponding index structures.1 The conven-
tional approach to support k-NN search in high-dimen-
sional vector space is to use a multidimensional index 
structure [7]. However, designing an efficient index struc-
ture is a big challenge for researchers. Recently, the “filter-
and-refine” index strategy has been proved to be an effi-
cient scheme to solve NN search in correlated, 
high-dimensional feature space. To perform the “filter-and-
refine” scheme, the data set is divided into partitions with 
space-based or data-based techniques in advance, and index 
structures for those partitions are then built accordingly. 
With the index structures, lower bounds of distances 
between the query point and all partitions can be achieved 
conveniently. Finally, only partitions with small enough 
lower bounds to the query are accessed, the remaining are 
safely pruned. Notably, the performance of “filter-and-
refine” approaches depends on the tightness of the lower 
bounds. In other words, the tighter the lower bounds, the 
more will be the clusters pruned. Traditionally, lower 

1  In the sequel, we shall use “k-NN search” to refer to “exact k-NN 
search” for simplicity.

Fig. 1   Brief introduction of the 
image retrieval process (colour 
figure online)
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bounds are computed with bounding rectangles or spheres 
of the partitions [8–11]. Unfortunately, they do not produce 
sufficiently tight lower bounds for high-dimensional data 
and thus have to access the majority of the data set.

Cluster-based techniques are demonstrated to be very 
effective to produce tighter lower bounds, because they 
can exploit interdimensional correlations within data sets 
and generate more compact representations. Recently, 
Ramaswamy et al. [12] proposed a new method called HB 
(hyperplane bounds) based on these techniques. It gener-
ates lower bounds by exploiting separating hyperplanes 
between the query point and all the clusters. With tight 
enough lower bounds, HB filters out most of the unre-
lated clusters effectively and obtains a pretty good query 
performance. Besides, its index structure is space saving 
(requires only O(Kd) space, where K and d denote the 
number of clusters and the dimensionality of the data set, 
respectively).

However, the tightness of lower bounds in HB is 
highly related to the number of clusters K and more clus-
ters directly help to produce tighter lower bounds. Unfor-
tunately, the CPU cost for lower bound computation 
increases quadratically with the growth of K , since its time 
complexity is O(K2d). Besides, HB does not provide any 
further pruning method inside candidate clusters. All points 
in a candidate cluster will be verified by expensive distance 
computation, which will decrease the performance of the 
search algorithm dramatically.

In this paper, we focus on addressing the two draw-
backs of HB above and propose our new index structure 
called HB+, which can reduce nearly 20 % I/O cost and 
more than 30 % CPU cost on average compared to HB. 
Our extensive experiments on three visual feature data sets 
demonstrate the superiority of HB+ over HB and three 
other popular indexing methods in the database community 

including VA-File [7], iDistance [13] and a newly proposed 
method FNN [14].

2 � Preliminaries of HB

Our solutions will leverage on HB as the building brick. In 
this section, we first present an important technique of HB 
that is necessary for our discussion. Then we discuss the 
limitations of HB to further clarify the motivation of our 
methods. A list of notations that we will use subsequently 
is presented in Table 1.

2.1 � Hyperplane and lower bound

We use Euclidean distance as the similarity measure 
between points in this paper. In d-dimensional space, a 
hyperplane can be represented as

Here, n is the normal vector of the hyperplane and p is just 
a real number. For simplicity, we use H to denote a hyper-
plane in the rest of this paper. The distance between a point 
x and a hyperplane H can be obtained as follows:

We are interested in separating hyperplanes (i.e. hyper-
planes lie between the query and clusters) because only 
separating hyperplanes generate lower bound. As shown in 
Fig. 2, we can obtain a lower bound distance between the 
query, namely q, and a cluster, namely Ci by adding d(q,H),  
the distance between q and a separating hyperplane H, and 

(2)H(n, p) =
{

xTn+ p = 0 | x ∈ R
d
}

.

(3)d(x,H) =
∣

∣

∣

∣

xTn+ p

�n�2

∣

∣

∣

∣

.

Table 1   Notations Symbol Notations

D Data set

K Number of clusters

H(n, p) A hyperplane with parameters n and p

q Typical query

x, x1, x2, . . . Typical elements of the data set

{Ci}K=1
K clusters of the data set

{ci}K=1
K centroid of all clusters

Hij Hyperplane separating Ci and Cj

d(x,H) Distance between a point x and a hyperplane H

d(H,C) The minimum distance between a cluster C and one of its hyperplane bounds H

LB(x,C) The lower bound distance between a point x and a cluster C

k Number of nearest neighbors to return

�·�2 2-norm of a vector

‖x1, x2‖2 Euclidean distance between x1 and x2
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d(x,H), the minimum of distance between the points in the 
cluster and H.

