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To the best of our knowledge, this is the first work that 
models event correlations as scene context for robust audio 
event detection from complex and noisy environments. 
Note that according to the recent report, the mean accuracy 
for the acoustic scene classification task by human listeners 
is only around 71 % on the data collected in office environ-
ments from the DCASE dataset. None of the existing meth-
ods performs well on all scene categories and the average 
accuracy of the best performances of the recent 11 meth-
ods is 53.8 %. The proposed method averagely achieves 
an accuracy of 62.3 % on the same dataset. Additionally, 
we create a 10-CASE dataset by manually collecting 5,250 
audio clips of 10 scene types and 21 event categories. Our 
experimental results on 10-CASE show that the proposed 
method averagely achieves the enhanced performance of 
78.3 %, and the average accuracy of audio event recogni-
tion can be effectively improved by capturing dominant 
audio sources and reasoning non-dominant events from the 
dominant ones through acoustic context modeling. In the 
future work, exploring the interactions between acoustic 
scene recognition and audio event detection, and incorpo-
rating other modalities to improve the accuracy are required 
to further advance the proposed framework.

Keywords Acoustic scene · Audio event · Context 
modeling · Recognition · 10-CASE

1 Introduction

Recently, the rapid increase in speed and capacity of 
smart embedded devices equipped with acoustic sensors 
and powerful CPUs has allowed the inclusion of audio as 
a useful type of data in computing scene understanding 
tasks, especially in robotics, context-aware systems and 

Abstract Automatic audio content recognition has 
attracted an increasing attention for developing multimedia 
systems, for which the most popular approaches combine 
frame-based features with statistic models or discrimi-
native classifiers. The existing methods are effective for 
clean single-source event detection but may not perform 
well for unstructured environmental sounds, which have a 
broad noise-like flat spectrum and a diverse variety of com-
positions. We present an automatic acoustic scene under-
standing framework that detects audio events through two 
hierarchies, acoustic scene recognition and audio event 
recognition, in which the former is preceded by following 
dominant audio sources and in turn helps infer non-domi-
nant audio events within the same scene through modeling 
their occurrence correlations. On the scene recognition 
hierarchy, we perform adaptive segmentation and feature 
extraction for every input acoustic scene stream through 
Eigen-audiospace and an optimized feature subspace, 
respectively. After filtering background, scene streams are 
recognized by modeling the observation density of domi-
nant features using a two-level hidden Markov model. On 
the audio event recognition hierarchy, scene knowledge is 
characterized by an audio context model that essentially 
describes the occurrence correlations of dominant and non-
dominant audio events within this scene. Monte Carlo inte-
gration and gradient descent techniques are employed to 
maximize the likelihood and correctly tag each audio event. 
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various mobile applications. Comparing with vision-based 
approaches in these systems, audio signals are robust in 
situations from visual obstruction, weak lighting to multi-
view observation. Moreover, when a vision-based appli-
cation is employed to determine interior or exterior envi-
ronments, its robustness or utility will be lost if visual 
information is compromised or totally absent.

Developing intelligent audio scene understanding sys-
tems in the same way that humans do has attracted an 
increasing attention in multimedia community over the past 
few years. For example, audio events such as coughing, 
fall-down-stairs and collapsing are of particular interest 
in developing daily healthcare systems [1] for the coming 
aged society, especially considering the fact that audio is 
relatively cheap in computing and can be exploited either 
independently or as an important component in audiovisual 
processing [2, 3]. Actually, the extraction of an accurate 
perception of everyday audio events presented in natural 
environments has revealed strong commercial and social 
demands in developing various multimedia systems such as 
content-based multimedia data indexing and retrieval [4], 
security surveillance [5], bioacoustic monitoring [6] and 
military applications [7]. Moreover, the knowledge about a 
surrounding environment does help in inspiring new forms 
of multimedia services or the augmentation to the existing 
ones, for example, a mobile phone can provide personal-
ized music recommendations [8, 9] after the change of 
user’s circumstance is automatically perceived.

A variety of “machine listening” systems has been 
developed [10] to yield audio events from speech [11, 12] 
or music [13, 14]. Over the past decade, the most popu-
lar approaches are frame-based features such as Mel-fre-
quency cepstral coefficients (MFCC) and MPEG-7 descrip-
tors, which can be modeled with support vector machine 
(SVM), hidden Markov models (HMMs) or Gaussian mix-
ture models (GMMs) for discriminative classification and 
recognition. These methods are effective in recognizing 
events from a clean single source, but face difficulties in 
handling the challenging environmental sounds that often 
have unpredicted conditions [15]. Systems have been pre-
sented to overcome the problem to an extent [16]; however, 
there is still a major challenge in separating the structured 
signal that has formantic or harmonic characteristics from 
unstructured background noises [17]. That is, to recognize 
audio events from complex and noisy environments, most 
current systems face the following two problems. First, it 
is difficult to build models for an unstructured environmen-
tal sound stream, which has a broad noise-like flat spec-
trum and a diverse variety of signal compositions. Thus, no 
assumptions can be made in advance about the harmonic 
structure in the stream. Second, how to detect environmen-
tal audio events accurately and robustly is still admittedly a 
hard problem since acoustic scenes are composed of sounds 

from a variety of sources. Due to such unpredicted diverse 
nature of audio data, it is relatively difficult to describe 
and quantify environmental audio signals. Therefore, most 
methods are far from the level of human performance in 
recognizing scene events from a daily environment [18], 
and automatic acoustic scene content understanding is still 
at its early stage.

In this paper, we propose a novel audio event recogni-
tion framework for acoustic scene understanding based on 
our previous work on sound classification [3, 19], audio 
summarization [20, 21] and audio–visual correlation [4, 
22]. The term auditory scene here refers to the acoustic 
modeling of a specific location or site such as home, bus 
station, restaurant and shopping mall, which is similar 
to what an image of the same location provides visually. 
Acoustic scene understanding is thus separated into two 
hierarchies consisting of acoustic scene recognition and 
audio event recognition. The two hierarchies are necessary 
due to the fact that each acoustic scene often contains or is 
characterized by various audio events occurring in it. That 
is, the recognition of meaningful sound events that have 
distinct acoustic patterns relies on the knowledge of a par-
ticular scene category where the events occur. For exam-
ple, after knowing an input stream is from a home scene, an 
aged daily life assistant system can pay particular efforts on 
detecting the events such as coughing and fall-down-stairs 
that probably occur, simultaneously filtering the sounds 
like horning and traffic that are less important for this 
scene category. Theoretically, this kind of scene knowledge 
can be properly modeled as scene contexts that do help in 
detecting meaningful audio events from complex and noisy 
real-life environments. Figure 1 shows two acoustic scene 
examples and their audio events, which will be respectively 
recognized by the two hierarchies in sequence.

Inspired by the discussions, on the scene recognition 
hierarchy, we perform adaptive analysis for every input 
acoustic scene stream, respectively, through two spaces, 
namely, Eigen-audiospace and an optimized feature sub-
space. In Eigen-audiospace, all the audio change bounda-
ries are detected to perform adaptive segmentations, aim-
ing at avoiding the intermission of independent audio 
events in the acoustic scene. Then in the feature subspace, 
a binary wavelet packets tree is constructed for each audio 
segment, and the best local discriminatory base (LDB) 

Fig. 1  Illustration of two acoustic scenes and the audio events within 
them
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feature subspace is maximized by a particular discriminant 
measure among classes to initialize the semantic, namely, 
non-stationary background or meaningful foreground, for 
every segment. After filtering background segments, acous-
tic scene streams are finally recognized by modeling the 
observation density of the LDB–MFCC features using the 
mixture of Gaussian in HMM.

