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Abstract We present an indexing method for spatio-

temporal data: semantic sequence state graph (S3G). S3G

maintains objects with their locations as states and events

as transitions. The spatial information is maintained in

states while the semantic events result in temporal ordering

between the states. If the objects visit the same locations

repeatedly, we call such databases as recurrent databases.

Our querying interface supports queries based on spatio-

temporal logic that includes operators such as ‘next’ and

‘eventually’. The interactive querying interface enables the

user to build the query interactively and see the interme-

diate results of the query.

Keywords Indexing � Querying � Spatio-temporal

querying

1 Introduction

With the growing interest in spatio-temporal data for more

than a decade, the indexing and retrieval of spatio-temporal

data has been a challenging research area. Multimedia data

play a key role in today’s world including but not limited to

education, advertisement, entertainment, communication,

and information retrieval. Especially, videos have been the

most intriguing media since videos have multimodal fea-

tures along with spatio-temporal properties. Everyday

many videos are uploaded on websites such as You Tube

[41] and Google Video [10]. Various strategies have

focused on modeling of different aspects of videos such

as modeling fuzzy information [4] and spatio-temporal

features of the objects in a video [24, 30].

The goal of our research is to model, store, query, and

index the semantic contents of the videos. We classify

spatio-temporal querying (STQ) into two based on how

STQ can be executed:

• Split STQ This query usually targets objects that satisfy

some spatial constraints within a period of time or vice

versa. The data satisfy the spatial constraints indepen-

dent of historical data as long as the data belong to the

given time domain. A sample query is as follows:

‘‘Give a list of regions, where the ball appears between

fifth and tenth minutes’’ [19].

• Coupled STQ This query usually targets objects that

satisfy some (sequential) spatial constraints over a

period of time. Series of consecutive or nonconsecutive

constraints are part of a query. A sample query is

‘‘return videos having a Delta plane take-off right

before United plane take-off but after Continental plane

landing in Huntsville, Alabama.’’ Complex spatio-

temporal patterns (STP) [11] are an example of coupled

STQ.

Without generalization, the spatio-temporal indexing

methodologies can be divided into two: tree-based and

sequence matching. Tree-based methods require that a
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hierarchical organization of data is possible. In most cases,

this hierarchical organization is achieved with respect to

spatial properties. Tree-based approaches are effective for

split STQ. The coupled STQ with tree-based indexing can

be achieved by linking subqueries of a STQ. However,

tree-based indexing may lose its efficiency if sequence

information is queried rather than time interval due to

comparing the data for all time intervals. Sequence-

matching approaches can deal with temporal sequence

matching. However, a proper indexing methodology is

required before starting sequence matching otherwise the

number of sequence matchings may be significantly high.

A good indexing structure should address the require-

ments of the data model as well as querying. We define a

recurrent database as a database where the content or

objects of interest with corresponding actions are repeated

frequently. In other words, objects are associated with

spatial locations, and a possible event (or an action) causes

the change of these locations. If the domains of spatial

locations, events, and actions that cause the change of

locations are finite, the objects are likely to appear at the

same locations (due to some actions) in the database. The

camera is usually mounted on an almost-static platform for

capturing the environment. In this sense, almost all sports

videos are a subset of recurrent databases. Other examples

include news-anchor, distance-learning education, and

surveillance videos. Our goal in this paper is to index such

recurrent databases.

We believe that spatio-temporal content of video is

important for querying. Rather than a semantic instanta-

neous event (e.g., ‘‘missed shot’’) in a clip, we are inter-

ested in a sequence of actions and objects with their

locations. When we compare various spatio-temporal

techniques, a general assumption on the database is the

presence of a single timeline. However, it is likely that

there may be more than one timeline. For example, each

timeline maybe set for a different day. In such a case, the

ordering of timelines may not be an important factor for

STQ. The tree-based and sequence-matching methods

should adapt to the presence of multiple timelines.

Traditional indexing methods cannot achieve the goals of

semantic databases that maintain high-level information

since they are usually designed based on non-semantic

properties. Most common indexing techniques use compar-

ison operators to retrieve the requested data from the data-

base. The semantic querying can only be achieved by having

additional layer on top of traditional indexing methods.

1.1 Our approach

In this paper, we propose an indexing and search method

that directly targets coupled STQ in a recurrent database.

In order to provide an efficient storage and retrieval of

video data, a semantic modeling and retrieval system,

SMART [14, 15] was proposed. In this paper, the

SMART system is improved by providing a novel

indexing method, named as S3G: a semantic sequence

state graph. An early version of S3G was introduced in

[27]. The major difference between this indexing method

and the traditional ones is that in S3G the links between

states have semantics where states maintain the discrete

information about the spatial properties of objects. The

events correspond to the transitions in S3G graph. Since

transitions correspond to semantic events, it is possible to

perform queries based on semantic concepts following the

transitions in S3G. We should note that we are not

interested in the shapes of the objects. We are rather

interested in where and when they appear. We are inter-

ested in spatio-temporal events that can be denoted at

discrete times. We assume that a semantic event causes

the difference between two states. The spatial queries are

performed with respect to the object–location pairs.

Temporal queries based on Linear Temporal Logic are

performed by following the transitions in S3G graph.

Spatio-temporal queries use spatio-temporal logic. The

spatio-temporal queries, such as what will be the next

state (i.e., the spatial properties of objects following a

transition on a given state) and whether a particular state

eventually occurs in future after a given state has occur-

red, are implemented using S3G. Graphical viewing of the

query construction is implemented to facilitate easy

building complex queries.

The contributions of our approach can be summarized

as follows: (a) provides a compact representation of

a video database; (b) supports recurrent databases;

(c) indexes a database that has multiple sequences with

different timelines onto a single data structure; (d) links

the states with semantic events (or actions); and (e) pro-

vides an interactive querying interface where the inter-

mediate results are provided and help the user refine his

query.

This paper is organized as follows. The following sec-

tion provides the background and discusses about related

work. Section 3 describes the S3G. Section 4 explains

building S3G. The interface and querying are explained in

Sect. 5. The last section concludes the paper.

2 Background and related work

In this section we firstly describe the related work; sec-

ondly, provide background on our SMART system; and

finally, explain the spatio-temporal logic used in this

paper.
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2.1 Related work

Significant research has been performed on indexing tem-

poral and spatial databases [17, 26]. A good survey on

indexing temporal data appears in [34]. A recent survey on

spatio-temporal video retrieval is presented in [31]. STP

[11] provides indexing based on spatial locations. For each

spatial location, objects are sorted based on their identifi-

ers. If an object visits the same location, then visits of an

object are sorted based on the time they visit the location.

