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high-quality classification performance when only few 
labeled training samples are provided.
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1  Introduction

The tensor form as the natural representation of an image 
has emerged in various applications. For example, in gray 
image data mining, the data, such as faces [1] or handwrit-
ten digits [2], are usually represented in the form of 2D ten-
sor. Additionally, in color image data mining [3], the data is 
a 3D tensor in all color channels. How to classify this kind 
of data is an important topic for both image processing 
and machine learning. Nevertheless, traditional classifica-
tion methods are usually vector-based representation [4–6], 
such as K-nearest neighborhood classifier [7], support vec-
tor machine (SVM) [8, 9], and ridge regression (RR) [10]. 
These methods must transform each image data into a vec-
tor which is reformulated by concatenating each row (or 
column) of a tensor. This makes image classification unable 
to fully use the neighborhood relationship between pixels. 
Some important spatial information is discarded in these 
vector-based representation methods.

In order to make full use of the spatial information by 
treating image as itself without vectorization, tensor rep-
resentations have been proposed to tackle the mentioned 
challenge. In [11], a novel, tensor face for face recognition 
has been proposed. Other traditional vector-based represen-
tation subspace learning methods have been extended to 
tensor representation, such as tensor principal component 
analysis [12], tensor linear discriminant analysis [13], and 
multi-linear discriminant analysis [14]. However, we can 

Abstract  In this paper, we propose a new tensor-based 
representation algorithm for image classification. The algo-
rithm is realized by learning the parameter tensor for image 
tensors. One novelty is that the parameter tensor is learned 
according to the Tucker tensor decomposition as the multi-
plication of a core tensor with a group of matrices for each 
order, which endows that the algorithm preserved the spa-
tial information of image. We further extend the proposed 
tensor algorithm to a semi-supervised framework, in order 
to utilize both labeled and unlabeled images. The objective 
function can be solved by using the alternative optimiza-
tion method, where at each iteration, we solve the typical 
ridge regression problem to obtain the closed form solution 
of the parameter along the corresponding order. Experi-
mental results of gray and color image datasets show that 
our method outperforms several classification approaches. 
In particular, we find that our method can implement a 
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not directly classify the image as tensor data by using these 
methods because their purposes are to learn a subspace of 
tensor data and then employ another vector-based classi-
fier. In [15], the images are represented as 2D matrices and 
directly used to learn two groups of classification vectors. 
The 2D matrix represents an image in its natural matrix 
form. Thus, this method can preserve the spatial correlation 
of an image and avoid the curse of dimensionality. How-
ever, we cannot handle the 3D or higher order image data 
by using this method. In [16], a supervised tensor learn-
ing framework (STL) framework has been presented. In 
STL, the higher order parameter was decomposed based 
on CANDECOMP/PARAFAC (CP) decomposition [17] 
and the tensor is directly considered as input data. Based 
on STL, several researchers have extended some tradi-
tional vector-based representation methods to their tensor 
patterns, such as tensor least square classifier [18], ten-
sor SVM [19], tensor ridge regression (TRR) and support 
tensor regression [3]. As shown in Fig. 1a, the tensor was 
decomposed into a sum of N rank-1 tensors according to 
the CP decomposition [20]. After CP decomposition, the 
rank of tensor is N. An important issue of tensor CP decom-
position is that the rank N cannot be confirmed. If the num-
ber of rank-1 tensor is too many, the included information 
may be noise and redundancy, otherwise this representation 
is incomplete. So tensor CP decomposition is difficult to 
retain exact structural information for image classification. 
Moreover, these methods require many labeled training 
data but collecting these are high labor and time cost. It is 
not practical to provide sufficient labeled training data for 
these method in the real word [21].

