
1 3

DOI 10.1007/s00530-014-0444-3
Multimedia Systems (2017) 23:139–153

SPECIAL ISSUE PAPER

Effective optimizations of cluster‑based nearest neighbor search
in high‑dimensional space

Xiaokang Feng · Jiangtao Cui · Yingfan Liu · Hui Li

Published online: 24 December 2014
© Springer-Verlag Berlin Heidelberg 2014

and CPU response time) and also demonstrate the superior-
ity over other exact NN indexes.

Keywords  Image retrieval · Nearest neighbor search ·
High-dimensional indexing · Hyperplane bounds

1  Introduction

Large-scale image retrieval plays an important role in both
the database community and the computer vision commu-
nity. Recently, researchers have diverted more attention to
supervised (or weakly supervised) hashing methods due to
the concern of semantic similarity. These methods enable
users to specify query through a natural language descrip-
tion of the visual concepts of interest [1], which appears
to be more precise in the semantic perspective. However,
this does not cause the unsupervised similarity retrieval
methods to be disfavored. In fact, unsupervised methods
use just the unlabeled data to quantify the given points and
usually show good performance with metric distances. The
most typical paradigm of unsupervised similarity retrieval
is the nearest neighbor (NN) search or k-nearest neighbor
(k-NN) search problem. Figure 1 shows a brief introduction
of image retrieval progress supported by NN search.

According to Fig. 1, we can see that image retrieval is
composed of two processing stages. The first one is the
image representation stage (the blue arrow part) during
which we extract high-quality feature vectors to represent
the original images with sufficient accuracy. It directly
determines the accuracy of image retrieval. Images from
the image database are represented by kinds of feature vec-
tors which are usually correlated and high dimensional,
such as color histogram, textures, shape, graphlet or mul-
timodal features. All these extracted feature vectors form

Abstract  Nearest neighbor (NN) search in high-dimen-
sional space plays a fundamental role in large-scale image
retrieval. It seeks efficient indexing and search techniques,
both of which are simultaneously essential for similarity
search and semantic analysis. However, in recent years,
there has been a rare breakthrough. Achievement of cur-
rent techniques for NN search is far from satisfactory, espe-
cially for exact NN search. A recently proposed method,
HB, addresses the exact NN search efficiently in high-
dimensional space. It benefits from cluster-based tech-
niques which can generate more compact representation of
the data set than other techniques by exploiting interdimen-
sional correlations. However, HB suffers from huge cost for
lower bound computations and provides no further pruning
scheme for points in candidate clusters. In this paper, we
extend the HB method to address exact NN search in cor-
related, high-dimensional vector data sets extracted from
large-scale image database by introducing two new prun-
ing/selection techniques and we call it HB+. The first
approach aims at selecting more quickly the subset of
hyperplanes/clusters that must be considered. The second
technique prunes irrelevant points in the selected subset of
clusters. Performed experiments show the improvement of
HB+ with respect to HB in terms of efficiency (I/O cost

X. Feng · J. Cui · Y. Liu · H. Li (*)
School of Computer Science and Technology, Xidian University,
Xi’an 710071, China
e-mail: hli@xidian.edu.cn

X. Feng
e-mail: xkfengxd227@gmail.com

J. Cui
e-mail: cuijt@xidian.edu.cn

Y. Liu
e-mail: yfliu1989@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s00530-014-0444-3&domain=pdf

140 X. Feng et al.

1 3

a feature vector data set which will be handed over to the
second processing stage (i.e. NN search, the green arrow
parts in Fig. 1) to deal with. Therefore, image retrieval in
large-scale image database is conveniently transformed into
NN search in large-scale high-dimensional vector space.
In other words, NN search is a fundamental paradigm of
image retrieval. It supports image retrieval and directly
affects the efficiency and accuracy of image retrieval.

We devote this paper to solving the NN search problem.
The following is a formulated description of it:

where q represents a query vector extracted from a query
image, D represents the feature vector data set where
D ⊂ R

d and ‖q, x‖p is the p-norm distance between q and x.
The goal of NN search is to find the closest point NN(q) to
the query from the data set.

It is noted that NN search in large-scale high-dimen-
sional vector space usually consists of two procedures as
depicted in Fig. 1. The first one is the off-line procedure,
which seeks efficient high-dimensional index structures for
the data set which will reduce expensive I/O operations.
The other one is the online procedure, which seeks efficient
searching methods that will cut down CPU computation
tasks. Both of these are essential for NN search.

Research on NN search problem can be divided into
exact retrieval and approximate retrieval. The approxi-
mate nearest neighbor (ANN) search problem has been
adequately addressed. Hashing is demonstrated to be effec-
tive for similarity search in multimedia databases. Local-
ity-sensitive hashing (LSH) is one typical hashing method
[2]. Its basic idea is to use a family of locality-sensitive
hashing functions based on random projections. Several
heuristic variants of LSH have also been suggested [3–5].

(1)NN(q) = argmin
x∈D

�q, x�p,

Vector quantization, especially using product quantization
and residual quantization, can also support efficient ANN
search combined with an inverted file system [6].

In comparison, exact NN search has much slower pro-
gress due to the strict requirement of returning accurate
nearest neighbors. This causes inevitable expensive dis-
tance computation on real data points, which makes I/O a
major performance bottleneck in current storage system.
Techniques that address this issue have to seek efficient
index structure and search methods simultaneously, which
brings considerably more difficulty to algorithm designing.

In this paper, we focus on the exact k-NN search algo-
rithm and the corresponding index structures.1 The conven-
tional approach to support k-NN search in high-dimen-
sional vector space is to use a multidimensional index
structure [7]. However, designing an efficient index struc-
ture is a big challenge for researchers. Recently, the “filter-
and-refine” index strategy has been proved to be an effi-
cient scheme to solve NN search in correlated,
high-dimensional feature space. To perform the “filter-and-
refine” scheme, the data set is divided into partitions with
space-based or data-based techniques in advance, and index
structures for those partitions are then built accordingly.
With the index structures, lower bounds of distances
between the query point and all partitions can be achieved
conveniently. Finally, only partitions with small enough
lower bounds to the query are accessed, the remaining are
safely pruned. Notably, the performance of “filter-and-
refine” approaches depends on the tightness of the lower
bounds. In other words, the tighter the lower bounds, the
more will be the clusters pruned. Traditionally, lower

1  In the sequel, we shall use “k-NN search” to refer to “exact k-NN
search” for simplicity.

Fig. 1   Brief introduction of the
image retrieval process (colour
figure online)

nearest neighbor search

[9, 0, 7, , 37]
[8, 6, 13, , 42]
[4, 16, 21, , 178]

[11, 87, 36, , 72]

......

1x
2x
3x

nx

image
representation

feature vector data setimage database

index
structure

[8, 7, 14, , 40]q

[8, 6, 13, , 42]2x

query vectorquery image

result image

online

offline

NN (q)

image
representation

141Effective optimizations of cluster-based NN search

1 3

bounds are computed with bounding rectangles or spheres
of the partitions [8–11]. Unfortunately, they do not produce
sufficiently tight lower bounds for high-dimensional data
and thus have to access the majority of the data set.