Lagogiannis et al. [20] improve this approach if an object

does not visit the same location again. Indexing spatio-

temporal data is mostly based on traditional database

indexing techniques such as R-trees [33] and B?-trees

[25]. One of the major problems of indexing based on these

indexing methods is the lack of necessary semantics to

build queries that require semantic information. Therefore,

semantic retrieval on top of these indexing methods can

only be implemented by an upper layer of semantic oper-

ations. This puts an additional burden on the retrieval. If

the indexing method could capture semantic properties, the

retrieval efficiency could be improved.

2.1.1 Tree-based indexing

Tree-based methods cannot be used for semantic querying

directly since tree-based methods assume that hierarchical

organization of data is possible. However, no order can be

imposed between the semantic values. The indexing strat-

egy should be able to order semantic components of the

database. The ordering between data at different time

instants is not necessarily before–after relation. The

ordering may also include the cause or event between

different time instants. Traditional temporal querying

includes storing starting and stopping time of clips and then

comparison of these starting and ending points for querying

based on Allen’s temporal logic based on intervals [1].

A survey of indexing methods for multimedia databases

that includes spatial data indexing is provided in [7]. The

most common way of indexing spatio-temporal data is

based on tree indexing. The RS-tree [28], X-tree [5], weR-

tree [6], NV-tree [23], SMILe-tree [22], Bx-tree [16], ST2B

–tree [8], TPR-tree [32], TPR*-tree [35], and 2n index tree

[39] are tree-based indexing methodologies.

2.1.1.1 R-tree-based indexing RS-tree [28] uses R-tree

for spatial properties. The non-spatial properties are

indexed with respect to R-tree using an S-tree which has

the same structure to prune the results of querying the

R-tree given non-spatial properties. X-tree [5] improves

R-trees by incorporating supernodes to deal with overlaps

in R-trees. Supernodes avoid splits in the directory that

would cause inefficient directory structure. Hence, X-tree

looks like a combination of R-tree like and linear array like

directory. Weighted R-trees (weR-trees) [6] propose

weight-balanced R-trees for dynamic manipulation of large

datasets. The weight is based on the number of values and

fan out of a node. The goal is to produce a partial

rebuilding by gradual construction of subtrees. Time-

parameterized R-tree (TPR-tree) [32] uses spatial positions

and velocities in each dimension to index data. An object

that can move in 2D space will have four parameters.

Moving points are bounded by time-parameterized rect-

angles and then indexed by R-trees. The queries are

assumed to be applied for a window of time. TPR*-tree

[35] improves TPR-tree by reducing the cost of insertions

and deletions. These methods can aim either past or future

but not both since outdated objects are deleted [35].

SMILe-tree [22] is based on K-d trees and R? trees. At the

first level, the data is organized according to the K-d tree

with corresponding dimensions at each level. For hierar-

chical organization of overlapping components, R? trees

are used to avoid overlappings.

2.1.1.2 B-tree-based indexing Bx-tree [16] is based on

B?-tree. Object locations are mapped to single-dimen-

sional values using space-filling curves. The maximum

time between two updates is partitioned into n phases. An

object with its location is mapped to the corresponding

partition of Bx-tree based on its timestamp. It allows que-

ries after the current time. Old partitions of Bx-tree are

removed by appending new partitions. Bx-tree returns false

hits as it only uses location of the objects. Bdual-tree [40]

partitions data in dual space, i.e., both location and

velocity, to reduce the number of false hits. So it uses

location and velocity to obtain the one-dimensional key.

Each internal entry of a Bdual-tree maintains a set of

moving rectangles, which leads to use of R-tree like query

algorithms. Maintaining moving rectangles leads to high

computation overload by slowing down the update opera-

tions. A self-tunable spatio-temporal B?-tree (ST2B-tree)

[8] partitions the space with respect to reference points

(similar to Voronoi diagram). Each Voronoi cell is

assigned a grid, and an object is assigned to the grid of the

closest reference point. It has two phases for time; and

different reference points are used to deal with data

diversity. It supports range queries for space only. In

multicurves [36], each curve is responsible for a subset of

the dimensions to reduce the boundary effects inside each

curve. The dimensions of data elements are split among a

number of space-filling curves. The projections of data are

mapped to curves and the one-dimensional coordinates of

data are computed and stored in a sorted list.

2.1.1.3 Other tree-based indexing STRIPES index [29]

maps 2D moving objects to 4D points using Hough-X
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transform and then stores them in a PR bucket-quad tree.

The objects are represented in a dual transformed space.

The trajectories in (d ? 1) dimensional space are mapped

to 2D dual space. STRIPES has high query cost and storage

size. Nearest-vector-tree (NV-tree) [23] projects data on a

line and segments the data and then re-projects data

recursively until each segment has enough number of data

points. NV-tree allows overlapping of boundaries to over-

come the problem of nearest-neighbor search when two

close neighbors may belong to different partitions. 2n index

tree [39] has states that include 3D positions, orientation,

and speed of objects. Objects are represented as states with

timestamps. Objects with limited number of timestamps

can be indexed by 2n index tree.

2.1.2 Sequence matching

Sequence-matching techniques try to find the closest

sequence given a proper sequence without gaps. It is also

possible that the query sequence can be partially described

with some gaps in the sequence. For example, the begin-

ning and ending of a query sequence might be provided. In

addition, some sequences might have a cyclic nature where

some parts of the sequence may be repeated several times.

However, most sequence-matching methods use proper

sequence matching without any gaps.

Embedded-based subsequence matching (EBSM) method

[3] maps a query to a sequence of vectors and then closest

vectors are searched in the database. Further exploration

for close sequences is handled by dynamic time warping

based on subsequence-matching algorithm without gaps.

Spatiotemporal sequence matching is used for video copy

detection in [18]. Two distances are obtained: spatial dis-

tance using ordinal measures of 2 9 2 partitions of the

video frames and temporal distance based on the changes

in the subsequent frames. This method targets exact match

between sequences (i.e., copy detection).

2.1.3 Representation

In [12], an activity is considered to be composed of action

threads. A single thread action is represented by a sto-

chastic finite automaton of event states. Events are repre-

sented as Bayesian networks (which are acyclic graphs)

and event constraints such as ‘‘event (or sub-event) A

should occur before event (or sub-event) B; and B should

occur before event (or sub-event) C’’ are used to identify an

event (not for retrieval). While Hongeng et al. [12] deal

with event recognition, our S3G is used to retrieve the clips

with desired state (object location values). In [38], an

extension to MPEG-7 is proposed to detect actions such as

‘‘A follows B’’. Assfalg et al. [2] propose a system that

semantically annotates the sports videos at different layers

of semantic significance. It, however, uses semantic

annotations for multimedia indexing and retrieval without

using a graphical representation of the semantic data. Lay

and Guan [21] propose the use of a grammar for video

retrieval. They use an adjacency matrix to determine the

behavior of player such as baseline player and inverted

index to retrieve clips based on object locations. They

mention about the use of operators such as ADJ (tempo-

rally adjacent), W (within as a spatial operator), and tem-

poral ordering with \ operator. However, there is no

information about the interface for providing queries or the

complexity of implementing queries using these operators

based on the proposed indexing structures.