On the audio event recognition hierarchy, scene knowl-
edge is characterized by an audio context model that essen-
tially describes the occurrence correlations of all the audio 
events that probably occur in this scene. That is, by knowing 
scene category through the scene recognition hierarchy, the 
coupled occurrences of all the training audio events appear 
in this scene can be characterized as a contextual model to 
help predict the semantic of each unknown audio event from 
the same scene. This is true due to that each audio event 
within a real-world acoustic scene tends to correlate to the 
others, namely, audio events within the same scene can take 
a complementary role in improving the accuracy of audio 
event recognition, and the presence of one audio event prob-
ably helps identifying the existence of others. Monte Carlo 
integration and gradient descent techniques are employed to 
maximize the likelihood and correctly recognize each audio 
event. Diverse variety of unstructured sound stream can thus 
be analyzed more accurately.

The two main contributions of the paper are:

•	 The introduction to acoustic scene context modeling, 
which successfully captures the occurrence correlations 
among the audio events within the scene, is proposed 
for more accurate audio event recognition. By this way, 
acoustic scene understanding is systematically explored 
through two hierarchies consisting of acoustic scene 
recognition and audio event recognition. Scene recog-
nition is thus preceded by following dominant audio 
sources, and in turn helps reasoning non-dominant audio 
events within it through scene context modeling, which 
plays an important role in recognizing complex, noisy 
or even overlapped sound events by capturing the occur-
rence correlations between dominant and non-dominant 
sounds to infer the semantics of the latter. To the best 
of our knowledge, this is the first work that explores 
audio event recognition from unstructured environments 
by modeling event occurrence correlations as acoustic 
scene contexts.

•	 A benchmark dataset for evaluating acoustic scene 
understanding performance is created, which contains 
a manually selected list of totally 5,250 audio clips 
comprising 10 categories of indoor/outdoor scenes and 
21 audio event types. The experimental results on our 
proposed dataset, another recent benchmark dataset 
DCASE [23] and public TV-Movies show the effective-
ness of the proposed method.

•	 The rest of the paper is organized as follows. Section 2 
discusses the related work. In Sect. 3, we describe the 
scene recognition method. Section 4 gives the details of 
the proposed audio context model for event detection. 
Experimental results are given in Sect. 5, and finally 
Sect. 6 highlights the discussions and concludes the 
method.

2  Related work

Research on general audio signal analysis has received long 
time interests in the past years and a variety of audio fea-
tures or processing models have been proposed in tempo-
ral or spectral domain. However, researches on audio event 
recognition from unstructured environments are relatively 
less. The leading approaches have been investigated to 
extract environmental audio contents can be roughly clas-
sified into two categories: acoustic feature selection and 
context-aware analysis.

Automatic recognition of auditory environment by an 
acoustic feature selection strategy is known from many ear-
lier works. In general, the process of auditory scene under-
standing is very similar regardless of the sensors or the 
data sources used for recognition. The temporal or spectral 
domain feature vectors obtained from sensors are fed to 
classifiers that try to identify the location or the environ-
ment the particular feature vectors present. For example, 
Eronen et al. [24] propose an approach to recognize eve-
ryday scenes with the popular MFCC, which have been 
shown to work well for structured sounds. However, the 
performance of MFCC probably degrades in the existence 
of noise due to that it is not effective in analyzing noise-like 
signals that have a flat spectrum. Aleh et al. [25] thus clas-
sify five environmental noise classes (car, street, babble, 
factory and bus) using line spectral features and a Gauss-
ian classifier. Couvreur et al. [26] use linear prediction 
cepstral coefficients and discrete HMMs to recognize five 
types of environmental events, namely, car, truck, moped, 
aircraft and train. The choice of proper signal streams is 
likely helpful to find the discriminations among different 
environments; however, due to the diverse nature of acous-
tic scenes, it is still difficult in selecting a proper feature to 
build robust scene understanding systems.

The combination of several acoustic features seems to 
be another choice. Scheirer and Slaney [27] use a combina-
tion of several features to describe an audio discrimination 
system. Eronen et al. [24] develops a system to evaluate the 
extraction of audio features (ZCR, MFCC, Band-energy, 
Spectral flux, etc.) and feature transforms (PCA, ICA, 
LDA) on 24 audio contexts. In [28], the performances of 
three new types of transforms, chirplet, curvelet, and Hil-
bert transforms, are investigated for environmental audio 
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classification. Ghoraani and Krishnan [29] construct the 
time–frequency matrix (TFM) of audio signals and apply 
the non-negative matrix decomposition to decompose TFM 
into its significant components. As a result, they propose 
seven new features from spectral and temporal structures 
of the decomposed vectors in a way that they success-
fully represent joint time–frequency (TF) structure of the 
audio signal, and combine them with the MFCCs features. 
Unfortunately, adding more features is not always helpful 
as illustrated in [19], where the use of all features does not 
always produce good performance for the audio classifica-
tion problem. It is probably due to the fact that as the fea-
ture dimension increases, data points become sparser and 
potentially irrelevant features could negatively impact the 
classification result.

It in turns leads to another strategy of choosing an opti-
mal subset of features from a larger set of possible fea-
tures to yield more accurate and the most effective subset. 
Umapathy et al. [30] propose a time–frequency approach 
for audio classification, which is considered the best way 
to analyze audio signals non-stationary in nature. In their 
method, audio signals are decomposed using an adaptive 
TF decomposition algorithm to generate a set of 42 fea-
tures over three frequency bands within the auditory range. 
These features are analyzed using linear discriminant func-
tions and classified into six groups. In their succeeding 
work [31], they further propose an audio feature extrac-
tion and a multigroup classification scheme that focuses 
on identifying discriminatory time–frequency subspaces 
using the LDB technique. Chu et al. [32] propose to use 
the matching pursuit algorithm to select effective time–fre-
quency features as the supplementation to MFCC for audio 
environment characterization and general acoustic scene 
types are represented as a whole rather than collections of 
discrete audio events pre-extracted. Their process includes 
finding the decomposition of a signal from a dictionary of 
atoms, which would yield the best set of functions to form 
an approximate representation. More recently, Mäkinen et 
al. [33] propose an evolutionary feature synthesis technique 
to enhance common audio descriptors by using multi-
dimensional particle swarm optimization to search for the 
optimal feature synthesis parameters. These works forward 
the auditory scene research; however, not all the unpredict-
able structures of auditory environments can be directly 
discriminated by a low-level feature subset.