Cluster-based techniques are demonstrated to be very
effective to produce tighter lower bounds, because they
can exploit interdimensional correlations within data sets
and generate more compact representations. Recently,
Ramaswamy et al. [12] proposed a new method called HB
(hyperplane bounds) based on these techniques. It gener-
ates lower bounds by exploiting separating hyperplanes
between the query point and all the clusters. With tight
enough lower bounds, HB filters out most of the unre-
lated clusters effectively and obtains a pretty good query
performance. Besides, its index structure is space saving
(requires only O(Kd) space, where K and d denote the
number of clusters and the dimensionality of the data set,
respectively).

However, the tightness of lower bounds in HB is
highly related to the number of clusters K and more clus-
ters directly help to produce tighter lower bounds. Unfor-
tunately, the CPU cost for lower bound computation
increases quadratically with the growth of K , since its time
complexity is O(K2d). Besides, HB does not provide any
further pruning method inside candidate clusters. All points
in a candidate cluster will be verified by expensive distance
computation, which will decrease the performance of the
search algorithm dramatically.

In this paper, we focus on addressing the two draw-
backs of HB above and propose our new index structure
called HB+, which can reduce nearly 20 % I/O cost and
more than 30 % CPU cost on average compared to HB.
Our extensive experiments on three visual feature data sets
demonstrate the superiority of HB+ over HB and three
other popular indexing methods in the database community

including VA-File [7], iDistance [13] and a newly proposed
method FNN [14].

2 � Preliminaries of HB

Our solutions will leverage on HB as the building brick. In
this section, we first present an important technique of HB
that is necessary for our discussion. Then we discuss the
limitations of HB to further clarify the motivation of our
methods. A list of notations that we will use subsequently
is presented in Table 1.

2.1 � Hyperplane and lower bound

We use Euclidean distance as the similarity measure
between points in this paper. In d-dimensional space, a
hyperplane can be represented as

Here, n is the normal vector of the hyperplane and p is just
a real number. For simplicity, we use H to denote a hyper-
plane in the rest of this paper. The distance between a point
x and a hyperplane H can be obtained as follows:

We are interested in separating hyperplanes (i.e. hyper-
planes lie between the query and clusters) because only
separating hyperplanes generate lower bound. As shown in
Fig. 2, we can obtain a lower bound distance between the
query, namely q, and a cluster, namely Ci by adding d(q,H),
the distance between q and a separating hyperplane H, and

(2)H(n, p) =
{

xTn+ p = 0 | x ∈ R
d
}

.

(3)d(x,H) =
∣

∣

∣

∣

xTn+ p

�n�2

∣

∣

∣

∣

.

Table 1   Notations Symbol Notations

D Data set

K Number of clusters

H(n, p) A hyperplane with parameters n and p

q Typical query

x, x1, x2, . . . Typical elements of the data set

{Ci}K=1
K clusters of the data set

{ci}K=1
K centroid of all clusters

Hij Hyperplane separating Ci and Cj

d(x,H) Distance between a point x and a hyperplane H

d(H,C) The minimum distance between a cluster C and one of its hyperplane bounds H

LB(x,C) The lower bound distance between a point x and a cluster C

k Number of nearest neighbors to return

�·�2 2-norm of a vector

‖x1, x2‖2 Euclidean distance between x1 and x2

142 X. Feng et al.

1 3

d(x,H), the minimum of distance between the points in the
cluster and H.

We treat the lower bound2 computing between the query
and the cluster as a kind of competition among all the sepa-
rating hyperplanes. The formal definition is as follows:

A loosening measurement for Eq. 4 is taken in [12] to
achieve a tighter lower bound. The following is the final
expression of lower bound computing:

where Hsep is a set of separating hyperplanes between q and
C and Hc represents all the hyperplane bounds around C
. For Eq. 5, the first element to the right side of the equal
mark [i.e. maxH∈Hsep d(q,H)] represents the maximum dis-
tance between q and all the separating hyperplanes of C. It
is calculated online. The second one to the right side of the
equal mark represents the minimum distance between all
data points in C and all C’s hyperplane bounds. It seems like
a “inner gap” between the whole data points inside C and all
its boundaries. We define a new notation to represent it:

where IGc is short for “inner gap w.r.t a cluster”. Besides,
it is obvious that IGc for each cluster can be computed off-
line and stored in advance with only O(Kd) space. There-
fore, the main cost of lower bound computing resides only
in the computation of the distances between the query and
all the separating hyperplanes.

2  In the sequel, we shall use the term “lower bound” to refer to the
lower bound distance between a query and a cluster for simplicity.

(4)LB(q,C) = max
H∈Hsep

{

d(q,H)+min
x∈C

d(x,H)

}

.

(5)LB(q,C) = max
H∈Hsep

d(q,H)+min
x∈C

min
H∈Hc

d(x,H),

(6)IGc = min
x∈C

min
H∈Hc

d(x,H),

2.2 � Refining separating hyperplanes

In this subsection, we discuss how to select the set of sepa-
rating hyperplanes between the query and a cluster, which
is crucial to the tightness of the lower bound according to
Eq. 5. Firstly, we assume that a data set is partitioned into
K clusters, which are represented as {Ci}K=1. The centroid of
these clusters can be denoted as {ci}K=1.

As defined in [12], the hyperplane Hij between two clus-
ters Ci, Cj (1 ≤ i, j ≤ K and i �= j) are defined as follows:

Hence, for a cluster, there are K − 1 hyperplanes around it.
However, not all of them are separating hyperplanes for a spe-
cific query, since a separating hyperplane just locates between
the query and the cluster. Thus, the set of separating hyper-
planes for a query q and a cluster Ci is defined as follows:

Equation 8 enables us to pick out the real separating hyper-
planes from all hyperplane bounds for a cluster. This refine-
ment of separating hyperplanes works as follows. Let dqc[·]
store the distances between query q and all K clusters. We
can figure out a sequence of these clusters oc[·] by sorting
all the K distances in ascending order. Thus, according to
Eq. 8, for a cluster Ci, it may get a corresponding order
number j (1 ≤ j ≤ K) in oc[·] where i = oc[j], and only
clusters with order numbers smaller than j will form sepa-
rating hyperplanes for cluster Ci. The following is an obser-
vation about the number of separating hyperplanes.

Observation 1  The average number of separating hyper-
planes for all clusters in HB is (K − 1)/2, approximately
0.5 K in high-dimensional space.

Proof  Based on the orders of all the K clusters oc[·], the
numbers of the corresponding separating hyperplanes for
each cluster are 0, 1, 2, . . . ,K − 1, respectively, which means
the cluster with the farthest centroid from the query gets
K − 1 separating hyperplanes, while the closest one gets no
separating hyperplane. Therefore, to obtain all the K lower
bounds, there are totally K(K − 1)/2 distances between the
query and separating hyperplanes that have to be computed.
On average, each cluster gets (K − 1)/2 separating hyper-
planes, nearly 0.5 K in high-dimensional space.

2.3 � Limitations of HB

The k-NN search algorithm performed by HB in the Algo-
rithm 2 in [12] follows the “filter-and-refine” strategy.
For every query, the hyperplane bounds are calculated in

(7)Hij = H(−2(ci − cj), �ci�22 − �cj�22).

(8)Hsep(q,Ci) =
{

Hij

∣

∣�q, ci�2 > �q, cj�2
}

.

