
REGULAR PAPER

Rule-based approach to recognizing human body poses
and gestures in real time

Tomasz Hachaj • Marek R. Ogiela

Received: 4 February 2013 / Accepted: 9 August 2013 / Published online: 3 September 2013

� The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract In this paper we propose a classifier capable of

recognizing human body static poses and body gestures in

real time. The method is called the gesture description

language (GDL). The proposed methodology is intuitive,

easily thought and reusable for any kind of body gestures.

The very heart of our approach is an automated reasoning

module. It performs forward chaining reasoning (like a

classic expert system) with its inference engine every time

new portion of data arrives from the feature extraction

library. All rules of the knowledge base are organized in

GDL scripts having the form of text files that are parsed

with a LALR-1 grammar. The main novelty of this paper is

a complete description of our GDL script language, its

validation on a large dataset (1,600 recorded movement

sequences) and the presentation of its possible application.

The recognition rate for examined gestures is within the

range of 80.5–98.5 %. We have also implemented an

application that uses our method: it is a three-dimensional

desktop for visualizing 3D medical datasets that is con-

trolled by gestures recognized by the GDL module.

Keywords Gesture recognition �
Action recognition � Rule-based approach �

Natural user interfaces � Time series analysis �
Syntactic approach � Gesture description language

1 Introduction

Nearly all contemporary home and mobile computers are

equipped with build-in cameras and video capture multi-

media devices. Because of that, there is a heavy demand for

applications that utilize these sensors. One possible field of

application is natural user interfaces (NI). The NI is a

concept of human-device interaction based on human

senses, mostly focused on hearing and vision. In the case of

video data, NI allows user to interact with a computer by

giving gesture- and pose-based commands. To recognize

and interpret these instructions, proper classification

methods have to be applied. The basic approach to gesture

recognition is to formulate this problem as a time varying

signals analysis. There are many approaches to complete

this task. The choice of the optimal method depends on

time sequence features we are dealing with.

The common approach to gesture recognition is a sta-

tistic/probability-based approach. The strategy for hand

posture classification from [1] involves the training of the

random forest with a set of hand data. For each posture,

authors collected 10,000 frames of data in several orien-

tations and distances from the camera, resulting in a total of

30,000 frames. For each posture, they randomly sample a

proportion of frames for training, and the rest are used for

testing. The random forests classifier is also used in [2] to

map local segment features to their corresponding predic-

tion histograms. Paper [3] describes GestureLab, a tool

designed for building domain-specific gesture recognizers,

and its integration with Cider, a grammar engine that uses

GestureLab recognizers and parses visual languages.

Communicated by B. Prabhakaran.

T. Hachaj (&)

Institute of Computer Science and Computer Methods,

Pedagogical University of Krakow, 2 Podchorazych Ave,

30-084 Kraków, Poland

e-mail: tomekhachaj@o2.pl

M. R. Ogiela

AGH University of Science and Technology,

30 Mickiewicza Ave, 30-059 Kraków, Poland

e-mail: mogiela@agh.edu.pl

123

Multimedia Systems (2014) 20:81–99

DOI 10.1007/s00530-013-0332-2

Recognizers created with GestureLab perform probabilistic

lexical recognition with disambiguation occurring during

the parsing based on contextual syntactic information. In

[4], linear discriminant analysis is used for posture classi-

fication. Paper [5] presents the experimental results for

Gaussian process dynamical model against a database of 66

hand gestures from the Malaysian sign language. Further-

more, the Gaussian process dynamical model is tested

against the established hidden Markov model for a com-

parative evaluation. In [6], observed users’ actions are

modeled as a set of weighted dynamic systems associated

with different model variables. Time-delay embeddings are

used in a time series resulting from the evolution of model

variables over time to reconstruct phase portraits of

appropriate dimensions. Proposed distances are used to

compare trajectories within the reconstructed phase por-

traits. These distances are used to train support vector

machine models for action recognition. In paper [7], the

authors describe a system for recognizing various human

actions from compressed video based on motion history

information. The notion of quantifying the motion

involved, through the so-called motion flow history (MFH),

is introduced. The encoded motion information, readily

available in the compressed MPEG stream, is used to

construct the coarse motion history image (MHI) and the

corresponding MFH. The features extracted from the static

MHI and MFH briefly characterize the spatio-temporal and

motion vector information of the action. The extracted

features are used to train the KNN, neural network, SVM

and Bayes classifiers to recognize a set of seven human

actions. Paper [8] proposes a novel activity recognition

approach in which the authors decompose an activity into

multiple interactive stochastic processes, each corre-

sponding to one scale of motion details. For modeling the

interactive processes, they present a hierarchical dura-

tional-state dynamic Bayesian network.

Gestures might also be recognized using a neural net-

work and fuzzy sets. The system [9] uses fuzzy neural

networks to transform the preprocessed data of the

detected hand into a fuzzy hand-posture feature model.

Based on this model, the developed system determines the

actual hand posture by applying fuzzy inference. Finally,

the system recognizes the hand gesture of the user from

the sequence of detected hand postures. Moreover, com-

puter vision techniques are developed to recognize

dynamic hand gestures and make interpretations in the

form of commands or actions. In [10], a fuzzy glove

provides a linguistic description of the current hand

posture given by nine linguistic variables. Each linguistic

variable takes values that are fuzzy subsets of a lexical

set. From this linguistic description, it must be evaluated

if the current posture is one of the hand postures to be

recognized.

An alternative approach was proposed in the full body

interaction framework (FUBI) which is a framework for

recognizing full body gestures and postures in real time

from the data of an OpenNI-applicable depth sensor,

especially the Microsoft Kinect sensor [11, 12]. FUBI

recognizes four categories of posture and gestures: static

postures, gestures with linear movement, a combination of

postures and linear movement and complex gestures. The

fourth type of gestures is recognized using $1 recognizer

algorithm which is a geometric template matcher [13]. In

[14], to recognize actions, the authors also make use of the

fact that each gesture requires a player to move his/her

hand between an origin and a destination, along a given

trajectory connecting any two given areas within the sen-

sible area. The idea behind the proposed algorithm is to

track the extreme point of each hand, while verifying that

this point starts its motion from the origin of a given action,

completes it in compliance with the destination, and tra-

verses a set of checkpoints set along the chosen trajectory.

This scheme can be applied to trajectories of either a linear

or a circular shape.

The semantic approach to gesture recognition has a long

tradition. Paper [15] presents a structured approach to

studying patterns of a multimodal language in the context

of a 2D-display control. It describes a systematic analysis

of gestures from observable kinematical primitives to their

semantics as pertinent to a linguistic structure. The pro-

posed semantic classification of co-verbal gestures distin-

guishes six categories based on their spatio-temporal

deixis. Papers [16] and [17] propose a two-level approach

to solve the problem of the real-time vision-based hand

gesture classification. The lower level of this approach

implements the posture recognition with Haar-like features

and the AdaBoost learning algorithm. With this algorithm,

real-time performance and high recognition accuracy can

be obtained. The higher level implements the linguistic

hand gesture recognition using a context-free grammar-

based syntactic analysis. Given an input gesture, based on

the extracted postures, composite gestures can be parsed

and recognized with a set of primitives and production

rules. In [18], the authors propose a vision-based system for

automatically interpreting a limited set of dynamic hand

gestures. This involves extracting the temporal signature of

the hand motion from the performed gesture. The concept

of motion energy is used to estimate the dominant motion

from an image sequence. To achieve the desired result, the

concept of modeling the dynamic hand gesture using a

finite state machine is utilized. The temporal signature is

subsequently analyzed by the finite state machine to auto-

matically interpret the performed gesture.