Context-aware approach is still at its early stage com-
paring with the acoustic feature selection methods to the 
best of our knowledge. Generally, context in an auditory 
scene can be considered as two different levels towards 
incorporating hints for scene understanding. The first level 
characterizes the correlations of certain audio events inside 
the same acoustic scene such as gunfire and the accom-
panied cries in a war, or ball-hit and the corresponding 

applause in a basketball game. Niessen et al. [34] model 
knowledge and context in audio recognition by investigat-
ing the role of dynamic network model to improve auto-
matic audio identification and simultaneously reduce the 
search space of low-level audio features. Heittola et al. 
[35] present each audio context using a histogram of audio 
events which are detected using a supervised classifier 
based on annotated recordings. In their further work [36], 
they provide context rule knowledge to better describe the 
search space. For example, it will determine excluding the 
footsteps class when the tested recording is from inside 
a car. However, the contexts are modeled by three-state 
left-to-right hidden Markov parameters and thereby still 
face difficulties because of the great number of possible 
event combinations and the transitions among them. The 
second context-aware level describes more general infor-
mation about the surroundings around an audio device in 
spite of the location, such as time [37], weather [38], run-
ning pace [39] and even user-dependent states like emotion 
[40] or physiological state [37]. The advent of smart mobile 
phones with rich sensing capabilities is making real-time 
context information collecting and exploration a possibility, 
and new auditory scene recognition systems are expected in 
the next few years.

Both the two categories of methods have to consider 
their dependency on selecting a proper learning algo-
rithm to obtain their recognition results. Mirikitani and 
Nikolaev [41] recursively train recurrent neural networks 
for improved time-series modeling. In [42], a set of key 
audio effects are modeled with HMMs and a Bayesian 
network-based approach is proposed to discover the high-
level semantics of an auditory context embedded in key 
effect sequences. Recently, the combination of different 
classifiers has been proved effective in environmental audio 
understanding. For example, in [43], a hybrid SVM/k-
nearest neighbor (kNN) classifier is used for environmen-
tal audio classification based on MPEG-7 audio low-level 
descriptors. Räsänen et al. [44] study the combination of 
classifier output distributions using a number of different 
classifiers instead of performing audio context fusion at a 
feature level. Kinnunen et al. [45] choose MFCC param-
eterization and present an extensive comparison of six dif-
ferent classifiers of kNN, vector quantization (VQ), Gauss-
ian mixture model trained with both maximum likelihood 
and maximum mutual information (GMM-MMI) criteria, 
GMM supervector support vector machine and SVM with 
generalized linear discriminant sequence for auditory 
scene recognition. They find GMM-MMI and VQ classifi-
ers perform the best identification rates. On the other side, 
multimodality algorithms such as probabilistic models to 
integrate voice and visual identification cues gained from 
microphones and cameras in a smart environment have also 
been proposed [4, 46], which do help in automatic acoustic 
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understanding. For example, the latent semantic analysis 
derived from language processing is proposed as an inter-
esting solution to learn overlapped audio events [47]. Lu et 
al. [22] propose a multimodal correlation network, in which 
audio-to-audio retrievals can be improved by incorporating 
visual image information. However, this area requires more 
studying to apply the techniques efficiently into auditory 
scene understanding.

3  Our approach

Our approach consists of two hierarchies: acoustic scene 
classification and context-based audio event recognition, 
which are shown in the overview framework of Fig. 2. On the 
scene recognition hierarchy, the main problem comes from 
how to describe the diverse nature of environmental audio 
data for identifying the category of the input acoustic scene. 
The following two stages are used to solve this problem:

•	 Locating audio changes in the Eigen-audiospace to per-
form adaptive segmentation (Fig. 2a, Sect. 3.1) on the 
input audio stream. This is necessary since a fixed-size 
slide window may cause intermission of independent 
audio events within the audio stream, and thereby probably 
increases the complexity of succeeding semantic analysis.

•	 By maximizing a particular discriminant measure 
among classes in the LDB feature subspace (Fig. 2b, 
Sect. 3.2.1) and filtering background audio noises after 
spectral clustering (Fig. 2c, Sect. 3.2.2), the acoustic 
scene stream is recognized by modeling HMM of the 
scene on the discriminant features (Fig. 2d, Sect. 3.2.3).

•	 After knowing the category of the acoustic scene, the 
meaningful audio events that appear in it will be rec-

ognized by an audio context model (Fig. 2e, Sect. 4), 
which captures the occurrence correlations among the 
audio events within the scene during the training stage. 
The context model is learned by employing Monte 
Carlo integration and gradient descent techniques to 
maximize the likelihood, thus allowing correctly tag-
ging unknown audio events from the same scene cat-
egory during testing.

3.1  Adaptive audio segmentation

Feature extraction through a fixed-size window may cause 
intermission of meaningful audio events. This is especially 
true for the variant durations of miscellaneous audio events 
in a complex audio environment. Considering the fact that 
for an input acoustic scene stream, the structured sounds in 
it most probably indicate meaningful audio events while 
unstructured compositions are relatively reentrant, we first 
project the input scene stream into the Eigen space and 
accordingly search for the unstructured sounds to adap-
tively segment it.

For a scene stream S, let MS denote its Np ×MNp sam-
pling matrix whose columns are MNp zero-mean non-
overlapping audioframes. In MS, each column xi has 
Np = 2,205 samples obtained by sampling an audioframe 
of duration 0.2 s at the rate of 11.025 kHz. The sound or 
the event intermission that is shorter than this threshold is 
generally meaningless to humans in real-life applications. 
Then, we apply the principal component analysis (PCA) 
transformation to MS and correspondingly obtain a projec-
tion matrix by sequentially selecting the smallest KS eigen-
values in the Eigen-audiospace, denoted by ES of Np × KS.  
The sampling matrix MS can be projected to the Eigen 
space with the rank KS by

Fig. 2  Overall framework of the presented approach for meaning-
ful event recognition from an environmental audio stream: a we first 
locate audio changes in the Eigen-audiospace to perform adaptive 
segmentation on the input audio stream, b we maximize a particular 
discriminant measure among classes in the LDB feature subspace, c 

background audio noises are filtered after spectral clustering, d acous-
tic scenes are recognized using dominant audio sources using HMM 
and the discriminant features, and e audio events are detected using 
the proposed context model by reasoning non-dominant audio sources
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Next, we search for the audioframe with the minimum L2 
norm of sampling points through a sliding window along 
the audio stream S and denote it as xbS, which is zero-mean 
after subtracting the mean audioframe of S. xbS is then pro-

jected to the Eigen-audiospace by xb
′

S = ET
S x

b
S, which is 

used as the reference candidate audio in the Eigen-audio-
space. Accordingly, we measure the normalized distance 
between xb

′

S  and any projected audioframe, and segment the 
input audio stream based on the distances by

where

We finally search for all the valley points on the calculated 
NDis(i) to obtain all the adaptive segmentation results 
{s1, s2, . . . si, . . . , sN ′ } from the input audio stream S.

3.2  Acoustic scene recognition

Generally, there are three stages for effectively recognizing 
an acoustic scene stream:

•	 Extracting discriminant features for every audio seg-
ment. It requires a discriminant audio feature descriptor 
to quantify the sampling points that are probably from 
different audio sources such as speech, laughter, music 
and applause.

•	 Selecting dominant feature vectors. Inspired by [47], it 
would be easier to understand the semantics of every 
audio segment by following the dominant source while 
simultaneously ignoring the others in the segment.

•	 Filtering background clusters from the scene stream. 
This is necessary because an acoustic scene could be 
in most cases decided by the dominant source, while 
background noises usually have a negative effect on the 
judgment.

