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1  Introduction

This paper tackles the problem of camera motion tracking 
from a stereo image sequence. It aims at recovering the 
position and orientation of a camera using line features. 
It is considered as a challenging task in computer vision 
especially if the 3-D structure of the scene is unknown. 
The recovered motion is useful for a wide range of appli-
cations such as augmented reality, robot navigation and 
human–computer interaction. The novelty of this work is 
the integration of trifocal tensor with a Bayesian track-
ing algorithm for high-speed 3-D motion estimation. The 
use of these techniques results in enhanced robustness and 
accuracy.

Point features can easily be found and detected in com-
mon scenes. Previous research in the recovery of 3-D cam-
era motion using points can be found in [1, 6, 7, 13, 14, 16, 
22–26, 28, 30–32].In this paper, we consider straight lines 
instead of interest points in the images. Actually, lines are 
as widely available as point features in our living environ-
ments. They can normally be determined more accurately 
than points due to multi-pixel support. Feature extraction 
error and accumulated drift become smaller. With the use 
of infinite lines in replacement of line segments, the prob-
lem of occlusions can be alleviated when the view of a line 
is partially blocked.

Trifocal tensor encapsulates the projective geometric 
relations among three views. This mathematical relation is 
independent of the 3-D scene structure. It is analogous to 
the epipolar geometry, which is established between two 
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image views. It is known that corresponding lines in two 
images do not provide enough information to find a unique 
camera pose without the knowledge of a known model [29]. 
At least three views are necessary to fulfill the requirement. 
The trifocal tensor provides a stronger constraint than the 
fundamental matrix for features in the images as it involves 
additional information from the third view. Previously, line 
features and trifocal tensor were used to compute cam-
era relations based on a traditional RANSAC framework 
[9] and a robust second-order minimization method [28]. 
Conventional three-view approaches making use of trifo-
cal tensor require at least 13 line correspondences. Such a 
requirement discourages the application of trifocal tensor 
to methods that use a minimum of three lines [4, 8, 15].

Beside trifocal tensor, some researchers applied 
numerical approaches [2, 7] to estimate the object pose 
given a known CAD model. These methods need a good 
initial guess and are time-consuming. There is a compli-
cated optimization algorithm in literature [5]. It deter-
mines the object motion from three corresponding lines. 
Its high computation cost prohibits it from being used in 
real-time applications such as virtual and projected real-
ity systems. Although there are high-speed 3-D motion 
estimation methods [8, 15] using a minimum of three 
lines, they impose a number of limitations on the scene. 
A special geometric configuration among the lines is 
required. The approach in [8] computes 3-D pose from a 
“primitive configuration”, in which three lines with two 
of them are parallel and their directions are orthogonal 
to the third line. It is not guaranteed that such a condition 
occurs in an indoor or urban environment, hence limiting 
their applicability.

The contributions of this paper are: (1) trifocal ten-
sors have been employed in our recursive motion tracking 
approach using straight lines. The nature is quite different 
from those approaches that utilize point features with tri-
focal tensors [23, 25]. A line transfer function instead of 
point transfer formula is applied to the proposed method. 
(2) Thanks to the use of trifocal tensors, the algorithm is 
model-free. Even without the 3-D model of the scene, the 
reconstruction of the 3-D scene structure is not necessary. 
This increases the algorithm speed and at the same time 
reduces the space complexity as there is no need to keep 
track of the 3-D structure. (3) The minimum number of 
lines required by the proposed method is two. It is much 
smaller than most of the existing approaches that need 
13 or more based on the trifocal tensor. This is due to the 
simultaneous use of two trifocal tensors, forming a quad-
rifocal constraint across four views. (4) With the help of 
an extended Kalman filter, our method operates at a high 
speed. This differentiates itself from other non-recursive 
or numerical approaches that consume much more time in 
computing the solutions.

Experimental results show that our approach is more 
accurate than a previous method that uses point features 
with trifocal tensors [25], and a state-of-the-art approach 
[8] that makes use of three lines. It is found that our algo-
rithm is able to estimate 3-D camera motion in real scenar-
ios accurately with little drifting from an image sequence 
surpassed a 1,000 frames.