We treat the lower bound2 computing between the query 
and the cluster as a kind of competition among all the sepa-
rating hyperplanes. The formal definition is as follows:

A loosening measurement for Eq. 4 is taken in [12] to 
achieve a tighter lower bound. The following is the final 
expression of lower bound computing:

where Hsep is a set of separating hyperplanes between q and 
C and Hc represents all the hyperplane bounds around C
. For Eq. 5, the first element to the right side of the equal 
mark [i.e. maxH∈Hsep d(q,H)] represents the maximum dis-
tance between q and all the separating hyperplanes of C. It 
is calculated online. The second one to the right side of the 
equal mark represents the minimum distance between all 
data points in C and all C’s hyperplane bounds. It seems like 
a “inner gap” between the whole data points inside C and all 
its boundaries. We define a new notation to represent it:

where IGc is short for “inner gap w.r.t a cluster”. Besides, 
it is obvious that IGc for each cluster can be computed off-
line and stored in advance with only O(Kd) space. There-
fore, the main cost of lower bound computing resides only 
in the computation of the distances between the query and 
all the separating hyperplanes.

2  In the sequel, we shall use the term “lower bound” to refer to the 
lower bound distance between a query and a cluster for simplicity.

(4)LB(q,C) = max
H∈Hsep

{

d(q,H)+min
x∈C

d(x,H)

}

.

(5)LB(q,C) = max
H∈Hsep

d(q,H)+min
x∈C

min
H∈Hc

d(x,H),

(6)IGc = min
x∈C

min
H∈Hc

d(x,H),

2.2 � Refining separating hyperplanes

In this subsection, we discuss how to select the set of sepa-
rating hyperplanes between the query and a cluster, which 
is crucial to the tightness of the lower bound according to 
Eq. 5. Firstly, we assume that a data set is partitioned into 
K clusters, which are represented as {Ci}K=1. The centroid of 
these clusters can be denoted as {ci}K=1.

As defined in [12], the hyperplane Hij between two clus-
ters Ci, Cj (1 ≤ i, j ≤ K and i �= j) are defined as follows:

Hence, for a cluster, there are K − 1 hyperplanes around it. 
However, not all of them are separating hyperplanes for a spe-
cific query, since a separating hyperplane just locates between 
the query and the cluster. Thus, the set of separating hyper-
planes for a query q and a cluster Ci is defined as follows:

Equation 8 enables us to pick out the real separating hyper-
planes from all hyperplane bounds for a cluster. This refine-
ment of separating hyperplanes works as follows. Let dqc[·] 
store the distances between query q and all K clusters. We 
can figure out a sequence of these clusters oc[·] by sorting 
all the K distances in ascending order. Thus, according to 
Eq. 8, for a cluster Ci, it may get a corresponding order 
number j (1 ≤ j ≤ K) in oc[·] where i = oc[j], and only 
clusters with order numbers smaller than j will form sepa-
rating hyperplanes for cluster Ci. The following is an obser-
vation about the number of separating hyperplanes.

Observation 1  The average number of separating hyper-
planes for all clusters in HB is (K − 1)/2, approximately 
0.5 K in high-dimensional space.

Proof  Based on the orders of all the K clusters oc[·], the 
numbers of the corresponding separating hyperplanes for 
each cluster are 0, 1, 2, . . . ,K − 1, respectively, which means 
the cluster with the farthest centroid from the query gets 
K − 1 separating hyperplanes, while the closest one gets no 
separating hyperplane. Therefore, to obtain all the K lower 
bounds, there are totally K(K − 1)/2 distances between the 
query and separating hyperplanes that have to be computed. 
On average, each cluster gets (K − 1)/2 separating hyper-
planes, nearly 0.5 K in high-dimensional space.

2.3 � Limitations of HB

The k-NN search algorithm performed by HB in the Algo-
rithm 2 in [12] follows the “filter-and-refine” strategy. 
For every query, the hyperplane bounds are calculated in 

(7)Hij = H(−2(ci − cj), �ci�22 − �cj�22).

(8)Hsep(q,Ci) =
{

Hij

∣

∣�q, ci�2 > �q, cj�2
}

.

Separating
      hyperplane

H

q

x
,d x H

iC
, id q C
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Fig. 2   Lower bound with separating hyperplanes
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advance. These lower bounds are then used to sort all the 
clusters. Clusters are accessed in ascending order, respec-
tively, and in the meanwhile k-NNs within each cluster are 
identified. When the k-th nearest neighbor’s distance found 
so far is smaller than the lower bound of the next cluster, 
the search terminates as all k-NNs have been found.

We can see that HB is theoretically efficient. However, 
there are two limitations within the algorithm, too many 
query–hyperplane distance computations and no effective 
approach to prune false positives in the candidate clusters.