To solve these problems, there are two advanced 
researches: (1) the first one is the Tucker decomposi-
tion [22], which is considered as higher-order principal 
component analysis. As shown in Fig. 1b, each tensor is 
represented as the product of a core tensor and matrices 
along all orders in the Tucker decomposition. There are 
two advantages in Tucker decomposition. First, com-
pared with the CP decomposition that need to evaluate 
the rank to approximate the initial tensor, we can obtain 
the more exact decomposition result of tensor by using 
Tucker decomposition. The other benefit is that we can 
achieve the goal of dimension reduction by adjusting the 
dimension of the core tensor. (2) The second method is 

semi-supervised learning [15, 23, 24], which utilizes the 
manifold structure of both labeled and unlabeled train-
ing data to attain improved performance. In [24], a semi-
supervised ranking scheme is proposed by introducing the 
local regression and global alignment into the objective 
function. In [23], a semi-supervised dimensionality reduc-
tion algorithm called semi-supervised discriminant analy-
sis is presented. In [15], the graph Laplacian based semi-
supervised learning is added into the compound matrix 
regression for image classification. The experiments in 
[15, 23, 24] have shown that simultaneously leverag-
ing labeled and unlabeled images is beneficial for many 
applications.

Motivated by the advantages of tensor Tucker decom-
position and semi-supervised learning, we propose a new 
semi-supervised classification frame for image tensors. 
The proposed frame utilizes the tensor regression model 
with Tucker decomposition, and graph Laplacian based 
semi-supervised learning jointly for classification. Tucker 
decomposition can efficiently preserve the spatial infor-
mation of image data during the learning process. Semi-
supervised learning enables our algorithm to overcome 
the deficiency of limited labeled training samples. The 
classification performance of proposed method thereby is 
enhanced subsequently.

In the proposed frame, the input image and param-
eter are regarded as tensor form directly. For the M-order 
parameter tensor, we decompose it into a core tensor mul-
tiplied by matrices along M orders at first. Then in each 
round of the alternating optimization algorithm utilized 
in this paper, the core tensor is transformed into the core 
matrix along one order and the decomposed matrix associ-
ated with this order can be estimated by solving the the RR 
problem while fixing other and core matrix. After solving 
for matrices along M orders, we can compute the core ten-
sor by using the same process. The procedure is repeated 
until convergence.

We name the proposed method semi-supervised Tucker 
ridge regression (STuRR). The contributions of this paper 
are as follows:

–– 1. In order to exploit the spatial structure of the image 
data, we propose the Tucker decomposition to decom-
pose the parameter tensor, which is more robust than 

Fig. 1   Two widely used tensor 
decompositions: a CP decom-
position and b Tucker decom-
position
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that using the CP decomposition of parameter tensor. 
Moreover, the efficiency is guaranteed by avoiding the 
generation of high-dimensional vectors.

–– 2. The proposed approach embeds the semi-supervised 
learning into tensor regression model, which improves 
the performance in image classification by utilizing the 
unlabeled data.

–– 3. The experiments on different gray and color image 
datasets show that our method yields good results when 
only amount of labeled training data are available.

–– The rest of the paper is organized as follows: In Sect. 
2, we introduce the novel semi-supervised Tucker ridge 
regression that is able to directly handle tensor represen-
tation of image and utilize the unlabeled images. The 
efficiency of the proposed algorithm is demonstrated 
on nine publicly available image databases in Sect. 3. 
Finally, conclusions are drawn in Sect. 4.

2 � Semi‑supervised tensor learning for image 
classification

In this section, we present the objective function of STuRR 
followed by a detailed optimization method for investigat-
ing the solution.

2.1 � Semi‑supervised Tucker ridge regression

When the appropriate regularization is added, the least 
squares loss function gains comparable performance to 
other complicated loss functions [25]. The least squares 
loss function therefore is considered in this paper for the 
problem of regression. When the ℓ2-norm is used for regu-
larization in the vector space, the typical ridge regression 
can be formulated as:

where xi is the vector representation of input image, w is 
the parameter vector, b is the bias, and yi is the regression 
output of xi.

In order to extend the ridge regression from vec-
tor to tensor space and classify image tensor directly, let 
χ = [χ1,χ2, . . . ,χn] ∈ IRd1×d2×···dM×n as the set of training 
images where the ith image χi is an M-order tensor and n is 
the total number of the training images. We denote the associ-
ated class label vectors as: y = [y1, y2, . . . , yn]

T ∈ {0, 1}n×1. 
yi = 1 if the ith image is a positive example, whereas yi = 0 
otherwise. The TRR can be written as:

(1)min
w,b

n∑

i=1

(�xi,w� − yi + b)2 + ��w�22

(2)
min
ω,b

n∑

i=1

(�χi,ω� − yi + b)2 + ��ω�2F

where ω ∈ IRd1×d2···×dM is the parameter tensor, � denotes 
the regularization parameter and b is the bias term. We 
focus on learning the parameter tensor ω and bias term b.  
In this paper, in order to capture the underlying structure 
of image tensor, the parameter tensor ω is decomposed 
according to the Tucker tensor decomposition firstly. That 
is:

where G ∈ IRR1×R2···×RM is a core tensor and 
{U1,U2, . . . ,UM} are a set of matrices which are multi-
plied to the core tensor G along each order. According to 
[17], Ri ≤ di for all i = 1, 2, . . . ,M. Compared with the CP 
decomposition, Tucker decomposition does not need pre-
evaluate the rank N. The ×l is the lth order product between 
the tensor G and the matrix Ul ∈ IRIl×Rl. So G ×l Ul yields 
a new tensor Q ∈ IRR1···×Rl−1×dl×Rl+1···×RM [17]. After 
Tucker decomposition, the Eq. (2) can be rewritten as:

Compared with traditional ridge regression, using Tucker 
tensor decomposition enables our method to learn the spa-
tial information along each order.

Now we show how to extend the Eq. (4) to a semi-super-
vised mode using the graph Laplacian. We first calculate the 
affinity matrix G by estimating the similarity between the 
training data. Gij = 1 if χi and χj are the k nearest neighbors, 
whereas Gij = 0 otherwise. The graph Laplacian matrix 
L ∈ IRn×n is constructed according to L = D− G where D 
is a diagonal matrix with its diagonal element Dii =

∑
j Gij.

Suppose the first l images are labeled samples. If χi is 
not labeled image, yi = 0. The ground truth labels of the 
training images is y = [y1, y2, . . . , yl, 0, . . . , 0]

T ∈ {0, 1}n×1

. In semi-supervised learning, l ≪ n, that is only a small 
mount of training data are labeled. Following [26], we 
define f = [f1, f2, . . . , fn]

T ∈ IRn×1 as the predicted label 
vector of training data. A large value of fi indicates a higher 
possibility that χi is positive example. We propose our 
objective function as:

where Tr(.) is the trace operator. S ∈ IRn×n denotes a diag-
onal matrix. If χi is a labeled image Sii = ∞ and Sii = 1 
otherwise. Tr((f − y)TS(f − y)) ensures that f  is consistent 

(3)
ω = G ×1 U1 ×2 U2 · · · ×M UM

= [[G;U1,U2, . . . ,UM ]]

(4)

min
G,U1,...,UM ,b

n∑

i=1

(�χi, [[G;U1,U2, . . . ,UM ]]� − yi + b)2

+ ��[[G;U1,U2, . . . ,UM ]]�2F .

(5)

min
f ,Uk |

M
k=1

,b

Tr((f )TLf )+ Tr((f − y)TS(f − y))

+ �

n∑

i=1

(�χi, [[G;U1,U2, . . . ,UM ]]� − fi + b)2

+ β�[[G;U1,U2, . . . ,UM ]]�2F
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with the known part of y, and Tr((f )TLf ) makes f  be 
smooth on the graph Laplacian.

2.2 � Optimizing the objective function

We present our solution for obtaining the image tensor clas-
sifier. The objective function in Eq. (5) is not jointly convex 
for all items of ω after Tucker decomposition. In order to 
solve the problem, we follow a alternating optimization 
algorithm, where at each iteration, the convex optimiza-
tion problem with respect to one item of the parameters is 
solved, while all the other parameters are kept fixed.

To obtain Uk, the tensor ω, G and χi should be unfolded 
along the k-order, namely ω → Wk ,G → Gk and χ i → Xk

i

. The matrix representation along k-order of Eq. (3) can be 
written as:

So the Eq. (5) can be rewritten as:

Substituting Wk in Eq. (7) with Eq. (6), and fixing 
Ul|

M
l=1,l �=k ,Gk, f, it becomes:

We set X̃kT
i = GkŨ

T
k X

k
i

T
 and Dk = GkŨ

T
k ŨkG

T
k , then Eq. 