Separating
 hyperplane

H

q

x
,d x H

iC
, id q C

,d q H

Fig. 2   Lower bound with separating hyperplanes

143Effective optimizations of cluster-based NN search

1 3

advance. These lower bounds are then used to sort all the
clusters. Clusters are accessed in ascending order, respec-
tively, and in the meanwhile k-NNs within each cluster are
identified. When the k-th nearest neighbor’s distance found
so far is smaller than the lower bound of the next cluster,
the search terminates as all k-NNs have been found.

We can see that HB is theoretically efficient. However,
there are two limitations within the algorithm, too many
query–hyperplane distance computations and no effective
approach to prune false positives in the candidate clusters.

To reduce the storage cost, HB only stores the minimum
of the distances between each cluster and all the hyper-
planes around it. All the lower bounds between the query
and clusters need to be calculated online, which leads to
exhaustive computations with O(K2d) time complexity of
high-dimensional distance according to Sect. 2.2. Espe-
cially with an excessively large K, which is necessary for
high filtration rate, the computation cost of lower bounds
becomes very high and even exceeds the cost of distance
computation. Conversely, if K is too small, the filtering
ability of HB will decrease and more candidate points need
to be accessed and computed.

Besides, HB only provides a novel bounding technique to
filter irrelative clusters. However, it takes a simple method to
deal with the false positives inside the candidate clusters. It
loads all members of a candidate cluster into memory to per-
form expensive distance computations to identify k nearest
neighbors. Unfortunately, as there may exist numerous false
positives in the candidate cluster, this approach may lead to
considerable unnecessary I/O cost and CPU cost.

3 � HB+

To address the two limitations of the above HB method, we
propose our new approach, namely HB+, which will be
described in detail in this section.

3.1 � Accelerate lower bound computing

Lower bound depends on separating hyperplanes. As men-
tioned in Sect. 2.2, to achieve tight lower bounds, HB takes
a large number of distance computing between the query
and separating hyperplanes. We can figure out the equation
for query–hyperplane distance computing by combining
Eqs. 3, 7 and 8:

We can see that it constitutes two kinds of distance com-
puting. Both are very expensive in high-dimensional space.
However, according to Eq. 5, the lower bound is actually

(9)d(q,Hij) =
�q, ci�22 − �q, cj�22

2�ci, cj�2
.

determined by only one separating hyperplane. This means
that most of the separating hyperplanes are superfluous, but
inevitable. We propose a novel way to accelerate the lower
bound computing from two aspects as follows: reducing the
amount of calculation in Eq. 9 as well as partially selecting
separating hyperplanes.

For the first aspect, as mentioned above, there are two
computing tasks in Eq. 9 the distances computing between q
and K cluster centroids and the distance computing between
each pair of centroids. The former one contains K distance
computing, which should be obtained online in advance,
since they cost few response times and each of them will
be used several times during the process of computing the
K lower bounds. As for the latter one (i.e.

∥

∥ci, cj
∥

∥

2
), there

are totally K(K − 1)/2 distances. To save storage as HB
always promotes, we plan to solve this problem online. To
solve this issue, we introduce random projection techniques
[15–17] which are commonly used for fast estimation of
distance between points in machine learning community.

Formally, we represent the set of K cluster centroids as a
K × d matrix A and a random matrix R with size d × m which
is generated to perform the dimension reduction as follows:

According to this equation, a d-dimensional point is trans-
formed to an m-dimensional point. Besides, each element
rij of R is independently randomly drawn from the follow-
ing distribution [15]:

With dimension reduction, we can estimate the distances
between each pair of centroids with their corresponding
reduced ones, thus leading to an estimation for Eq. 9. It is
noted that m is an important parameter for HB+ since it
affects the tightness of lower bounds and the efficiency of
the estimation simultaneously. As m increases, more infor-
mation will be retained in the points after dimension reduc-
tion and the estimation of distances between cluster cent-
ers will be more precise. However, this will also introduce
more CPU cost during the estimation. Actually, m is usu-
ally a small value, much smaller than the dimensionality of
the data set d. We will discuss the choice of m in Sect. 4.2.

For the second aspect, instead of selecting all possible
hyperplanes obtained by Eq. 8, we can smartly choose only
T separating hyperplanes that hold the largest T estimates of
distance from the query. Because of the well similarity pre-
serving ability, the random projection techniques we per-
formed above can ensure high probability that the separat-
ing hyperplane which provides the maximum distance to the
query point is retained in the T selected ones. Let α = T

K
 be

(10)B =
1

√
m
AR.

(11)rij =







√
3 with prob. 1/6

0 with prob. 2/3

−
√
3 with prob. 1/6

144 X. Feng et al.

1 3

the proportion of selected hyperplanes; hence, 0 < α < 1.
More precisely, the similarity preserving ability of the ran-
dom projection techniques is well enough that α is usually
much smaller than 0.5 (the average number of separating
hyperplanes for each cluster in HB is almost 0.5 K accord-
ing to Observation 1) according to the experimental result.
Actually, T and α are derived from the same concept.3 Based
on this, the cardinality of the set of separating hyperplanes
for a query and a cluster is reduced significantly, which
helps to accelerate the computation of lower bounds further.
A fast algorithm to compute the lower bound with our afore-
mentioned acceleration method is outlined in Algorithm 1.

In Algorithm 1, distances between the query point q and
all cluster centroids will be computed first and kept in a
list dqc[·] (line 1). Then they are sorted in ascending order
(line 2) to generate an ordered list o[·] of these clusters. It
is obvious that there is no separating hyperplane around the
first cluster in o[·] whose centroid is closest to q. We just
set its lower bound to be 0 (line 4). For the other clusters,
Cic (ic �= o[1]) as an example, we can also obtain the sepa-
rating hyperplanes easily with the help of o[·] according to

3  This concept refers to our suggestion of partially selecting separat-
ing hyperplanes. In fact, in experimentation we have tested the empir-
ical results by varying the value of α, the proportion of selected sepa-
rating hyperplanes, during the experiments.

Eq. 8, because all the separating hyperplanes of Cic must
lie between q and Cic. This means a cluster (Cic except) that
wants to form a separating hyperplane of Cic must satisfy
the condition that the distance between q and itself should
be smaller than that between q and Cic according to Eq. 8.
o[1 : i − 1] is the set of cluster IDs that satisfy this condi-
tion, where i is the rank number of Cic in the ordered list o[·].
Thus, for a cluster whose rank number in o[·] is i (1 ≤ i ≤ K

), the number of separating hyperplanes around it will be
i − 1. According to this, the farther the centroid of a clus-
ter away from q, the more separating hyperplanes the cluster
gets. Afterwards, we select at most T separating hyperplanes
for each cluster to perform the precisely, but expensively
lower bound computing in Line 16. According to the above,
clusters with rank numbers smaller than T + 1 can acquire a
direct promotion to Line 16. For the other clusters that hold
more than T separating hyperplane bounds, we perform an
estimation of the distances between the query and the sepa-
rating hyperplanes for each cluster with the help of random
projection as mentioned before (line 12). Then we sort these
estimates of distance in descending order and choose the
most promising T ones as the final candidate separating
hyperplanes (line 13 to line 14) of one cluster. In Line 16,
with carefully chosen separating hyperplanes, we obtain the
lower bound for each cluster. Here, as mentioned in Sect.
2.1, IGc for each cluster is computed off-line and stored in
advance. It consists of all the minimum distances between
each cluster and the hyperplanes around it. Finally, the
lower bounds of all clusters will be returned.