The rest of this paper is organized as follows. In Sect. 2, 
the problem of camera motion tracking is defined and the 
system geometry is introduced. In Sect. 3, an overview of 
the proposed algorithm is given. The procedures for the 
line correspondence matching are outlined. In Sect. 4, the 
details of applying trifocal tensor to the extended Kalman 
filter are described. In Sect.  5, an empirical comparison 
among our approach and other state-of-the-art methods in 
[8, 19, 25] were made using synthetic data. In addition, 
the proposed method was tested with real image sequences 
taken by a robot and a hand-held stereo rig.

2 � Problem modeling

A graphical illustration of the geometric system is shown 
in Fig.  1. It , I ′t are the images taken by the left and right 
camera at time t, respectively. I1, I ′1 are regarded as the ref-
erence image pair. Lines are extracted from images. lm,t is 
the mth line extracted from image It while l′m,t is from I ′t. 
Lines lm,t and l′m,t are the projection of the 3-D line Lm on 
the left and right view at time t, respectively. The geometric 
relationships among a 3-D point PW

m = [xWm , yWm , zWm , 1]T on 
line Lm in the 3-D structure and its projection p̃m,t on the 
left and p̃′m,t on the right view can be obtained as:

where K encodes the intrinsic parameters of a camera such 
as the focal length f and the principal point [su sv]. It is a 
3 × 3 upper triangular matrix and is assumed fixed during 
tracking. E is a 3 × 4 matrix represents the rigid transfor-
mation between two cameras in the stereo system. Both K 
and E are found by the camera calibration toolbox in [12]. 
The matrix Mt, or equivalently the twist vector ζt, encapsu-
lates the pose information that transforms the 3-D structure 
from the world frame to the reference (left) camera at time 
instance t.

The twist motion model [27] is used to provide an ele-
gant linear representation of the 3-D motion in our pose 
tracking algorithm. A twist has two representations: (1) a 
6-dimensional vector denoted by ζt or (2) a 4 ×  4 matrix 
ζ̃t with the upper 3 ×  3 component as a skew-symmetric 
matrix.

(1)p̃m,t = [ũm,t , ṽm,t , w̃m,t]
T = K[xWm , yWm , zWm , 1]T

(2)p̃′m,t = [ũ′m,t , ṽ
′
m,t , w̃

′
m,t]

T = KEMt[x
W
m , yWm , zWm , 1]T
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 xt , yt and zt are the translation along the x, y and z axis and 
α,β, γ are the rotations about the x, y and z axis, respectively. 
The twist motion can be converted into the rigid transforma-
tion matrix Mt with the exponential map as follows:

The normalized form l̃m,t and l̃′m,t of line lm,t on the left 
view and l′m,t on the right view are, respectively, given by

 θm,t and �m,t are the slope and polar radius of line lm,t while θ ′m,t 
and �′m,t are the slope and polar radius of line l′m,t , respectively.

(3)ξt =
[

xt yt zt αt βt γt
]T

(4)ξ̃t =









0 −γt βt xt
γt 0 −αt yt
−βt αt 0 zt
0 0 0 0









(5)Mt = eξ̃t = I + ξ̃t +
(ξ̃t)

2

2!
+

(ξ̃t)
3

3!
+ · · ·

(6)l̃m,t =





ãm,t

b̃m,t
c̃m,t



 =





am,t/f

bm,t/f

(cm,t + suam,t + svbm,t)/f
2





(7)l̃′m,t =





ã′m,t
b̃′m,t
c̃′m,t



 =





a′m,t/f

b′m,t/f

(c′m,t + sua
′
m,t + svb

′
m,t)/f

2





(8)

{

θm,t = tan−1(ãm,t/− b̃m,t)

θ ′m,t = tan−1(ã′m,t/− b̃′m,t)

The goal of the proposed method is to find the motion of 
the camera system, i.e., ξt and Mt, at each time-step t given 
the lines lm,t, and l′m,t in image measurements.

3 � Outline of the algorithm

An outline of the proposed method is shown in Fig. 2. In 
the initialization step, line segments in the reference image 
pair are detected and matched. Matched line correspond-
ences are tracked from one frame to the next. The details 
will be explained in Sect. 3.1. In each time-step, the quad-
rifocal constraint, which is in the form of trifocal tensors, 
is used to lock the line features. Its configuration will be 
discussed in Sect. 3.2. The tracked lines are passed to the 
extended Kalman filter (EKF) with a validation gate for 
recursive computation of the 3-D camera motion. The for-
mulation of the EKF will be presented in Sect. 4.