Nowadays, multimedia NI controllers can be purchased

at a relatively low cost and we can clearly see a growing

number of scientific publications about, and industry

82 T. Hachaj, M. R. Ogiela

123

applications of this technology. The natural user interfaces

have many commercial applications—not only in games or

entertainment. One of the most promising domains is the

realm of medical treatment and rehabilitation. Paper [19]

reports using open-source software libraries and image

processing techniques which implement a hand tracking

and gesture recognition system based on the Kinect device

that enables a surgeon to successfully, touchlessly navigate

within an image in the intraoperative setting through a

personal computer. In [20], a validation of the Microsoft

Kinect for the assessment of postural control was tested.

These findings suggest that the Microsoft Kinect sensor can

validly assess kinematic strategies of postural control.

Study [21] assessed the possibility of rehabilitating two

young adults with motor impairments using a Kinect-based

system in a public school setting. Data showed that the two

participants significantly increased their motivation for

physical rehabilitation, thus improving exercise perfor-

mance during the intervention phases.

All approaches utilizing fully aromatized techniques of

gestures classification either require very large training and

validation sets (consisting of dozens or hundreds of cases)

or have to be manually tuned, which might be very unin-

tuitive even for a skilled system user. What is more, it is

impossible to add any new gesture to be recognized with-

out additional intensive training of the classifier. These

three factors might significantly limit the potential appli-

cation of these solutions in real-life development to insti-

tutions that are able to assemble very large pattern datasets.

On the other hand, body gesture interpretation is totally

natural to every person and—in our opinion—in many

cases there is no need to employ a complex mathematical

and statistical approach for the correct recognition. In fact,

our research presented in this paper proves that it is pos-

sible to unambiguously recognize, in real time (online

recognition), a set of static poses and body gestures (even

those that have many common parts in trajectories) using

forward chaining reasoning schema when sets of gestures

are described with an ‘‘if-like’’ set of rules with the ability

to detect time sequences.

We focus our efforts on developing an approach called a

gesture description language (GDL) which is intuitive,

easily considered and reusable for any kind of body ges-

tures. The GDL was preliminarily described in our previ-

ous works [22, 23]. However, our earlier publications

showed only the basic concept of this approach, without a

detailed description of the methodology, without the vali-

dation and possible applications.

The main novelty of this paper is a complete description

of our GDL language in the form of a LALR-1 grammar,

its validation on a large dataset and the presentation of a

possible application. We have implemented and tested our

approach on a set of 1,600 user recordings and obtained

very promising results—the recognition rate ranged from

80.5 to 98.5 %. What should be emphasized is that all

errors were caused by the inaccuracy of the user tracking

and segmentation algorithm (third party software) or by the

low frame rate of recording. We did not exclude any

recordings with aberrations of the user posture recognition

because methods of that kind have to be verified in a real—

not a ‘sterile laboratory’ environment. We have also

implemented an application that uses our method—a three-

dimensional desktop for volumetric medical dataset visu-

alization which is controlled by gestures recognized by our

approach.

2 Materials and methods

In this section, we have described third party software and

libraries that we use to generate the test data for our new

method. Later on, we introduce our novel classifier.

2.1 The body position features

In our research, we used the Microsoft Kinect sensor as the

device for capturing and tracking human body movements.

The body feature points that were utilized in our researches

were the so-called skeleton joints. The segmentation of the

human body from depth images and the skeleton tracking

has been solved and reported in many papers [24–27]

before. The joint video/depth rate allocation has also been

researched [28]. In our solution, we have utilized the Prime

Sensor NITE 1.3 Algorithms which track 15 body joints as

presented in Fig. 1.

Body joints are segmented from a depth image produced

by a multimedia sensor. Each joint has three coordinates

that describe its position in the right-handed coordinate

Fig. 1 Body joint positions detected by NITE 1.3 Algorithms

Rule-based approach to recognizing human body poses and gestures in real time 83

123

system (note that left and right side in Fig. 1 are mirrored).

The origin of this coordinate system is situated in the lens

of the sensor’s depth camera. After detecting the skeleton

joints, NITE tracks those features in real time, and this is

crucial for the subsequent gesture recognition.

2.2 Our semantics in a rule-based approach

with the GDL

Our approach is based on assumption that (nearly) every

person has broad experience in how real-life (natural)

gestures are performed by a typical person. Every indi-

vidual gains this experience subconsciously through years

of observation. Our goal was to propose an intuitive way

of writing down these observations as a set of rules in a

formal way (with some computer language scripts) and to

generate a reasoning module that allows these scripts to

be interpreted online (at the same speed at which the data

arrives from the multimedia sensor). The schema of our

approach is presented in Fig. 2. The input data for the

recognition algorithm are a stream of body joints that

arrives continuously from the data acquisition hardware

and third party libraries. Our approach is preliminarily

designed to use a set of body joint extracted by the NITE

library, but it can be easily adapted to utilize any other

joint set tracked by any of the previously mentioned

libraries.

The very heart of our method is an automated reasoning

module. It performs forward chaining reasoning (similar to

that of a classic expert system) with its inference engine

any time new portion of data arrives from the feature

extraction library. All rules of the knowledge base are

organized in GDL scripts which are simply text files that

are parsed with a LALR-1 grammar. The input set of body

joints and all conclusions obtained from knowledge base

are put on the top of the memory heap. In addition, each

level of the heap has it own timestamp which allows

checking how much time has passed from one data

acquisition to another. Because the conclusion of one rule

might form the premise of another one, the satisfaction of a

conclusion does not necessarily mean recognizing a

particular gesture. The interpretation of a conclusion

appearance depends on the GDL script code.

The detailed algorithm that leads from the obtained

feature points to data recognition is as follow:

1) Parse the input GDL script that consists set of rules,

generate a parsed tree.

2) Start the data capture module.

3) Repeat the below instructions until the application is

stopped:

a. If new data (a set of body feature points) arrive

from the data capture algorithm, store it on the top

of the memory heap with the current timestamp.

Each level of the memory heap contains two types

of data: a set of feature points and a set of rule

names that were satisfied for the current/previ-

ously captured feature points and the current/

previously satisfied rules. Feature points and

names of rules satisfied in previous iterations lie

on memory heap layers corresponding to a

particular previous iteration. The size of the

memory heap in our implementation is 150 layers

(5 s of data capture at the frequency of 30 Hz).

We did not find a ‘‘deeper’’ heap useful, but

because data stored in the heap are not memory

consuming, the heap might be implemented as

‘‘virtually unlimited in depth’’.

b. Check if values of those new points satisfy any

one rule in the memory heap whose name is not

present in the top level of the memory heap. The

GDL script may also consider feature points from

previous captures; for example torso.x[0] is the

actual x-coordinate of the torso joint while

torso.x[2] is the x-coordinate of the same joint

but captured two iterations before—two levels

below from the top position of the memory heap

(see Examples 1, 2). Rule truth might also depend

on the current (see Examples 3–5) and previously

satisfied rules (see Example 6).

c. If any rule is satisfied, add its name to the top of

the memory heap at same layer at which the last

Fig. 2 The schema of the GDL

approach. The input data for the

recognition algorithm are a

stream of body features that

arrives continuously from the

data acquisition hardware, more

details in text

84 T. Hachaj, M. R. Ogiela

123

captured feature points were stored (top level of

heap). As each level of the heap has its timestamp,

it is possible to check if some rule was satisfied no

earlier than a given period of time ago. It is simply

done by searching the memory heap starting from

the top (and then descending) until the rule name

is found in some heap level or you get to before

the given time period. Thanks to this mechanism,

it is possible to check if the particular sequence of

body joint positions (represented by rule names)

appeared in the given time period. The sequence

of body positions defines the gesture that we want

to recognize (see Example 6).

d. If the name of the rule was added to memory heap

in step ‘c’ of the algorithm, go to step ‘b’. If no

new rule name was added, return to step ‘3’ and

wait for new data to arrive.