2.2 Background on SMART

SMART [14, 15] represents semantic information as a

grammar-based string that enables spatio-temporal queries

in SQL query language. The player names in sports video,

the shots given by the players, and their score are the

examples of the semantic content of a video. This semantic

information is represented as a grammar-based string that

enables spatio-temporal queries in SQL query language.

The major semantic contents of video are considered as

objects, events, locations, and cameras in SMART.

SMART can be applied to most sports games. We use

tennis game as an example since it has an important

advantage over most sports videos: the complete view of

the game can be captured with one almost-static camera.

Three main objects, as RO = {U, V, b}, were identified.

Here, U and V represent the players, and b is the ball. Two

events, as RE = {F, B}, were identified. Here, F represents

the forehand shot and B represents the backhand shot. The

tennis court was divided into various regions as shown in

Fig. 1a: RL = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, N} where

N represents the net. Six different camera views are con-

sidered for tennis videos: A, gives a close view of the

player at locations 7 and 8 in Fig. 1a; B, gives a close view

of the player at locations 9 and 10; C, court view; D, action

replay; and R, rest time; Com, commentators. Since we

focus only actions in the game, rest time and commentators

are not included in our strings.

2.2.1 An example

Figure 1b shows initially the close view of the player1 is

captured by camera A. The play is then captured by the

court view. The player1 and player2 are at locations 8 and

9, respectively. This sequence can be represented as

{A [U] C [U8 b8 V9 b3 Bv9 b5 BU8 b4 FV10 b5] D[]}.

The player1 serves and the ball hits location 3 (Fig. 1c).

The player2 hits a backhand shot and the ball hits location

5 (Fig. 1d). Again the player1 hits a backhand shot at
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location 8 returning the ball to location 4. The player2 hits

a forehand shot at location 10 (Fig. 1e) and the play ends

with the ball going to location 5. This sequence is then

replayed by camera D.

2.2.2 Grammar for tennis game

SMART’s generic grammar was extended to incorporate

the semantics of tennis game. Figure 2 provides a grammar

for the tennis videos: video is a sequence of clips; a

sequence of clips has many clips; a clip has a camera view

and a sequence of spatiotemporal instances; a sequence of

spatiotemporal instances has a spatiotemporal instance; and

a spatiotemporal instance (spt) is represented with an

object (obj), location (loc), and an optional event.

2.3 Spatio-temporal logic (STL)

Temporal logic allows to analyze the properties of a system

with respect to time. Linear temporal logic (LTL) [37] is a

type of temporal logic, that is used to analyze a system that

is considered to be composed of a vertex-labeled path

S0; S1; . . .; Sn; where each vertex Si corresponds to a point

in time as shown by Fig. 3a. We plan to use the STL

notation provided in [9] with some modifications. Tem-

poral assertion, H, on a state diagram (or state graph) r, for

a set of scene sequences is expressed as H :¼ (r, S) :¼ h
where S is a state in the state graph, r, and h is a temporal

formula which is formed by combining spatial assertions U
with Boolean connectives such as ^, _, :, ? and temporal

operators. A state is a set of object, location pairs. The

temporal operators are global (h), next (�), eventually (e),

until (U), and releases (R) operators. The temporal formula

can be expressed as:

h :¼U hUj j � U }Uj jU1UU2jU1RU2 :Uj j
U1 _ U2jU1 ^ U2jU1 ! U2

For a given state a graph, S, these temporal operators are

briefly explained as follows:

• Global/Always This operator is denoted as ‘‘G’’ or

‘‘h’’. GU or hU, where U represents a propositional

formula, implies that the condition specified by U

Fig. 1 Locations of a tennis court and sample sequences [13]. a Tennis court segmentation. b Close view of player. c Player1 serving. d Player2

hits a backhand shot. e Player2 hits a forehand shot

<obj> ::=    U|V|b 
<event>::=    F|B 
<location> ::=   1|2|3|4|5|6|7|8|9|10|11|12|N 
<camera> ::=   <close-view camera>|C|D 
<close-view camera>::= A|B 
<spt>:: =     [<event>] <obj> <loc> 
<seq of spt> ::=   <spt>|<spt> <seq of spt> 

<clip> ::=   < close-view camera >”[“<obj>”]” | C”[“< seq of spt > “]” |D”[“”]”  
<sequence of clips> ::= <clip>| <clip> <seq of clips> 
<video> :: =   <seq of clips> 

Fig. 2 A grammar for tennis

videos

Fig. 3 Temporal operators

a a sample sequence, b globally

operator, c eventually operator,

d next operator, e until operator,

and f releases operator
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should be satisfied through the path of vertices. (S, S1)

` hU implies that U is true for all states starting from

state S1 in graph S (Fig. 3b).

• Eventually/Finally This operator is denoted as ‘‘F’’ or

‘‘e’’. FU or eU implies that the condition specified by

U should be satisfied eventually at a point of time in the

given path of vertices. (S, S1) ` eU implies that U
becomes eventually true after state S1 in graph

S (Fig. 3c).

• Next This operator is denoted as ‘‘X’’ or ‘‘�’’. XU or �U
implies that the condition specified by U should be

satisfied by the next vertex in the given path of vertices.

(S, S1) ` �U implies that U becomes true in the state

following state S1 in graph S (Fig. 3d).

• Until This operator is denoted as ‘‘U’’. wUU, where w
and U represent propositional formulae, implies that the

condition specified by w should be satisfied until a

particular vertex in the given path of vertices has U
satisfied. (S, S1) ` wUU implies that w is true until U
becomes true starting from state S1 in graph S (Fig. 3e).

• Releases This operator is denoted as ‘‘R’’. wRU implies

that the condition specified by U should be satisfied

through the path of vertices, until the first vertex in the

given path of vertices, has w satisfied. (S, S1) ` wRU
implies that U is true until w becomes true starting from

state S1 in graph S (Fig. 3f). If there is no vertex that

satisfies the condition specified by w, then the condition

specified by U will be satisfied throughout the path of

vertices.

