
1 3

DOI 10.1007/s00530-014-0438-1
Multimedia Systems (2017) 23:75–84

SPECIAL ISSUE PAPER

Robust visual tracking via discriminative appearance  
model based on sparse coding

Hainan Zhao · Xuan Wang 

Published online: 22 November 2014 
© Springer-Verlag Berlin Heidelberg 2014

1  Introduction

Visual tracking is one of the most important components 
in computer vision which finds numerous applications in 
surveillance, human−computer interaction, vehicle naviga-
tion, etc. Given the initialized state (manually or by detec-
tion methods) of the target object in a frame of a video 
sequence, the goal of tracking is to estimate the states of 
the target in the subsequent frames. Although many track-
ing methods have been proposed and significant progress 
has been made within the last decades, it still suffers from 
difficulties in handling complex object appearance changes 
caused by factors such as illumination variation, partial 
occlusion, background clutter, and viewpoint change.

As an essential component in all tracking methods, 
object appearance model plays a key role in determining 
the tracking performance. To get an effective appearance 
model for visual tracking, discriminating the target from 
the background is a basic ability and especially important 
in complex scenes where the contrast between target and 
background is low. In literature [21], a number of dis-
criminative tracking algorithms which formulate tracking 
as a binary classification problem have been proposed. 
Recently, sparse representation has been successfully 
applied to computer vision tasks, including face recogni-
tion [20], image inpainting [12], visual tracking [13], etc. 
And sparse learning-based method has reported superior 
performance in video semantic recognition [6] and region 
tagging [5]. In [20], a robust face recognition method is 
proposed, in which each test sample is linearly represented 
by all training samples. The recognition result of the test 
sample is encoded in the representation coefficients. The 
robustness to occlusion is achieved by introducing a rep-
resentation error in the linear system. Compared to the 
traditional face recognition methods, it obtains superior 
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performance even with random features. Han et  al. [7] 
propose a sample-based adaptive sparse representation 
(AdaSR) method. In this method, a sample set is con-
structed which gets the appearance information of both 
the target and the background. Each candidate sample is 
sparsely represented as a linear combination of templates 
in this set. Tracking is implemented by searching for the 
candidate holding the most similar AdaSR to that of the 
target template. The tracker performs well in complex 
scenes due to the background information captured in 
sample set which helps the tracker to discriminate the tar-
get from the background. Most recently, local features and 
their spatial relations get more and more attention in the 
field of image classification [22, 25]. In [23] and [24], both 
the local features and the geometric property of image are 
exploited for image categorization which report appealing 
experimental results.

Inspired by the work mentioned above, we propose 
a novel discriminative tracking method based on sparse 
coding [22]. Our method aims at discriminating the tar-
get from its background and being adapt to appearance 
variations of the target simultaneously. In our approach, 
an over-complete dictionary is constructed with a set 
of overlapped local image patches cropped with a fixed 
spatial structure inside a sample window. This over-com-
plete dictionary captures local visual information of both 
the target and the background. An object is divided into a 
set of overlapped local image patches with the same spa-
tial structure. We learn sparse code for each local image 
by sparsely representing it using the over-complete dic-
tionary. The object is then represented by concatenating 
the sparse codes of all the local image patches. With this 
representation scheme, positive and negative samples are 
collected in each frame, and a linear classifier is learned 
to separate the target from the background. Using the 
classification score of a test candidate target as the like-
lihood, the most likely target location in each frame can 
be determined. To account for the target and background 
appearance variations, we update both the dictionary 
and the classifier during tracking. Unlike the holistic 
template update approach commonly used in [7, 13], 
we introduce a selective update strategy based on local 
patches. With this selective update strategy, the tracker 
alleviates the drift problem and gets more robust track-
ing results.

The rest of the paper is organized as follows. In the next 
section related work are summarized. The discriminative 
appearance model based on sparse coding, the classifier, 
and the selective update strategy are described in Sect. 3. 
The proposed tracking algorithm and discussion are pre-
sented in Sect. 4. We illustrate experimental results with 
both qualitative and quantitative evaluations in Sect. 5. 
Finally, concluding remarks are given in Sect. 6.

2 � Related work

To deal with the various challenges occurring in the track-
ing process, a rich literature of object tracking methods 
have been proposed, which can be generally categorized 
into either generative or discriminative methods.