In the next paragraph we present GDL scripts examples

with commentaries that clarify most of possible syntax

constructions and the algorithm’s flow.

2.3 GDL script specification

In this section we will formally define the GDL

script language that is used to create the knowledge

base for the inferring engine. In GDL, the letter

case does not matter. The GDL script is a set

of rules. Each rule might have an unlimited number

of premises that are connected by conjunction or

alternative operators. In GDL, premises are called log-

ical rules. A logical rule can take two values: true or

false. Apart from logical rules, the GDL script also

contains numeric rules (3D numeric rules) which are

simply some mathematical operations that return float-

ing-point values (or floating three-dimensional points).

A numeric rule might become a logical rule after it is

combined with another numeric rule by a relational

operator. The brackets in logical and numeric (3D)

rules are used to change the order in which instructions

are executed.

Another very important part of our approach consists in

predefined variables (‘‘Appendix 1’’, terminal symbols

‘‘Body parts’’) that return the value of body joint coordinates.

It is possible to take not only the current position of a joint but

also any previous position found in the memory heap. This is

done by supplying a predefined variable name with a mem-

ory heap index (0 is the top of the heap, 1 is one level below

the top, etc.). There is also a set of functions, which returns

either numerical or logical values. For example, the fol-

lowing function checks if the Euclidean distance between the

current position of the torso (x, y and z coordinate) and the

previous position stored one heap level below is greater than

10 mm. If so, the rule is satisfied and the conclusion ‘Mov-

ing’ is added to the memory heap at the level 0. This means

that the GDL recognized the movement of the observed user.

Example 1:

Figure 3 shows how motion can be mapped with a

parsed rule from Example 1

The same rule might be rewritten as:

Example 2:

The more complex rule which detects the so-called ‘‘PSI

pose’’ (see Fig. 5, second image from the right in the first

row) is presented below:

Example 3:

The first rule checks if the right elbow and the right hand are

situated to the right of the torso, if the right hand is above the

right elbow and if the vertical coordinates of the right hand and

the right elbow are no more than 50 mm different. The last part

of the rule is the premise that checks if the horizontal coordi-

nates of the right shoulder and the right elbow are no more than

50 mm different. The second rule is similar to first one, but it

describes the left arm, shoulder and elbow. The last rule checks

if both previous rules are satisfied. This is done by checking the

logical conjunction of both previous conclusions.

The above approach works fine when the user is

standing perpendicular to the camera plane facing the

camera, however, it is possible to redefine the set of rules to

make the right prediction when the camera is at an angle.

To do so, the GDL script introduces the ability to compute

Rule-based approach to recognizing human body poses and gestures in real time 85

123

the angle between two given vectors in a three-dimensional

space using the angle() function (see Example 4). The

function takes two parameters that are vectors coordinates

and computes the angle between them within the range

½0; 180� according to the well-known formula:

\a; b ¼ arccos
a � b

aj j � b
�
�
�
�

 !

where a; b are vectors, � is a dot product and jj is a

vector’s length. Using this approach, we can rewrite the

‘‘PSI pose’’ formula to be independent from the rotation of

the camera position around the y-axis (up axis).

Example 4:

Fig. 3 A simple example of how motion can be mapped with the

parsed rule from Example 1. New data (a set of body feature points)

arrive from the data capture algorithm and are stored at the top of the

memory heap with the current timestamp. The inference engine

checks if the rule ‘Moving’ is satisfied—this requires taking the

torso.xyz position from the current and one previous memory heap

level. If the Euclidean distance between these positions is greater than

10 mm, then the rule is satisfied and its name is put at the top level

layer of the memory heap. If more than one rule is present in the GDL

script, the inference engine checks if other rules are now satisfied.

Rules that were previously not satisfied might be satisfied now if they

are dependent on the presence of ‘Moving’ at the top of the memory

heap (forward chaining reasoning)

Fig. 4 Different sizes and proportions of detected skeletons build of

body joints of the first ten participants in the experiment

86 T. Hachaj, M. R. Ogiela

123

The first rule checks if the angle between the vector

defined by the neck and the right shoulder and the vector

defined by the right elbow and the right shoulder is greater

than 160� (both vectors are nearly parallel). The second

rule checks if the vector defined by the right elbow and the

right shoulder and the vector defined by the right elbow and

the right hand are perpendicular. This rule also checks if

the right hand is above the elbow. The second rule is

similar to first but it applies to the left hand. The last rule is

true if both previous rules are satisfied. If the conclusion

PsiInsensitive is true, this means that the gesture was

classified.

The remaining GDL scripts introduced in this work are

also insensitive to the y-axis rotation. If the camera up-

vector rotates around the x- or (and) y-axis and the angles

of rotation are known, it is easy to use the linear trans-

formation to recalculate the coordinates of observed points

to the Cartesian frame, in which the camera up-vector is

perpendicular to the ground plane. For this reason, we did

not consider any rotation other than y-axis rotation in the

proposed descriptions.

The Example 5 resolves Example’s 4 angle issue

between the subject position and the camera. Instead of

checking if both left and right hands are above elbows

GDL script examines if distance between right hand and

head is smaller than distance between right hand and right

hip (similarly for left hand and left hip). If it is true we

know that from two possible hands orientation that satisfies

previous conditions hands are above (not below) elbows.

Example 5:

The last very important ability of GDL scripts to check

the presence of particular sequences of body joints that

appeared in a constrained time range. A gesture is defined

in GDL as a series of static poses (so-called key frames)

appearing one after another within given time constraints.

The example below checks if the tracked user is clapping

his/her hands:

Example 6:

The first rule checks if the distance between hands is

shorter then 10 cm, the second rule checks if it is greater than

10 cm. The last rule checks if the following sequence is

present in the memory heap: the HandsSeparate pose has to

be found in the heap no earlier than half a second ago, then the

time between the HandsSeparate and HandsTogether

(HandsTogether had to appear before HandsSeparate) poses

cannot exceed half a second and the time between Hands-

Together and the second appearance of HandsSeparate can-

not exceed half a second. It can be seen that the sequence of

gestures is described from the one that should appear most

recently to the one that should have happened at the beginning

of the sequence. That is because the sequence describes the

order of conclusions on the memory heap starting from the

top and going to lower layers. The sequenceexists function

returns the true logical value if all conditions are satisfied and

the false value if any of the conditions in the time sequence is

not satisfied. If the conclusion Clapping appears in the

memory heap, this means that the gesture was identified.

The complete specification of GDL scripts is presented

in ‘‘Appendix 1’’. We do not describe all possible con-

tractions, operators and functions here because their names

and roles are similar to typical instructions from other

programming languages (like JAVA, C?? or C#).

3 The experiment and results

In this section we will describe the experiment we have

carried out to validate the performance of our rule-based

classifier.

3.1 Experiment setup

To validate our approach we collected a test set. The set

consisted of a recording of ten people (eight men and two

women) who made four types of gestures (clapping, raising

both hands up simultaneously—‘‘Not me’’, waving with both

hands over the head—‘‘Jester’’ and waving with the right

hand) and another five men and five women who made another

Rule-based approach to recognizing human body poses and gestures in real time 87

123

four types of gestures (touching the head with the left hand—

‘‘Head’’, touching hips with both hands—‘‘Hips’’, rotating the

right hand clockwise—‘‘Rot’’ and rotating the right hand anti-

clockwise—‘‘Rot anti’’). Each person made each gesture 20

times, which means the whole database contains 1,600

recordings. All experiment participants where adults of dif-

ferent ages, postures (body proportions) and fitness levels (the

test set consisted of both active athletes—for example a karate

trainer—and persons who declare they had not done any

physical exercise from a long time).