In this research, the temporal operators ‘Next’ and

‘Eventually’ have been implemented for supporting the

spatio-temporal querying on the S3G, while ‘Global’ con-

cept is used for optimizing the indexing of S3G states built

for a tennis video database as an application.

3 S3G: a semantic sequence state graph

S3G is a graph where the events, objects, and locations are

maintained as states and transitions. S3G resembles to a

non-deterministic finite state machine. An S3G can be

defined as M = [S, R, d, s0, F] where S is a set of internal

states, R is a finite input alphabet, s0 is the initial state, F is

a set of external states, and d is a transition function

mapping S 9 R to S [ F. An internal state s (s ( S) is a

set of object–location pairs. An internal state is a subset of

cross product of objects spatial locations (S ( RO 9 RL).

An external state f ( F corresponds to a decision in a

sequence of events. The alphabet (R) is a subset of the

cross product of the object–event pairs (R ( RO 9 RE). It

should be noted that not all objects are associated with an

event. S3G is cyclic in nature. Each of its nodes represents

a state giving the locations of the objects involved in the

video. Each node has also a list of clips displaying the

corresponding state.

3.1 Components

The components of SMART grammar have events, objects,

locations and camera view as the alphabet. The most

important part in building an S3G is the identification of

transition function and the states.

3.1.1 States

A state is identified by objects and their corresponding

locations. In addition to object–location pairs, states also

maintain pointers for quick retrieval of objects. For each

state, there is a list of clip pointers to retrieve the cor-

responding clips having that state. The maximum number

of states for a video is determined by
Qj
P

O
j

i¼1 ðj
P

L jÞ ¼
j
P

L j
j
P

O
j
.

3.1.2 Transitions

The transitions are determined by the semantic events. In

our applications, the semantic events result in the dis-

placement of objects. An action is generally continuous.

Dividing an action into discrete steps is critical in building

an S3G. Determining discrete steps is decided by semantic

events/actions.

3.2 An example: tennis video

A video can be considered as a collection of a series of

events and a series of states due to these events. Some

videos such as a sports video can have finite types of states

and events. Since the details of S3G can be expressed in a

simple way using a tennis video, it is chosen as an S3G

application in this paper. For example, in a tennis game the

most important object is the ball. Each event causes the ball

to move from one location to another location. Whenever a

player hits the ball, the ball changes its position. To reduce

the number of states, we are interested only in specific

situations. For example, we are interested in whenever a

player hits the ball or the ball hits the court or net.

3.2.1 States of tennis

In a tennis game, there are three objects: two players and

the tennis ball. At a given instance, the objects with their

locations define a state in the video. Since there are 3

objects and 13 locations identified for a tennis video, the

total number of states is 133. However, it is unlikely to
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have these many states for a tennis game. Therefore, we

create a state as long as that state exists in the database.

The start states are generated based on the initial player

positions. Each tennis video has a corresponding player 1

and another corresponding player 2.

Each SMART string corresponds to point-level. Tennis

game can be composed of five hierarchical levels as shown

in [21]: match-level, set-level, game-level, point-level, and

stroke-level. Our strings correspond to the point-level but

are composed of stroke-level information. Therefore, each

state sequence for a string starts from a serve until one of

the players makes a mistake. While indexing a clip, we are

interested in the plays. Therefore, other parts of the game

such as commentators and slow motion replays are not

indexed by S3G.

3.2.2 Transitions of tennis (semantic events)

Now, principally, we can say that there can be two types of

shots that the tennis players can make, i.e., the forehand

shot and the backhand shot. Thus, we can define four types

of events for a tennis video, namely a forehand shot by

player1, a backhand shot by player1, a forehand shot by

player2 and a backhand shot by player2. Hence, there are

four types of transitions in a tennis video.

We can thus define a tennis video in terms of a series of

states where each state consists of a value for the locations

of player1, player2, and the tennis ball. Corresponding to

the four types of possible events there can be four types of

transitions.

Each transition changes a state with a set of location

values for the players and the ball before that transition to

another state with a new set of location values after the

transition (Fig. 4). The next state is represented as

Snext = t(A(O,Sold)) where an event/action A by object

O from state Sold leads to state Snew.

3.2.3 Example

Consider an initial state that has the values for spatial

locations as 7, 10, and 7 for the player1, the player2, and

the ball, respectively. This means that the player1 and the

ball were in location 7, while the player2 was in location

10. Now, if the player1 hits a forehand shot and the ball

goes to location 4 and so does the player2 to hit the ball

back, then we will have a new state with values 7, 4, and 4

corresponding to the new location values of the player1,

the player2, and the ball, respectively. In this case, the

transition for the initial state to the new state should be

defined as ‘‘player1 hits a forehand shot’’ [F(p1)] (Fig. 5).

3.2.4 Cyclic nature

Consider a state with the values for spatial locations as 5, 6,

and 5 for the player1, the player2, and the ball, respectively.

Now, there can be a transition where the player1 hits a

forehand shot and the ball goes to location 6 reaching an S3G

state with location values as 5, 6, and 6 for the player1, the

player2, and the ball locations, respectively. In return to this

player1’s shot the player2 may hit a backhand shot hitting

the ball to location 5, thus going back to the initial state in

the S3G as shown in Fig. 6. Thus, S3G is a cyclic graph.

3.2.5 List of states

A transition from a state can result in one of the multiple

possible states. In the tennis video example, a transition

from a state or a set of location values, such as a forehand

shot by player1 can result in one of the multiple possible

states. For example, the player1 may retain his position

after hitting the shot or move to another position. Similarly

the player2 can be in any of the locations in his court side.

Also the player1 has multiple location options for hitting

the ball. Hence for a given state, there should be a list of

states for each of the four transitions as in Fig. 7.

3.2.6 List of clips

Now there can be many video clips for a given set of

locations values for the player1, the player2, and the ball.

So each state can have many video clips corresponding to

Si+1=t(F(p1,<b,p1,p2>) Si=<b,p1,p2> 

Si+2=t(F(p2,<b,p1,p2>) 

Si+3=t(B(p1,<b,p1,p2>) 

F(p1) 

F(p2) 
B(p1) 

B(p2) 

Si+4=t(B(p2,<b,p1,p2>) 

Fig. 4 States and types of transitions of S3G for a tennis video

<b=7,p1=7,p2=10>

<b=4,p1=7,p2=4>

F(p1) 

Fig. 5 A transition that causes

a new state

<b=5,p1=5,p2=6> 

<b=6,p1=5,p2=6> 

F(p1)

B(p2)

Fig. 6 Cyclic nature of S3G
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it. Therefore, an array of these clip IDs should be main-

tained for the corresponding clips (Fig. 8). In addition, the

rank of the state in a clip is also stored along with the clip

number. If multiple transitions are possible between two

states for a single clip, each clip may also maintain the

transition type besides the rank information. For simplicity,

we do not show the ranks in the figures.