3.2 � Efficient pruning in candidate clusters

We have discussed in Sect. 2.3 that the search algorithm of
HB suffers from checking all data points in a candidate clus-
ter which may contain lots of false positives and thus lead to a
bad search performance. Figure 3 illustrates an example. Sup-
pose the current search radius is r. In the ideal case, there is
only one point x1 that needs to be checked; thus, it is unneces-
sary to access all the points in this cluster for the query.

The reason that HB cannot avoid such false positives
relies on the granularity of the “inner gap” concept used in
HB. In other words, IGc is able to tell us whether a cluster
should be loaded into the main memory or not during the k
-NN search, because it is distinguishable on the granularity
of a cluster. However, it is unable to determine whether a
certain data point should be loaded.

To prune data points inside the candidate clusters in
HB+, we extend the “inner gap” concept to the granular-
ity of a data point and introduce a new notation IGp (“inner
gap w.r.t a point”) accordingly. IGp is defined as:

(12)IGp(x) = min
H∈Hc

d(x,H),

145Effective optimizations of cluster-based NN search

1 3

where x denotes any point in cluster C, and Hc represents
all the K − 1 hyperplane bounds around C as mentioned
before. Therefore, the minimum distances between each
point and all the hyperplanes should be obtained because

IGp is related to every data point. As shown in Fig. 3, the
length of the solid line connecting the data point and its
nearest hyperplane boundary is equal to IGp(x). Utiliz-
ing this variable, we can further get a tighter lower bound
distance between the query point q and a data point x as
follows:

All the data points of a cluster are stored and accessed in
ascending order of IGp. During the query process, a point
to be accessed can be rejected if its lower bound to the
query is larger than the search radius. In this way, if we find
a point that can be pruned, all the rest points in this clus-
ter can be pruned too. Recall the example shown in Fig. 3.
It is noted that the data points sequence of this cluster is
x1, x3, x2, x4, x5 and the maximum distance between the
query and separating hyperplanes is d(q,H1). According
to the above, since IGp(x2) is larger than r − d(q,H1), x2
can be pruned safely without distance computation. Conse-
quently, x4 and x5 can also be rejected.

(13)LB(q, x) = max
H∈Hsep

d(q,H)+ IGp(x) ≤ �q, x�2.

q 1x

2x
3x

4x

5x

r

1,r d q H

1H

2H

Fig. 3   An illustration of a cluster containing false positives

146 X. Feng et al.

1 3

Based on this, we propose our new pruning algorithm.
More details are depicted in Algorithm 2. It is noted that the
process of computing IGp is performed offline, which does
not add to the computation cost during the query. Besides,
only 1-dimensional value is added when storing data points,
and no additional index is used to manage these points in a
cluster.

Moreover, the index to manage data points for a clus-
ter of iDistance is based on distance computation [13]. The
one-dimensional distances are indexed with a B+-tree. Dur-
ing the search, it locates the first point to be accessed in
a cluster and then a bidirectional scan will be conducted.
However in HB+, the search in a cluster is a one-direc-
tional linear scan, which can save more I/O cost, because
the linear scan avoids seeking the specified page and is
much faster than the bidirectional scan of data pages.

Figure 4 illustrates the effectiveness of the pruning oper-
ation. We implement 10-NN search on three high-dimen-
sional data sets, Corel, Aerial and WT (specific details of
these data sets can be found in Sect. 4). We compare the
selectivity between HB and HB+ where the selectivity
of an approach is defined as the number of points that are
accessed during the search with respect to the cardinality
of the data set. As mentioned above, we tune both the pro-
portion of selected separating hyperplanes α and the cluster
number K to see the performance trend.

According to Fig. 4, HB+ obviously reduces the number
of points accessed compared to HB, which means our new
pruning algorithm has made a contribution. Besides, when
α is larger than 0.06, increasing α will not provide further
pruning power, which means more separating hyperplane
cannot enhance the tightness of the lower bounds any more.
This indicates a critical point of the amount of selected
separating hyperplanes and provides us with a principle to
select a proper α for a certain data set.

4 � Experiments

In this section, we experimentally evaluate the performance
of our optimizations in HB+. Section 4.1 introduces the
metrics for performance evaluating and the details of data
sets. Section 4.2 tunes the parameter m for HB+ to observe
the influence on the tightness of lower bounds. It offers us
a standard for parameter settings of m in HB+. Section 4.3
demonstrates the superiority of HB+ over HB. Finally, in
Sect. 4.4, we compare the methods based on hyperplane
bounds with popular index schema such as VA-File, iDis-
tance and a newly proposed method FNN in their best per-
formance. Implementations are achieved in C. All experi-
ments are performed on a Linux machine with an Intel®
CoreTM2 Quad CPU 2.83 GHz processor and 4GB RAM
running Ubuntu 12.04 LTS.

4.1 � Experimental setup

For k-NN search, the most important performance we
care about is the efficiency. In this paper, we measure effi-
ciency in two axes: I/O cost and CPU response time. Since
our algorithms and index structures are all about external
memory where I/O communication between fast internal
memory and slower external memory is the major per-
formance bottleneck [18], we treat I/O cost as the major
element of performance. For I/O cost, since there are
both random I/O operations and sequential I/O opera-
tions in the comparing approaches, we compute I/O cost
as IOr + IOs/10 [19], where IOr is the number of random
I/O and IOs refers to the number of pages sequentially
accessed. As for CPU response time, we remove I/O time
from it, which means the CPU response time includes time
cost of all operations when performing k-NN search, but
without I/O operations.

40 80 120 160 200
0.04

0.08

0.12

0.16

0.2
Corel

K

S
el
ec

tiv
ity
(%

)

HB
HB+ alpha=0.02
HB+ alpha=0.04
HB+ alpha=0.06
HB+ alpha=0.08
HB+ alpha=0.1

300 400 500 600 700
0.05

0.07

0.09

0.11

0.13
Aerial

K

S
el
ec

tiv
ity
(%

)

HB
HB+ alpha=0.02
HB+ alpha=0.04
HB+ alpha=0.06
HB+ alpha=0.08
HB+ alpha=0.1

800 1000 1200 1400 1600
0.04

0.06

0.08

0.1

0.12
WT

K

S
el
ec

tiv
ity
(%

)

HB
HB+ alpha=0.02
HB+ alpha=0.04
HB+ alpha=0.06
HB+ alpha=0.08
HB+ alpha=0.1

Fig. 4   Comparison of selectivity between HB and HB+

147Effective optimizations of cluster-based NN search

1 3

The experiments are conducted on three representative
visual feature data sets: Corel,4 Aerial5 and WT6 Corel con-
tains 68,040 32-dimensional color histograms. Aerial con-
sists of 275,465 60-dimensional texture feature vectors.
WT consists of 269,648 128-dimensional wavelet textures
with each row representing an image. All of them are
extracted from large-scale image databases for image rep-
resentation and are commonly used as benchmarks for
high-dimensional index methods. For each data set, we ran-
domly select 200 data points to form the query set to esti-
mate the performance of different approaches and the
results are averaged.