Generative methods formulate the tracking problem as 
searching for the region most similar to the target appear-
ance in an image frame. These methods learn and maintain 
either templates or subspace models to represent the target. 
One of the critical issues for generative methods is how to 
make the tracker adapt to the inevitable appearance varia-
tion of target. Ross et  al. [15] incrementally learn a low-
dimensional eigenspace representation to reflect appear-
ance changes of the target. Kwon et al. [11] decompose the 
observation model into multiple basic observation models. 
Each basic observation model covers a specific appearance 
variation of the target, so that the compound one can be 
robust to combinatorial appearance variation. Jepson et al. 
[8] learn a Gaussian mixture model of pixels to represent 
objects via an online expectation maximization (EM) algo-
rithm. In [1], the target template is represented by multiple 
image patches to handle partial occlusion and pose change.

Discriminative methods formulate tracking as a binary 
classification problem. The candidate which can be best 
separated from the background is taken as the track-
ing result. Avidan et  al. [2] propose an ensemble track-
ing framework, in which a confidence map is constructed 
using an ensemble of weak classifiers to separate pixels 
that belong to the object from ones that belong to the back-
ground. The peak of the map is considered as the new posi-
tion of the object. Babenko et al. [3] use multiple instance 
learning (MIL) instead of traditional supervised learning to 
learn a discriminative model for tracking. A discriminative 
appearance model based on superpixels is introduced in 
[19]. It facilitates the tracker to distinguish between the tar-
get and background. These discriminative tracking methods 
aim to construct a good appearance model for effectively 
separating the object from background. Moreover, algo-
rithms take advantage of both generative and discriminative 
models which are proposed in [4, 26].

The recent development of sparse representation has 
attracted considerable interest in object tracking due to its 
robustness to occlusion and image noise. Motivated by the 
work in [20], Mei et  al. [13, 14] apply sparse representa-
tion to visual tracking, in which each candidate sample 
is sparsely represented as a linear combination of tar-
get templates and trivial templates. The tracking problem 
is formulated as finding the candidate with the minimum 
reconstruction error from the target templates subspace. In 
their method, partial occlusion, appearance variances, and 
other challenging issues are considered as the error vector 
represented by the set of trivial templates. Wang et al. [16] 
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propose an online object tracking algorithm, which takes 
advantage of both principal component analysis (PCA) 
algorithm and sparse representation scheme to learn an 
adaptive appearance model. Compared with the holistic 
sparse representation methods, local sparse representation 
methods [9, 10] are more effective in modeling the appear-
ance changes of the object during tracking. They are par-
ticularly useful when the appearance of target is partially 
changed, such as partial occlusion or deformation. Most 
recently, background information has been introduced into 
the sparse representations either in dictionary learning [7] 
or discriminative classifier [17, 26] which reports appealing 
experimental results.

3 � Discriminative appearance model and classifier

In this paper, we use local sparse codes to represent objects 
and formulate tracking as a binary classification problem. 
We initialize the dictionary and classifier in the first frame 
after the target object is labeled manually or automatically. 
Both the dictionary and classifier are updated when new 
tracking results are available.

3.1 � Discriminative appearance model based on sparse 
coding

Local models are important for tracking as shown in the 
performance improvement of local sparse representa-
tion model compared with the holistic sparse representa-
tion model [21]. In our method, we first encode the local 
patches inside the object region using an over-complete 
dictionary and then aggregate these local sparse codes for 
object representation. When the state of the target is esti-
mated, we sample a set of overlapped local image patches 
using sliding windows inside a sample window, which is a 
rectangle region centered around the target. In our experi-
ments, the sample window is empirically set to 6 or 9 times 
of the size of the object region, which is determined by the 
speed of the target object. These local patches are used as 
a over-complete dictionary to encode the patches inside 
the object region, i.e., D = [d1 , d2, ..., dM ] ∈ R

H×M,  
where H is the dimension of the vectorized local image, 
M is the number of local images in the dictionary. Most 
of these local images are associated with the back-
ground, we call them background basis set, denoted by 
Dbg. A few of these local images are parts of the target 
object, we call them target basis set, denoted by Dtar. For 
a target object, we extract local patches within it and turn 
them into vectors in the same way, which are denoted by 
X = [χ1,χ2, ...,χm] ∈ R

H×m, where m is the number of 
local images extracted from the object region. With the 
sparsity assumption, the local patches χi within the sample 

window can be represented as the linear combination of 
only a few basis elements of the dictionary D by solving

where bi ∈ R
M is the sparse coefficient vector of the ith 

local patch, and � is a regularization constant to balance 
reconstruction error and sparsity. bi � 0 indicates that all 
the elements of bi are nonnegative.