Finally each state in the S3G will of the form: state

Si :[hA1;A2; . . .Ani; hCii]. Here Ai is an action pointer for

next S3G states and Ci is pointer pointing to a list of clips

with ranks having the state Si. For a tennis video, we have 4

action pointers. PP1f and PP1b point to the list of states that

are possible after the player1 hits a forehand shot and a

backhand shot, respectively. Similarly, PP2f and PP2b point

to the list of states that are possible after the player2 hits a

forehand shot and a backhand shot, respectively.

3.2.7 Complexity

The number of states may look like it grows exponentially

with respect to the number of objects and locations.

However, the number of states cannot be more than the

number of frames in a video in the worst case. A state

indicates possible positioning of objects at various loca-

tions in many video clips.

4 Building S3G

We build an S3G from SMART [14, 15] strings. For

example, consider a string as U7V10b4FV10b8 that states

that initially player1 and the ball are in location 7 and

player2 is in location 10. The player1 serves the ball that

goes to location 4. The player2 in location 10 hits the ball

that goes to location 8. Two states can be defined as fol-

lows. The initial state has location values 7, 10, and 7 for

player1, player2, and ball locations, respectively. The

‘following’ state has location values as 7, 10, and 8 for

player1, player2, and ball locations, respectively. A tran-

sition from the initial state to the following state is defined

as ‘‘player1 hitting a forehand shot’’.

The assumption used in string representations to reduce

string sizes should be taken care of during converting them

to state representation. For example, the ball location will

be the same as the player location who is serving the ball.

The players change their location 7 and 10 to 8 and 9 in

alternating fashion, which will not be expressed explicitly

in the string representations. For example, if the beginning

of the video clip has player locations as 7 and 10, the ‘next’

play will have the player locations as 8, 9 and vice versa.

4.1 Insertion into S3G

The S3G is built in an incremental order as strings are being

parsed. This is done by reusing the existing states in the

S3G and creating new states and transitions if required.

Assume that an S3G as in Fig. 9 is already built and we

need to process a new substring as ‘‘U7b10FV10b7’’ for a

clip with ID C2134. This defines an initial state with loca-

tion values as 10, 7, and 10 for the tennis ball, the player1

and the player2, respectively. Since a corresponding state in

Si=<b,p1,p2> 
F(p1) 

Si+1F(p2) B(p2) 

Si+2

Si+4
Si+3

B(p1) 

Fig. 7 S3G with a list of states for the different transition types

Fig. 8 S3G with a list of clips

Fig. 9 An S3G graph before inserting clip C2134
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Fig. 9 does not exist, a new state (S4 in Fig. 10) has to be

created. Next, player2 hits a forehand shot and the ball goes

to location 7. This corresponds to an existing state (S1 in

Fig. 9) with location values 7, 10, and 7 for the tennis ball,

the player1, and the player2, respectively. The clip ID

C2134 is added to the clip list of state S1 as in Fig. 10. In the

second case, instead of creating a new state, initial state (S4)

for clip C2134 is made to point to the existing state S1. The

clip C2134 is added to the list of video clips of S1.

Algorithm 1 provides the pseudo-code for converting

from string to state. Here each alphabet from the SMART

[14, 15] string is read. If the alphabet represents an object

(players or ball) and the object location is not implied, then

the successive alphabets are read to get its location value.

Once all the three object locations are determined, a state

with these location values is searched using the indexing

structure in Sect. 4.2.1. If the state is found, then it is linked

with the previous state with suitable transition type repre-

sented by the alphabets in the string denoting the event, or

else a new state is created and added to the S3G by linking

it with the previous state using the transition specified by

the event denoting alphabet. When the strings are parsed,

the initial event is ‘serve’ (not explicitly represented in the

string) and represented as a forehand shot as a transition in

the graph.

Algorithm 2 determines whether an existing state, OP, in

S3G is reachable from an initial state S. First the system

checks the presence of state OP. If OP is present, the set of

common clip lists are found. If the intersection of clip lists

is empty, state OP is not reachable from state S. If the

intersection of clips is non-empty, the ranks of the same

clips are compared. If the rank of a clip in state OP is more

Fig. 10 S3G graph after inserting clip C2134 into a new state and an

existing state

Algorithm 1. Algorithm for converting strings to states
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than the rank of the clip in S, the state OP is reachable from

state S. In the algorithm, C(S) returns the rank of a clip C in

state S. This reachability function is used in querying.

Algorithm 2. Algorithm for searching states in S3G

An S3G can grow significantly depending on the number

of states and actions involved in a given video. The

recursive algorithm for finding states discussed in the

previous subsection may no longer be efficient for an S3G

with a large number of states. We use hashing for deter-

mining whether a state is present in the graph or not. States

may not need to be created ahead of time. They may be

created as those states are encountered in video clips. This

will avoid the construction of an unnecessary large graph.

5 Querying

This section describes the interface to build S3G and per-

form spatio-temporal querying on an S3G. We generate one

S3G for the complete tennis video database. Information

other than spatio-temporal content about the tennis games

is stored in other tables in the database. The irrelevant clips

can be eliminated as the states are visited. The user inter-

face snapshots are provided in the Appendix 1.

5.1 Input, backup, and storage for S3G

The string representation of the video according to

SMART [14, 15] is used as an input for building the S3G

states. The strings can be given as input by: (a) manually

typing the strings or (b) the SMART [14, 15] strings stored

in the GSMART database (Fig. 20 in ‘‘Appendix 1’’). S3G

can be mapped to a relational model and stored in the

database. When the system restarts, it can easily be built

without processing the strings in the database. If the S3G

index is no longer needed, it can be removed from the

database.

5.2 Searching a state

Once an S3G is formed, a particular state can be queried

with respect to object positions. If a state is present in the

S3G, the corresponding clips in the state can be viewed. The

‘Location Selector’ interface (Fig. 22 in ‘‘Appendix 3’’)

helps to retrieve clips that are associated with a state. The

location of an object is selected by first choosing the object

(the player1, the player2, or the ball) and then clicking

the location on the tennis court image corresponding to the

required object’s location. If a state exists in the S3G, the

details of that state (Fig. 23 in ‘‘Appendix 4’’) are displayed

with a list of the clips associated with the state.