4.2 � Tuning m

Firstly, we tune the reduced dimensionality m in HB+,
which directly affects the tightness of lower bounds. To
observe an obvious performance trend, we set a group of
values for m and K. Meanwhile, we fix the number k of

4  Download from http://archive.ics.uci.edu/ml/datasets/Corel+Image+
Features/.
5  Download from http://vision.ece.ucsb.edu/download.html.
6  Download from http://lms.comp.nus.edu.sg/research/NUS-WIDE.
htm.

returned neighbors as 10 in the following experiments in
default, unless specified. As for α, which indicates the car-
dinality of the set of separating hyperplanes for each lower
bound computation, we set it to be 0.06 initially which is a
reasonable value. Figure 5 depicts the effect of m for 10-NN
search performance on all three data sets.

As shown in Fig. 5a, when m is small (m = 1), HB+
consumes significantly more I/Os for different settings of
K. However, after a slight increase, the I/O cost of HB+
reaches an optimal value and remains constant during
further growth of m. It means that a small value of m (m
around 3 according to the experimental performance) is the
critical value which is able to produce the best I/O cost for
HB+, and increasing m will not enhance the tightness of
HB+ further. Naturally, we set m to such a critical point.
Actually, the critical value of m is usually far less than d
which will sufficiently reduce the computation cost of the
denominator of Eq. 9. This is the reason that we insist plac-
ing the computation of distances between centroids online
in Sect. 3.1. According to the actual results, we set m as 3
for Corel, 2 for Aerial and 2 for WT in the following exper-
iments unless specified. As for CPU response time, the per-
formance lines nearly stick together with each other, which
means m may not influence response time obviously. This
is easy to understand because the adjustment of m can only

40 80 120 160 200
15

20

25

30

35
Corel

K

I/O
m=1
m=2
m=3
m=4
m=5

300 400 500 600 700
120

125

130

135

140
Aerial

K

I/O

m=1
m=2
m=3
m=4
m=5

800 1000 1200 1400 1600
230

235

240

245

250
WT

K

I/O

m=1
m=2
m=3
m=4
m=5

(a) I/O versus m and K

40 80 120 160 200
0.4

0.8

1.2

1.6

2
Corel

K

C
P

U
 re

sp
on

se
 ti

m
e(

m
s)

m=1
m=2
m=3
m=4
m=5

300 400 500 600 700
5

10

15

20

25

30
Aerial

K

C
P

U
 re

sp
on

se
 ti

m
e(

m
s)

m=1
m=2
m=3
m=4
m=5

800 1000 1200 1400 1600
30

80

130

180
WT

K

C
P

U
 re

sp
on

se
 ti

m
e(

m
s)

m=1
m=2
m=3
m=4
m=5

(b) CPU response time versus m and K

Fig. 5   Performance of HB+ by tuning m on different data sets

http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features/
http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features/
http://vision.ece.ucsb.edu/download.html
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

148 X. Feng et al.

1 3

40 80 120 160 200
20

26

32

38

44

50
Corel

K

I/O
HB
HB+ alpha=0.02
HB+ alpha=0.04
HB+ alpha=0.06
HB+ alpha=0.08
HB+ alpha=0.1

300 400 500 600 700
120

140

160

180

200

220
Aerial

K

I/O

HB
HB+ alpha=0.02
HB+ alpha=0.04
HB+ alpha=0.06
HB+ alpha=0.08
HB+ alpha=0.1

800 1000 1200 1400 1600
200

240

280

320

360

400

440
WT

K

I/O

HB
HB+ alpha=0.02
HB+ alpha=0.04
HB+ alpha=0.06
HB+ alpha=0.08
HB+ alpha=0.1

(a) I/O

40 80 120 160 200
0

10

20

30

40
Corel

K

I/O
 d

iff
(%

)

alpha=0.08

300 400 500 600 700
0

10

20

30

40
Aerial

K

I/O
 d

iff
(%

)
alpha=0.06

800 1000 1200 1400 1600
0

10

20

30

40
WT

K

I/O
 d

iff
(%

)

WT alpha=0.04

(b) I/O cost diff

40 80 120 160 200
0.5

1

1.5

2

2.5

3
Corel

K

C
P

U
 re

sp
on

se
 ti

m
e(

m
s)

HB
HB+ alpha=0.02
HB+ alpha=0.04
HB+ alpha=0.06
HB+ alpha=0.08
HB+ alpha=0.1

300 400 500 600 700
5

15

25

35

45

55
Aerial

K

C
P

U
 re

sp
on

se
 ti

m
e(

m
s)

HB
HB+ alpha=0.02
HB+ alpha=0.04
HB+ alpha=0.06
HB+ alpha=0.08
HB+ alpha=0.1

800 1000 1200 1400 1600
0

100

200

300

400

500
WT

K

C
P

U
 re

sp
on

se
 ti

m
e(

m
s)

HB
HB+ alpha=0.02
HB+ alpha=0.04
HB+ alpha=0.06
HB+ alpha=0.08
HB+ alpha=0.1

(c) CPU response time

40 80 120 160 200
0

20

40

60

80
Corel

K

C
P

U
 re

sp
on

se
 ti

m
e

di
ff(

%
) alpha=0.08

300 400 500 600 700
0

20

40

60

80
Aerial

K

C
P

U
 re

sp
on

se
 ti

m
e

di
ff(

%
) alpha=0.06

800 1000 1200 1400 1600
0

20

40

60

80
WT

K

C
P

U
 re

sp
on

se
 ti

m
e

di
ff(

%
) alpha=0.04

(d) CPU response time diff

Fig. 6   Comparisons of I/O and CPU performance between HB and HB+

149Effective optimizations of cluster-based NN search

1 3

decrease computation of the denominator of Eq. 9 quantita-
tively, but not change the complexity. In fact, this is just a
preliminary operation for CPU cost saving.

4.3 � Performance comparisons between HB and HB+

In this subsection, we compare HB+ with HB of both I/O
performance and CPU performance. We tune K and α for
HB+, which indicate the number of clusters and how many
hyperplanes are selected for each cluster, respectively. As
for HB, we observe the effects with various K.

Figure 6 depicts the comparisons of both I/O and CPU
performance between HB and HB+ in all three data sets.
Figure 6a shows the I/O cost comparison between HB and
HB+ based on various α and K. We can see that HB+
significantly outperforms HB in I/O performance when
α ≥ 0.06 in all data sets. It indicates that the pruning in
candidate clusters is necessary and can promote I/O perfor-
mance evidently. Besides, each data set encounters a thresh-
old of α beyond which the performance of HB+ changes
slightly. This is because increasing α cannot further prune
points in candidate clusters when α is large enough. In
other words, these small values of α in HB+ can be used to
reach the same precision of estimating lower bounds as that
by HB. This reflects that our estimation of lower bounds is
effective. Hence, we can determine a proper α for each data
set. In Fig. 6b, we set α to be 0.08, 0.06 and 0.04 on Corel,
Aerial and WT, respectively, and observe specific decreas-
ing quantity of I/O cost for HB+ against HB. We find that
HB+ decreases 24.9, 18.6 and 18.9 % I/O operations com-
pared to HB on Corel, Aerial and WT, respectively, which
embodies a considerable improvement.