To reduce the storage cost, HB only stores the minimum 
of the distances between each cluster and all the hyper-
planes around it. All the lower bounds between the query 
and clusters need to be calculated online, which leads to 
exhaustive computations with O(K2d) time complexity of 
high-dimensional distance according to Sect. 2.2. Espe-
cially with an excessively large K, which is necessary for 
high filtration rate, the computation cost of lower bounds 
becomes very high and even exceeds the cost of distance 
computation. Conversely, if K is too small, the filtering 
ability of HB will decrease and more candidate points need 
to be accessed and computed.

Besides, HB only provides a novel bounding technique to 
filter irrelative clusters. However, it takes a simple method to 
deal with the false positives inside the candidate clusters. It 
loads all members of a candidate cluster into memory to per-
form expensive distance computations to identify k nearest 
neighbors. Unfortunately, as there may exist numerous false 
positives in the candidate cluster, this approach may lead to 
considerable unnecessary I/O cost and CPU cost.

3 � HB+

To address the two limitations of the above HB method, we 
propose our new approach, namely HB+, which will be 
described in detail in this section.

3.1 � Accelerate lower bound computing

Lower bound depends on separating hyperplanes. As men-
tioned in Sect. 2.2, to achieve tight lower bounds, HB takes 
a large number of distance computing between the query 
and separating hyperplanes. We can figure out the equation 
for query–hyperplane distance computing by combining 
Eqs. 3, 7 and 8:

We can see that it constitutes two kinds of distance com-
puting. Both are very expensive in high-dimensional space. 
However, according to Eq. 5, the lower bound is actually 

(9)d(q,Hij) =
�q, ci�22 − �q, cj�22

2�ci, cj�2
.

determined by only one separating hyperplane. This means 
that most of the separating hyperplanes are superfluous, but 
inevitable. We propose a novel way to accelerate the lower 
bound computing from two aspects as follows: reducing the 
amount of calculation in Eq. 9 as well as partially selecting 
separating hyperplanes.

For the first aspect, as mentioned above, there are two 
computing tasks in Eq. 9 the distances computing between q 
and K cluster centroids and the distance computing between 
each pair of centroids. The former one contains K distance 
computing, which should be obtained online in advance, 
since they cost few response times and each of them will 
be used several times during the process of computing the 
K lower bounds. As for the latter one (i.e. 

∥

∥ci, cj
∥

∥

2
), there 

are totally K(K − 1)/2 distances. To save storage as HB 
always promotes, we plan to solve this problem online. To 
solve this issue, we introduce random projection techniques 
[15–17] which are commonly used for fast estimation of 
distance between points in machine learning community.

Formally, we represent the set of K cluster centroids as a 
K × d matrix A and a random matrix R with size d × m which 
is generated to perform the dimension reduction as follows:

According to this equation, a d-dimensional point is trans-
formed to an m-dimensional point. Besides, each element 
rij of R is independently randomly drawn from the follow-
ing distribution [15]:

With dimension reduction, we can estimate the distances 
between each pair of centroids with their corresponding 
reduced ones, thus leading to an estimation for Eq. 9. It is 
noted that m is an important parameter for HB+ since it 
affects the tightness of lower bounds and the efficiency of 
the estimation simultaneously. As m increases, more infor-
mation will be retained in the points after dimension reduc-
tion and the estimation of distances between cluster cent-
ers will be more precise. However, this will also introduce 
more CPU cost during the estimation. Actually, m is usu-
ally a small value, much smaller than the dimensionality of 
the data set d. We will discuss the choice of m in Sect. 4.2.

For the second aspect, instead of selecting all possible 
hyperplanes obtained by Eq. 8, we can smartly choose only 
T separating hyperplanes that hold the largest T estimates of 
distance from the query. Because of the well similarity pre-
serving ability, the random projection techniques we per-
formed above can ensure high probability that the separat-
ing hyperplane which provides the maximum distance to the 
query point is retained in the T selected ones. Let α = T

K
 be 

(10)B =
1

√
m
AR.

(11)rij =







√
3 with prob. 1/6

0 with prob. 2/3

−
√
3 with prob. 1/6



144 X. Feng et al.

1 3

the proportion of selected hyperplanes; hence, 0 < α < 1. 
More precisely, the similarity preserving ability of the ran-
dom projection techniques is well enough that α is usually 
much smaller than 0.5 (the average number of separating 
hyperplanes for each cluster in HB is almost 0.5 K accord-
ing to Observation 1) according to the experimental result. 
Actually, T and α are derived from the same concept.3 Based 
on this, the cardinality of the set of separating hyperplanes 
for a query and a cluster is reduced significantly, which 
helps to accelerate the computation of lower bounds further. 
A fast algorithm to compute the lower bound with our afore-
mentioned acceleration method is outlined in Algorithm 1.