3.1 � Line extraction, matching and tracking

Line features are first detected in the reference image 
pair by a conventional edge detection algorithm such 
as the Canny algorithm [3]. Then, line correspondences 
between two stereo views of the reference image pair are 

(9)











�m,t =
b̃m,t c̃m,t

b̃m,tsin(θm,t)+ãm,tcos(θm,t)

�
′
m,t =

b̃′m,t c̃
′
m,t

b̃′m,tsin(θ
′
m,t)+ã′m,tcos(θ

′
m,t)

Fig. 1   The system geometry
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established. Prior to line matching, each line segment is 
oriented according to the sign of intensity gradient such 
that its brighter side is always on one side. We apply the 
method by Schmid and Zisserman [17] that uses mean-
standard deviation line descriptors (MSLD) to set up stereo 
correspondences [20].

Their method employs the epipolar beam constraint to 
find tentative matches. Let us consider the line segment s 
on the left view with homogenous end points denoted by x 
and y Similarly, line segment s′ on the right image has end 
points x′ and y′. s and s′ satisfy the epipolar beam constraint 
if and only if the following conditions [21] hold:

where F, e, and e′ are the fundamental matrix, epipole of 
the left view and right view, respectively. After the match-
ing procedure, we calculate the general form lm,t and l′m,t 
of the mth line segment on the left and right image plane. 
A line pair is regarded as a corresponding match if it satis-
fies the epipolar beam constraint above and its photometric 
cross-correlation score c [18] is higher than 0.6.

Matched correspondences in the stereo images of the 
reference pair are tracked from one frame to the next using 
Lucas–Kanade optical flow [10].

det(e, x, y) det(e′, x′, y′) < 0

det(e, x, y)(Fy)T x′ < 0

det(e, x, y)(Fy)T y′ < 0

3.2 � Arrangement of the trifocal tensors in the stereo 
system

A trifocal tensor, which is similar to the essential matrix, 
is the intrinsic geometry relating three views [11]. A tri-
focal tensor pair T and T ′ is used to constrain the slopes 
and displacements of the line features in the image views. 
The first tensor T relates the images of the first stereo pair 
I1, I

′
1 and the current image It taken by the left camera. The 

second trifocal tensor T ′ is formed with the current image 
pair It , I ′t together with the reference image I1 from the left 
view. A graphical illustration of the configuration is shown 
in Fig. 3.

3.3 � Handling feature replacement

A simple scheme catering for new features coming into 
the scene and old features moving out of the views is 
devised. Line correspondences extracted and matched 
in the stereo images are related by the trifocal tensors. 
They are fed into the EKF to find the innovation residual 
and will be discussed in the next section. If the number 
of available features is below any greater-than-2 inte-
ger kc defined by the user, the views at the current time-
step will be set as the new reference image pair and the 
tracker will be bootstrapped. The quadrifocal constraint 
is able to characterize the rigid motion of the camera 

Fig. 2   An outline of the pro-
posed method
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with two or more line correspondences across four views 
under standard EKF conditions. An EKF can be regarded 
as a recursive solution to a non-linear system of equa-
tions. The EKF is applied to estimate the six velocity val-
ues, and in turn the six pose parameters, of the camera 
system. With the use of two trifocal tensors across four 
views, a line feature that is represented by its slope and 
polar radius is able to provide four independent equations 
with line transfer function (16). A minimum of two lines 
present in the scene, which gives eight independent equa-
tions, is enough to make our system over determined. 
A larger value of the constant kc can result in a higher 
stability.

4 � Camera motion tracking using extended Kalman 
filter and trifocal tensors

An extended Kalman filter (EKF) is used to estimate the 
velocity of the motion in our system. To make the explana-
tion clear, features in the reference image pair I1 and I ′1 are 
assumed to be observable throughout the sequence in this 
section. Let us define the mathematical notations further. 
Lines Lm,t and L′m,t are the mth line obtained from the left 
image It and right image I ′t at time t, respectively.