5.3 Querying

We can apply STL on the S3G and construct spatio-tem-

poral queries. In this paper, we provide examples of ‘next’

and ‘eventually’ operators that are applied on the tennis

video database. When searching for a state sequence, it is

important that the states in the sequence have the common

clips. Moreover, the rank of a state for the clip should

increase by one in a consecutive state. For example, if a

sequence has states S1 and S2 that are searched, S1 and S2

must have at least one common clip. For the common clips,

the rank should increase. For example, consider a partial

S3G in Fig. 11 where ranks of states are provided as sub-

scripts of clip numbers. Clip C1 has ranks 1 and 3 for state

S1, and rank 2 for state S2. This indicates that the states of

C1 are in the order of S1–S2–S1. For C7, the order is S2–S1.

For a sequence from S1 and S2 with a backhand shot by

player 1, clip C5 will not be retrieved since clip C5 is not

common in both clips. Clip C7 is common in both states,

but the order of states is not correct. Clip C1 is retrieved

because it has rank 1 for state S1 and rank 2 for state S2.

This means that S2 follows S1 with a backhand shot by

player 1 in clip C1.

In the following subsections, we do not delve into ranks

assuming that rank conditions are satisfied. We put more

emphasis on how temporal operations are handled.

5.3.1 ‘Next’ state query

The ‘next’ query helps us retrieve all the possible next

states from a given state in the S3G. Each state in the S3G

can have multiple next states for each of the four kinds of

transitions.

5.3.1.1 Example In the given instance of S3G in Fig. 12,

the state S2 occurs following S1 when player1 hits a

backhand shot. The state S3 occurs following S1 when

player1 hits a forehand shot. Therefore, a ‘next’ query for

state S1, should fetch states S2 and S3:
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ðS; S1Þ � � S2ð Þ and ðS; S1Þ � � S3ð Þ:
For each of the four transition types (player1 hitting

forehand shot, player2 hitting forehand shot, player1 hit-

ting backhand shot and player2 hitting backhand shot), the

‘next’ possible states will be retrieved. The interface for

querying ‘next’ states are provided in ‘‘Appendix 5’’. The

‘next’ state query can also be applied multiple number of

times in succession to obtain the clips with all the selected

states.

5.3.1.2 Example In Fig. 13, if S4 is selected as the cur-

rent state, its next states will be S1 and S5. The states S4 and

S1 have clip C7 as a common clip, while the states S4 and

S5 have clip C1 as common. If S5 is selected as the required

‘next’ state and the ‘next’ state is applied to S5, the state S2

will be obtained as they have clip 11 as common, but state

S4 does not have this clip. Hence, no clips are retrieved.

5.3.2 ‘Eventually’ state query

The ‘eventually’ query helps users check if a state even-

tually occurs in future after a particular state has already

occurred in the S3G. For given two S3G states, an initial

state and a final state, it can be checked if the final state

eventually occurs after the initial state has occurred by

checking if it is possible to reach the final state from a

given start state in the S3G .

5.3.2.1 Example Figure 14 provides an instance of S3G

where S1 occurs following the state S4 when player2 hits a

forehand shot. The state S2 occurs following state S1 when

player1 hits a backhand shot. The state S3 occurs when

player1 hits a forehand shot after the state S2. Therefore,

running an ‘eventually’ query with S4 as a start state and S3

as a final state succeeds while an eventually query with S2

as a start state and S4 as a final state does not:

ðS; S4Þ � } S3ð Þ but ðS; S2Þ � } S4ð Þ is false:

Consider the example shown in Fig. 15 where a state

with locations 7, 10, and 4 are set for the player1, the

player2, and the ball positions, respectively, for the initial

state. When the user clicks ‘‘Set as initial state’’, this initial

state is shown as a thumbnail in Fig. 15. To check if a state

‘eventually’ occurs after the initial state chosen, the

‘Eventually Check’ in Fig. 16 is selected (see Appendix 6

for more information).

5.3.3 Combining ‘next’ and ‘eventually’ queries

The ‘next’ and the ‘eventually’ state queries can be called

multiple times in any order. In Fig. 17, an instance of S3G

is given where S1 is a state that is directly reachable from

the state S4 after player2 hits a forehand shot. The state S2

is directly reachable from S1 after Player1 hits a backhand

shot. The states S5 and S3 are directly reachable from the

state S2 after the transitions resulting from ‘‘player1 hitting

a forehand shot’’ and ‘‘player2 hitting a backhand shot’’,

respectively. Therefore, an ‘eventually’ query with S4 as

the start state and S2 as the final state will succeed. A ‘next’

query on the state will retrieve states S3 and S5.

ðS; S4Þ � } S2ð Þ ^ ðS; S2Þ � } S3ð Þ and

ðS; S4Þ � � S2ð Þ ^ ðS; S2Þ � � S5ð Þ
Similarly a ‘next’ query on the state S4 gives the state S1

and then an ‘eventually’ query with S1 as the start state and

S5 as the final state will also succeed.

ðS; S4Þ � � S1ð Þ ^ ðS; S1Þ � } S5ð Þ:

Our application has the feature of graphically displaying

the states of a query to simplify the process of long queries

that result from a series of eventually and next state queries

as shown in Fig. 18. When a new query is submitted, the

image of previous state will be retrieved from a location

where all possible state images are stored. This image is then

displayed. Thus, S3G application helps to develop queries

interactively. The user can continue building queries on the

results obtained from his previous subqueries, thus enabling

Fig. 11 A partial S3G

Fig. 12 An instance of S3G

Fig. 13 An instance of S3G

Fig. 14 An instance of S3G
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creation of lengthy queries dynamically instead of running

just a fixed query.

Other query types using ‘releases’ or ‘until’ operator can

also support queries such as ‘‘retrieve clips where both

players are at the baseline until one player runs to the net’’.

In our application, these queries can be represented with a

sequence of ‘next’ queries. So, this type of queries is not

implemented separately.

6 Experiments

In this section, we first provide experimental results and

then provide discussion on extendibility for other videos.

6.1 Performance

6.1.1 Comparison

We compare our method with spatio-temporal query pat-

terns (STP) [11]. There are improvements to STP method

with assumptions [20] which are not applicable to our

case (e.g., an object should not visit the same location

again). STP provides indexing based on positions usually

divided into grids. STP index keeps the time when objects

visit a specific location. There are several issues with

STP: (a) STP supports querying the trajectory of a single

object; (b) there is a single timeline for trajectories;

(c) there are no semantic events between changing posi-

tions; and (d) the gap between any consecutive steps

could be anything. To compare our method with STP, the

following changes are made for STP. (1) Our queries

include multiple objects; therefore, we first need to query

STP for each object and check the results are synchro-

nized (i.e., check whether objects appear at the corre-

sponding positions at the same time). (2) After each tennis

point (tennis match is composed of sets, which are com-

posed of games, which are composed of points), the

positions of players are reset. There is no need to check

the positions of objects across points. We need to keep

STP index structure for each point. A sequence of posi-

tions across multiple points is not related to each other

and meaningless. (3) We consider all semantic transitions

(all types of shots) for S3G since STP does not support

transitions. (4) We consider eventual queries to compare

S3G with STP since STP is not designed to support next-

querying.