3.2.1  Searching for dominant sources in the scene

In this section, we realize the first two considerations as 
follows. First, for extracting discriminant features, we 
believe the best-basis strategy, specifically the LDB, is a 
good choice to select the features that minimize entropy or 
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maximize a certain discriminant measure among classes, 
through obtaining an orthonormal optimum subspace from 
a large collection of bases. Once such a basis is selected, 
a small number of the most significant coordinates (fea-
tures) can be used to enhance the performance of a clas-
sifier without losing important details of an environmental 
audio stream. Similar to [31] which has been successfully 
applied to various classification problems in signal and 
image processing, we adopt the following steps to extract 
our LDB+MFCC features for the audio segments in 
S = {s1, s2, . . . si, . . . , sN ′ }. We decompose si into a binary 
wavelet packets tree 

{

�j,k

}

, where j indicates the level of 
the subspace spanned by a set of wavelet packet basis vec-
tors 

{

wj,k,l

}l=2u−j−1

l=0
(2u corresponds to the length of si). As 

a result, si can be expressed as

We search for the set of best feature subspaces to provide 
maximum dissimilarity information between different scene 
audio classes from all 2J mutually orthogonal subspaces (J 
is the maximum number of decomposition levels). This is 
actually a pruning process on the wavelet packet tree based 
on the discriminative capability of a wavelet packet node 
(subspace) (j, k) on P signal classes. Repeating this process 
for each form of the dissimilarity measurement DSV(j,k) and 
combining the resulting nodes, we finally obtain a set of dis-
criminative hybrid descriptors for every segmented environ-
mental audio signal. Theoretically, the combination of the 
two features would form a better feature fusion in recogniz-
ing complex scene audio, in which the MFCC features are 
performing better for natural sounds, whereas the LDB fea-
tures perform slightly better for artificial sounds [31].

Second, to concentrate on the dominant audio source 
while ignoring the others in every audio segment, we apply 
the spectral clustering algorithm on the extracted fea-
tures of each audio segment. Let xij denote the jth LDB–
MFCC feature vector that is extracted from audio seg-
ment si, si can then be represented by the feature matrix of 
FMsi =

{

xij
}nsi
j=1, where nsi is the total number of features 

extracted from si. Next, si is processed as follows:

1. Construct the similarity matrix Wsi ∈ Rnsi×nsi from 
FMsi by 

where factori· is a scale factor to evaluate the average 
distance from xi· to its nearest NP points (NP is a con-
stant) in the feature space, defined as 

(5)si = �j,k,l[aj,k,l]i · wj,k,l

(6)

Wjk
si
= exp

(

−
�xij − xik�

2factorijfactorik

)

, j �= k, Wjj
si
= 0

(7)factori· =
�l|xil∈nearest(xi·)�xi· − xil�

min(NP, nsi)
.
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2. Calculate the diagonal matrix for Wsi as 
Djj(Wsi) =

∑nsi
k=1W

jk
si .

3. Decide the clustering number ksi automatically by cal-
culating the orthogonal Eigen vectors of the matrix 
D−1/2WsiD

−1/2 and its corresponding Eigen values. The 
clustering number for segment si will be calculated by 

 where �k is an Eigen vector of D−1/2WsiD
−1/2.

4. Apply the spectral clustering algorithm to the feature 
vectors of FMsi and correspondingly the result clusters 
CFMsi

=

{

Ci1 ,Ci2 , . . .Ciksi

}

 can be obtained.
Finally, we calculate the gap of dominant clusters by

where ncij is the total feature number in cluster cij. Note 
that the clusters have been sorted according to their fea-
ture numbers in CFMsi

. As a result, segment si can be finally 
characterized by averaging the features from the dominant 
clusters by

3.2.2  Identifying and filtering background

For context-aware processing that this work mainly targets, 
we want to simulate people’s ability to reconstruct an accurate 
perception of meaningful events presented in a natural envi-
ronment by computation modeling. Considering audio events 
in a real-life environment usually correspond to short clusters 
with distinct acoustic patterns, we further cluster the domi-
nant features from all the audio scene segments and accord-
ingly discriminate the clusters into audio event candidates.

Specifically, we again apply the spectral clustering algo-
rithm on the dominant features 

{

x
′

si

}

 generated from the 
whole audio stream and obtain

where kS is the clustering number to indicate event classes 
in S, which can be similarly decided as in (8). Accordingly, 
every resulting cluster ci is considered as a set of audio 
segments as ci =

{

si1, si2, . . . sij, . . .
}

. Then, we define the 
following affinity function to spot the background audio 
clusters which in general make up the largest majority of an 
audio scene stream as follows:

(8)ksi = argmax
k∈[0,nsi−1]

(

1−
�k+1

�k

)

(9)gapsi = argmax

ksi
∑

j=1

ncij ≥ 0.8× nsi

(10)x
′

si
=

∑gapsi
j=1

∑ncij
k=1 xik

∑gapsi
j=1 ncij

(11)CS =
{

c1, c2, . . . ckS
}

(12)
aff(ci, S) =

exp(dci − µS)
2

(2σ 2
S ) · exp(σci/µci)

where dci is the total length of all the audio segments in 
cluster ci,µci and σci are the mean length and the stand-
ard deviation of the segments in ci, while µS and σS are the 
mean length and the corresponding standard deviation of 
all the segments in the input signal S, respectively. Accord-
ingly, background audio events can be identified by select-
ing those clusters that have the largest affinity value. The 
spotted clusters essentially obey the following two observa-
tions. First, there is in general a high affinity for a back-
ground cluster if its segment duration is longer than the 
others. Second, the larger a segment length varies in a clus-
ter, the larger is the affinity.

After spotting background audio events, we consider 
all the rest clusters as audio event candidates for further 
analysis.

3.2.3  Scene recognition using two-level HMM

Based on the detected audio event candidates, we propose a 
two-level HMM scene recognition scheme, which has two 
alternative models as shown in Fig. 3. The main difference 
lies in whether or not having a separate explicit model for 
the discrete sound events.

For the former, we train one HMM model HMM
(j)
e  for 

each sound event class j ∈ [1 . . . kS], capturing the timbre 
(by HMM states) and the rhythm (by state transitions) of 
the audio event and modeling the observation density of 
the LDB–MFCC features by the mixture of Gaussian. The 
model size and initial probability of HMM are decided 
by a clustering algorithm on the training samples. For an 
input audio segment si, the extracted LDB–MFCC feature 
vector x

′

si
 is given to each HMM

(j)
e , and the corresponding 

Fig. 3  Block diagram of the proposed auditory scene recognition 
algorithm, where a and b denote two alternative models in handling 
sound events
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log-likelihood values [ll1, ll2, . . . , llkS ] are computed using 
the Forward algorithm.

The likelihood [ll1, ll2, . . . , llkS ] of a dominant audio 
segment belonging to each specific sound event is used 
as the feature vector fed into the succeeding scene recog-
nition model. For more robustness, we can further build 
a pesudo-semantic feature as in [48] based on likelihood 
ratio test, which derives an inner-class distribution fi(x|θ1) 
and out-class distribution fi(x|θ0) of the likelihood value 
x for the ith event class, based on training samples from 
the ith event class and all other classes, respectively. Then, 
[fi(x|θ1)/fix|θ0]i=1...kS is considered the pseudo-semantic 
feature vector and used in place of the likelihood in acous-
tic scene recognition.

