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Abstract Image retrieval systems face the problem of

dealing with the different ways to apprehend the content of

images and in particular the difficulty to characterize the

visual semantics. To address this issue, we examine the use

of three abstract levels of representation, namely Signal,

Object and Semantic. At the Signal Level, we propose a

framework mapping the extracted low-level features to

symbolic signal descriptors. The Object Level features a

statistical model considering the joint distribution of object

concepts (such as mountains, sky…) and the symbolic

signal descriptors. At the Semantic Level, signal and object

characterizations are coupled within a logic-based frame-

work. The latter is instantiated by a knowledge represen-

tation formalism allowing to define an expressive query

language consisting of several boolean and quantification

operators. Our architecture therefore makes it possible to

process topic-based queries. Experimentally, we evaluate

our theoretical proposition on a corpus of real-world pho-

tographs and the TRECVid corpus.

Keywords Multimedia processing � Semantic gap �
Image indexing and retrieval � Experimental evaluation

1 Introduction

Image indexing and retrieval systems, which have been the

subject of extensive research works since the 1990s, can be

categorized with respect to their index and query abstrac-

tion level. We mainly identify three levels:

The first level, namely Signal Level, represents numerical

abstractions of image regions. Such abstractions charac-

terize the colors, textures… of visible elements in images.

The general approach consists in computing structures

representing the image distribution such as color histo-

grams, texture features and using this data to partition the

image; thus reducing the search space during the image

retrieval operation. These methods hold the advantage of

being fully automatic, thus are able to quickly process

queries. Aspects related to human perception, which are of

prime importance in image retrieval, are however not taken

into account. In the remainder of the paper, this level is

considered only as far as the automatic extraction of low-

level signal features is concerned.

In order to address the impossibility of the signal-based

systems to characterize the image semantics (also called

semantic gap [1]), the second level (namely Image Object

Level) of representation supports the notion of labeling the

image visual entities. This level intends to bridge a gap

between the signal aspects (first level) and the symbols

representing the content of images. For this, two classes of

automatic semantic extraction architectures have been

proposed in the literature. The first, which aims at cate-

gorizing images in broad semantic classes, operates at the

global image level. In [2], several experimental studies lead

to the specification of 20 semantic categories or image

scenes describing the image content at a global level (such

as group of people, cityscapes, landscapes…). Each of

these categories is then linked to several low-level features

gathered within the complete feature set. The most recent

automatic annotation models linking annotation words to

visual features are based on statistical models [3–8]. Blei

and Jordan [3] extend Dirichlet’s latent allocation model
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and propose a correlation model linking words and images.

The latter is based on the hypothesis that a combination of

latent factors can be sampled from a Dirichlet distribution

and used to generate words and image regions. This para-

metric model is based on the Expectation–Maximization

algorithm to estimate these factors. Frameworks which

have shown interesting performance improvements [5, 6, 8]

are based on a doubly non-parametric approach for which

the probabilities of associating words to image features are

learnt from each image of a training set. They are then used

to generate the probability of linking a word to a given

query image. In [4], the image annotation task is modeled

by a supervised multi-class labeling architecture. In [9, 10],

the process of image indexing is enriched through the use

of external linguistic knowledge bases (e.g., WordNet).

The approach is guided by the dependencies between

annotating words represented by a hierarchy derived from a

textual ontology. While the above models predict the

probability of an annotation word given an image, one is

interested in generating the set of all index words repre-

senting all the image visual entities.

A second class of architectures, operating at the visual

entity level has been proposed in [11–13]. One of the early

solutions presented a probabilistic framework based on

estimating class likelihoods of local areas, labeled as either

man-made versus natural or inside versus outside objects

[11]. In [13], training sample of the image regions is

categorized into 11 clusters through a neural network

mapping (e.g., tree, fur, sand…). To alleviate the restrained

cardinality of the proposed previous sets of visual clusters,

a richer index vocabulary consisting of 26 image labels

called Visual Keywords (such as sky, people, water…) is

specified in [12, 14]. However, this solution relies on a

query-by-example solution for querying and no language

being able to manipulate the extracted semantics has been

proposed. The main disadvantage of this second class of

frameworks relies on the specification of restrained and

fixed sets of semantic classes.

The third level (namely ‘‘Semantic Level’’) is dedicated

to represent the explicit characteristics of the image objects

of the second level. Regarding the fact that several artificial

objects have high degrees of variability with respect to

signal properties such as color and texture variations, an

interesting solution is to extend the extracted object-based

descriptions with signal characterizations in order to enrich

the image indexing vocabulary and query language, e.g.,

with the object concept ‘‘sky’’ one might assign additional

concepts such as ‘‘cyan’’, ‘‘grey’’ characterizing its color

and ‘‘covered’’, ‘‘smooth’’ which feature its texture. The

third level representation is based on expressive represen-

tation formalisms able to support logical inference, for

instance specialization/generalization (Is_A) hierarchies

of concepts in a way to extend the retrieval capabilities.