(8) is rewritten as:

We define D̃k =

[
Dk ⊗ Idk×dk 0

0 1

]
, Tr(UkX̃

kT

i
) =

[vec(Uk)
T
b][vec(X̃k

i
)T 1]T = V

T

k
X̂i. In definition, vec(.) 

is the vectorization operation and ⊗ is matrix Kronecker 
product. Then, Eq. (9) can be rewritten as:

(6)

Wk = UkGk(UM ⊗ · · · ⊗ Uk+1 ⊗ Uk−1 ⊗ · · ·U1)T

= UkGkŨ
T
k .

(7)

min
f ,Wk ,b

Tr((f )TLf )+ Tr((f − y)TS(f − y))

+ �

n∑

i=1

(
Tr
(
WkX

k
i

T
)
− fi + b

)2
+ β�Wk�

2
F .

(8)

min
Uk ,b

Tr((f )TLf )+ Tr((f − y)TS(f − y))

× �

n∑

i=1

(
Tr

(
UkGkŨ

T
k X

k
i

T
)
− fi + b

)2

+ βTr

(
UkGkŨ

T
k ŨkG

T
k U

T
k

)
.

(9)

min
Uk ,b

Tr((f )TLf )+ Tr((f − y)TS(f − y))

+ �

n∑

i=1

(
Tr

(
UkX̃

kT
i

)
− fi + b

)2
+ βTr

(
UkDkU

T
k

)
.

(10)

min
Vk

Tr((f )TLf )+ Tr((f − y)TS(f − y))

+ �

n∑

i=1

(
VT
k X̂i − fi

)2
+ βTr

(
VT
k D̃kVk

)
.

By letting X̂ = [X̂1, X̂2, . . . , X̂n], Eq. (10) is rewritten as:

Thus, the optimization problem for Uk , b in Eq. (8) is 
formulated as a ridge regression problem with respect to 
Vk. Setting the derivative of Eq. (11) w.r.t. Vk to 0, we 
have:

Denoting Gk = (�XXT + βD̃)−1, we get:

Substituting Vk in Eq. (11) with Eq. (13), we obtain:

Setting the derivative of Eq. (14) w.r.t. f  to 0, we have:

where Ik ∈ IRn×n is an identity matrix. Denoting 
Ek = (L + S − �

2XTGT
k X + �Ik)

−1, we have:

After obtaining the closed form solution of 
{U1,U2, . . . ,UM}, because the core tensor G can be 
unfolded along arbitrary order, we solve for G along the 1th 
order, namely G1. Firstly, we define vec(W1) = U⊗vec(G1) 
where U⊗ = UM ⊗ · · · ⊗ U1. According to Eq. (5), we can 
solve for G1 by

Similarly, we denote Xi = [(U⊗vec(X
k
i ))

T 1], g1 =

[(vec(G1))
T
b], D =

[
UT
⊗U⊗ 0

0 1

]
 and X = [X1,X2, . . . ,Xn].  

Eq. (17) can be represented as ridge regression problem 
about g1, as follows:

Setting the derivative of Eq. (18) w.r.t. g1 to 0, it becomes:

(11)

min
Vk

Tr

(
VT
k (�XX

T + βD̃)Vk

)
− 2�Tr

(
VT
k Xf

T
)

+ Tr(fL(f )T + (f − yr)S(f − yr)T + �(f )T f )).

(12)

2(�XXT + βD̃)Vk − 2�Xf
T = 0

⇒ Vk = �(�XXT + βD̃)−1
Xf

T
.

(13)Vk = �GkXf
rT
.

(14)

min
f

Tr(fL(f )T )+ Tr((f − y)S(f − y)T )

− �
2
Tr(fXTGT

k Xf
T )+ �Tr((f )T f )).

(15)

2fL + 2(f − y)S − 2�
2fXTGT

k X + 2�f = 0

⇒ f = yS
(
L + S − �

2XTGT
k X + �Ik

)−1

(16)f = ySEk .

(17)

min
G1,b,f

Tr((f )TLf )+ Tr((f − y)TS(f − y))

+ �

n∑

i=1

(
vec(G1)

TUT
⊗vec(X

k
i )− fi + b

)2

+ βvec(G1)
TUT

⊗U⊗vec(G1).