With our object representation, local image patches 
from target and background can be represented by different 
bases in the dictionary. Specifically, the image patches from 
the target region are likely to be well reconstructed by only 
the target basis set, while the ones from the background 
region can be better represented by the span of the back-
ground basis set. Therefore, the local sparse code is more 
discriminative. When the local sparse codes [b1, b2, ..., bm] 
of all the image patches from an object region are com-
puted, we aggregate them to obtain the object representa-
tion for visual tracking. There exist many pooling methods 
for computing the final feature vector based on some statis-
tics of the local codes [9, 18]. Here we directly concatenate 
all these local sparse codes together to represent the object, 
i.e., β = [b∗1, b

∗
2, ..., b

∗
m]

T. Each patch represents one part of 
the object; therefore, all local patches from the object with 
a fixed spatial relationship can reflect the object structure.

3.2 � Classifier learning with sparse coding

We pose visual tracking as a classification problem, in 
which the aim is to separate the target object from the 
background. To initialize the classifier in the first frame, we 
draw positive and negative samples around the labeled tar-
get location. Specifically, we use a Gaussian perturbation 
to draw Npos positive samples around the selected target 
location (e.g., within a radius of a few pixels), and draw 
Nneg negative samples further away from the labeled loca-
tion (e.g., within an annular region a few pixels away from 
the target object). We make the negative samples consist-
ing of images of both the background and parts of the tar-
get object. By this way, candidate samples containing only 
partial appearance of the target are treated as the negative 
samples, which facilitate better object localization. Both 
of these positive and negative sample images are set to 
the same size as the labeled target for generality. We then 
compute the concatenate sparse codes vector β for all these 
sample images to form the training data, {βi, yi}

Npos+Nneg

i=1 , 
where yi ∈ {+1,−1}. With the training data, the linear clas-
sifier is learned by minimizing the following loss function

(1)b∗i = argmin
bi

||χi − Dbi||
2
2 + �||bi||1, s.t. bi � 0,

(2)J(w) =
1

Npos + Nneg

Npos+Nneg∑
i=1

ℓ(yi,w,βi)+
�

2
||w||22,
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where w is the classifier parameter, and ℓ(•) is the logistic 
regression loss function with the mathematical formulae:

where β
′
= [βT, 1]

T
 is the augmented vector. Once the 

classifier is initialized, the classification score can be uti-
lized as the similarity measure for tracking, which can be 
computed by

3.3 � Selective update strategy

Since the appearances of both the target and background 
may change during the tracking process, it is necessary to 
update the appearance model, i.e., the dictionary and the 
classifier in our work. Many dictionary update approaches 
have been proposed [13, 16]. However, most of these meth-
ods replace one of the holistic templates in the dictionary 
using a newly tracking result or a reconstructed image 
every update. These holistic template update strategies are 
likely to lead to template drift especially when the tracking 
object is severely occluded. The dictionary in our method 
aims at modeling both of the target and the background 
image effectively so that the classifier separate the target 
object from the background as much as possible with our 
sparse representation. Regarding this criterion, we adopt 
a selective update strategy here. When the state of the tar-
get is estimated, we select a new sample window centered 
around the target and resample a set of overlapped local 
image patches in the same way as we did in the first frame. 
We update the templates in the dictionary using the corre-
sponding local patch in the new sample window selectively. 
Our selective update strategy is developed based on the 
assumption that an image patch with smaller reconstruction 
error using the target basis set Dtar indicates that it is more 
likely to be a part of the target object, and the one with 
smaller reconstruction error using the background basis set 
Dbg indicates that it is occluded or be mixed with a large 
number of background pixels. Here we define a confidence 
value δ for each resampled local image patch by

where εtar = ||χ − Dt−1
tar btar||

2
2 is the reconstruction error 

of the template χ with the previous target basis set Dt−1
tar , 

and btar is the corresponding sparse coefficient vector cal-
culated by Eq. (1). Similarly, εbg = ||χ − Dt−1

bg bbg||
2
2 is 

the reconstruction error of the template χ using the previ-
ous background basis set Dt−1

bg , and bbg is the related sparse 
coefficient vector.

(3)ℓ(y, w,β) = log(1+ e−ywTβ
′

),

(4)h(β) =
1

1+ e−wTβ
′ .