The random error of the depth measurement by our

recording hardware (Kinect) increases along with the

increasing distance from the sensor, and ranges from a few

millimeters up to about 4 cm at the maximum range of the

sensor [29, 30]. This error affects the NITE joint segmenta-

tion algorithm, causing the constant body point distance to

fluctuate over time. Because of the presence of this random

error, we did not consider adding other noise to the recorded

dataset. Because our approach is time-dependent, any delay

in recognition by a time exceeding rule constraints or any

errors in motion transitions will disturb the final recognition.

To check how much these time constraints affect the final

results, the recording was made at two speeds: a low frame

rate acquisition speed (7–13 fps for 6 persons in the test set)

and a high frame rate acquisition speed (19–21 fps for 14

persons in the test set). There was no single, particular dis-

tance between the persons and the video sensor; the only

requirement was that the body parts above knees had to be

captured by the device. Individuals taking part in the exper-

iment declared that they had no previous experience with this

kind of technology. Figure 4 presents one sample frame of the

first ten participants of the experiment. The figure shows

different sizes and proportions of detected skeletons build of

body joints. The difference in size is the result of no restric-

tion policy concerning the distance between the sensor and

the individual that was recorded. In addition, in seven cases

the NITE algorithm failed to detect the users’ feet.

The participants were asked to make the following

gestures (see Fig. 5):

– Clapping;

– ‘‘Not me’’ gesture: raising both hands simultaneously

above the head;

– ‘‘Jester’’ gesture: waving with both hands above the

head. Both hands have to be crossed when they arrive

above the head (see Fig. 6, frames 10, 11, 12). The

complete example ‘‘Jester’’ sequence recorded for one

experiment participant is shown in Fig. 6.

– Waving with the right hand;

– ‘‘Head’’ gesture: touching the head with the left hand;

– ‘‘Hips’’: touching hips with both hands simultaneously;

– ‘‘Rotation anticlockwise’’ (‘‘Rot-anti’’): rotating the

right hand in the anti-clockwise direction;

– ‘‘Rotation clockwise’’ (‘‘Rot’’): rotating the right hand

in the clockwise direction.

Key frames of these gestures are presented in Fig. 5.

These particular gestures have been chosen because:

– Some movements have similar joint trajectories (for

example the middle part of the Jester could be

recognized as Clapping, also the Waving could be a

part of Jester—see ‘‘Appendix 2’’ for explanations)

Fig. 5 ‘Key frames’ for the GDL script of gestures. The right side of the body in the image represents the left side of the recorded participant’s body

88 T. Hachaj, M. R. Ogiela

123

which makes it more difficult to recognize them

unambiguously.

– All gestures are based on arm movements, which make

the gestures easier to make for test participants, as a

result of which they may be more relaxed and make the

gestures naturally. We have observed that this relaxa-

tion makes the people start performing these gestures in

harmony with their body language and the details of

recordings differ much between participants.

The gestures from the validation set may be divided into two

groups: those that can be described with one key frame (static

gestures—Hands on hips and Hand on head) and those that

need more than one key frame (Clapping, Not me, Jester,

Waving, Rotation clockwise, Rotation anti-clockwise). The

architecture of the GDL script for the first group of gestures is

very simple—they require only one GDL rule (the key frame)

to be recognized. The gestures subject to the second rule

require a number of key frames (each has to be represented by a

GDL rule) and a number of rules that define the sequence of

key frames over time. Because the construction methodology

of the GDL script is quite similar for the considered gestures,

we will discuss only three selected ones (Not me, Jester and

Rotation clockwise) in detail. The remaining GDL scripts used

for recognizing the validation set will be presented with a short

commentary in ‘‘Appendix 2’’.

The GDL script we use for recognizing the ‘‘Not me’’

gesture (see Fig. 5, first row, second from the left) is pre-

sented below:

The GDL script description of this gesture is very

straightforward. It consists of two rules that describe the

key frames (with conclusions handsDown and handsUp)

and one rule that checks if the proper sequence of those

frames is present in the heap (with the conclusion Not-

Me)—at first the hands should be down along the body,

than the hands are raised above the body. If the NotMe

conclusion appears in the memory heap, this means that the

gesture was recognized.

The GDL script we use for recognizing the ‘‘Jester’’

gesture (see Fig. 5, middle row, first from the left) is pre-

sented below:

The ‘‘Jester’’ gesture is represented by three key

frames and two sequences. The first key frame is

described by the rule that checks if hands are crossed

Fig. 6 An example ‘‘Jester’’ sequence recorded for one of the

experiment participants

Rule-based approach to recognizing human body poses and gestures in real time 89

123

over the head (this is the middle frame from Fig. 5 in

the jester sequence)—its conclusion is HandsReverse.

The second key frame is represented by a rule which is

satisfied if both hands are at the same vertical height

spread above the head to the sides (jester1). The last key

frame checks if hands are above head, arms are bent at

elbows and HandsReverse is satisfied. The first sequence

in the rule with the conclusion jester11 checks if con-

clusions of rules jester2, jester1 and jester2 are present

in the memory heap in the above order within a given

time limit. This means that the observed user first spread

their hands, that crossed them above their head and then

spread them again. The second rule with sequenceexists

functions (with the conclusion jester22) verifies whether

the observed user first crossed their hands, then spread

them, and then crossed them again above their head. The

last rule recognizes the Jester gesture if any of previous

sequences was detected.

The recognition of the circular trajectory, for example

rotating the right hand clockwise, can be obtained by

separating the gesture into at least four key frames (see

Fig. 5, bottom row, second from the left).

The above script introduces four ‘helper’ rules: the first

which checks whether the shoulder muscle is expanding

(with the conclusion AnglGoesRight), the second which

checks if the shoulder muscle is contracting (with the

conclusion AnglGoesLeft), the third that checks whether the

hand is moving up (HandGoesUp) and the last that checks if

the hand is going down (HandGoesDown). The clockwise

rotation is the sequence of the following conditions (com-

pare with Fig. 5, bottom row, second from left):

– Shoulder muscle is expanding while the hand is going

up over the shoulder;

– Then the shoulder muscle is expanding while the hand

is moving down;

– Then the shoulder muscle is contracting while the hand

is going down;

– And finally the shoulder muscle is contracting while the

hand is moving up.

After the last rule, if the previous ones were satisfied, the

hand might be in a similar position as in the beginning after

making a full clockwise circle (the condition Rotation-

Clockwise is added to the memory heap).

3.2 Validation

The results of the validation process on the dataset

described in the previous chapter are presented in Tables 1,

2, 3, 4, 5 and 6. The recognition was made with GDL

scripts from the previous section and from ‘‘Appendix 2’’.

We did not exclude any inaccuracy caused by the tracking

software from video sequences. The common problem was

that the tracking of body joints was lost when one body part

90 T. Hachaj, M. R. Ogiela

123

was covered by another (e.g., while the hands were crossed

during the ‘‘Jester’’) or that the distance between joints was

measured inaccurately when one body part was touching

another (for example during hand clapping). What is more,

even if the tracked target is not moving, the position of the

joints may change in time (the inaccuracy of the measuring

hardware). Of course, all these phenomena are unavoidable

while working with any hardware/software architecture and

they should be filtered by recognition system.

Each row in the table refers to a particular gesture. Each

column gives the classification result. The number in the field

shows how many recordings were recognized as the given

class. As we can easily see, if a value shows up in the diag-

onal of the table, this means that the recognition was correct.

If it is not in the diagonal field, either the gesture was rec-

ognized as another class or was not recognized at all.

Tables 1, 3 and 5 sum up the total number of recognitions.