In Algorithm 1, distances between the query point q and 
all cluster centroids will be computed first and kept in a 
list dqc[·] (line 1). Then they are sorted in ascending order 
(line 2) to generate an ordered list o[·] of these clusters. It 
is obvious that there is no separating hyperplane around the 
first cluster in o[·] whose centroid is closest to q. We just 
set its lower bound to be 0 (line 4). For the other clusters, 
Cic (ic �= o[1]) as an example, we can also obtain the sepa-
rating hyperplanes easily with the help of o[·] according to 

3  This concept refers to our suggestion of partially selecting separat-
ing hyperplanes. In fact, in experimentation we have tested the empir-
ical results by varying the value of α, the proportion of selected sepa-
rating hyperplanes, during the experiments.

Eq. 8, because all the separating hyperplanes of Cic must 
lie between q and Cic. This means a cluster (Cic except) that 
wants to form a separating hyperplane of Cic must satisfy 
the condition that the distance between q and itself should 
be smaller than that between q and Cic according to Eq. 8. 
o[1 : i − 1] is the set of cluster IDs that satisfy this condi-
tion, where i is the rank number of Cic in the ordered list o[·]. 
Thus, for a cluster whose rank number in o[·] is i (1 ≤ i ≤ K

), the number of separating hyperplanes around it will be 
i − 1. According to this, the farther the centroid of a clus-
ter away from q, the more separating hyperplanes the cluster 
gets. Afterwards, we select at most T separating hyperplanes 
for each cluster to perform the precisely, but expensively 
lower bound computing in Line 16. According to the above, 
clusters with rank numbers smaller than T + 1 can acquire a 
direct promotion to Line 16. For the other clusters that hold 
more than T separating hyperplane bounds, we perform an 
estimation of the distances between the query and the sepa-
rating hyperplanes for each cluster with the help of random 
projection as mentioned before (line 12). Then we sort these 
estimates of distance in descending order and choose the 
most promising T ones as the final candidate separating 
hyperplanes (line 13 to line 14) of one cluster. In Line 16, 
with carefully chosen separating hyperplanes, we obtain the 
lower bound for each cluster. Here, as mentioned in Sect. 
2.1, IGc for each cluster is computed off-line and stored in 
advance. It consists of all the minimum distances between 
each cluster and the hyperplanes around it. Finally, the 
lower bounds of all clusters will be returned.

3.2 � Efficient pruning in candidate clusters

We have discussed in Sect. 2.3 that the search algorithm of 
HB suffers from checking all data points in a candidate clus-
ter which may contain lots of false positives and thus lead to a 
bad search performance. Figure 3 illustrates an example. Sup-
pose the current search radius is r. In the ideal case, there is 
only one point x1 that needs to be checked; thus, it is unneces-
sary to access all the points in this cluster for the query.

The reason that HB cannot avoid such false positives 
relies on the granularity of the “inner gap” concept used in 
HB. In other words, IGc is able to tell us whether a cluster 
should be loaded into the main memory or not during the k
-NN search, because it is distinguishable on the granularity 
of a cluster. However, it is unable to determine whether a 
certain data point should be loaded.

To prune data points inside the candidate clusters in 
HB+, we extend the “inner gap” concept to the granular-
ity of a data point and introduce a new notation IGp (“inner 
gap w.r.t a point”) accordingly. IGp is defined as:

(12)IGp(x) = min
H∈Hc

d(x,H),
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where x denotes any point in cluster C, and Hc represents 
all the K − 1 hyperplane bounds around C as mentioned 
before. Therefore, the minimum distances between each 
point and all the hyperplanes should be obtained because 

IGp is related to every data point. As shown in Fig. 3, the 
length of the solid line connecting the data point and its 
nearest hyperplane boundary is equal to IGp(x). Utiliz-
ing this variable, we can further get a tighter lower bound 
distance between the query point q and a data point x as 
follows:

All the data points of a cluster are stored and accessed in 
ascending order of IGp. During the query process, a point 
to be accessed can be rejected if its lower bound to the 
query is larger than the search radius. In this way, if we find 
a point that can be pruned, all the rest points in this clus-
ter can be pruned too. Recall the example shown in Fig. 3. 
It is noted that the data points sequence of this cluster is 
x1, x3, x2, x4, x5 and the maximum distance between the 
query and separating hyperplanes is d(q,H1). According 
to the above, since IGp(x2) is larger than r − d(q,H1), x2 
can be pruned safely without distance computation. Conse-
quently, x4 and x5 can also be rejected.