6.1.2 Building S3G

Since a small number of games are not enough to check the

performance of indexing structures, we have simulated

tennis games to measure the complexity of building S3G

and querying using S3G. We have generated around 10,000

points (sequences or strings or clips). Each game has

around 100 points. Table 1 shows the statistics for building

S3G and STP index structures where |IS| is the number of

input sequences (or strings) and |s| is the number of states

(note |s| is only applicable to S3G). These timings only

Fig. 15 Initial state is set

Fig. 16 ‘Eventually’ checking

B(p1) 

C128 C2134 F(p1) 

S2

<b=4,p1=7,p2=6>

S3

<b=4,p1=7,p2=10>

S1

<b=7,p1=7,p2=10> 

F(p2) 

S4

<b=10,p1=7,p2=10> 

C2134

S5

<b=10,p1=7,p2=10>

C128 C2134 

C128 C2134

C128

B(p2) 

Fig. 17 An instance of S3G
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include the time for building the index structures and

ignore the time for decoding the input strings since strings

are decoded differently for each index structure.

6.1.3 Complexity

It takes 35 ms to build S3G for 10,000 points. Table 1

shows that the number of states reaches saturation when

4,096 input sequences are processed and barely increases

after that. Our experimental results indicate that the time

complexity is O(|IS|) ? O(|s|). Since |IS| �|s| and the

number of states reaches a saturation point, the complexity

of building S3G is O(|IS|) for large databases. The time

complexity of inserting a state into S3G is O(1). Similarly,

the time complexity of inserting a clip into a state in S3G is

O(1): finding the state using hashing and adding the clip to

the end. Figure 19 shows the comparison of building index

structures. Building S3G is faster than STP despite S3G also

includes the time to build the index structure with respect

to the player shots, whereas in STP those transitions are

ignored. Although a separate STP index is built for each

clip (this results in simple STP index structures), building a

complex and single S3G index was faster than building STP

index structures. If a single STP index structure had been

built, the querying would not complete in a reasonable time

for STP index.

6.1.4 Querying

We compare the performance of S3G and STP on ‘even-

tually’ queries. Table 1 provides the experimental results

when 10,000 points are inserted into the database where |q|

indicates the number of queries. A query returns the clips

where a destination state is reachable from an initial state.

We provide the results with 2 and 3 states (or predicates)

for ‘eventually’ queries. S3G significantly outperforms STP

that we cannot put them into a single graph. Using S3G,

8,196 queries for 3 states are completed in 600 ms,

whereas it takes around 60 s for STP. Using S3G for que-

ries where there is an initial state and a final state just took

153 ms. Figure 19 shows the results of querying for S3G.

Note that the time for querying provides the total time for

|q| queries. The cost of a ‘Next’ query is O(1) ? O(1). The

first part locates the current state using hashing and the

second part locates the next state using the corresponding

event.

6.2 Discussion on extendibility

The domain of applications should have the following

properties: (a) the video data should be discretizable in

both spatial domain and temporal domain; (b) the states

should be repeated to get benefit from this indexing

method, and (c) there should be preferably semantic events

(or transitions) that indicate change from one state to

another state. The transitions and discretization are closely

related to each other. Now, we give examples of these in

several different domains.

We may group sports based on the layout of the field,

instruments involved in the game, the number of players,

and so on. In some sports ranking is important: auto racing,

swimming, and cycling. The events or transitions include

Fig. 18 Query building history
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completion of a lap, taking a pit stop, or passing of a player

by another player. The states may involve the rank of

players, the lap, and their locations on the field. A com-

bination of lap and rank could be a better option for auto

racing rather than the exact locations of cars. Another set of

group of games include games where the field is divided

into multiple sections. Examples include tennis, table ten-

nis, volleyball, and badminton. Tennis example has already

been covered with some detail. For volleyball the events

could be passing, block, or spike, etc. Another set of games

include games that are played on a board (e.g., chess). In

chess, player moves are transitions, and pieces on board

make the states. In a single game, it may be rare to repeat

states but it is possible to have states repeated in multiple

games. 8 moves of a chess game by Kasparov against

World Team are: ‘‘1.e4 c5 2.Nf3 d6 3.Bb5 ? Bd7

4.Bxd7 ? Qxd7 5.c4 Nc6 6.Nc3 Nf6 7.0-0 g6 8.d4 cxd4’’.

Another set of games include games where players have

almost no restriction to move on the field. These games

include soccer, football, basketball, ice hockey, etc. The

research on these games includes video processing, game

summary processing, and commentator speech processing.

Not all players might be involved at a play during the

game. The positions of players as well as their actions

might be important. We investigated games from National

Football League (NFL). The critical parts of the state are:

the ball location, team having the ball, down-and-distance,

and optional team formation [e.g., State (Team: GB; Ball:

Table 1 Time for building

index structures and searching

with 2 and 3 states for S3G and

STP

|IS| or |q| |s| S3G indexing STP indexing S3G searching STP searching

3 states 2 states 3 states 2 states

1 10 0.003 0.003 0.001 0.001 0.020 0.015

2 13 0.003 0.003 0.001 0.001 0.028 0.024

4 19 0.003 0.003 0.001 0.001 0.047 0.040

8 27 0.003 0.003 0.002 0.001 0.076 0.087

16 52 0.003 0.003 0.002 0.002 0.132 0.140

32 82 0.003 0.003 0.003 0.003 0.245 0.248

64 129 0.003 0.003 0.006 0.005 0.473 0.461

128 178 0.003 0.003 0.010 0.008 0.932 0.866

256 217 0.004 0.004 0.019 0.010 1.876 1.638

512 249 0.005 0.006 0.037 0.015 3.735 3.143

1,024 287 0.010 0.009 0.073 0.025 7.570 6.175

2,048 332 0.014 0.016 0.145 0.049 15.082 12.446

4,096 370 0.021 0.029 0.297 0.085 30.104 24.672

8,192 387 0.035 0.070 0.600 0.153 59.882 49.496

Fig. 19 Time for building index structures

Fig. 20 Interface showing the strings obtained from GSMART

database
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NO-37; Down; 1-10; Formation: shotgun)]. Events have

more information about the event type such as rushing,

passing, sacks. Events may also have information who is

involved in the event (e.g., player A passes the ball to

player B which is then stopped by player X of the opponent

team). In baseball, the players at the bases, pitcher, batter,

catchers, etc. form the states. Home-run, strike, ball, etc.

correspond to transitions. In the golf, the player follows

holes. The position of the ball after each hit and the hole

number may correspond to a state. The hit may correspond

to a transition.