Tables 2, 4 and 6 present the average number of recogni-

tions (as a percentage of classifications to a given class) plus/

minus the standard deviation. Tables 1 and 2 are for data

captured at the speed of between 7 and 13 fps, Tables 3 and 4

for data captured at between 19 and 21 fps. Results in

Tables 5 and 6 are calculated for the union of these two sets.

The sums of values in table rows might be greater than

100 % (or the overall count of recordings). That is because

a single gesture in the recording might be recognized as

multiple gestures which match a GDL description. For

example, in three instances the ‘‘Not me’’ gestures were

simultaneously recognized as the ‘‘Not me’’ and ‘‘Clap-

ping’’ gestures (see Table 1). GDL has the ability to detect

and classify many techniques described by the GDL script

rule in one recording. If a technique was correctly classi-

fied but an additional behavior—actually not present—was

also classified, this case was called an excessive

misclassification. All of them are marked by brackets in

Tables 1, 3 and 5.

Figure 7 is a plot that compares results from Tables 2, 4

and 6.

4 Discussion

The results from the previous chapter allow us to discuss

the efficacy of the classifier and propose a practical

application for it.

4.1 Results and discussion

As can be clearly seen, the data acquisition speed strongly

impacts the classification efficacy. For the considered

gestures, the recognition rate in the high-speed video was

between 1 % and nearly 20 % higher than in the low-speed

video. In addition, the higher standard deviation in low-

speed results (higher than in high-speed samples) shows

that the classifier is more stable when frames are captured

at the speed of 20 fps. The only remarkable exception is

the clockwise rotation of the right hand, where the recog-

nition rate in slow-speed samples was 92.5 ± 5.3 %, while

that in high-speed samples was 77.5 ± 2.3 %. This result

was caused by two participants in the low-speed sample

who were performing their gestures very precisely and

carefully. What is interesting is that they had more diffi-

culties with the anti-clockwise rotation than participants

from the high-speed dataset. What is very important is

that—according to our observations—all errors were

caused by inaccuracies of the tracking software. Even

though all participants were making the gestures as we

expected them to, the key frames didnot appear in the

Table 1 Validating the proposed approach (the recording speed was between 7 and 13 fps)

Actual condition Recognition result

Clapping ‘‘Not me’’ ‘‘Jester’’ Waving Head Hips Rotation

anticlockwise

Rotation

clockwise

No

recognition

Clapping 63 0 0 0 2 0 0 0 15

‘‘Not me’’ 4 (3) 67 0 3 5 0 0 0 4

‘‘Jester’’ 2 0 73 0 0 0 0 0 5

Waving 0 0 0 66 0 0 0 0 14

Head 0 0 0 0 40 0 0 0 0

Hips 0 0 0 0 0 31 0 0 9

Rotation anticlockwise 0 1 0 0 0 0 29 0 10

Rotation clockwise 0 0 0 2 (2) 0 0 0 37 3

Values in table fields are the total numbers of cases from a dataset that were classified to a given class. The recording speed was between 7 and

13 fps

Rule-based approach to recognizing human body poses and gestures in real time 91

123

memory stack. Situations like these are, of course,

unavoidable. However, the overall results of our classifier

are satisfactory (Tables 5, 6). The recognition rate for all

the gestures ranged from 80.5 to 98.5 %. This allows

multimedia applications that use our methodology to sup-

port the user in a convenient way. We also suppose that if

the user gets familiar with this kind of NI and learns how to

use it, the recognition error for a skilled operator may drop

even below the measured values.

Our approach has some limitations. It is difficult to use

the GDL script to properly describe a gesture that

requires some mathematical formulas (like the collinear-

ity) to be checked. That is a direct result of the nature of

the GDL script description that takes into account some

key frames of gestures but not the whole trajectory. On

the other hand, that is also one of the biggest advantages

of our approach, because it makes the recognition highly

resistant to body joint tracking noises which are a very

important problem. Our approach also enables the algo-

rithm to perform at very low new-data arrival frequencies

(13 fps and less) without losing much recognition accu-

racy. GDL also eliminates the problem of body propor-

tions between users. Of course, if the key point of the

gesture is not registered by the tracking algorithm, the

gesture cannot be classified. This situation is obvious in

the case of recognizing clapping: at low registration fre-

quencies, the recognition ratio falls to 78.8 ± 5.4 %,

while at 20 fps it amounts to 97.5 ± 0.7 %.

The number of excessive misclassification cases is 14

for 1,600 recordings in total (0.88 %). Because the number

of these errors is below 1 %, we omitted this phenomenon

from data analysis. What is more, the ability to recognize

multiple gestures in one recording is a major advantage of

the GDL script, but in this particular experiment we did not

want to recognize one gesture as a part of another. What is

important is that we have proven with our research that

with properly constructed GDL script rules, the excessive

misclassification error will not disturb the recognition

results significantly.

When there are multiple similar gestures the effective-

ness of recognition is based on the way the rule is written.

Overlapping rules introduce a new challenge and handling

them could result in the recognition slowing down to the

rate of the longest gesture. A hierarchical structure for

rules could be explored to resolve the overlapping gesture

issue, instead of a list of rules structure adopted presently.

As far as the actor being parallel to the camera axis and

perpendicular to the camera plane, the problem introduced

is not only the realignment of the skeleton to a standard

translation and rotation invariant co-ordinate system but

also the recognition of the skeleton itself, due to the large

amount of self-occlusion the skeleton returned would be

highly erroneous.T
a

b
le

2
V

al
id

at
in

g
th

e
p

ro
p

o
se

d
ap

p
ro

ac
h

(t
h

e
re

co
rd

in
g

sp
ee

d
w

as
b

et
w

ee
n

7
an

d
1

3
fp

s)

A
ct

u
al

co
n

d
it

io
n

R
ec

o
g

n
it

io
n

re
su

lt

C
la

p
p

in
g

‘‘
N

o
t

m
e’

’
‘‘

Je
st

er
’’

W
av

in
g

H
ea

d
H

ip
s

R
o

t-
an

ti
R

o
t

N
o

re
co

g
n

it
io

n

C
la

p
p

in
g

7
8

.8
±

5
.4

%
0

0
0

2
.5

%
0

0
0

1
8

.8
±

5
.5

%

‘‘
N

o
t

m
e’

’
5

.0
%

8
3

.8
±

3
.3

%
0

3
.8

±
0

.9
%

6
.3

±
2

.7
%

0
0

0
5

.0
%

‘‘
Je

st
er

’’
2

.5
%

0
9

1
.3

±
1

.2
%

0
0

0
0

0
6

.3
±

1
.4

%

W
av

in
g

0
0

0
8

2
.5

±
8

.8
%

0
0

0
0

1
7

.5
%

H
ea

d
0

0
0

0
1

0
0

.0
%

0
0

0
0

H
ip

s
0

0
0

0
0

.0
0

%
7

7
.5

±
1

.8
%

0
0

2
2

.5
±

1
.8

%

R
o

ta
ti

o
n

an
ti

cl
o

ck
w

is
e

0
2

.5
%

0
0

0
0

7
2

.5
±

5
.3

%
0

2
5

.0
±

3
.5

%

R
o

ta
ti

o
n

cl
o

ck
w

is
e

0
0

0
5

.0
%

0
0

0
9

2
.5

±
5

.3
%

7
.5

%

V
al

u
es

in
th

e
ta

b
le

re
p

re
se

n
t

th
e

p
er

ce
n

ta
g

e
o

f
a

g
iv

en
d

at
as

et
th

at
w

as
cl

as
si

fi
ed

to
g

iv
en

cl
as

s
(a

cc
u

ra
cy

)
±

S
D

.
T

h
e

re
co

rd
in

g
sp

ee
d

w
as

b
et

w
ee

n
7

an
d

1
3

fp
s

92 T. Hachaj, M. R. Ogiela

123

Table 4 Validating the proposed approach (the recording speed was between 19 and 21 fps)