(13)LB(q, x) = max
H∈Hsep

d(q,H)+ IGp(x) ≤ �q, x�2.

q 1x

2x
3x

4x

5x

r

1,r d q H

1H

2H

Fig. 3   An illustration of a cluster containing false positives
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Based on this, we propose our new pruning algorithm. 
More details are depicted in Algorithm 2. It is noted that the 
process of computing IGp is performed offline, which does 
not add to the computation cost during the query. Besides, 
only 1-dimensional value is added when storing data points, 
and no additional index is used to manage these points in a 
cluster.

Moreover, the index to manage data points for a clus-
ter of iDistance is based on distance computation [13]. The 
one-dimensional distances are indexed with a B+-tree. Dur-
ing the search, it locates the first point to be accessed in 
a cluster and then a bidirectional scan will be conducted. 
However in HB+, the search in a cluster is a one-direc-
tional linear scan, which can save more I/O cost, because 
the linear scan avoids seeking the specified page and is 
much faster than the bidirectional scan of data pages.

Figure 4 illustrates the effectiveness of the pruning oper-
ation. We implement 10-NN search on three high-dimen-
sional data sets, Corel, Aerial and WT (specific details of 
these data sets can be found in Sect. 4). We compare the 
selectivity between HB and HB+ where the selectivity 
of an approach is defined as the number of points that are 
accessed during the search with respect to the cardinality 
of the data set. As mentioned above, we tune both the pro-
portion of selected separating hyperplanes α and the cluster 
number K to see the performance trend.

According to Fig. 4, HB+ obviously reduces the number 
of points accessed compared to HB, which means our new 
pruning algorithm has made a contribution. Besides, when 
α is larger than 0.06, increasing α will not provide further 
pruning power, which means more separating hyperplane 
cannot enhance the tightness of the lower bounds any more. 
This indicates a critical point of the amount of selected 
separating hyperplanes and provides us with a principle to 
select a proper α for a certain data set.

4 � Experiments

In this section, we experimentally evaluate the performance 
of our optimizations in HB+. Section 4.1 introduces the 
metrics for performance evaluating and the details of data 
sets. Section 4.2 tunes the parameter m for HB+ to observe 
the influence on the tightness of lower bounds. It offers us 
a standard for parameter settings of m in HB+. Section 4.3 
demonstrates the superiority of HB+ over HB. Finally, in 
Sect. 4.4, we compare the methods based on hyperplane 
bounds with popular index schema such as VA-File, iDis-
tance and a newly proposed method FNN in their best per-
formance. Implementations are achieved in C. All experi-
ments are performed on a Linux machine with an Intel® 
CoreTM2 Quad CPU 2.83 GHz processor and 4GB RAM 
running Ubuntu 12.04 LTS.

4.1 � Experimental setup

For k-NN search, the most important performance we 
care about is the efficiency. In this paper, we measure effi-
ciency in two axes: I/O cost and CPU response time. Since 
our algorithms and index structures are all about external 
memory where I/O communication between fast internal 
memory and slower external memory is the major per-
formance bottleneck [18], we treat I/O cost as the major 
element of performance. For I/O cost, since there are 
both random I/O operations and sequential I/O opera-
tions in the comparing approaches, we compute I/O cost 
as IOr + IOs/10 [19], where IOr is the number of random 
I/O and IOs refers to the number of pages sequentially 
accessed. As for CPU response time, we remove I/O time 
from it, which means the CPU response time includes time 
cost of all operations when performing k-NN search, but 
without I/O operations.
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The experiments are conducted on three representative 
visual feature data sets: Corel,4 Aerial5 and WT6 Corel con-
tains 68,040 32-dimensional color histograms. Aerial con-
sists of 275,465 60-dimensional texture feature vectors. 
WT consists of 269,648 128-dimensional wavelet textures 
with each row representing an image. All of them are 
extracted from large-scale image databases for image rep-
resentation and are commonly used as benchmarks for 
high-dimensional index methods. For each data set, we ran-
domly select 200 data points to form the query set to esti-
mate the performance of different approaches and the 
results are averaged.

4.2 � Tuning m

Firstly, we tune the reduced dimensionality m in HB+, 
which directly affects the tightness of lower bounds. To 
observe an obvious performance trend, we set a group of 
values for m and K. Meanwhile, we fix the number k of 

4  Download from http://archive.ics.uci.edu/ml/datasets/Corel+Image+ 
Features/.
5  Download from http://vision.ece.ucsb.edu/download.html.
6  Download from http://lms.comp.nus.edu.sg/research/NUS-WIDE.
htm.

returned neighbors as 10 in the following experiments in 
default, unless specified. As for α, which indicates the car-
dinality of the set of separating hyperplanes for each lower 
bound computation, we set it to be 0.06 initially which is a 
reasonable value. Figure 5 depicts the effect of m for 10-NN 
search performance on all three data sets.