Figure 6c depicts the CPU performance between HB and
HB+ with various α and K. We note that α significantly
affects CPU performance, and smaller α initiates lower
CPU response time. However, since we consider I/O cost
to be the major element of performance, we observe spe-
cific decreasing degree of CPU response time according to
proper α for each data set selected in the I/O cost observa-
tion. Obviously, HB+ saves 17.6, 23.0 and 56.7 % of CPU
response time compared to HB on Corel, Aerial and WT,
respectively. These three degrees reflect an increasing trend
of time saving with a decline of α. The promotion of CPU

performance indicates that careful selection of separating
hyperplanes is aimed at the right direction.

To sum up, our pruning and accelerating measures
(including dimension reduction with parameter m and sepa-
rating hyperplane selection with parameter α) enable HB+
to outperform HB in both I/O and CPU performance.

4.4 � Performance comparisons with other popular k‑NN
methods

In this subsection, we compare the approaches based
on hyperplane bounds with other commonly used k-NN
methods such as VA-File, iDistance and a newly proposed
method FNN in performance. There are various parameters
for different methods. HB depends on the number of clus-
ters K. For HB+, it will tune the cluster number K, dimen-
sion reduction variable m and the coefficient of separating
hyperplanes selecting α. iDistance mainly depends on the
number of reference points Nref and VA-File versus the
approximate bit length in each dimension Nbit. For FNN,
according to Algorithm 2 in [14], there is no need for
parameter tuning. In our experiments, we set proper values
for different parameters in different methods to get the best
performance of each method. We reiterate that the major
standard for parameter setting is the I/O performance.
Table 2 shows the details of parameter setting. Based on the
coefficient setting, we perform 10, 40-NN, 70-NN and 100
-NN search of different methods on all three data sets and
evaluate both I/O and CPU performance. The correspond-
ing experimental results are depicted in Fig. 7.

According to Fig. 7, it is apparent that approaches based
on hyperplane bounds are far more advantageous in I/O
cost over the famous two k-NN methods VA-File and iDis-
tance. Besides, HB+ also achieves successfully both the
best I/O performance and the best CPU performance in all
three data sets. This demonstrates the outstanding ability
of filtering irrelevant data points of the hyperplane bound.
As for FNN, it shows a fairly good performance in CPU
response time and an amazing performance in I/O cost
when k is small. However, it does not preserve a good scal-
ability with the number of returned nearest neighbors k.
Actually, the I/O cost of FNN increases linearly with the
growth of k. In this regard, HB+ maintains both I/O cost

Table 2   Parameters setting for
different methods on different
data sets

Methods Parameters setting for data set

Corel Aerial WT

HB K = 120 K = 500 K = 1,200

HB+ K = 120,m = 3,α = 0.08 K = 500,m = 2,α = 0.06 K = 1,200,m = 2,α = 0.04

iDistance Nref = 64 Nref = 64 Nref = 64

VA-File Nbit = 8 Nbit = 8 Nbit = 8

FNN None None None

150 X. Feng et al.

1 3

and CPU response time at a stable low amount when k
increases. Hence, we demonstrate the superiority of HB+
over the other four approaches.

5 � Related work

It can be seen from Fig. 1 that methods of different process-
ing stages of image retrieval carry out different missions.
NN search methods focus on enhancing the efficiency of
dealing with the large-scale multi-dimensional feature vec-
tor data set to answer online image queries from the user
efficiently. On the other hand, there exist a series of image
representation methods which seek better representations
of the original image to improve the accuracy of image
retrieval.

5.1 � k‑NN search in large‑scale high‑dimensional data set

k-NN search is well understood in low-dimensional space
[20]. In early studies, lots of tree-based indexing structures
based on data partitioning [8–11, 21] or space partitioning
[22, 23] have been developed. However, recent studies [7,
20] show that these tree-based indexing methods will, as
dimensionality increases, always degenerate to a sequential

scan or be eventually outperformed by sequential scan.
To tackle this phenomenon named “curse of dimensional-
ity”, more approaches were proposed, mainly in two direc-
tions. One is to improve the index structure with efficient
organization to promote IO operations. For exact k-NN
search in high-dimensional space, there mainly exist two
categories of index structure improving methods, data size
reduction and dimensionality reduction. The other is vector
approximation. Popular approaches usually combine these
two methods to simultaneously improve the IO and CPU
performance.

VA-File is the representative high-dimensional index
for data size reduction. It suggests accelerating sequen-
tial scan by data compression and filtering feature vec-
tors. The approximation of high-dimensional vector can
be seen as a scale quantization. VA-File divides the data
space into 2b hyper-rectangular cells. It allocates a unique
bit-string of length b to each cell, and approximates the
data points that fall into a cell by the relevant bit-string
w.r.t the cell. VA-File is simply an array of the compact
approximations which may help to reduce the I/O cost
during the query. One of the drawbacks of VA-File is that
it needs to examine the entire VA-File. The other one is
that it will bring a large number of random I/O accesses.
Some extensions of VA-File have been proposed, such as

10 40 70 100
0

200

400

600

800
Corel

k

I/O
VA−file
iDistance
FNN
HB
HB+

10 40 70 100
100

300

500

700

900

1100
Aerial

k

I/O

VA−file
iDistance
FNN
HB
HB+

10 40 70 100
0

550

1100

1650

2200
WT

k

I/O

VA−file
iDistance
FNN
HB
HB+

(a) I/O

10 40 70 100

2

4

6
8

10

20

30
40
50

Corel

k

C
P

U
 re

sp
on

se
 ti

m
e(

m
s) VA−File

iDistance
FNN
HB
HB+

10 40 70 100

20

30

40
50

100

200

300
Aerial

k

C
P

U
 re

sp
on

se
 ti

m
e(

m
s) VA−File

iDistance
FNN
HB
HB+

10 40 70 100

100

150

200

500

700
WT

k

C
P

U
 re

sp
on

se
 ti

m
e(

m
s) VA−File

iDistance
FNN
HB
HB+

(b) CPU response time

Fig. 7   Performance comparisons between HB+, HB with VA-File, iDistance and FNN

151Effective optimizations of cluster-based NN search

1 3

IQ-tree [24], which achieves better query performance
by combining a tree structure with VA-File. VA+-file
improves the approximate ability of VA-File by trans-
forming the data points into PCA space [25]. Another
technique PCVA devotes to reducing the amount of can-
didate approximate vectors that need to be accessed by
sorting one-dimensional projections on the first principal
component [26].

Dimensionality reduction (DR) indexes the data set in
the reduced-dimensionality space [27, 28]. The linear DR
approach first condenses most of information in a data
set to a few dimensions by applying principal component
analysis or other techniques. Two strategies for dimension-
ality reduction have been presented [19]. The first one is
global dimensionality reduction (GDR), in which all the
data are regarded as a whole and reduced down to a few
dimensions. The other strategy, called local dimensionality
reduction (LDR), is a cluster-based DR technique which
divides the whole data set into separate clusters on the basis
of the correlation of data, and then reduces the dimension-
ality in each cluster. To improve the performance of index-
ing method which requires pre-computing distances, a gen-
eral cost model of LDR for range queries was presented
[29]. According to this cost model, a new LDR method,
called PRANS, has been proposed. One of the goals of the
model is to prune more irrelative data points using triangle
inequality.