The formulation of our EKF is as follows. The state vec-
tor ξ̇t representing the pose is defined as:

ẋt , ẏt , żt are translation velocities along the axes. α̇t , β̇t , γ̇t 
are the angular velocities of the motion on the x, y and z 

(10)ξ̇t =
[

ẋt ẏt żt α̇t β̇t γ̇t
]T

axis, respectively. Mt can be regarded as an integral of 
velocity from the initial frame to the current time-step. The 
acceleration is modeled as zero-mean Gaussian noise η. 
The dynamic system equations of the filter are

Relatively high sampling rate of the measurements is 
assumed such that motion of the object between successive 
images is small. With the first-order Taylor expansion, the 
exponential map of ξ̇t in Eq. (5) can be approximated by

The measurement model, which relates the pose Mt, and 
the measurements [εt , ε′t] taken from the system, is defined 
as:

 εt and ε′t are the measurements acquired by the left and 
right camera at time-step t, respectively. vt is a 2N  ×  1 
that represents zero-mean Gaussian noise imposed on 
the images captured. gt and g′t are the 2N × 1 output line 
transfer function, where N is the number of extracted line 
features.

(11)

{

Mt = Mt−1exp(ξ̇t)

ξ̇t = ξ̇t−1 + η
.

(12)Mt = Mt−1(I +
˜̇ξt)

(13)

{

ε1 = gt(Mt , ε
′
1, εt)+ νt

ε1 = g′t(Mt , εt , ε
′
t)+ νt

(14)gt(Mt , ε
′
1, εt) =

[

θ1,1 �1,1 · · · θm,1 �m,1 · · · θN ,1 �N ,1

]T

(15)g′t(Mt , εt , ε
′
t) =

[

θ1,1 �1,1 · · · θm,1 �m,1 · · · θN ,1 �N ,1

]T

Fig. 3   The arrangement of the 
trifocal tensors. The first tensor 
T involves images I1, I ′1 and It .
The second tensor T ′ involves 
views I1, It and I ′

t
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The trifocal tensor line transfer formulae can be written 
in the tensor notation as:

Lm,1, L
′
m,1, Lm,t and L′m,t are respectively, the normalized 

homogenous general form of lm,1, l′m,1, lm,t and l′m,t. With the 
normalized 2-D coordinates, T and T ′ can be broken down as:

The formulae above are in tensor notation. aji , a
′j
i , a

′′j
i  are 

respectively, the extrinsic parameters E of the stereo sys-
tem, the elements of the upper 3 ×  4 component of the 
camera motion matrix Mt, and the matrix product EMt. 
More specifically, E = [a

j
i], [I3×3 03×1]Mt = [a

′j
i ] and 

EMt = [a
′′j
i ].

With Eqs.  (16) and (17), 2-D lines can be transferred 
back to the first left camera image with the values of line 
measurements from the first right camera ε′1, the measure-
ments from the current left camera εt, the predicted motion 
Mt, and the rigid transformation E. Similarly, 2-D lines can 
be back-transferred to the first left view using lines from 
the current stereo image pair, the predicted motion Mt, and 
the extrinsic matrix E.

According to the dynamic system (11) and measurement 
model (13), the core equations for calculating the optimal 
estimates and correcting the estimates can be derived. The 
prediction equations of the EKF are:

(16)

{

[Lm,1]
i = [Lm,t]

k[L′m,1]jT
jk
i

[Lm,1]
i = [L′m,t]

k[Lm,t]jT
jk
i

(17)

{

T
jk
i = a

′j
i a

k
4 − a

′j
4a

k
i

T
′jk
i = a

′j
i a

′′k
4 − a

′j
4a

′′k
i

.

(18)

{

ˆ̇ξt,t−1 =
ˆ̇ξt−1,t−1

Pt,t−1 = Pt−1,t−1 + Qt

.

The update equations are:

ˆ̇ξt,t−1 and ˆ̇ξt,t are the estimates of state ξ̇t after prediction and 
update, respectively. Pt,t−1 and Pt,t, are respectively, the 6 × 6 
covariance matrices of ˆ̇ξt,t−1 and ˆ̇ξt,t. Rt is the covariance of 
the measurement noise vt while Qt is the covariance of system 
noise ηt. W is the 6 × 4N Kalman gain. ∇gM is the Jacobian 
of the measurement functions gt and g′t evaluated at ˆ̇ξt,t−1.

The performance of the EKF can be improved in terms 
of robustness by adding a validation gate. It is necessary to 
prevent a line transfer from degeneracy. Such a constraint 
is used to exclude outliers and lines in the trifocal plane. 
Lines near the epipole are also excluded. It is based on the 
following inequality

rm,t is the innovation of an individual measurement pair at 
time t and Sm,t is the corresponding residual covariance. g 
is the validation threshold defined by the user. Lines that 
do not satisfy Eq. (20) are dropped and ignored in the EKF. 
We set g to 0.2 in our implementation.