(5)δ =
1

1+ exp(εtar − εbg)
,

For the template from the background basis set, only if 
its εtar > εbg , we update it using the corresponding local 
patch by

where the new template histogram dtbg is composed of the 
histogram dt−1

bg  at the previous frame and the corresponding 
histogram dlbg last stored.  In this way, the background basis 
set captures the appearance change of the background and 
meanwhile avoids being mixed with image patches from 
the target region. Conversely, we update the template from 
the target basis set, only if its εtar < εbg. In order to cap-
ture the new appearance of the target and recover the object 
from occlusions, the template histogram is updated by

where the new template histogram dttar is composed of the 
histogram d0tar at the first frame and the corresponding his-
togram dltar last stored. In this way, target basis set adapts to 
the appearance variation of the target object without falsely 
updating with occlusion patch or patch with large number 
of background pixels simultaneously. To retrain the classi-
fier using the new dictionary, training sample set is recon-
structed. Specifically, the negative samples are re-collected 
in the same way as we did at the first frame. Somewhat 
differently for the positive samples, we randomly choose a 
sample from the positive set and replace it with the latest 
tracking result.

The selective updating of the dictionary ensures 
that most recent appearances of both the object and the 
background are reflected in the dictionary basis set and 
simultaneously prevents the target basis set being pol-
luted by occluded or deteriorative patches, or the back-
ground basis set being mixed with part of the object. It 
also should be noted that only one sample in the posi-
tive sample set is replaced each time, so even a bad sam-
ple replacement during the tracking process affects lit-
tle on the classifier used for calculating tracking result, 
which also avoids the drift problem and ensures tracking 
stability.

4 � Proposed tracking algorithm

Our object tracking algorithm is carried out within the 
Bayesian inference framework. Given the observation set 
of target Zt = {z1, z2, ..., zt} up to the tth frame, we estimate 
the target state variable by maximizing the posteriori prob-
ability over N samples at frame t by

(6)dtbg = δdt−1
bg + (1− δ)dlbg,

(7)dttar = (1− δ)d0tar + δdltar,

(8)x∗t = argmax
xit

p(xit |Zt), i = 1, 2, ...,N ,
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where xit indicates the state of the ith sample at the tth 
frame. The posteriori probability p(xt|Zt) (we drop the 
sample index i for generality) can be estimated recursively 
by

where p(xt|xt−1) is the dynamic (motion) model between 
two consecutive states. We apply the affine transformation 
with six parameters to model the target motion, and for-
mulate the state transition as p(xt|xt−1) = N(xt; xt−1,ψ),  
where ψ is a diagonal covariance matrix. p(zt|xt) is the 
observation model which denotes the likelihood of the 
observation zt at candidate state xt. It plays an impor-
tant role in robust tracking. In our method, we formulate 
p(zt|xt) using the classification score computed by Eq. (4) 
as

The proposed tracking algorithm is summarized in Algo-
rithm. It should be noted that our work bears some similarity 
to [17] in the form of constructing a discriminative tracker 
with local sparse representations. However, two key different 
points should be emphasized. First, being different from [17] 
which only use target templates in the sparse representation, 
we introduce both the target and background templates in 

(9)p(xt |Zt) ∝ p(zt|xt)

∫
p(xt|xt−1)p(xt−1|Zt−1)dxt−1,

(10)p(zt|xt) ∝ h(β).

the linear system, which is capable of discriminating the tar-
get from its background preferably. For example, the image 
patch from part of a bad candidate object marked by the dark 
rectangle is shown in Fig. 1a. It contains a large number of 
background pixels. In this case, both of the target bases as 
well as the trivial bases are employed for good reconstruc-
tion in [17]; moreover, the sparse coefficients obtained are 
not sparse as shown in Fig. 1b. In contrast, only background 
bases get large coefficient values  in our sparse representa-
tion, while the coefficient values  corresponding to target 
bases tend to zero.  Figure 1c shows the obtained coefficient 
vector. Intuitively, the coefficient vector obtained by our 
method is more sparser. Therefore, the coefficients are more 
discriminative. In addition, our updating method updates the 
dictionary selectively which effectively models the appear-
ance variation of the object as well as the background with 
less template drift. Compared with the two-stage tracking 
method, we obtain favorable tracking results but with lower 
computational cost (details in Sect. 5).

Algorithm 1 Proposed tracking algorithm
1: Input: Image frames F1, ..., FT , the initial state x∗

0.

2: Output: Target state x̂∗
t at frame t.