(18)

min
g1,f

Tr

(
gT1

(
X X

T
+ βD

)
g1

)
− 2�Tr

(
gT1Xf

T
)

+ �Tr((f )TLf + (f − y)TS(f − y)+ �(f )T f )).
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Denoting Q = (�XX
T
+ βD)−1, we get:

Substituting g1 in Eq. (18) with Eq. (10), we obtain:

Setting the derivative of Eq. (14) w.r.t. f  to 0, we have:

Denoting P = (L + S − �
2X

T
QTX + �Ik)

−1, we have:

The optimization of {G;U1,U2, . . . ,UM , b} is iterated until 
convergence. The detailed iteration process is given in 
Algorithm 1.

Once the U1,U2, . . . ,UM ,G, b for c classes are obtained, 
we can easily get c groups of classification parameters 
{Ur

1,U
r
2, . . . ,U

r
M ,Gr , br}

∣∣c
r=1. Then we propose Algorithm 

2 to predict the labels of the testing image tensor.

(19)

2

(
�XX

T
+ βD

)
g1 − 2�Xf T = 0 ⇒ g1 = �

(
�XX

T
+ βD

)−1

Xf T .

(20)g1 = �QXf T .

(21)

min
f

Tr(fL(f )T )+ Tr((f − y)S(f − y)T )

− �
2
Tr

(
f X

T
QTXf T

)
+ �Tr((f )T f )).

(22)

2fL + 2(f − y)S − 2�
2f X

T
QTX + 2�f = 0

⇒ f = yS
(
L + S − �

2X
T
QTX + �Ik

)−1

.

(23)f = ySP.

By fixing Ul|
M
l=1,l �=k ,Gk and f , the objective function in 

Eq. (5) is converted to the problem in Eq. (11). It can be 
seen that Eq. (11) is a convex optimization problem for Vk.  
Therefore, we can obtain the global solutions for Uk by set-
ting the derivative of Eq. (11) w.r.t. Vk to zero. Based on 
the similar theory, we also prove that we can obtain the 
global solutions for G1 and f . Thus, when we alternately 
fix the values of parameters, the optimal solutions obtained 
from Algorithm 1 make the value of objective functions 
decreased and Algorithm 1 is guaranteed to be converged.

In this paper, the parameter tensor ω is decomposed as 
{U1, ..,Uk , ..,UM ,G}. The dimensions of Uk and G are d × R 

and 
M∏
k=1

R respectively. Because R is much smaller than d 

in practice, the most time consuming operation is to solve 
the ridge regression problem associated with Vk (i.e., vec-
torized form of Uk). The complexity of our algorithm is 
roughly O((d ∗ R)3).

3 � Experiments

In the experiment, we compare STuRR with several 
supervised tensor algorithms [3], namely, support Tucker 
machines (STuM) [22], higher rank support tensor regres-
sion (hrSTR), higher rank tensor ridge regression (hrTRR), 
optimal-rank support tensor regression (orSTR) and opti-
mal-rank tensor ridge regression (orTRR). STuM adopts 
Tucker decomposition to decompose parameter tensor. 
hrTRR, hrSTR, orTRR and orSTR employ CP decom-
position to realize parameter tensor decomposition. The 
purpose is to investigate if STuRR exploits the structural 
knowledge of image tensors. We also include comparison 
with the semi-supervised vector algorithms anchor graph 
regularization (AnGR) [27], cost-sensitive semi-supervised 
support vector machine (CS4VM) [28]. AnGR and CS4VM 
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have better performance on large datasets. The purpose is 
to evaluate if STuRR exploits the information in the unla-
beled data. The average accuracy over all image categories 
is chosen as the evaluation metric.

The details of experiments setting are as follows:

1.	 The pixel values of the gray and color images are 
directly used as features. Algorithm STuRR, hrSTR, 
hrTRR, orSTR, orTRR and STuM deal with image ten-
sors while other methods utilize vectors.

2.	 To fairly compare different classification algo-
rithms, we use a “grid-research” strategy from 
{10−6, 10−5, . . . , 105, 106, } to tune all the param-
eters for all the algorithms, we report the best results 
obtained from different parameters. Moreover, we fix 
the parameter k = 10, which is used in the k-nearest 
neighbors of Laplacian matrix L.

3.	 We randomly split each dataset into two subsets, one as 
the training set and the other as the testing set. To evalu-
ate the performance of image classification for the cases 
when only a few labeled data per class are available, we 
set the number of labeled data per class to 5 and randomly 
sample these labeled data from the training set. The split 
is repeated five times and we report the average results.