5 � Experiment results

5.1 � Experiments with synthetic data

The first simulation experiment was designed to determine 
how the accuracy of our novel method varies as the errors 

(19)















ˆ̇ξt,t =
ˆ̇ξt,t−1 +W

�

�

εt − gt(Mt , ε
′
1
, εt) ε′t − g′t(Mt , εt , ε

′
t)

�T
�

Pt,t = Pt,t−1 −W∇gMPt,t−1

W = Pt,t−1∇gTM (∇gMPt,t−1∇gTM + Rt)
−1

(20)rTm,tS
−1
m,t rm,t < g.

Fig. 4   The accuracy of the 
recovered poses varies as a 
function of measurement noise
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in the image measurements increase. In the simulation, 40 
synthetic lines, centered at 0.5 m away from the camera, 
were randomly generated. The camera had a focal length 
of 4.6 mm. The pixel dimensions were 5.42 × 10−3 mm by 
5.42 ×  10−3  mm. The two cameras in the stereo system 
were 0.1 m apart. They were pointing towards the positive 
direction of the z axis. The motion parameters per frame 
were randomly set with their maximum changes in rota-
tion as 1.2° and 0.010 m in translation. A uniformly dis-
tributed random image error having a maximum of ±2.5 
pixels was added to the endpoints of the line segments. 
These parameters modeled the situation as realistic as 
possible. The length of each synthetic sequence was 100 
frames. For each test case, 20 trials were run to compute 
the average errors.

Figure 4 shows the relationship between the pose param-
eter errors and measurement noise. The errors in the plots 
are the accumulated total rotation and translation errors 
measured at the 100th frame. The errors of the recovered 
pose increase proportionally with the random image errors. 
Even with a noise of ±2.5 pixels, the translation and rota-
tion errors were less than 0.01  m and 0.4°, respectively. 
A non-zero average error happened at zero measurement 
noise because the EKF could give a wrong initial guess at 
the beginning of the estimation process

The second experiment was performed to investigate 
the effects of inaccuracy in calibration data, such as focal 
length and camera projection center, on the proposed algo-
rithm. The parameters in the simulation were similar to the 
previous experiment. No random error was added to the 

Fig. 5   The accuracy of the 
recovered poses varies as a 
function of errors in the cali-
brated focal length

Fig. 6   The mean accumulated 
rotation (top) and translation 
(bottom) errors versus frame 
number of the algorithms under 
comparison. For the sake of 
clear presentation, results of 
method [19] are not included in 
the graphs
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endpoints. The true focal length was replaced with errone-
ous values. Figure 5 shows the results. Our algorithm was 
not sensitive to the deviations in focal length. With an error 
of 200 pixels, the average errors of the recovered camera 

rotation and translation were less than 0.03° and 1.5 mm, 
respectively.

In the third experiment, we want to compare the perfor-
mance of the proposed algorithm, the point-based approach 

Fig. 7   The top row detected infinite lines in the first image pair in white color. The middle row results of line re-projection in the 35th image 
pair with the recovered camera motion. The bottom row results of line re-projection in the 90th stereo pair
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by Yu et  al. [25], the line-based structure from motion 
approach by Taylor et  al. [19], and the latest method that 
uses three lines by Elqursh and Elgammal [8]. The set-
ting was similar to the first one. The endpoints of the line 

segments were treated as the point features for comparing 
with Yu’s algorithm. Figure 6 shows the results. The lines 
with asterisks, squares and triangles are for our approach, 
Yu’s algorithm [25] and Elqursh’s method [8], respectively. 

Fig. 8   The top row the detected line segments in black and the corre-
sponding infinite lines in gray in the 1st stereo view. The middle row 
the tracked line segments in black and the re-projected lines in gray 

in the 35th image pair. The bottom row the tracked lines in black and 
the re-projection of lines in grey in the 90th image view
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The errors presented in the figures are the mean differences 
between the actual and recovered pose in terms of rotation 
and translation. For the sake of clear presentation, results of 
Taylor’s algorithm [19] are not included in the figure due 
to its relatively large error values. Indeed, its average rota-
tion and translation errors were larger than 0.5° and 2 mm, 
respectively. From the results, our method had the lowest 
errors among the four methods.