As shown in Fig. 5a, when m is small (m = 1), HB+ 
consumes significantly more I/Os for different settings of 
K. However, after a slight increase, the I/O cost of HB+ 
reaches an optimal value and remains constant during 
further growth of m. It means that a small value of m (m 
around 3 according to the experimental performance) is the 
critical value which is able to produce the best I/O cost for 
HB+, and increasing m will not enhance the tightness of 
HB+ further. Naturally, we set m to such a critical point. 
Actually, the critical value of m is usually far less than d 
which will sufficiently reduce the computation cost of the 
denominator of Eq. 9. This is the reason that we insist plac-
ing the computation of distances between centroids online 
in Sect. 3.1. According to the actual results, we set m as 3 
for Corel, 2 for Aerial and 2 for WT in the following exper-
iments unless specified. As for CPU response time, the per-
formance lines nearly stick together with each other, which 
means m may not influence response time obviously. This 
is easy to understand because the adjustment of m can only 
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decrease computation of the denominator of Eq. 9 quantita-
tively, but not change the complexity. In fact, this is just a 
preliminary operation for CPU cost saving.

4.3 � Performance comparisons between HB and HB+

In this subsection, we compare HB+ with HB of both I/O 
performance and CPU performance. We tune K and α for 
HB+, which indicate the number of clusters and how many 
hyperplanes are selected for each cluster, respectively. As 
for HB, we observe the effects with various K.

Figure 6 depicts the comparisons of both I/O and CPU 
performance between HB and HB+ in all three data sets. 
Figure 6a shows the I/O cost comparison between HB and 
HB+ based on various α and K. We can see that HB+ 
significantly outperforms HB in I/O performance when 
α ≥ 0.06 in all data sets. It indicates that the pruning in 
candidate clusters is necessary and can promote I/O perfor-
mance evidently. Besides, each data set encounters a thresh-
old of α beyond which the performance of HB+ changes 
slightly. This is because increasing α cannot further prune 
points in candidate clusters when α is large enough. In 
other words, these small values of α in HB+ can be used to 
reach the same precision of estimating lower bounds as that 
by HB. This reflects that our estimation of lower bounds is 
effective. Hence, we can determine a proper α for each data 
set. In Fig. 6b, we set α to be 0.08, 0.06 and 0.04 on Corel, 
Aerial and WT, respectively, and observe specific decreas-
ing quantity of I/O cost for HB+ against HB. We find that 
HB+ decreases 24.9, 18.6 and 18.9 % I/O operations com-
pared to HB on Corel, Aerial and WT, respectively, which 
embodies a considerable improvement.

Figure 6c depicts the CPU performance between HB and 
HB+ with various α and K. We note that α significantly 
affects CPU performance, and smaller α initiates lower 
CPU response time. However, since we consider I/O cost 
to be the major element of performance, we observe spe-
cific decreasing degree of CPU response time according to 
proper α for each data set selected in the I/O cost observa-
tion. Obviously, HB+ saves 17.6, 23.0 and 56.7 % of CPU 
response time compared to HB on Corel, Aerial and WT, 
respectively. These three degrees reflect an increasing trend 
of time saving with a decline of α. The promotion of CPU 

performance indicates that careful selection of separating 
hyperplanes is aimed at the right direction.

To sum up, our pruning and accelerating measures 
(including dimension reduction with parameter m and sepa-
rating hyperplane selection with parameter α) enable HB+ 
to outperform HB in both I/O and CPU performance.

4.4 � Performance comparisons with other popular k‑NN 
methods

In this subsection, we compare the approaches based 
on hyperplane bounds with other commonly used k-NN 
methods such as VA-File, iDistance and a newly proposed 
method FNN in performance. There are various parameters 
for different methods. HB depends on the number of clus-
ters K. For HB+, it will tune the cluster number K, dimen-
sion reduction variable m and the coefficient of separating 
hyperplanes selecting α. iDistance mainly depends on the 
number of reference points Nref and VA-File versus the 
approximate bit length in each dimension Nbit. For FNN, 
according to Algorithm 2 in [14], there is no need for 
parameter tuning. In our experiments, we set proper values 
for different parameters in different methods to get the best 
performance of each method. We reiterate that the major 
standard for parameter setting is the I/O performance. 
Table 2 shows the details of parameter setting. Based on the 
coefficient setting, we perform 10, 40-NN, 70-NN and 100
-NN search of different methods on all three data sets and 
evaluate both I/O and CPU performance. The correspond-
ing experimental results are depicted in Fig. 7.