An acoustic scene is thus characterized by the occurrences 
of dominant sound events. For each scene class j ∈ [1 . . .C] 
(C is the number of scene classes considered), we construct 
and train an HMM model HMM

(j)
s  to capture its composi-

tions (i.e., sound events) and temporal variation characteris-
tics through HMM states and their transitions. In the training 
stage, the specification of the HMM including the model size 
(state number), the number of observation Gaussian mix-
tures and the initial probability in each state are determined 
experimentally based on the training acoustic scene samples 
collected, reflecting the complexity and variations of dif-
ferent scenes. The transition and emission probabilities of 
HMM are estimated with the Baum–Welch algorithm. The 
extracted dominant features of an audio segment belonging 
to each specific recognized sound event are fed into each 
HMM

(j)
s  and the model with the maximum output likelihood 

is considered the recognized scene class. Note that an audio 
segment probably comprising multiple overlapping events 
is actually represented as a set of likelihoods (soft labels) 
belonging to each event category, which make their respec-
tive contributions to the characterization of the scene.

Since scene recognition is preceded by following domi-
nant audio events while simultaneously ignoring the oth-
ers in the segment, event context of the recognized scene 
class will in turn be used to detect all the rest audio events 
and update the recognized candidates iteratively in the next 
section.

4  Context-based audio event recognition

Essentially, audio events are considered in a correlated 
way to describe an audio scene [36, 49], e.g., a crowded 
restaurant scene probably contains the sounds of the clat-
ter of cutlery, opening/closing doors, and talks simultane-
ously. That is, in the real world, audio events tend to cor-
relate to other events inside a particular environment which 
provides a rich collection of contextual event associations. 
We refer such audio event correlations that happen in the 

same category audio environment as our audio event con-
text. We, thereby, propose an audio context model to rec-
ognize audio events. In this model, each candidate event is 
respectively described by scene context and its own inher-
ent characterizations.

Modeling audio event contexts. Each candidate event ei 
is given a contextual descriptor Pcon(oi, ei) that is defined 
as the average of every event pairwise probability p(〈ei, ej〉) 
in the same audio scene, where oi is the desired seman-
tic tag of ei. For each audio event pairwise relationship 
R△(△ = 1, 2, . . . ,NS) from the same scene, we define a 
relationship matrix Ψ i which captures the probability distri-
bution of every audio event pairwise. The probability of an 
audio event pairwise �s, t�(s, t = 1, . . . ,KS) in the relation-
ship matrix Ψ△ is as follows:

where ψ△
st  is the entry (s, t) in the relationship matrix Ψ△,  

while Z(Ψ△) is a partition function. Essentially, an event 
pairwise �s, t� ∈ R△ implies that two audio event classes of 
s and t satisfy the △th relationship according to the training 
data. Thereby, given an audio scene data set D, we define 
the probability of relationship R△ as:

where l△st  is the entry (s, t) of a frequency matrix for rela-
tionship R△ in D, which counts the times of audio event 
pairwise 〈s, t〉 that appears in the training audio scene data-
set, and M△ is the total number of the event pairwise which 
has relationship R△.

Characterizing each candidate event. Besides the con-
textual characterizations, we further define the following 
measure Psco(oi, ei) to evaluate the saliency of each candi-
date event ei, which essentially reveals the inherent charac-
teristics for conveying semantic contents in an audio scene. 
We consider three score functions to evaluate the inherent 
properties of every candidate event, namely, the occurrence 
frequency of fof (ci, S), the total duration of ftd(ci, S) and 
the average length of fal(ci, S) as follows:

in which:

 

(13)p(�s, t�;Ψ△) =
1

Z(Ψ△)
exp

{

ψ
△
st

}

(14)p(D,Ψ△) =
1

Z(Ψ△)M
△
exp







kS
�

s=1

kS
�

t=1

l
△
stψ

△
st







(15)
Psco(oj, ej ∈ ci) = salient(ci, S)

= fof (ci, S) · ftd(ci, S) · fal(ci, S)

(16)fof (ci, S) = exp

(

−
(nci − α · µnci

)2

2δ2nci

)

(17)
ftd(ci, S) = exp

(

−
(dci − β · µdci

)2

2δ2dci

)
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where nci , dci and dci are the occurrence times, the total 
duration and the average segment length of ci, respectively. 
µ and δ are the mean and the standard deviations of a corre-
sponding measure, while α,β and γ are the co-efficiencies 
of µ.

We then integrate the contexts and the inherent charac-
teristics of each audio candidate event ei into a new repre-
sentation of P(oi, ei) to characterize the probability whether 
a candidate audio event ei can be calibrated by tag oi. The 
details to calculate P(oi, ei) and the context-based audio 
event recognition model are shown in Algorithm 1, in 
which audio event recognition is considered as the problem 
of simultaneously maximizing the possibilities of scene 
context co-occurrences and the inherent characteristics of 
being a particular audio event for every audio candidate by

Accordingly, audio event candidates will be iteratively 
updated through the context model.

Algorithm 1 Iterative probability-based audio event
recognition using context model.
Input:

Initially labeled audio cluster candidates: (o1, e1),
· · · ,(oN ′ , eN ′) with the importance measure of
Psco(o1, e1), · · · ,Psco(oN ′ , eN ′);

1: Set R = ∅ and initialize the context probability
Pcon(o1, e1),· · · ,Pcon(oN ′ , eN ′;) to be zero;

2: P (oi, ei) = λPsco(oi, ei) + (1 − λ)Pcon(oi, ei), where
λ is a weight factor. Search for P (o∗, e∗) =
argmax(oi,ei)/∈R P (oi, ei).
For i = 1 to kS

If P (o∗, e∗) > Psco(oj , ej)
o∗ → oi, R = R ∪ {(oi, e∗)}; break;

EndFor
3: For the remaining candidates, update the context proba-

bility as follows:

Pcon(oj , ej) = 1
M

[

(M − 1)Pcon(oj , ej) +
exp{ψ�

eje∗
}

Z(Ψ�)

]

where M is the number of detected audio events and
� ∈ {1, · · · , NS} . Go to 2.

Output:
The detected audio events with updated labels R =
{(oi, ei)}.

To solve Algorithm 1, we maximize the log likelihood of 
each observed audio event pairwise by

(18)fas(ci, S) = exp



−
(dci − γ · µlci

)2

2δ2
dci





(19)P(oi, ei) = �Psco(oi, ei)+ (1− �)Pcon(oi, ei).

(20)

L(Ψ△) = log p(D,Ψ△) =

kS
∑

s=1

kS
∑

t=1

l
△
stψ

△
st −M△ × logZ(Ψ△).