A class of frameworks within the European Fermi project

implement this third level by proposing to model the image

semantic and signal contents following a sharp process of

human-assisted indexing [15, 16]. These approaches, based

on elaborate knowledge-based representation models,

provide satisfactory results in terms of retrieval quality but

are not easily usable on large collections of images because

of the necessary human intervention required for indexing.

If we examine a notion of abstraction targeted at each

level (left part of Fig. 1), the Signal Level corresponds to

low abstraction (because it considers low-level features),

the Image Object Level is a medium abstraction repre-

sentation (since it abstracts the signal to object-based

characterization but does not go further), the Semantic

Level is a high abstraction level because it features further

characterization of the nature of objects and allows inter-

pretation of scenes. The structure of Fig. 1 shows that the

three levels of indexes are obviously not independent from

each other. However, the grey parts that represent the

transition between the levels are far from being easy tasks:

going from signal features to visual objects usually relies

on some learning process, whereas going from Object to

Semantic Levels needs human input in state-of-the-art

systems.

The right part of Fig. 1 highlights the querying expres-

siveness. It varies from low expressiveness at the Signal

Level where the user inputs one or more query images

through query-by-example (QBE) or relevance feedback

(RF) to high expressiveness at the Semantic Level where

the user is able to formulate a query through natural lan-

guage interaction.

We contribute in this paper to the enrichment of the

three levels of representation and highlight steps to bridge

the gaps between them.

We enhance the Signal Level through the specification

of processes establishing a correspondence between

extracted low-level features and high-level visual infor-

mation. For this, we specify a learning agent-based

framework categorizing signal color and texture low-level

features into symbolic categories.

We contribute to the Image Object Level through an

automatic object-based indexing framework, operating at

the visual entity level and characterized by a statistical

High abstraction                                                                                   High (natural               

language) 

Abstraction                             Expressiveness
Hierarchy 
Indexing 

Low abstraction        Low (QBE or RF)  

Signal-based representation 

Object-based representation 

Semantic-based  
representation 

Fig. 1 Index and query representation levels
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model which takes into account the joint distribution of

object-based concepts on the one hand and color and tex-

ture categories on the other hand.

At the Semantic Level, the symbolic signal information

and object characterizations are coupled through a unified

model to enrich the image description. This model is

instantiated by a logic-based knowledge representation

formalism enforcing expressiveness in order to expand the

index and query languages. As far as the interaction is

concerned, since users are more skilled in defining their

information needs using language-based descriptors [14],

query formulation relies on natural language interaction

with the possibility to manipulate several boolean and

quantification operators. We are therefore able to process

not only single-concept queries such as the automatic

semantic extraction architectures, but also non-trivial

queries involving multiple characterizations such as pro-

posed in the framework of the TRECVid topic search track:

visual semantics and high-level color concepts (‘‘a grey

sky’’), visual semantics and high-level texture concepts

(‘‘fields of lined flowers’’).

In the remainder, we propose in Sect. 2 the character-

ization of the Signal Level. Section 3 details the object-

based indexing framework (level 2). Section 4 deals with

the Semantic Level and the coupling of the signal and

object-based characterizations. Section 5 details the query

module. Section 6 presents our experimental evaluation on

both a corpus of 2,500 photographs and the TRECVid

corpus.

2 Enhancing the Signal Level through mapping

low-level features to signal categories

Our framework uses learning agents which have the ability

to perceive color or texture signals and categorize their

perception as symbolic color or texture categories.

2.1 Color perception and representation

When perceiving the physical world, a mapping is made

from the physical space to a representation in the psycho-

physical space. Upon this representation, further cognitive

actions such as categorization or recognition are taken. The

representation should fulfill three requirements. First, it

should be a good model for how humans perceive color.

Second, it should make discrimination possible: two

stimuli are discriminable if and only if they map onto

different points in the representation space. Third, one

should be able to define a similarity measure over the

representation space. The HVC perceptive color space

satisfies these requirements and has proven its merit at

categorizing symbolic colors [22]. It belongs to the

category of user-oriented color spaces (as opposed to

material-oriented spaces such as RGB), i.e., spaces which

define color as being perceived by a human through

tonality (describing the color wavelength), saturation

(characterizing the quantity of white light in the color

spectral composition) and brightness (related to color

intensity).

Our symbolic representation of color information is

guided by the research carried out in color naming and

categorization. Under the impulsion of Berlin and Kay

[17], works have revolved around stressing a step of cor-

respondence between color stimuli and ‘basic color terms’

which they characterize by the following properties: their

application is not restricted to a given object class, i.e., the

color characterized by the term ‘‘olive color’’ is not valid;

they cannot be interpreted conjointly with object parts, i.e.