3.1 � Datasets

In our experiment, we have collected a diversity of six gray 
(UMIST1, YaleB2, PIE3, USPS4, binary alpha digits (BAd)5, 
and MNIST6) and three color (Flower-177, CIFAR-108 and 
STL-109) images datasets to compare different algorithms. 
Each gray image is reshaped into 16× 16 pixels and each 
color image is resized as 16× 16× 3 pixels in our experi-
ments. The brief description of image datasets is listed in 
Table 1.

For each image dataset (CIFAR-10 excepted), we ran-
domly select 10 images per class as the training set and 
the remaining images as the testing set. In CIFAR-10 data-
set, we randomly select 20 images per class as the training 
set and the remaining images as the testing set. For color 
image datasets, in order the exploit to the information of R, 
G, and B channels, we set the dimension of the core tensor 
in the third order to 3.

1  http://www.sheffield.ac.uk/eee/research/iel/research/face.
2  http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
3  http://www.ri.cmu.edu/projects/project418.html.
4  http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
5  http://algoval.essex.ac.uk/.
6  http://yann.lecun.com/exdb/mnist/.
7  http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html.
8  http://www.cs.toronto.edu/~kriz/cifar.html.
9  http://www.stanford.edu/~acoates//stl10/.

3.2 � Experimental results and discussion

In Table 2, we report the comparisons of different algorithms 
on nine datasets. For all these algorithms, the number of 
labeled data per class is set to 5. From the Table 2, we observe 
that: (1) AnGR gains the top performance for all datasets, 
which indicates that semi-supervised learning do benefit 
much from the usage of unlabeled data. (2) STuM over other 
tensor CP decomposition based algorithms. The phenomenon 
demonstrates that Tucker decomposition is much robust to 
preserve the image tensor structure. (3) STuRR consistently 
gains the best performances among all the comparing algo-
rithms. It indicates that tensor Tucker decomposition and 
semi-supervised learning both contribute to the performance. 
The STuRR gains around performance improvement 1.4, 1.5, 
3.7, 5.7, 11.6, 4.1, 2.2, 9.9 and 12.8 % over these algorithms 
for each dataset, respectively. These results demonstrate the 
proposed STuRR obtain better performance for the cases 
when only a few labeled data are available.

To further investigate the effectiveness of proposed 
STuRR when a small amount of labeled data are available. 
We compare the performance of STuM, AnGR and STuRR 
when the numbers of labeled data per class are different. 
The result are plotted in Fig. 2. Figure 2 shows that the per-
formance of STuRR is generally better than that of STuM 
and AnGR for all the number of labeled data per class. As 
the number of labeled data per class are small (compared to 
the sizes of nine datasets, see Table 1), the results in Fig. 2 
further validates the effectiveness of STuRR in big datasets 
when small labeled data are available.

3.3 � Parameter sensitivity and convergence

The dimension of core tensor is set to 4 for gray and color 
image datasets, respectively. Each decomposed core tensor 
of the gray and color images is 4× 4 and 4× 4× 3 tensor. 
We tune the two parameters � and β of STuRR for each data-
set. The parameter tuning results are shown in Fig. 3. The 
best performance on nine datasets was obtained when when 

Table 1   Dataset description

Dataset Size # of classes # of image orders

UMIST 564 20 2D face image

YaleB 2,414 38

PIE 41,368 68

USPS 9,298 10 2D handwritten image

BAd 1,404 36

MNIST 60,000 10

Flower-17 1,360 17 3D object image

STL-10 13,000 10

CIFAR-10 60,000 10

http://www.sheffield.ac.uk/eee/research/iel/research/face
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://www.ri.cmu.edu/projects/project418.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://algoval.essex.ac.uk/
http://yann.lecun.com/exdb/mnist/
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.stanford.edu/~acoates//stl10/
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Table 2   Classification results of different datasets

The best results are highlighted in bold

Datasets hrSTR (%) hrTRR (%) orSTR (%) orTRR (%) CS4VM (%) STuM (%) AnGR (%) STuRR (%)