We approximate the partition function using Monte Carlo 
integration. The importance sampling is employed and the 
distribution is equal to their observed frequency. Thus, we 
can use the gradient descent to find Ψ△, which approxi-
mately optimizes the likelihood, and accordingly the gradi-
ent is as follows:

Note that in Algorithm 1, we assign the label for each can-
didate event that is not identified as a dominant source in 
Sect. 3.2 by searching for the nearest distance with the 
training events in the feature space. Assuming that such a 
candidate event ci contains Mci audio segments and each 
segment is characterized by the LDB+MFCC feature vec-
tor with the dimension of N, an audio candidate event can 
essentially be represented by an N ×Mci(N < Mci) matrix 
Eci. Then, the SVD algorithm is employed again to extract 
the dominant features of an audio event candidate in the 
feature space by decomposing Eci as

where U = {u1, . . . , uN } is an N × N orthogonal matrix, 
S = diag{�1, . . . , �N } is an N ×Mci diagonal matrix of sin-
gular values, for which �1 ≥ �2 ≥ · · · ≥ �N, and V is an 
Mci ×Mci matrix. Since the principal components associ-
ated with large singular values represent the primary distri-
bution of the audio element in the feature space, the desir-
able principal component number to describe a candidate 
event is chosen by:

 η is a threshold to initialize an event label. As a result for 
a test audio event cj, its L2 distances of m largest principal 
components between the features of cj and all the training 
audio events are calculated and accordingly the minimum 
is selected to initialize cj with the same label. The initial-
ized labels for non-dominant candidate events will then 
be recognized in Algorithm 1 by further considering their 
audio scene contexts and co-occurrence correlations to 
improve the accuracy.

Our audio context model is essentially inspired by the 
fact that different audio events in the same audio scene can 
take a complementary role on event recognition by meeting 
the following two requirements. First, like a visual object 
that can help recognize others in the same scene [50], the 
presence of one audio event in general helps to identify the 
existence of others. For example, a rain environment rec-
ognition system that exploits both rain and thunder sounds 

(21)∇Ψ△L(Ψ
△) =
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may achieve better performance in both accuracy and effi-
ciency than one which exploits either one or the other. As a 
result, an audio event context allows people to understand 
the semantic behind it and more importantly, inspires peo-
ple to associate this event with other known events for more 
accurate audio event recognition. Theoretically, the acous-
tic scene context model is also useful in recognizing over-
lapped sound events since it captures the occurrence cor-
relations between dominant and non-dominant sounds to 
infer the semantics of the latter, rather than directly separat-
ing the overlapped sounds which has been proved difficult 
and sometimes inaccurate. Second, audio events tend to 
be correlated and audio context modeling can take a com-
plementary role on solving environmental audio content 
analysis tasks by following a specific audio source while 
simultaneously ignoring or simply acknowledging the other 
noises. Accordingly, audio events in the same environmen-
tal scene can be inferred and recognized using the impor-
tance measure evaluated by every audio event itself and 
the concurrence measure characterized by associated audio 
contexts in a relatively accurate and robust way.

5  Experimental results

In this section, we evaluate the performance of the pro-
posed approach on several audio datasets, including the 
recent DCASE benchmark [23], our proposed 10-Category 
Audio Scene and Event dataset (10-CASE dataset), and a 
public TV-Movie dataset with nearly altogether 24 h audio 
data.

5.1  Evaluations on the benchmark and the 10-CASE 
dataset

We first evaluate the proposed method on the recent 
DCASE benchmark dataset, the scene types in which 

are pre-selected with an equal balance of indoor/outdoor 
scenes in London area, including: bus, busytreet, office, 
openairmarket, park, quietstreet, restaurant, supermar-
ket, tube and tubestation. Binaural stereo format using a 
Soundman OKM II microphone is used to record the audio 
data. Table 1 gives the confusion matrix using the proposed 
method on this dataset. The rows of the matrix denote 
the scene classes we attempt to classify, and the columns 
depict the classified results. It can be found that our method 
averagely achieves an accuracy of 62.3 %, outperforming 
52.1 % of the baseline method in [23] on the same dataset. 
This is probably due to our processing steps on the scene 
recognition hierarchy consisting of adaptive audio segmen-
tation and background filtering. However, in this experi-
ment, both the proposed scene recognition method and the 
other recent 11 methods that adopt either SVM, GMM, 
random forest or likelihood ratio test only focus on select-
ing proper statistic models or discriminative classifiers, but 
not contextual content analysis of environmental sounds 
themselves. This is because the types and the number of the 
audio events in each scene category in the DCASE dataset 
are limited. Ideally, for better understanding noisy environ-
mental sounds, sufficient representative samples of audio 
events from different types within each scene category are 
required. Note that the audio events in each scene are not 
segmented and labeled in this dataset, making the training 
and the selection of the optimized LDB features for specific 
audio events impossible. Thereby, only MFCC features are 
used in this experiment.

We thus create a 10-CASE dataset consisting of 10 
scene types and 21 event categories, which are distinct 
enough to be perceived, by collecting audio data from 
Internet. The 10-CASE dataset has 5,250 audio clips, in 
which each clip corresponds to an individual short audio 
event that has been well segmented. Altogether six outdoor 
scenes and four indoor scenes are considered, namely, res-
taurant, street with traffic, playground, train station, inside 

Table 1  Confusion matrix 
for scene recognition on the 
DCASE benchmark using the 
proposed method

Recognized scenes % (in the same order as rows)

1 2 3 4 5 6 7 8 9 10

Bus 81 4 15

Busstreet 90 6 4

Office 81 9 8 2

Openair 62 6 1 31

Park 10 31 57 2

Quietstreet 2 10 4 74 10

Restaurant 23 34 43

Supermarket 3 10 14 11 62

Tube 10 3 16 14 44 13

Tubestation 3 2 1 2 16 3 9 26 38
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moving vehicles, auditorium, battle field, forest, beach, and 
raining with thundering. Totally 21 audio event types are 
classified, including engine, car-braking, siren, horn, gun-
shoot/explosion, tableware, running water, bird, thunder-
ing, people talking, applause, laughter, cheer, traffic and 
crowd background, etc. The clip length ranges 1–3 s for 
audio events and 15 s–2 min for scenes. To extract audio 
features, we learn a 40-dimensional LDB subspace (20 for 
node energy and 20 for coefficient variance) based on the 
audio event training set. Then, for each input audio stream, 
we apply a sliding event detection window of around 1 s 
length on it, which is further divided into overlapping 
200 ms frames, and extract LDB, MFCC, LDB+MFCC 
feature vectors from each frame.

Tables 2 and 3 give the confusion matrices constructed 
by applying the audio scene recognizer to the test set in a 
single arbitrary trial using the hybrid LDB+MFCC fea-
tures and the single LDB features, respectively. The aver-
age accuracies of these two ways are 78.3 and 74.6 %. The 
average accuracy is higher than that on the DCASE dataset, 
which is probably because there are sufficient sound events 
of different types in each scene for better selecting features 
and training the model. The model size of the HMM for 
each acoustic scene type listed in it is experimentally cho-
sen as 4, while the number of observation mixtures is set 
as 4 in this work, which can also be learned from samples. 
We further compare the scene recognition method with the 
recent baseline algorithm in [23] on our 10-CASE dataset. 
The confusion matrix of the baseline algorithm is given 
in Table 4 with the average accuracy of 75.2 %, which is 
slightly higher than the single LDB features but lower than 
the hybrid MFCC+LDB features. This verifies our hypoth-
esis that the combination of two different features may 
form a better fused feature in recognizing scene audio that 
is complex and has various compositions.