3: Construct the initial over-complete dictionary D0 = d01, d
0
2, ..., d

0
M and learn a classifier

with parameter W0

4: for t = 1 to T do

5: Draw N candidate samples Xi(i = 1, 2, ..., N) and extract local patches [x1
i , x

2
i , ..., x

m
i ]

from each candidate

6: Compute sparse coefficients bji
∗
of each xj

i according to Eq. 1 and concatenate them

together to represent each candidate βi = [b1i
∗
, b2i

∗
, ..., bmi

∗]T

7: Find the tracking result x̂∗
t by minimizing Eq. 4

8: if update then

9: Obtain a set of templates dl1, d
l
2, ..., d

l
M in the new sample window

10: for j = 1 to M do:

11: Compute the confidence value δjof dlj according to Eq. 5

12: if dlj ∈ Dbg && εtar > εbg then

13: Update dj according to Eq. 6

14: else if dlj ∈ Dtar && εtar < εbg then

15: Update dj according to Eq. 7

16: end if

17: end for

18: end for

5 � Experiments

We evaluate the performance of the proposed algorithm 
on eight challenging image sequences. These sequences 
cover various challenges such as illumination variation, 
partial occlusion, and complex background. The proposed 
approach is compared with five state-of-the-art tracking 
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methods including incremental visual tracking (IVT) 
method [15], ℓ1 tracker (ℓ1) [13, 14], multiple instance 
learning (MIL) method [3], tracking method with sparse 
prototypes (SRPCA) [16], and the discriminative object 
tracking (DT) [17]. For fair comparison, we use the source 
or binary codes provided by the authors with tuned param-
eters for best performance.

Our tracker is implemented in MATLAB, which runs at 
4.7 frames per second (fps) on a PC with Intel Core i7-3770 
CPU (3.4 GHz) with 16 GB memory. The target image 
observation is normalized to 32× 32 pixels from which 
overlapping 16× 16 patches with a shift of 8 pixels are 
extracted. The local image patches used in the dictionary 
are normalized to the same size for efficiency, however, the 

sliding step of which is set to 4 pixels for good reconstruc-
tion. A number of 400 particles are used in our experiment 
and the dictionary and classifier are updated every 5 frames 
for computational efficiency. Only gray scale information 
is used in our experiments. For each sequence, the location 
of the target object is manually labeled in the first frame. 
Both qualitative and quantitative evaluations are presented 
in this section.

5.1 � Qualitative evaluation

Illumination change: Fig. 2 shows results from challenging 
sequences with significant change of illumination. In the 
Car11 sequence, the target object is small with low contrast 
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Fig. 1   Coefficient examples. a A ‘bad’ candidate is marked by gray 
rectangle and the example local patch marked by dark rectangle on 
the lefttop. b The coefficient vector of [17] using target bases and 

trivial bases. c The coefficient vector of our method using target as 
well as background bases

(I) Car11 (frames 1, 52, 254, 313, 353 and 393)

(II) Sylvester (frames 15, 355, 442, 650, 976 and 1296)

(III) Singer1 (frames 9, 76, 104, 128, 260 and 321)

1

Fig. 2   Tracking results when there is large illumination variation
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and drastic illumination change. The IVT tracking method 
achieves good results in this sequence. It can be attributed 
to the fact that subspace learning method is robust to illu-
mination changes. Our tracker performs well in spite of the 
low contrast between the foreground and the background 
due to the discriminative appearance model. The DT and 
SRPCA method also keep tracking the vehicle throughout 
the video sequence, while the other methods drift to the 
cluttered background or other vehicles when drastic illu-
mination variation occurs. In the Sylvester sequence, an 
animal doll moves with significant pose and lighting vari-
ation. As shown in Fig. 2II, the ℓ1 and the SRPCA meth-
ods gradually drift away from the target object and the IVT 
method also fails to track the target in frame 650 and does 
not recover later. Our tracker is capable of tracking the 
doll all the time even when it changes pose drastically. The 
MIL tracker also achieves comparable performance. In the 
singer1 sequence, the stage light changes drastically seen 
from frame 70 to frame 190. The MIL method has large 
tracking errors since it does not estimate the scale change 
of the target well, the other trackers are able to locate the 
target object in this sequence.