According to Fig. 7, it is apparent that approaches based 
on hyperplane bounds are far more advantageous in I/O 
cost over the famous two k-NN methods VA-File and iDis-
tance. Besides, HB+ also achieves successfully both the 
best I/O performance and the best CPU performance in all 
three data sets. This demonstrates the outstanding ability 
of filtering irrelevant data points of the hyperplane bound. 
As for FNN, it shows a fairly good performance in CPU 
response time and an amazing performance in I/O cost 
when k is small. However, it does not preserve a good scal-
ability with the number of returned nearest neighbors k. 
Actually, the I/O cost of FNN increases linearly with the 
growth of k. In this regard, HB+ maintains both I/O cost 

Table 2   Parameters setting for 
different methods on different 
data sets

Methods Parameters setting for data set

Corel Aerial WT

HB K = 120 K = 500 K = 1,200

HB+ K = 120,m = 3,α = 0.08 K = 500,m = 2,α = 0.06 K = 1,200,m = 2,α = 0.04

iDistance Nref = 64 Nref = 64 Nref = 64

VA-File Nbit = 8 Nbit = 8 Nbit = 8

FNN None None None
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and CPU response time at a stable low amount when k 
increases. Hence, we demonstrate the superiority of HB+ 
over the other four approaches.

5 � Related work

It can be seen from Fig. 1 that methods of different process-
ing stages of image retrieval carry out different missions. 
NN search methods focus on enhancing the efficiency of 
dealing with the large-scale multi-dimensional feature vec-
tor data set to answer online image queries from the user 
efficiently. On the other hand, there exist a series of image 
representation methods which seek better representations 
of the original image to improve the accuracy of image 
retrieval.

5.1 � k‑NN search in large‑scale high‑dimensional data set

k-NN search is well understood in low-dimensional space 
[20]. In early studies, lots of tree-based indexing structures 
based on data partitioning [8–11, 21] or space partitioning 
[22, 23] have been developed. However, recent studies [7, 
20] show that these tree-based indexing methods will, as 
dimensionality increases, always degenerate to a sequential 

scan or be eventually outperformed by sequential scan. 
To tackle this phenomenon named “curse of dimensional-
ity”, more approaches were proposed, mainly in two direc-
tions. One is to improve the index structure with efficient 
organization to promote IO operations. For exact k-NN 
search in high-dimensional space, there mainly exist two 
categories of index structure improving methods, data size 
reduction and dimensionality reduction. The other is vector 
approximation. Popular approaches usually combine these 
two methods to simultaneously improve the IO and CPU 
performance.

VA-File is the representative high-dimensional index 
for data size reduction. It suggests accelerating sequen-
tial scan by data compression and filtering feature vec-
tors. The approximation of high-dimensional vector can 
be seen as a scale quantization. VA-File divides the data 
space into 2b hyper-rectangular cells. It allocates a unique 
bit-string of length b to each cell, and approximates the 
data points that fall into a cell by the relevant bit-string 
w.r.t the cell. VA-File is simply an array of the compact 
approximations which may help to reduce the I/O cost 
during the query. One of the drawbacks of VA-File is that 
it needs to examine the entire VA-File. The other one is 
that it will bring a large number of random I/O accesses. 
Some extensions of VA-File have been proposed, such as 
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IQ-tree [24], which achieves better query performance 
by combining a tree structure with VA-File. VA+-file 
improves the approximate ability of VA-File by trans-
forming the data points into PCA space [25]. Another 
technique PCVA devotes to reducing the amount of can-
didate approximate vectors that need to be accessed by 
sorting one-dimensional projections on the first principal 
component [26].

Dimensionality reduction (DR) indexes the data set in 
the reduced-dimensionality space [27, 28]. The linear DR 
approach first condenses most of information in a data 
set to a few dimensions by applying principal component 
analysis or other techniques. Two strategies for dimension-
ality reduction have been presented [19]. The first one is 
global dimensionality reduction (GDR), in which all the 
data are regarded as a whole and reduced down to a few 
dimensions. The other strategy, called local dimensionality 
reduction (LDR), is a cluster-based DR technique which 
divides the whole data set into separate clusters on the basis 
of the correlation of data, and then reduces the dimension-
ality in each cluster. To improve the performance of index-
ing method which requires pre-computing distances, a gen-
eral cost model of LDR for range queries was presented 
[29]. According to this cost model, a new LDR method, 
called PRANS, has been proposed. One of the goals of the 
model is to prune more irrelative data points using triangle 
inequality.