Actual condition Recognition result

Clapping ‘‘Not

me’’

‘‘Jester’’ Waving Head Hips Rot-anti Rot No

recognition

Clapping 97.5 ± 0.7 % 0 0 0 0 0 0 0 2.5 ± 0.6 %

‘‘Not me’’ 0 100.0 % 0 0 0 0 0 0 0

‘‘Jester’’ 4.2 ± 0.7 % 0 92.5 ± 1.9 % 0 0 0 0 0 3.3 ± 0.7 %

Waving 0 0 0 100.0 % 0 0 4.2.0 ± 2.7 % 0.8 ± % 0

Head 0 0 0 0 98.1 ± 0.7 % 0 0 0 1.9 ± %

Hips 0 0 0 0 0 100.0 % 0 0 0

Rotation

anticlockwise

0 0 0 2.5 % 0 0 91.3 ± 2.1 % 0 7.5 ± 2.1 %

Rotation

clockwise

0.6 % 0 0 1.3 % 0 0 0 77.5 ± 2.3 % 21.3 ± 1.9 %

Values in the table represent the percentage of the given dataset that was classified to a given class (accuracy) ±SD. The recording speed was between 19

and 21 fps

Table 3 Validating the proposed approach (the recording speed was between 19 and 21 fps)

Actual condition Recognition result

Clapping ‘‘Not me’’ ‘‘Jester’’ Waving Head Hips Rotation

anticlockwise

Rotation

clockwise

No

recognition

Clapping 117 0 0 0 0 0 0 0 3

‘‘Not me’’ 0 120 0 0 0 0 0 0 0

‘‘Jester’’ 5 0 111 0 0 0 0 0 4

Waving 0 0 0 120 0 0 5 (5) 1 (1) 0

Head 0 0 0 0 157 0 0 0 3

Hips 0 0 0 0 0 160 0 0 0

Rotation anticlockwise 0 0 0 4 (2) 0 0 146 0 12

Rotation clockwise 1 0 0 2 (1) 0 0 0 124 34

Values in table fields are the total numbers of cases from the dataset that were classified to a given class. The recording speed was between 19

and 21 fps

Table 5 Validating the proposed approach (the data comes from both low and high-speed datasets)

Actual condition Clapping ‘‘Not

me’’

‘‘Jester’’ Waving Head Hips Rotation

anticlockwise

Rotation

clockwise

No

recognition

Clapping 180 0 0 0 2 0 0 0 18

‘‘Not me’’ 4 (3) 187 0 3 5 0 0 0 4

‘‘Jester’’ 7 0 184 0 0 0 0 0 9

Waving 0 0 0 186 0 0 5 (5) 1 (1) 14

Head 0 0 0 0 197 0 0 0 3

Hips 0 0 0 0 0 191 0 0 9

Rotation

anticlockwise

0 1 0 4 (2) 0 0 175 0 22

Rotation clockwise 1 0 0 4 (3) 0 0 0 161 37

Values in table fields are the total numbers of cases from the dataset that were classified to given class. The data come from both low and high-

speed datasets

Rule-based approach to recognizing human body poses and gestures in real time 93

123

4.2 Practical application

After proving that our approach is serviceable, we devel-

oped a prototype application that uses a Kinect-based NI

with GDL. This application is a three-dimensional desktop

that makes it possible to display 3D data acquired by

computed tomography (CT). The visualization module is

based on our previous work and its detailed computer

graphics capabilities have been described elsewhere [31].

The images obtained during tests of the virtual 3D medical

desktop prototype are shown in Fig. 8. With this three-

dimensional desktop, the user can simultaneously display a

number of 3D CT reconstructions (the quantity of data is

limited by the size of the graphics processing unit memory)

and interact with all of them in real time. The right hand of

the user is used for controlling the visualizations. He or she

can perform a translation of the volumes (sending all to the

back of the desktop, sending them to the front to show

details, as in the top right image in Fig. 8), rotate them or

control the position of a clipping plane. The last func-

tionality is to change the transfer function (the prototype

has three predefined functions: the first shows bones and

the vascular system—top left and right pictures in Fig. 8;

the second adds extra, less dense tissues to the visualization

with a high transparency—the bottom left image in Fig. 8;

and the third reconstructs the skin of examined patient—

the bottom right picture in Fig. 8). To switch between the

translation/rotation/clipping mode, the user makes some

predefined gestures with their right hand. These gestures

are recognized by GDL.

5 Conclusion

Our approach has proven to be reliable tool for recognizing

human body static poses and body gestures. In our

approach, static poses—the so-called key frames—form

components of dynamic gestures. The recognition rate for

all of the tested gestures ranges from 80.5 to 98.5 %. This

allows multimedia applications that use our methodology to

support the user in a convenient way. We also suppose that

if a user becomes familiar with this kind of an NI and learns

how to use it, errors in the recognition of a skilled operator

may even drop below the measured values. In the future, we

are planning to add some functionalities to overcome the

current limitations of GDL. The first functionality is the

simple ability to recognize movement primitives that

requires analyzing the trajectory of joints in a 3D space (like

the collinearity of position of particular joints in time). This

can be done by adding special functions that would check

whether such a condition is present in the memory heap and

return the correct logical value to the GDL script rule. The

second idea we have come up with is the reverseT
a

b
le

6
V

al
id

at
in

g
th

e
p

ro
p

o
se

d
ap

p
ro

ac
h

(t
h

e
d

at
a

co
m

es
fr

o
m

b
o

th
lo

w
an

d
h

ig
h

-s
p

ee
d

d
at

as
et

s)

A
ct

u
al

co
n

d
it

io
n

R
ec

o
g

n
it

io
n

re
su

lt

C
la

p
p

in
g

‘‘
N

o
t

m
e’

’
‘‘

Je
st

er
’’

W
av

in
g

H
ea

d
H

ip
s

R
o

t-
an

ti
R

o
t

N
o

re
co

g
n

it
io

n

C
la

p
p

in
g

9
0

.0
±

1
.6

%
0

0
0

1
.0

%
0

0
0

9
.0

±
1

.8
%

‘‘
N

o
t

m
e’

’
2

.0
%

9
3

.5
±

1
.1

%
0

.0
%

1
.5

±
0

.4
%

2
.5

±
1

.1
%

0
0

0
2

.0
%

‘‘
Je

st
er

’’
3

.5
±

0
.3

%
0

9
2

.0
±

0
.6

%
0

0
0

0
0

4
.5

±
0

.4
%

W
av

in
g

0
0

0
9

3
.0

±
2

.2
%

0
0

2
.5

±
1

.1
%

0
.5

%
7

.0
%

H
ea

d
0

0
0

0
9

8
.5

±
0

.5
%

0
0

0
1

.5
%

H
ip

s
0

0
0

0
0

.0
%

9
5

.5
±

1
.0

%
0

0
4

.5
±

0
.4

%

R
o

ta
ti

o
n

an
ti

cl
o

ck
w

is
e

0
0

.5
%

0
2

.0
%

0
.0

%
0

.0
%

8
7

.5
±

1
.7

%
0

1
1

.0
±

1
.4

%

R
o

ta
ti

o
n

cl
o

ck
w

is
e

0
.5

%
0

0
2

.0
%

0
.0

%
0

.0
%

0
8

0
.5

±
1

.8
%

1
8

.5
±

1
.5

%

V
al

u
es

in
th

e
ta

b
le

re
p

re
se

n
t

th
e

p
er

ce
n

ta
g

e
o

f
th

e
g

iv
en

d
at

as
et

th
at

w
as

cl
as

si
fi

ed
to

a
g

iv
en

cl
as

s
(a

cc
u

ra
cy

)
±

S
D

.
T

h
e

d
at

a
co

m
e

fr
o

m
b

o
th

lo
w

an
d

h
ig

h
-s

p
ee

d
d

at
as

et
s

94 T. Hachaj, M. R. Ogiela

123

engineering approach. This means developing the ability to

generate a GDL description from recorded videos. Such a

tool might be very helpful when analyzing the nature of a

movement and its characteristic features.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Fig. 8 Pictures taken during tests of a virtual 3D medical desktop prototype. Detailed description in text