Heavy occlusion: Fig. 3 demonstrates how the proposed 
method performs when the target undergoes heavy occlu-
sion. For the Faceocc2 sequence, many trackers drift apart 
from the target or do not scale well when the face is heav-
ily occluded. Although the MIL tracker is able to track the 
target, it is not able to estimate the in-plane rotation due to 
its design. Our and the SRPCA method are able to track 

the target accurately throughout the video sequence. This 
can be attributed to the update schemes of the two trackers, 
both of  which prevent the dictionary being contaminated 
by  occlusion. For the Girl sequence, the target girl’s face 
undergoes occlusion from a man’s face passing in front of 
it. The IVT method drifts away quickly. This result dem-
onstrates that the IVT method based on PCA subspace 
representation is sensitive to out-of-plane rotation. The ℓ1,  
SRPCA, and our methods successfully track the target, 
while other trackers drift apart when occlusion occurs. Fig-
ure 3c shows the tracking results in a surveillance video. 
This video is challenging due to scale change, partial occlu-
sion, and similar objects. The MIL tracker does not perform 
well because it takes the Haar-like features for object repre-
sentation, which is sensitive to similar objects occlude each 
other. The DT method drifts away from the target after it is 
occluded. The ℓ1, SRPCA, and our algorithm keep tracking 
the target throughout the sequence. And our method obtains 
better tracking accuracy even when the target is heavily 
occluded.

Complex background: Fig. 4 presents the tracking 
results where the target objects appear in complex back-
ground. The Stone sequence is challenging as there are 
numerous stones of different shapes and colors. The MIL, 
ℓ1, and DT methods drift away, whereas the IVT, SRPCA, 
and our trackers successfully keep tracking the target 
throughout the sequence. The Bolt sequence is challenging 
as the target object undergoes large pose variation, occlu-
sion and background clutters. Many trackers lost the target 

(I) Faceocc2 (frames 165, 277, 504, 521, 726 and 742)

(II) Girl (frames 50, 124, 233, 428, 454 and 477)

(III) Caviar (frames 82, 96, 192, 246, 413 and 500)

1

Fig. 3   Tracking results when there is occlusion
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(I) Stone (frames 1, 93, 140, 395, 529 and 593)

(II) Bolt (frames 1, 72, 125, 162, 219 and 293)

1

Fig. 4   Tracking results when the targets appear in complex backgrounds
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Fig. 5   Quantitative comparison of the trackers in terms of overlap rate

Table 1   Average center error 
(in pixels)

The best and second best results 
are shown in bold and italic 
fonts

Image sequence IVT ℓ1 MIL SRPCA DT Ours

Car11 2.3 33.3 43.5 2.2 2.1 1.9

Sylvester 70.5 60.3 11.1 56.2 19.4 9.4

Singer1 9.7 4.6 15.2 5.7 4.5 3.7

Faceocc2 4.9 11.1 14.1 4.0 6.9 3.6

Girl 13.2 4.9 13.9 3.5 16.7 2.2

Caviar 8.4 3.4 69.8 2.1 65.4 2.5

Stone 2.2 19.2 32.3 3.0 28.1 2.8

Bolt 57.7 41.1 38.6 37.8 204.1 9.6

Average 21.1 22.2 29.8 14.3 43.4 4.5
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successively after frame 72 as holistic representations are 
not effective in handling objects with pose shape varia-
tions. Our tracker locks on the target in the whole sequence 
because the appearance model of our tracker is based on 
discriminative local feature which is insensitive to non-
rigid shape deformation and background clutter.

5.2 � Quantitative evaluation

Performance evaluation is an important issue that requires 
sound criteria in order to fairly assess the strength of track-
ing algorithms. We employ two typical evaluation criteria 
to quantitatively assess the performance of these trackers. 
The first one is center location error which is approximated 
by the distance between the central position of the track-
ing result and that of the manually labeled ground truth. 
Table 1 summarizes the results in terms of average center 
location error. The second criterion is the tracking overlap 
rate which indicates stability of each algorithm as taking 
the size and pose of the target object into account. Figure 5  
shows the overlap rates of each tracking algorithm for all 
the sequences and Table 2 presents the average overlap 
rates. Overall, the proposed tracker performs favorably 
against state-of-the-art methods.

6 � Conclusion

This paper presents a sparse coding-based discriminative 
appearance model for visual tracking. Two key contribu-
tions of this work are emphasized: First, we introduce 
structure information of both target and background in the 
local sparse representation of the object. This makes the 
sparse coding of the target object sparser and more dis-
criminative, therefore enhancing the ability of the classi-
fier in separating the object from the background. Second, 
to adapt our tracker to account for appearance change of 
both the target and the background and to alleviate the drift 
problem, we propose a selective update strategy which 

prevents the dictionary being contaminated and keeps a 
good discriminative ability of the classifier for long-term 
tracking. Experimental results compared with several state-
of-the-art methods on challenging sequences demonstrate 
the effectiveness and robustness of the proposed algorithm.
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