To test audio event recognition, we additionally select 
five real audio scene streams consisting of raining, 

restaurant, sport, street and war from the BBC Sound 
Effects Library [51], which is for real systems like movie, 
TV or music production. Altogether 1,163 individual event 
sound segments (e.g., moving chair, closing door, and step-
ping) are detected. The final event recognition results from 
noisy acoustic scene streams are shown in the confusion 
matrix of Fig. 4, in which the mean accuracy is 62.2 %. 
This accuracy is similar to that of the DCASE dataset but 
lower than that on the 10-CASE dataset, illustrating that the 
number and the types of sound events, namely, the char-
acteristics of acoustic scene compositions, may greatly 
affect the performance of acoustic scene understanding 
algorithms.

To evaluate the LDBs inherent discriminability resulting 
from the adaptive learning (node selection) process on the 
audio event training samples together with LDBs capability 
of depicting multiscale temporal signatures and audio spec-
tral shape, in another experiment, the LDB feature vectors 
extracted from the input audio steam are directly used as 
the observations of the HMM-based scene model for train-
ing and classification instead of using the proposed audio 
context model. The worse case is for crowd background 
(28.6 %), followed by running water (52 %) and traffic 
(66.7 %), since they are usually covered by other events 
and noise.

Finally, for better evaluating the influences brought by 
different audio features or their combinations, in Fig. 5, we 
compare the overall recognition accuracies for considered 
scene classes using LDB features, MFCC features, and 
LDB+MFCC features, respectively. It also shows the com-
plementary aspect of LDB and MFCC features in charac-
terizing variant audio events in audio scenes. Similar to the 
finding in [52] that MFCC is weak to characterize scenes 
composed of sounds with narrow spectral band structure, 
it performs insufficiently in our experiments for the low-
frequency wave background and high-frequency bird chirps 

Table 2  Confusion matrix for 
scene recognition on 10-CASE 
dataset using LDB+MFCC 
features

Recognized scenes % (in the same order as rows)

1 2 3 4 5 6 7 8 9 10

Vehicle 90 1 6 2 1

Beach 4 39 2 30 8 2 13 2

Station 17 2 69 3 6 3

Street 18 8 7 57 1 8 1

Restau. 1 4 93 2

Audito. 3 1 4 17 73 2

Forest 100

Raining 1 2 1 1 1 1 89 3 1

Playgnd 2 4 1 6 87

War 3 1 2 8 86
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Table 3  Confusion matrix for 
scene recognition on 10-CASE 
dataset using LDB features

Recognized scenes % (in the same order as rows)

1 2 3 4 5 6 7 8 9 10

Vehicle 58 2 40

Beach 77 2 17 4

Station 3 81 4 12

Street 1 1 30 46 19 1 2

Restau. 7 1 82 10

Audito. 6 3 1 68 7 15

Forest 1 97 2

Raining 2 7 90 1

Playgnd 9 2 9 4 1 75

War 4 4 3 16 1 72

Table 4  Confusion matrix for 
scene recognition on 10-CASE 
dataset using the baseline 
method

Recognized scenes % (in the same order as rows)

1 2 3 4 5 6 7 8 9 10

Vehicle 90 3 4 3

Beach 5 29 2 21 1 11 7 24

Station 1 83 1 15

Street 18 1 49 3 14 15

Restau. 9 1 84 6

Audito. 13 1 13 69 1 2 1

Forest 100

Raining 7 1 89 3

Playgnd 8 1 6 4 1 80

War 5 12 4 79

Fig. 4  Altogether 1,163 individual audio events from 5 real acoustic scene streams are detected, and the confusion matrix of all the detected 
results is shown



519Audio event recognition for scene understanding

1 3

in the beach scene, for which LDB features are effective. 
On the other side, for some sounds with mixed and wide-
spreading spectrum like cluttered voices, music and effects 
in auditorium, MFCC can be more efficient than LDB. By 
combining LDB and MFCC features, we achieve an aver-
agely enhanced accuracy rate.

5.2  Experiments on public TV-Movies

Finally, we test our method on TVs and movies that have 
long durations and a lot of audio event changes to imitate 
real-life environments.

TV-Movie dataset. The public TV-Movie dataset is 
composed of continuous audio streams for evaluating our 
proposed event recognition method. The total duration of 
the dataset nearly reaches 24 h as shown in Table 5, cover-
ing four TV categories of basketball, tennis, table tennis, 
awards party and three movie categories of action, comedy 
and war. For simplification, each TV or movie category 
here is considered as a scene class. All the audio samples 
are in 44.1 KHz and mono channel. Since we achieve an 
improved accuracy after combining LDB and MFCC fea-
tures as shown in Fig. 5, we still extract the 20-dim LDB 
features together with the 21-dim MFCC features from 
every audioframe which contains 1,024 sampling points 
without overlaps.

Adaptive segmentation. We evaluate our adaptive seg-
mentation method from long duration audio streams. Fig-
ure 6 shows an example of the segmentation results on a 
20-s scene audio stream. The curve in Fig. 6a represents 
the normalized distance between every audioframe and xb

′

S

, where the two red valley points essentially represent the 
spotted boundaries of scene audio segments. Figure 6b 
shows the corresponding similarity matrix for the exam-
ple audio stream S, which consists the sounds of applause 

(50–57 s), silence (57–64 s) and speech (64–70 s). Note 
that, there generally exists a potential audio change if the 
normalized distance decreases sharply, which can also be 
correspondingly found in the grayscale image as shown in 
Fig. 6b.

Table 6 illustrates the audio event recognition results by 
respectively employing adaptive segmentation and fixed-
window segmentation on environmental audio streams. In 
Table 6, we find the accuracy of audio event recognition by 
using adaptive segmentation is averagely improved against 
using a fixed-size window by avoiding intermission of 
independent audio events.

Audio context modeling. We evaluate our context-based 
model for audio event recognition from audio scenes. Fig-
ure 7 shows the influence of audio context modeling in 
event detection. Similarly, we find that the average accu-
racy of audio event recognition can be effectively improved 
by audio scene context modeling. Table 7 shows some 
detected audio event examples together with their occur-
rence numbers in the test audio tracks from Table 5. We 
also notice that the true positive rate of specific audio 
events may be decreased like noise. The reason is poten-
tially that the proposed greedy search algorithm is based on 
the local maxima in the hypothesis space but some unstruc-
tured audio events are relatively difficult to define from the 
impure training data.

Note that overlapped audio events can be handled if the 
audio features from one event are dominant enough. This 
is true because after feature extraction and spectral clus-
tering, the audio features from overlapped events will be 
successfully separated into different clusters. For example, 
suppose there is an audio segment essentially composed of 
two overlapped events A and B in the form A1-(A2,B)-A3, 
namely, the A2 part in event A overlaps with another event 
B. After spectral clustering, A1 and A2 are probably clus-
tered into the same candidate cluster indicating event A,  
and (A2,B) will probably be clustered into another candi-
date cluster indicating B if event B is dominant in (A2,B), 
or still clustered into candidate cluster A if A2 is dominant. 
Otherwise, this overlapped part will probably be clustered 
into a new overlapped event candidate, or directly consid-
ered as background if no such overlapped event is defined. 
For example in Table 7 the overlapped events such as 
“music + laughter” and “laughter + speech” are detected.

Feature selection and parameter setting. In Table 8, we 
further compare the overall recognition accuracy for the 
audio scenes by respectively employing LDB, MFCC and 
LDB–MFCC feature vectors. It can be seen that the hybrid 
feature still remains valid in interpreting long-time audio 
scene streams.