UMIST 86.26 85.27 85.65 84.69 86.52 86.87 86.94 88.19

YaleB 62.01 63.14 62.69 63.44 64.44 64.53 65.92 66.91

PIE 68.22 68.23 66.38 67.33 68.23 68.19 68.36 70.92

USPS 70.67 53.34 68.92 68.64 70.92 71.15 71.10 75.25

BAd 46.98 40.18 35.94 37.07 48.85 49.64 49.45 55.41

MNIST 59.21 55.63 60.02 62.31 62.58 63.00 62.99 65.60

Flower-17 23.36 20.25 21.09 21.18 25.71 26.55 25.21 27.14

STL-10 19.84 17.82 19.24 18.56 19.34 18.41 19.29 21.82

CIFAR-10 19.27 15.61 17.34 18.47 21.28 21.01 20.77 24.00
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Fig. 2   Classification results of STuM, AnGR, and STuRR when the numbers of labeled data per class are different, respectively. a UMIST,  
b YaleB, c PIE, d USPS, e BAd, f MNIST, g Flower-17, h STL-10 and i CIFAR-10
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{� = 0.0001,β = 100}, {� = 0.0001,β = 10}, {� = 0.0001,

β = 10}, {� = 0.0001,β = 10,000}, {� = 0.0001,β = 0.1},

{� = 0.0001,β = 1,000}, {� = 0.001,β = 10,000}, {� =

0.001,β = 1,000}, {� = 0.001,β = 10,000} respectively. 
According to [17], the dimension of core tensor is equal to 
or less than initial tensor. In the following, we fix the value 
of � and β to be the values with which the best performance 
is obtained and tune the dimension of core tensor R from 1 
to 20. In Fig. 4, we plot the classification accuracy against 
dimension of core tensor for all the datasets. In this paper, 
the initial tensor images are 16× 16 and 16× 16× 3 for 
gray images and color images, respectively. The dimension 

of initial tensor d is 16. It is clear that the performances are 
almost stable when R > 4, especially for R > d. The best 
classification accuracy rate is achieved when R < d. It 
indicates that the choice of a smaller dimension core ten-
sor lead to dimension reduction tailored to the classification 
problem and if the R is properly chosen, the most signifi-
cant principal components will be retained.

Moreover, we study the convergence of the proposed 
STuRR in Algorithm 1. Figure 5 shows the convergence 
curves of our STuRR algorithm according to the objec-
tive function value in Eq. (5) on all the datasets. The fig-
ure shows that the objective function value monotonically 
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Fig. 3   Parameter sensitivity. a UMIST, b YaleB, c PIE, d USPS, e BAd, f MNIST, g Flower-17, h STL-10 and i CIFAR-10
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decreases until converged by applying the proposed algo-
rithm. It can be seen that our algorithm converges within 
a few iterations. For example, it takes no more than 10 
iterations for UMIST, YaleB, PIE, USPS BAd, MNIST, and 
STL-10 and no more than 20 iterations for Flower-17 and 
CIFAR-10.

4 � Conclusions

Representing images with tensors is better in preserving 
the spatial correlation. In this work, we addressed the gray 
and color images classification problem within the tensor 
classification framework, which is realized by learning 

parameter tensor for image tensors. Our method is a semi-
supervised algorithm which uses both labeled and unla-
beled data. An efficient alternative optimization algorithm 
has also been proposed to solve our objective function. 
Our method processes the image tensors directly to cap-
ture the spatial correlation and achieves good results when 
using few labeled training samples, which is cost-saving. 
In order to exploit the structure information of image ten-
sor, the parameter tensor are obtained using the Tucker 
tensor decomposition. By using Tucker tensor decom-
position, we can adjust the dimension of core tensor for 
the optimal solution, resulting in improved performance. 
Experiments on different image datasets were further con-
ducted to evaluate the efficacy of our method. The results 
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Fig. 4   Dimension of core tensor R versus classification accuracy for all the datasets. a UMIST, b YaleB, c PIE, d USPS, e BAd, f MNIST,  
g Flower-17, h STL-10 and i CIFAR-10
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are encouraging and have demonstrated that our method is 
especially competitive when only few labeled training data 
are available.
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Fig. 5   Convergence curves of the objective function value in Eq. (5) 
using Algorithm 1. The figure show that the objective function value 
monotonically decreases until converged by applying the proposed 

algorithm. a UMIST, b YaleB, c PIE, d USPS, e BAd, f MNIST, g 
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