Fig. 21 Player1, player2 and ball images on all possible locations on

the tennis court

Fig. 22 Location selector interface state with entries filled for

player1, player2 and ball locations

Fig. 23 Interface showing details of 40710

Fig. 24 Location selector interface with next ‘state’
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If the number of states grows significantly, we propose

two ways of reducing the number of states: (a) decrease

the number of locations by increasing the sizes of loca-

tions and (b) use only players who are active in the play

for that state.

7 Conclusion

In this paper, we introduced a new indexing method,

semantic sequence state graph (S3G), for spatio-temporal

data using the semantic contents of the video. S3G utilizes

semantic events as transitions in the events while the spa-

tial information is maintained in states. The semantic

events result in temporal ordering among the states. The

‘next’ and ‘eventually’ operations of LTL have been

implemented using the S3G platform on the tennis video

database. Both these types of queries can be applied mul-

tiple times in combination to form a complex query. A

sample application of S3G is shown for a tennis video

database application. As future work, we plan to apply S3G

in other domains. We also plan to provide more efficient

ways of managing temporal queries of S3G. We also intend

to create new scenarios of events, objects, and locations by

reusing the video clip contents and traversing S3G. S3G can

handle coupled STQ with combination of ‘next’ and

‘eventually’ queries. S3G suits well for applications where

there is a finite domain of objects, events, and locations

where repetitions are frequent. S3G also helps the user

develop the temporal components of a query by a user

interface that shows a history of the built query. The user

can see whether his query will lead to any result or not

while building his query.
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the paper.

Appendix

In Appendix, we provide information about our user

interface for querying.

A user interface

In this section, we provide some snapshots from our user

interface.

Appendix 1: Building S3G

Figure 20 displays the user interface where SMART strings

are read from the database. When ‘‘Proceed to State Con-

version’’ button is clicked, the S3G is built.

Fig. 25 Interface showing

‘next’ states when player2 hits a

forehand shot
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Appendix 2: Displaying states

The interface is prepared based on design in Fig. 21

where player1, player2, and the ball images are placed on

all possible locations on the tennis court image. All these

object images are hidden except the ones that represent

the location values for the given state when displaying a

state.

Fig. 26 Interface showing the

relevant clip having the two

states (current and ‘next’ states

on top right corner)

Fig. 27 Result of ‘eventually’

check
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Appendix 3: Location selector interface

Figure 22 shows location selector interface filled with

location values for a desired state. In this example, player1

location has a location as 7, player2 has a location as 10,

and the ball has a location as 4. To search for a particular

state with corresponding location values in the ‘Location

Selector’ interface, the search option in Fig. 15 is selected.

To retrieve states based on an event, the user needs to

follow the links to retrieve the corresponding links. For

example, if the user wants to retrieve the clips that result

after an event such as forehand shot by player1, the tran-

sition for this event followed and the clips from the rele-

vant states are retrieved.

Appendix 4: Viewing clips

A particular clip can be selected to view from the list of

clips given for that state (Fig. 23). The clip will be dis-

played after pressing the view button. If the selected state

does not exist in the S3G, a message will be displayed

saying that the specified state does not exist. Figure 23 also

shows player1, player2, and ball locations.

Appendix 5: Interface for querying next states

A state can be chosen by selecting the player1, the player2

and the ball locations in the tennis court and then corre-

sponding ‘next’ states in the S3G can be obtained (Fig. 24).

The aim is to obtain the clips having the current state and

the selected next state.

Figure 25 shows an interface showing the possible

‘next’ states in the S3G for the transition, when player2 hits

a forehand shot. A ‘next’ state can be selected by choosing

the ‘Select State’ options button associated with that state.

If the next state does not exist in the S3G for a transition

then a message will be displayed stating that there is no

next state for that transition. Once a current state and a next

state are selected, the relevant clips can then be viewed

(Fig. 26).

Only the next states that have common clips with the

relevant clip set (clips common to all selected states) are

displayed to select. There may be a case where there can be

a next state existing for a state in the S3G but the next state

has no common clip with all previously selected states. In

such a case, a message stating that ‘‘the next state exists in

the S3G, but no common clip exists’’ is displayed.

Appendix 6: Interface for querying eventually

The result, whether the ‘eventually’ link exists between the

chosen initial and final states in the S3G or not, is obtained

by selecting the ‘‘Result’’ option as in Fig. 27. Figure 27

shows that an ‘eventually’ link exists for the chosen initial

and final states in the S3G.
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the historical, present, and future positions of moving objects. In:

Proceedings of the 6th International Conference on Mobile Data

Management, Ayia Napa, Cyprus, May 09–13, 2005, MDM ‘05.

ACM, New York, NY, pp. 59–66 (2005)

26. Min, J.S., Kim, D.H., Ryu, K.H.: A spatiotemporal data and

indexing, electrical and electronic technology, 2001. TENCON.

In: Proceedings of IEEE Region 10th International Conference

on, vol. 1, pp. 110–113 (2001)

27. Naik, M., Jain, V., Aygun, R.S.: S3G: A semantic sequence state

graph for indexing spatio-temporal data—a tennis video database

application. In: ICSC, 2008 IEEE International Conference on

Semantic Computing, pp. 66–73 (2008)

28. Park, D.-J., Heu, S., Kim, H.-J.: The RS-tree: an efficient data

structure for distance browsing queries. Inf. Process. Lett. 80(4),

195–203 (2001)

29. Patel, J.M., Chen, Y., Chakka, V.P.: STRIPES: an efficient index

for predicted trajectories. In: Proceedings of the 2004 ACM

SIGMOD International Conference on Management of Data,

Paris, France, June 13–18, 2004. SIGMOD ’04. ACM, New York,

NY, pp. 635–646 (2004)

30. Pissinou, N., Radev, I., Makki, K., Campbell, W.J.: Spatio-tem-

poral composition of video objects: representation and querying

in video database systems. IEEE Trans. Knowl. Data Eng. 13(16),

1033–1040 (2001)

31. Ren, W., Singh, S., Singh, M., Zhu, Y.S.: State-of-the-art on

spatio-temporal information-based video retrieval. Pattern Rec-

ognit. 42(2), 267–282 (2009)
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