C
la

pp
in

g

N
ot

m
e

Je
st

er

W
av

in
g

H
ea

d

H
ip

s

R
ot

-a
nt

i

R
ot

7 - 13 fps

19 - 21 fps
7-21 fps

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Accuracy

Gesture name

7 - 13 fps

19 - 21 fps

7- 21 fps

Acquisition speed

Fig. 7 A plot comparing results

from Tables 2, 4 and 6

Rule-based approach to recognizing human body poses and gestures in real time 95

123

Appendix 1: GDL script specification

GDL is a LALR-1 grammar:

GDL ¼ fVN ;VT ; SP; STSg ð1Þ

Nonterminal symbols, or just nonterminals, are the

symbols which can be replaced; thus there are strings

composed of some combination of terminal and

nonterminal symbols.

VN ¼ NumericRule;NumericRule3D; LogicalRule;Rule;f
GDLScript; Sequenceg ð2Þ:

Terminal symbols are literal characters that can appear

in the inputs to or outputs from the production rules of a

formal grammar and that cannot be broken down into

‘‘smaller’’ units.

VT ¼ fLogicalOperator;NumericOperator;

RelationalOperator;OpenBracket;ClosedBracket;

OpenSquareBracket;ClosedSquareBracket;

LogicalFunction;NumericFunction;

SequentialFunction;NumericFunction3D;

NumericOperator3D;RuleSymbol; ThenSymbol;

Sequence;BodyPart;BodyPart3D;

Conclusion;Numeric;Comma;Quotation;

Exclamationg ð3Þ

The start symbol of the grammar is:

STS ¼ GDLScript

All productions that exist in the GDL script are listed in

Table 7.

Terminal symbol definition for tokenizer (the terminal

symbols scanner):

Table 7 Productions of GDL

No. Production

1 GDLScript! Rule

2 Rule! Rule Rule

3 Rule! RuleSymbol LogicalRule ThenSymbol Conclusion

4 NumericRule! Numeric

5 LogicalRule! Conclusion

6 NumericRule! NumericOperatorð00�00Þ Numeric Rule

7 Numeric3DRule! NumericOperator3Dð00�00Þ Numeric 3DRule

8 NumericRule! NumericRule NumericOperator NumericRule

9 Numeric3DRule! Numeric3DRule NumericOperator3D Numeric3DRule

10 NumericRule! OpenBracket NumericRule ClosedBracket

11 Numeric3DRule! OpenBracket Numeric3DRule ClosedBracket

12 NumericRule! NumericFunction NumericRule ClosedBracket

13 NumericRule! BodyPart NumericRule ClosedSquareBracket

14 Numeric3DRule! BodyPart3D NumericRule ClosedSquareBracket

15 NumericRule! NumericFunction3D NumericRule3D ClosedBracket

16 Numeric3DRule! OpenSquareBracket NumericRule Comma

NumericRule Comma NumericRule ClosedSquareBracket

17 LogicalRule! NumericRule RelationalOperator NumericRule

18 LogicalRule! LogicalRule LogicalOperator LogicalRule

19 LogicalRule! OpenBracket LogicalRule ClosedBracket

20 LogicalRule! LogicalFunction LogicalRule ClosedBracket

21 LogicalRule! SequentialFunction Sequence ClosedBracket

22 Sequence! Quotation SequencePart Quotation

23 SequencePart ! SequencePart SequencePart

24 SequencePart ! OpenSquareBracket Conclusion Comma Numeric ClosedSquareBracket

25 SequencePart ! OpenSquareBracket Exclamation Conclusion Comma Numeric ClosedSquareBracket

96 T. Hachaj, M. R. Ogiela

123

NumericOperator ¼ fþ;�; �; =;%;^g
NumericOperator3D ¼ fþ;�g
RelationalOperator ¼ f\; [;¼;\ ¼; [¼; ! ¼g
LogicalOperator ¼ f&; jg
LogicalFunction ¼ fnotðg
NumericFunction ¼ fabsð; sqrtðg
SequentialFunction ¼ fsequenceexistsðg
NumericFunction3D ¼ fdistanceð; angleðg

Body parts ¼ f Head, Neck, LeftShoulder,

RightShoulder, Torso, LeftElbow,

LeftHand, RightElbow, RightHand,

LeftHip, RightHip, LeftKnee, RightKnee,

LeftFoot, RightFootg þ f :xj:yj:zg þ f½g

Body parts ¼ f Head, Neck, LeftShoulder,

RightShoulder, Torso, LeftElbow,

LeftHand, RightElbow, RightHand,

LeftHip, RightHip, LeftKnee, RightKnee,

LeftFoot, RightFootg þ f :xyz[g

RuleSymbol ¼ fRuleg
ThenSymbol ¼ fTheng
OpenBracket ¼ fðg
ClosedBracket ¼ fÞg
OpenSquareBracket ¼ f½g
ClosedSquareBracket ¼ f�g
Comma ¼ f; g

Quotation ¼ f00g

Exclamation ¼ f!g
Numeric ¼ fnumberjnumber1:number2j:numberg

Conclusion: any string after ThenSymbol is a

conclusion. Any unrecognized string is hypothetically a

conclusion. Because rules might appear in any order (the

previous declaration of a Conclusion after ThenSymbol is

not required), at the end of the parsing, the parser checks if

all unrecognized strings appear after ThenSymbol. If not,

the GDL script contains an error.

The GDL Script also allows one line and multi-line

commentaries:

//One line commentary

/*

Multi line

Commentary

*/

Appendix 2: GDL scripts for the remaining gestures

from the validation set

Note: While performing the Jester gesture, the user is

simultaneously waving the left and right hands, so as a

matter of fact the Waving gesture is a subset of the ‘‘Jester’’

gesture. To exclude the possibility of an ambiguous rec-

ognition, in our GDL script, the memory heap must not

contain the HandsReverse conclusion for the Waving

gesture in the previous 4 s. Our observations showed that a

person making the ‘‘Not me’’ gesture may ‘accidently

wave’, so we excluded the RightHandUnderHeap conclu-

sion. Also, a wide clapping may be confused with waving,

and therefore the HandsToClose conclusion was excluded.

Rule-based approach to recognizing human body poses and gestures in real time 97

123

Note: Clapping checks if two hands come together and

separate within the given time period. When hands are

close to each other, the tracking software might segment

joints incorrectly—the hand joints might be crossed as in

the Jester gesture. Because of that the HandsReverse key

frame of the Jester gesture was excluded.

Note: This simple rule checks if the hand is touching the

head. Because people might have heads of different sizes,

the diameter of the head is estimated as the distance

between the joints representing the head and the neck. The

hand is very close to the head in the ‘‘Jester’’ gesture, so to

exclude the false recognition of the HandOnHead during

the Jester, the HandsReverse position must not appear in

the last 4 s.

The distance between head and neck joints showed to be

good estimator of the overall user size and we used it again

in the next rule.

Note: This simple rule checks if hands are on hips.

People might have different body proportion so size of hips

is estimated to be proportional to the distance between

joints that represents head and neck.

Note: This GDL script is very similar to the clockwise

rotation but the key frames occur in a different order in the

sequences.