One-dimensional indexing approaches are also typical 
dimensionality reduction methods. They provide another 
direction for high-dimensional indexing, which is one-
dimensional mapping or transformation [10, 30]. The 
one-dimensional mapping methods also use the “filter-
and-refine” strategy. Data points can be filtered according 
to the one-dimensional values, and the real nearest neigh-
bors are verified in the set of candidates. B+-tree is usually 
deployed to index the transformed one-dimensional val-
ues [31]. A query in the original data space is mapped to 
a region determined by the mapping method, which is the 
union of one-dimensional ranges. The typical example is 
iDistance [10]. According to this model, the data set is par-
titioned and a reference point of each partition is defined. 
Then, data points are mapped into one-dimensional val-
ues based on their distance to the reference point. Under 
the use of partitioning techniques, iDistance works well in 
low- or medium-dimensional spaces (up to 30–50 dimen-
sions). However, its performance is sensitive to the selec-
tion of reference points and too many random accesses of 
data pages are required. LDC [32] combines the idea of 
one-dimensional mapping and vector approximation, and 
also uses a B+-tree to index the one-dimensional distance. 
Since LDC is tailor-made for the high-dimensional space, 
its performance has no superiority in the low- to medium-
dimensional space.

Vector approximation maps a sequence of continuous 
or discrete vectors into a digital sequence which is suitable 
for communication over or storage in a digital channel. A 
well-known approximation technique is vector quantiza-
tion (VQ). According to the classical vector quantization, 
we map a d-dimensional vector x ∈ R

d to another vec-
tor q(x) ∈ C = {ci|ci ∈ R

d , 1 ≤ i ≤ K}. Here, the set C is 
known as a codebook [33], ci is a codeword, and K is the 
number of codewords. The similarity between two vectors 
can be approximated by the “distance” of their codewords, 
which will accelerate distance computations. Besides, for k
-NN search, to filter irrelevant points efficiently, the code-
words can also be used to generate lower bounds of query 
point, which is helpful to accelerate the search.

The vector approximation used in VA-File can be seen 
as a scalar quantization. It ignores the dependencies across 
dimensions, and each point is bounded with a hyper-rec-
tangular cell. HB benefits from the vector quantization. It 
brings a new cluster-adaptive distance bound by exploiting 
the separating hyperplane boundaries of Voronoi clusters 
to get tighter lower distance bounds. Both of these endow 
HB with two advantages. Firstly, it can compress the data 
size dramatically and outperform the other NN search 
approaches. Secondly, compared with bounding sphere or 
rectangle, HB provides a much better filtering ability for 
the irrelevant clusters.

5.2 � Image representation methods

On the other hand, there exist series of research works in 
image classification and processing which may also involve 
evaluation of distances between images; we introduce some 
representative ones. The first one [34] devotes to selecting 
graphlets that have highly discriminative and low redun-
dancy topologies to represent the original images. It selects 
graphlets from each aerial image that can be quantized into 
a feature vector for further processing. Another one in [35] 
advocates better characterizing images by exploiting high-
order potentials. It manages to integrate multimodal fea-
tures by introducing a shared entropy measurement and a 
feature correlation hypergraph (FCH) to respectively cap-
ture and model the high-order relations among multimodal 
features. Besides, works in [36] incorporate image-level 
semantic information into graphlets with the help of a hier-
archical Bayesian network to learn semantic associations 
between graphlets. It enables the extracted feature vec-
tors containing semantic information which can enhance 
the semantic accuracy of image representation. What is 
more, [37] introduces a concept of cellet to construct a 
fine-grained representation of the spatial layout of images. 
The cellet can be constructed with representative cells of 
the original images, which can provide us with an effective 
representation of the feature of these images.
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In fact, these works all aim at finding better representa-
tions of image feature vectors, such that images can be bet-
ter understood. In contrast, our work in this paper aims at 
optimizing the search process for the best matches given an 
arbitrary query image which is represented as feature vectors 
using some image representation methods. Hence, how to 
better represent the image as feature vectors (i.e. image rep-
resentation methods) is beyond the scope and is independent 
of this work. Therefore, in our framework, many image rep-
resentations methods can be adopted in the images.

6 � Conclusion

In this paper, we investigate the unsupervised similarity 
search in large-scale image database, as well as the essen-
tial importance of effective indexing and searching meth-
ods for nearest neighbor search in high-dimensional space. 
According to a newly proposed index method based on 
separating hyperplanes, namely HB, we focus on address-
ing its two limitations, huge cost for computing lower 
bounds and the lack of efficient pruning method for false 
positives in candidate clusters, respectively. We see that 
both of these significantly affect the efficiency during the 
search procedure. Consequently, we propose our novel 
solutions towards these limitations and develop a new 
index approach, namely HB+. Firstly, we evaluate all the 
bounding hyperplanes for one cluster using random projec-
tion and select a small part of separating hyperplane bound-
aries to compute lower bounds. Secondly, we design a new 
pruning algorithm to eliminate irrelevant points in the can-
didate clusters. Extensive experiments conducted on three 
visual feature data sets demonstrate the superiority of HB+ 
over HB, as well as a series of other popular index schemas 
such as VA-File, iDistance and a newly proposed method 
FNN. In future, we will explore the potential of the hyper-
plane boundary and seek for more effective index structure 
to solve NN search on more challenging data sets.
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