The proposed method outperformed Elqursh’s approach 
[8] in the comparison mainly because the latter one requires 
a special arrangement of lines, which is known as primitive 
configuration, for the computation of an accurate camera 
rotation. Such configuration comprises three lines with two 
of the lines parallel and their directions orthogonal to the 
third line. This scenario does not always occur in real envi-
ronments and is not guaranteed in our simulation experi-
ment. Our algorithm does not need such an assumption to 
acquire an accurate pose in the tracking process.

Another reason for a better performance is that our algo-
rithm considers all the line features available in the scene. 
They are taken into account for a period of time until they 
are occluded or disappear. The camera pose is then tracked 

recursively using an EKF. A dynamic model is applied to 
relate the recovered motion in the sequence and filter off 
noisy results from time to time. For Elqursh’s method [8], 
the calculation of the camera motion is independent in 
every time-step. It estimates the 3-D motion of an image 
sequence on an image pair basis. Three features are ran-
domly picked to compute the relative rotation between two 
images under the RANSAC framework. The triplets of fea-
tures used are different among the image pairs throughout 
the sequence. The proposed method is able to give a more 
accurate and reliable estimation of 3-D pose due to its abil-
ity to build up a continuous relation of features and motion 
in the tracking process.

The use of line features instead of points makes our 
method perform better than Yu’s approach [25]. Lines can 
normally be determined more accurately than points due 
to multi-pixel support. Using infinite lines, the problem 
of occlusions can be alleviated when a part of the line is 
occluded. This cannot be achieved with the use of point 
features.

The computation time of the four approaches has been 
tabulated in Table  1. The comparison was done with a 
machine using a 1.7-GHz Intel processor. With minimum 
number of line features, the core part of the proposed 
approach took 0.0014 s to recover the 3-D motion from a 
stereo image, which was faster than Taylor’s algorithm but 
slower than Elqursh’s and Yu’s method. Nevertheless, our 
algorithm can operate at a rate higher than 700 Hz. This is 
enough for a real-time application.

5.2 � Experiments with real images

First, we are going to show that the 3-D motion of a robot 
can be accurately estimated with our algorithm. The image 

Fig. 9   Average re-projection 
errors of the line features versus 
frame number. The errors are 
measured in terms of the angles 
between the tracked and re-
projected lines

Table 1   A comparison of computational time among the four algo-
rithms

The time presented is the average duration required to recover the 
pose from one stereo image in seconds

Algorithm\feature 
number

Minimum 
number

10 20 30

The proposed approach 0.0014 s 0.0025 s 0.0049 s 0.0078 s

Yu’s method 0.0008 s 0.0016 s 0.0032 s 0.0051 s

Elqursh’s method 0.0002 s N/A N/A N/A

Taylor’s method >1 s >1 s >1 s >1 s
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sequence was taken by a robot driven by two stepping 
motors. The robot moved in front of the bookshelf and the 
ground truth of motion was recorded. A stereo camera was 
mounted on the top. The image resolution was 640 by 480 
pixels. The ground-truth information was used to compare 
with the motion recovered by our method.

We verify the resulting pose information by re-projecting 
lines from the first (reference) stereo pair to the succeeding 
image frames in the stereo sequence. To do this, line fea-
tures in the first and the tth image pairs were obtained. The 
trifocal tensors were computed using the recovered pose 
parameters. Then line features from the first image frames 
were projected to succeeding images with the trifocal ten-
sors. Figure 7 shows the results of re-projection overlaid on 

the real images. Line features in the first image pair were 
transferred to the 35th and 90th stereo frames using the 
recovered 3-D pose. It is shown that the re-projected lines, 
which are in white, stick to the same position in the back-
ground in all the three image pairs. Figure 8 compares the 
2-D position of the tracked and the re-projected line fea-
tures, which are, respectively, indicated by black and gray 
lines. It can be observed that the positions of these two 
kinds of features are very close. Figure  9 shows the re-
projection error in a quantitative manner. The discrepancies 
in orientation between the tracked and re-projected lines 
against frame number were plotted. The errors were so 
small and the angles between lines were within 1°. It means 
that the recovered 3-D camera motion was accurate.

Fig. 10   A comparison of the 
recovered motion parameters 
from the 1st real sequence with 
the ground truth
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Figure 10 shows a comparison of resulting 3-D motion 
with the ground truth. One can find that the recovered 
motion closely follows the actual motion. It is believed 
that these errors were mainly due to the deviations of the 
calibrated values of the system parameters like focal length 
from the actual values.