During spectral clustering, we need set two empirical 
values of AUDI_MIN and AUDI_MAX as the cluster num-
ber range [AUDI_MIN ,AUDI_MAX]. Such an empirical 

Fig. 5  Overall recognition rates comparing ten classes using LDB 
features, MFCC features, and LDB+MFCC features, respectively. 
Scene classes are arranged in the same order as Table 3
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cluster range will potentially affect the computational 
efficiency and accordingly decide the final accuracy. We, 
therefore, perform experiments on different audio sources 
to search for the best parameters. In Fig.  8, we find that 
when we set AUDI_MIN to 2 and AUDI_MAX is in the 
range from 8 to 14, AUDI_MAX=12 gives an averagely 
high accuracy for event recognition according to our 
experimental results (see Fig.  8a). Similarly, when we set 
AUDI_MAX to 12 and AUDI_MIN is in the range from 2 to 
6, AUDI_MIN = 5 obtains the best accuracy (see Fig.  8b). 
Accordingly, the empirical range for spectral clustering is 
finally set as [5, 12] for an unknown audio signal.

Post-processing. For a long-time complex acoustic 
scene stream, we rank the detected audio events accord-
ing to their importance probability calculated by (15), and 

merge neighboring events in a descending order based on 
the following two assumptions: (1) whether two neighbor-
ing audio events are considered from the same audio scene 
can be measured by the correlation coefficient (CC) of their 
audio features, and (2) the longer the time interval between 
two adjacent audio events is, the lower possibility in the 
same scene they will be. Thereby, we define the correla-
tion function for two adjacent audio events ith and jth as 
follows:

where dij and corrij, respectively, represent the time inter-
val and the correlation coefficient between the ith and jth 
audio events, while di and dj are the durations of the ith and 
jth audio events, δ denotes the harmonic factor. The final 
results from the test TV and movie streams are shown in 
Table 9.

6  Discussion and conclusion

A novel audio scene understanding framework is presented, 
which consists of two hierarchies of acoustic scene recog-
nition and audio event recognition. On the scene recogni-
tion hierarchy, we detect audio changes in the Eigen-audi-
ospace adaptively segment an audio scene stream and then 

(24)Sij =
δ

dij
· exp(−(di − dj)

2/(di + dj)) · exp(corrij)

Table 5  The experimental datasets

Category Audio source Dur. (s)

Action A1 The Fast and the Furious 21,020

A2 State of the Union

A3 Sword fish

A4 The rock

Award B1 83rd academy awards 21,224

B2 Muchmusic video music

B3 CMT music awards 2012

B4 39th annual music awards

Comedy C1 3rd rock from the sun 5,151

C2 Friends

C3 The Big Bang Theory

Sports D1 World table tennis game 17,717

D2 2012 Olympic table tennis

D3 NBA 2012 finals

D4 ATP 2012 Wimbledon SF1

War E1 Enemy at the gates 19,496

E2 First blood

E3 Pearl Harbor

E4 Saving Private Ryan

Fig. 6  Segmentation of a 20-s 
table tennis game scene stream 
consists of applause (50–57 s), 
silence (57–64 s) and speech 
(64–70 s): a local minima 
calculation of the normalized 
distance, and b the correspond-
ing grayscale image of similar-
ity matrix of the audio stream

Table 6  Performance evaluation on audio event recognition by 
respectively using adaptive segmentation and fixed-window segmenta-
tion of environmental audio streams from action movies in the dataset

Source Adaptive seg. (%) Fixed seg. (%)

A1 76.74 64.12

A2 42.22 21.57

A3 51.12 53.44

A4 60.62 57.56

Average 57.68 49.17
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extract the LDB–MFCC features to represent every audio 
segment. After filtering background audio segments, acous-
tic scene streams are recognized by two-level HMM. Then 
on the audio event recognition hierarchy, a context-based 
model which essentially characterizes the occurrence corre-
lations of the audio events within the same scene category 
is presented to correctly tag meaningful audio events from 
various sources.

Essentially, recognizing acoustic scenes that contain 
non-speech and non-music environmental sounds and 
detecting various events within each scene are still in their 
early stages as introduced, thus the researchers in this com-
munity are now establishing datasets and developing meth-
ods as benchmarks. As reported in [53], the mean accuracy 
by human listeners is only around 71 % on the data col-
lected in office environments from the DCASE dataset. 
The proposed method averagely achieves an accuracy of 
62.3 % on the same dataset, outperforming the average 
accuracy 53.8 % of the recent 11 methods. It still can be 
improved due to the following fact: the data in DCASE are 
directly recorded in London area, in which the types and 
the number of the audio events are very limited for training 
discriminative features. We then create a 10-CASE data-
set by manually collecting 5,250 audio clips of 10 scene 
types and 21 event categories. Our experimental results 
on this dataset show that the proposed method averagely 
achieves the enhanced performance of 78.3 %. This result 
also illustrates our hypothesis that the inherent discrimi-
nability of the best-basis strategy greatly relies on whether 
there are sufficient types of different audio events for train-
ing. Finally, by comparing the confusion matrices for audio 
event detection from five kinds of audio scenes, we find 
that the average accuracy of audio event recognition can be 
effectively improved by capturing dominant audio sources 
and reasoning non-dominant events from the dominant 
ones through acoustic context modeling.

However, the current methods of audio event detection 
from acoustic natural scenes still face the following diffi-
culties: (1) the definition of a particular real-life acoustic 
environment sometimes is difficult even for human listen-
ers (e.g., an office environment can be either very quiet 
with only slight sounds of tapping keyboards or very noisy 
with loud discussions and laughers), (2) it is difficult to 
decide whether an audio event is dominant for a particular 
real-life acoustic scene while the others are not, and (3) the 
occurrence correlations among the audio events that appear 
in the same acoustic scene are statistically, which may 
be inaccurate to infer various audio events from multiple 
sources in a real-life acoustic scene as humans do. In the 
future work, we will improve the computational efficiency 
of the method, and enrich audio contexts from event level 
to local or user level for more accurate event detection. 
Another interesting research topic is reversely exploring 

Fig. 7  The confusion matrices for audio event detection from five 
kinds of audio scenes. a Without audio context modeling; b with 
audio context modeling

Table 7  Audio event detection results from the TV-Movie dataset

No. Audio events

A1 Fighting (114), speech+backgrounds (75), engine (28)

Speech+noise (53), gunshot (70), siren (19)

Backgrounds (141)

B1 Applause+music (85), laughter+speech (102)

Cheer (67), song (24), speech (83), music (42)

Backgrounds (94)

C1 Laughter (17), music+laughter (19), applause (25)

Cheer (18), speech (38), music (38), backgrounds (23)

Noise (4)

D1 Applause (77), cheer+appluse (74), ball-hit (133),

Speech (33), speech+music (92), music (84)

Backgrounds (58)

E1 Gunshot (37), explosion (38), speech+music (115),

Speech+noise (121), music (104), noise (87)

Silene (24), speech (107), backgrounds (90)
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the influence of the detected audio events on more accu-
rate scene recognition in the post processing stage. Moreo-
ver, the incorporation of other modalities such as video and 
sensor information during collecting sound signals using 
mobile phones will be considered to further advance the 
performance of the proposed framework.
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