References

1. Vinayak, Murugappan, S., Liu, H.R., Ramani, K.: Shape-it-up:

hand gesture based creative expression of 3D shapes using

intelligent generalized cylinders. Comput. Aided Des. 45,

277–287 (2013)

2. Zhu, F., Shao, L., Lin, M.: Multi-view action recognition using

local similarity random forests and sensor fusion. Pattern Recogn.

Lett. 34, 20–24 (2013)

3. Bickerstaffe, A., Lane, A., Meyer, B., Marriott, K.: Developing

Domain-Specific Gesture Recognizers for Smart Diagram Envi-

ronments, Graphics Recognition. Recent Advances and New

Opportunities, pp. 145–156. Springer-Verlag, Berlin (2008)

4. Ray, S.J., Teizer, J.: Real-time construction worker posture

analysis for ergonomics training. Adv. Eng. Inform. 26, 439–455

(2012)

5. Gamage, N., Kuang, Y.C., Akmeliawati, R., Demidenko, S.:

Gaussian process dynamical models for hand gesture interpretation

in sign language. Pattern Recogn. Lett. 32, 2009–2014 (2011)

6. López-Méndez, A., Casas, J.R.: Model-based recognition of

human actions by trajectory matching in phase spaces. Image Vis.

Comput. 30, 808–816 (2012)

7. Venkatesh Babu, R., Ramakrishnan, K.R.: Recognition of human

actions using motion history information extracted from the

compressed video. Image Vis. Comput. 22, 597–607 (2004)

98 T. Hachaj, M. R. Ogiela

123

8. Du, Y., Chen, F., Xu, W., Zhang, W.: Activity recognition

through multi-scale motion detail analysis. Neurocomputing 71,

3561–3574 (2008)

9. Elakkiya, R., Selvamai, K., Velumadhava Rao, R., Kannan, A.:

Fuzzy hand gesture recognition based human computer interface

intelligent system. UACEE Int. J. Adv. Comput. Netw. Secur.

2(1), 29–33 (2012)

10. Allevard, T., Benoit, E., Foulloy, L.: Fuzzy glove for gesture

recognition. In: Proceedings of the 17th IMEKO world congress,

pp. 2026–2031, Dubrovnik, June 2003

11. Augsburg University: Full body interaction framework. http://

hcm-lab.de/fubi.html (2011)

12. Kistler, F., Endrass, B., Damian, I., Dang, C.T., André, E.: Nat-

ural interaction with culturally adaptive virtual characters.

J. Multimodal User Interfaces 6(1–2), 39–47 (2012)

13. Wobbrock, J.O., Wilson, A.D., Li, Y.: Gestures without libraries,

toolkits or training: a $1 recognizer for user interface prototypes,

Proceeding UIST ‘07. In: Proceedings of the 20th Annual ACM

Symposium on User Interface Software and Technology,

pp. 159–168. ACM, New York, 2007

14. Roccetti, M., Marfia, G., Semeraro, A.: Playing into the wild: a

gesture-based interface for gaming in public spaces. J. Vis.

Commun. Image R. 23, 426–440 (2012)

15. Kettebekov, S., Sharma, R.: Toward natural gesture/speech con-

trol of a large display, EHCI ‘01. In: Proceedings of the 8th IFIP

International Conference on Engineering for Human-Computer

Interaction, pp. 221–234. Springer-Verlag, London 2001

16. Chen, Q., Georganas, N.D., Petriu, E.M.: Real-time vision-based

hand gesture recognition using Haar-like features. In: Instru-

mentation and Measurement Technology Conference Proceed-

ings, pp. 1–6. IMTC 2007

17. Arulkarthick, V.J., Sangeetha, D., Umamaheswari, S.: Sign lan-

guage recognition using K-means clustered Haar-like features

and a stochastic context free grammar. Eur. J. Sci. Res. 78(1),

74–84 (2012). (ISSN 1450-216X)

18. Yeasin, M., Chaudhuri, S.: Visual understanding of dynamic hand

gestures. Pattern Recogn. 33, 1805–1817 (2000)

19. Ruppert, G.C., Reis, L.O., Amorim, P.H., de Moraes, T.F., da

Silva, J.V.: Touchless gesture user interface for interactive image

visualization in urological surgery. World J. Urol. 30(5), 687–691

(2012). doi:10.1007/s00345-012-0879-0

20. Clark, R.A., Pua, Y.-H., Fortin, K., Ritchie, C., Webster, K.E.,

Denehy, L., Bryant, A.L.: Validity of the Microsoft Kinect for

assessment of postural control. Gait Posture 36, 372–377 (2012)

21. Chang, Y.-J., Chen, S.-F., Huang, J.-D.: A Kinect-based system

for physical rehabilitation: a pilot study for young adults with

motor disabilities. Res. Dev. Disabil. 32, 2566–2570 (2011)

22. Hachaj, T., Ogiela, M.R.: Recognition of human body poses and

gesture sequences with gesture description language. J. Med.

Inform. Technol. 20, 129–135 (2012). (ISSN 1642-6037)

23. Hachaj, T., Ogiela, M.R.: Semantic description and recognition of

human body poses and movement sequences with gesture

description language. In: Computer applications for bio-technol-

ogy, multimedia, and ubiquitous city. Communications in com-

puter and information science, vol. 353, pp 1–8 (2012)

24. Schwarz, L.A., Mkhitaryan, A., Mateus, D., Navab, N.: Human

skeleton tracking from depth data using geodesic distances and

optical flow. Image Vis. Comput. 30(3), 217–226 (2012)

25. Shotton, F., et al.: Real-time human pose recognition in parts

from single depth images, CVPR, p. 3 (2011)

26. Prime SensorTM NITE 1.3 Algorithms notes, version 1.0,

PrimeSense Inc. http://pr.cs.cornell.edu/humanactivities/data/

NITE.pdf (2010)

27. Zhang, Q., Song, X., Shao, X., Shibasaki, R., Zhao, H.: Unsu-

pervised skeleton extraction and motion capture from 3D

deformable matching. Neurocomputing 100, 170–182 (2013)

28. Liu, Y., Huang, Q., Ma, S., Zhao, D., Gao, W.: Joint video/depth

rate allocation for 3D video coding based on view synthesis

distortion model. Signal Process. Image Commun. 24(8),

666–681 (2009)

29. Khoshelham, K.: Accuracy analysis of Kinect depth data. In:

Lichti, D.D., Habib, A.F. (eds.) ISPRS workshop laser scanning

2011. International Society for Photogrammetry and Remote

Sensing (ISPRS), Calgary, August 2011

30. Khoshelham, K., Oude Elberink, S.J.: Accuracy and resolution of

Kinect depth data for indoor mapping applications. Sens. J. Sci.

Technol. Sens. Biosens. 12(2), 1437–1454 (2012)

31. Hachaj, T., Ogiela, M.R.: Visualization of perfusion abnormali-

ties with GPU-based volume rendering. Comput. Graph. 36(3),

163–169 (2012)

Rule-based approach to recognizing human body poses and gestures in real time 99

123

http://hcm-lab.de/fubi.html
http://hcm-lab.de/fubi.html
http://dx.doi.org/10.1007/s00345-012-0879-0
http://pr.cs.cornell.edu/humanactivities/data/NITE.pdf
http://pr.cs.cornell.edu/humanactivities/data/NITE.pdf

	Rule-based approach to recognizing human body poses and gestures in real time
	Abstract
	Introduction
	Materials and methods
	The body position features
	Our semantics in a rule-based approach with the GDL
	GDL script specification

	The experiment and results
	Experiment setup
	Validation

	Discussion
	Results and discussion
	Practical application

	Conclusion
	Open Access
	Appendix 1: GDL script specification
	Appendix 2: GDL scripts for the remaining gestures from the validation set
	References