One-dimensional indexing approaches are also typical
dimensionality reduction methods. They provide another
direction for high-dimensional indexing, which is one-
dimensional mapping or transformation [10, 30]. The
one-dimensional mapping methods also use the “filter-
and-refine” strategy. Data points can be filtered according
to the one-dimensional values, and the real nearest neigh-
bors are verified in the set of candidates. B+-tree is usually
deployed to index the transformed one-dimensional val-
ues [31]. A query in the original data space is mapped to
a region determined by the mapping method, which is the
union of one-dimensional ranges. The typical example is
iDistance [10]. According to this model, the data set is par-
titioned and a reference point of each partition is defined.
Then, data points are mapped into one-dimensional val-
ues based on their distance to the reference point. Under
the use of partitioning techniques, iDistance works well in
low- or medium-dimensional spaces (up to 30–50 dimen-
sions). However, its performance is sensitive to the selec-
tion of reference points and too many random accesses of
data pages are required. LDC [32] combines the idea of
one-dimensional mapping and vector approximation, and
also uses a B+-tree to index the one-dimensional distance.
Since LDC is tailor-made for the high-dimensional space,
its performance has no superiority in the low- to medium-
dimensional space.

Vector approximation maps a sequence of continuous
or discrete vectors into a digital sequence which is suitable
for communication over or storage in a digital channel. A
well-known approximation technique is vector quantiza-
tion (VQ). According to the classical vector quantization,
we map a d-dimensional vector x ∈ R

d to another vec-
tor q(x) ∈ C = {ci|ci ∈ R

d , 1 ≤ i ≤ K}. Here, the set C is
known as a codebook [33], ci is a codeword, and K is the
number of codewords. The similarity between two vectors
can be approximated by the “distance” of their codewords,
which will accelerate distance computations. Besides, for k
-NN search, to filter irrelevant points efficiently, the code-
words can also be used to generate lower bounds of query
point, which is helpful to accelerate the search.

The vector approximation used in VA-File can be seen
as a scalar quantization. It ignores the dependencies across
dimensions, and each point is bounded with a hyper-rec-
tangular cell. HB benefits from the vector quantization. It
brings a new cluster-adaptive distance bound by exploiting
the separating hyperplane boundaries of Voronoi clusters
to get tighter lower distance bounds. Both of these endow
HB with two advantages. Firstly, it can compress the data
size dramatically and outperform the other NN search
approaches. Secondly, compared with bounding sphere or
rectangle, HB provides a much better filtering ability for
the irrelevant clusters.

5.2 � Image representation methods

On the other hand, there exist series of research works in
image classification and processing which may also involve
evaluation of distances between images; we introduce some
representative ones. The first one [34] devotes to selecting
graphlets that have highly discriminative and low redun-
dancy topologies to represent the original images. It selects
graphlets from each aerial image that can be quantized into
a feature vector for further processing. Another one in [35]
advocates better characterizing images by exploiting high-
order potentials. It manages to integrate multimodal fea-
tures by introducing a shared entropy measurement and a
feature correlation hypergraph (FCH) to respectively cap-
ture and model the high-order relations among multimodal
features. Besides, works in [36] incorporate image-level
semantic information into graphlets with the help of a hier-
archical Bayesian network to learn semantic associations
between graphlets. It enables the extracted feature vec-
tors containing semantic information which can enhance
the semantic accuracy of image representation. What is
more, [37] introduces a concept of cellet to construct a
fine-grained representation of the spatial layout of images.
The cellet can be constructed with representative cells of
the original images, which can provide us with an effective
representation of the feature of these images.

152 X. Feng et al.

1 3

In fact, these works all aim at finding better representa-
tions of image feature vectors, such that images can be bet-
ter understood. In contrast, our work in this paper aims at
optimizing the search process for the best matches given an
arbitrary query image which is represented as feature vectors
using some image representation methods. Hence, how to
better represent the image as feature vectors (i.e. image rep-
resentation methods) is beyond the scope and is independent
of this work. Therefore, in our framework, many image rep-
resentations methods can be adopted in the images.

6 � Conclusion

In this paper, we investigate the unsupervised similarity
search in large-scale image database, as well as the essen-
tial importance of effective indexing and searching meth-
ods for nearest neighbor search in high-dimensional space.
According to a newly proposed index method based on
separating hyperplanes, namely HB, we focus on address-
ing its two limitations, huge cost for computing lower
bounds and the lack of efficient pruning method for false
positives in candidate clusters, respectively. We see that
both of these significantly affect the efficiency during the
search procedure. Consequently, we propose our novel
solutions towards these limitations and develop a new
index approach, namely HB+. Firstly, we evaluate all the
bounding hyperplanes for one cluster using random projec-
tion and select a small part of separating hyperplane bound-
aries to compute lower bounds. Secondly, we design a new
pruning algorithm to eliminate irrelevant points in the can-
didate clusters. Extensive experiments conducted on three
visual feature data sets demonstrate the superiority of HB+
over HB, as well as a series of other popular index schemas
such as VA-File, iDistance and a newly proposed method
FNN. In future, we will explore the potential of the hyper-
plane boundary and seek for more effective index structure
to solve NN search on more challenging data sets.

Acknowledgments  Project supported by the National Natural Sci-
ence Foundation of China (Grant No. 61173089, 61202179 and
61472298), SRF for ROCS, SEM and Fundamental Research Funds
for the Central Universities.

References

	 1.	 Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Super-
vised learning of semantic classes for image annotation and
retrieval. Patt. Anal. Mach. Intell. IEEE. Trans. 29(3), 394–410
(2007)

	 2.	 Gionis, A., Indyk, P., Motwani, R.: Similarity search in high
dimensions via hashing. In: Proceedings of the 25th International
Conference on Very Large Data Bases, Morgan Kaufmann Pub-
lishers Inc., San Francisco 518–529 1999

	 3.	 Athitsos, V., Potamias, M., Papapetrou, P., Kollios, G.: Nearest
neighbor retrieval using distance-based hashing. In: Proceedings
of the 2008 IEEE 24th International Conference on Data Engi-
neering, Washington, IEEE Computer Society 327–336 (2008)

	 4.	 Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in
high dimensional nearest neighbor search. In: Proceedings of the
35th SIGMOD international conference on Management of data,
New York, USA SIGMOD ’09, pp. 563–576, ACM (2009)

	 5.	 Gan, J., Feng, J., Fang, Q., Ng, W.: Locality sensitive hashing
scheme based on dyanmic collision counting. In: Proceedings of
the 38th SIGMOD international conference on Management of
data. SIGMOD’12, pp. 541–552, ACM (2012)

	 6.	 Jegou, H., Douze, M., Schmid, C.: Product quantization for near-
est neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33,
117–128 (2011)

	 7.	 Weber, R., Schek, H-Jörg., Blott, S.: A quantitative analysis and
performance study for similarity-search methods in high-dimen-
sional spaces. In: VLDB ’98 Proceedings of the 24rd Interna-
tional Conference on Very Large Data Bases, Morgan Kaufmann
Publishers Inc. San Francisco, USA pp. 194–205 (1998)

	 8.	 Guttman, A.: R-trees: a dynamic index structure for spatial
searching. In: SIGMOD 84 Proceedings of the 1984 ACM SIG-
MOD international conference on Management of data, New
York, USA pp. 47–57, ACM (1984)