The second test used the Curtain sequence consist-
ing of 1,428 frames. It was acquired by a stereo camera 
pair mounted on a wheeled plate. The initial position was 

marked in the scene. The camera was moved on a planar 
surface and returned to the marker at the end. The tra-
versed distance was 1.5  m. Figure  11 shows the recov-
ered trajectory. Neither iterative optimization nor bundle 
adjustment was applied. Red dots and blue crosses are, 
respectively, the starting and finishing points. The dis-
tance between these points were small having a value of 
0.01827  m, indicating that the proposed algorithm was 
accurate in this scenario.

(a)

(b) (c)

Fig. 11   The Curtain stereo sequence consisting 1,428 frames 
acquired by a stereo camera. The traversed distance was 1.5 m. Red 
dots and blue crosses indicate the starting and ending points, respec-

tively. a Two sample images from the Curtain sequence consisting of 
1,428 frames, b plan view of the recovered trajectory, c side view of 
the recovered trajectory (color figure online)
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The third test used the Monitor sequence taken with a 
hand-held stereo camera. The camera was moved in front 
of a monitor screen arbitrarily and finally returned to the 
original position. The content displayed in the monitor 
was changing. This actually injected outlying features 
into the image sequence. The sequence had 570 frames 
and the total traversed distance of the camera system 
was 3 m. Figure 12 shows the trajectory recovered. Red 

dots and blue crosses shown in the trajectory indicate the 
starting and ending points, respectively. One can notice 
that the initial and ending positions were very close. The 
distance between them was 0.03172 m. It means that the 
problem of drifting of the proposed approach was very 
little even with the presence of outlying features in the 
scene. This was mainly due to the use of validation gate 
in the EKF.

(b)

(a)

(c)

Fig. 12   The Monitor sequence consisting of 570 frames. The tra-
versed distance was 3 m. Red dots and blue crosses represent the 
starting and finishing points, respectively. a Two sample images from 

the Monitor sequence consisting of 570 frames, b plan view of the 
recovered trajectory, c side view of the recovered trajectory (color fig-
ure online)
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Indeed, our approach has a few limitations in real situ-
ations. It is sensitive to the calibration error of the stereo 
camera system. To ensure reliable pose tracking results, 
the extrinsic parameters relating the two cameras on the 
stereo rig should be accurate. This is because trifocal ten-
sors are employed to lock line features among the stereo 
views across different time-steps. Deviation of the extrinsic 
parameters from the real values will affect the computation 
of line transfer function of the measurement model in the 
filter, leading to an erroneous estimation of 3-D motion.

The 2-D motion of the lines in successive image frames 
should be small enough with a relatively high sampling 
rate. It is due to the fact that a Kanade’s optical flow-based 
technique [10] is used to track lines in stereo views from 
time to time. Also, an EKF is adopted as the core for recur-
sively acquiring 3-D pose in the image sequence. Given the 
above condition, the optical flow-based method is able to 
work normally and the EKF can predict the motion reliably 
in the process.

The proposed method cannot estimate the camera 
motion in a natural scene, such as inside a forest, where 
straight lines are not available. It could be our next step to 
devise an algorithm that considers curves in pose tracking 
to make our system work in such a natural environment.

6 � Conclusion

We present a novel recursive approach for the computa-
tion of 3-D camera motion from a stereo image sequence. 
Line features instead of interest points in stereo images are 
utilized. The quadrifocal constraint, which is in the form 
of a trifocal tensor pair, is incorporated into the system to 
eliminate the step of 3-D structure reconstruction. This in 
return increases the speed and reduces the memory com-
plexity without the scarification of the algorithm accuracy 
compared to the structures from motion-based methods. 
The system uses a minimum of two line correspondences 
while previous methods based on the trifocal tensor require 
at least thirteen. With the use of extended Kalman filter, our 
algorithm runs at a high speed. The core part of our method 
can operate at more than 700 Hz with 2 line features. This 
meets the requirement of most real-time applications. The 
validation gate in the Kalman filter discards outlying line 
features in the images, further improving the robustness of 
our algorithm. The proposed method outperformed a previ-
ous model-free approach [25] and a state-of-the-art method 
using three lines [8] in terms of accuracy in the synthetic 
data experiment. It is demonstrated in our real image test 
that our method was able to compute the 3-D motion pre-
cisely with little drifting from an image sequence surpassed 
a thousand image frames.
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