	 9.	 Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-
tree: an efficient and robust access method for points and rectan-
gles. SIGMOD Rec. 19(2), 322–331 (1990)

	10.	 David A., Ramesh, W.J.: Similarity indexing with the ss-tree. In:
Proceedings of the 12th International Conference on Data Engi-
neering. ICDE’96, pp. 516–523 (1996)

	11.	 Katayama, N., Satoh, S.: The sr-tree: an index structure for high-
dimensional nearest neighbor queries. In: Proceedings of the 23rd
ACM SIGMOD international conference on Management of
data, SIGMOD’97, pp. 369–380 (1997)

	12.	 Ramaswamy S., Rose, K.: Adaptive cluster distance bounding for
high-dimensional indexing. IEEE Trans. Knowl. Data. Eng., vol.
23, no. 6, pp. 815–830 June (2011)

	13.	 Jagadish, H.V.: Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: idistance:
an adaptive B+-tree based indexing method for nearest neighbor
search. ACM Trans. Database. Syst. 30(2), 364–397 (2005)

	14.	 Hwang, Y., Han, B., Ahn, H.-K.: A fast nearest neighbor search
algorithm by nonlinear embedding, in Computer Vision and Pat-
tern Recognition (CVPR), IEEE Conference on. IEEE pp. 3053–
3060 (2012)

	15.	 Achlioptas, D.: Database-friendly random projections:johnson-
lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–
687 (2003)

	16.	 Bingham E., Mannila, H.: Random projection in dimensionality
reduction: applications to image and text data in SIGKDD pp.
245–250 (2001)

	17.	 Li, P., Hastie, T.J., Church K.W.: Very sparse random projections
in SIGKDD, pp. 287–296 (2006)

	18.	 Jeffrey Scott Vitter: Algorithms and data structures for external
memory. Found. Trends. Theor. Comput. Sci. 2(4), 305–474
(2008)

	19.	 Chakrabarti K., Mehrotra, S.: Local dimensionality reduction:
A new approach to indexing high dimensional spaces in VLDB
’00 In: Proceedings of the 26th International Conference on Very
Large Data Bases, Morgan Kaufmann Publishers Inc., San Fran-
cisco, USA pp. 89–100 (2000)

	20.	 Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimen-
sional spaces: index structures for improving the performance
of multimedia databases. ACM Comput. Surv. 33(3), 322–373
(2001)

	21.	 Berchtold, S., Keim, D.A., Kriegel, H.-P.: The X-tree: an index
structure for high-dimensional data. In VLDB ’96: Proceedings

153Effective optimizations of cluster-based NN search

1 3

of the 22th International Conference on Very Large Data Bases,
Morgan Kaufmann Publishers Inc., San Francisco, USA pp.
28–39 (1996)

	22.	 Robinson, J.T. The k-d-b-tree: a search structure for large multi-
dimensional dynamic indexes. In SIGMOD ’81: Proceedings of
the 1981 ACM SIGMOD international conference on Manage-
ment of data, ACM, New York, USA pp. 10–18 (1981)

	23.	 Jon Louis Bentley: Multidimensional binary search trees used for
associative searching. Commun. ACM. 18(9), 509–517 (1975)

	24.	 Berchtold, S., Bohm, C., Jagadish, H.V., Kriegel, H.-P., Sander,
J.: Independent quantization: an index compression technique for
high-dimensional data spaces In ICDE ’00: Proceedings of the
16th International Conference on Data Engineering, IEEE Com-
put. Soc. Washington, USA 2000, p. 577 (2000)

	25.	 Ferhatosmanoglu, H., Tuncel, E., Agrawal, D.: Vector approxima-
tion based indexing for non-uniform high dimensional data sets.
In CIKM ’00: Proceedings of the ninth international conference
on Information and knowledge management, ACM. New York,
USA pp. 202–209 (2000)

	26.	 Cui, J., Zhou, S., Sun, J.: Efficient high-dimensional indexing by
sorting principal component. Pattern Recogn. Lett. 28(16), 2412–
2418 (2007)

	27.	 Ravi, K.V., Divyakant Agrawal, K., Singh, A.: Dimensionality
reduction for similarity searching in dynamic databases. SIG-
MOD Rec. 27(2), 166–176 (1998)

	28.	 Van der Maaten, L.J.P., Postma, E.O., Van Den Herik, H.J.,
Dimensionality reduction : a comparative review. October, vol.
10, no. February, pp. 35, (2009)

	29.	 Lian X., Chen, L.: A general cost model for dimensionality
reduction in high dimensional spaces. In ICDE ’07: Proceedings

of the 23th International Conference on Data Engineering, pp.
66–75 (2007)

	30.	 Berchtold, S., Böhm, C., Kriegal, H.-P.: The pyramid-technique:
towards breaking the curse of dimensionality. SIGMOD Rec.
27(2), 142–153 (1998)

	31.	 Christos F., Searching multimedia databases by content, vol. 3,
Springer, New York (1996)

	32.	 Nick K., Beng C.O., Heng T.S., Tung A.K.H.: Ldc: Enabling
search by partial distance in a hyper-dimensional space. In ICDE
’04: Proceedings of the 20th International Conference on Data
Engineering, IEEE Computer Society, Washington, USA p. 6
(2004)

	33.	 Gray, R.M.: Vector quantization. ASSP Magazine. IEEE. vol. 1,
no. 2, pp. 4–29 (1984)

	34.	 Zhang, L., Han, Y., Yang, Y., Song, M., Yan, S., Tian Q.: Discov-
ering discriminative graphlets for aerial image categories recogni-
tion. IEEE. transac. Image Processing: a publication of the IEEE
Signal Processing Society, vol. 22, no. 12, pp. 5071–5084 (2013)

	35.	 Zhang, L., Gao, Y., Hong, C., Feng, Y., Zhu, J., Cai, D.: Feature
correlation hypergraph: exploiting high-order potentials for mul-
timodal recognition. Cybernetics. IEEE. Trans. 44(8), 1408–1419
(2013)

	36.	 Zhang, L., Yang, Y., Gao, Y., Yi, Y., Wang, C., Li, X.: A probabil-
istic associative model for segmenting weakly-supervised images.
Image. Processing. IEEE. Trans.23(9), 4150–4159 (2014)

	37.	 Zhang, L., Gao, Y., Xia, Y., Dai, Q., Li, X.: A fine-grained image
categorization system by cellet-encoded spatial pyramid mod-
eling. Ind Electron. IEEE. Trans. (2014)

	Effective optimizations of cluster-based nearest neighbor search in high-dimensional space
	Abstract
	1 Introduction
	2 Preliminaries of HB
	2.1 Hyperplane and lower bound
	2.2 Refining separating hyperplanes
	2.3 Limitations of HB

	3 HB+
	3.1 Accelerate lower bound computing
	3.2 Efficient pruning in candidate clusters

	4 Experiments
	4.1 Experimental setup
	4.2 Tuning
	4.3 Performance comparisons between HB and HB+
	4.4 Performance comparisons with other popular -NN methods

	5 Related work
	5.1 -NN search in large-scale high-dimensional data set
	5.2 Image representation methods

	6 Conclusion
	Acknowledgments
	References