‘‘the maple leaf color’’ is not a valid color; their interpre-

tation does not overlap with the interpretation of other

color terms and finally they are psychologically meaning-

ful. Given a series of perceptive evaluations and observa-

tions, 11 color categories (ci [ Ccat) are highlighted:

c1 = cyan (C), c2 = white (W), c3 = green (Gn),

c4 = grey (G), c5 = red (R), c6 = yellow (Y), c7 = black

(B), c8 = blue (Bl), c9 = orange (O), c10 = purple (P),

c11 = skin (S).

2.2 Texture perception and representation

The study of texture in computer vision has lead to the

development of several computational models for texture

analysis used in several CBIR architectures [1]. However,

these texture extraction frameworks mostly fail to capture

aspects related to human perception. Therefore, we propose

a solution specifying a computational framework for tex-

ture extraction which is the closest approximation of the

human visual system. The action of the visual cortex,

where an object is decomposed into several primitives by

the filtering of cortical neurons sensitive to several fre-

quencies and orientations of the stimuli, is simulated by a

bank of Gabor filters. An object is characterized by its

Gabor energy distribution within seven spatial frequencies

covering the whole spectral domain and seven angular

orientations. This constitutes a texture space consisting of

49-dimension vectors, each dimension corresponding to a

Gabor energy.

Our symbolic representation of texture information is

guided by the texture lexicon proposed in [18] consisting of

11 high-level texture categories as a basis for symbolic

texture classification. In each of these categories, several

texture words which best describe the nature of the char-

acterized texture are proposed. We consider the following

texture categories (ti [ Tcat): t1 = bumpy (B), t2 = cracked

(C), t3 = disordered (D), t4 = interlaced (I), t5 = lined
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(L), t6 = marbled (M), t7 = netlike (N), t8 = smeared (S),

t9 = spotted (Sp), t10 = uniform (U) and t11 = whirly (W).

2.3 Color and texture categorization

When an agent is to communicate about the world, a

symbolic representation of the perception is needed. This

symbolic representation arises by cutting up and structur-

ing the representation space.

The color and texture spaces are used to define cate-

gories. A category has a number of features (the tonality,

saturation and brightness values for colors and the Gabor

energy dimensions for textures) and for each feature a

fuzzy membership function is defined. If an unknown

stimulus is perceived, a measure is needed of how well a

category matches the unknown representation. To represent

a category, a radial basis function with one output unit,

divided by the number of hidden units, is chosen. It is our

preferred choice for representing categories since it can

divide the input space into regions whose configuration is

not restricted in any way. A second advantage is that it is

easily analyzed, which is valuable for monitoring the per-

formance of the categorization.

Figure 2 shows the radial basis function. It consists of a

layer of an unspecified number of hidden units acting as

tuned receptors and one output unit. The input x is a per-

ceptive color representation, i.e. a three-dimensional vector

containing the tonality, saturation and brightness values, or

a perceptive texture representation consisting of the Gabor

energy dimensions. The hidden units are Gaussian func-

tions zj(x). The output of the network y(x) is the weighted

sum of the Gaussians, weighted by the number of hidden

units.

The goal of our framework is to successfully distinguish

color or texture stimuli as being related to any color or

texture categories. It follows a simple algorithm, and is

completed by a learning agent with a set of color or texture

categories. A random context S = {s1,…, sn} is created

and presented to the agent. It contains n color or texture

stimuli si of which one stimulus is the topic. The topic has

to be discriminated from the rest of the context. The pro-

cess is as follows:

1. Context S = {s1,…, sn} and the stimulus st are

presented to the learning agent.

2. The learning agent perceives each stimulus si and

returns a perceptive representation for each stimulus:

P(si) = {s1(o1),…, sm(oi)}.

3. For all n perceptive representations, the closest

matching category c_s is found. Vc [ Ccat or Tcat:

yc(P) B yc_s (P) where yc is the output of the adaptive

network belonging to category c, and yc_p is the output

of the adaptive network reacting best to P.

4. The stimulus st can be discriminated from the context

when there exists a category matching the topic but not

matching any other stimuli in the context.

5. We associate a confidence value for the categorization.

For this, we use the distance to the decision boundary

ft(c) (where ft is the trained adaptive network related to

category c) and map it on posterior recognition

probabilities. In order to achieve this mapping, a

logistic classifier maximizing the likelihood of the

categorization is used.

3 A framework for highlighting image objects mapping

signal categories to object concepts

At the core of our Object Level architecture is the notion of

image objects (IOs), abstract structures representing visual

entities within an image. Their specification is an attempt

to operate image indexing and retrieval operations beyond

simple low-level processes [1]. We consider a training set

T comprised of annotated IOs. Let an IO io_t within this

set, it is represented by a set of rectangular regions

rio_t = {r1_t,…, rn_t} and is indexed by an object concept

cobj, sets of color categories {ccol_1,…, ccol_n} and texture

categories {ctex_1,…, ctex_m} (where m, n B 11)

3.1 Formal model

In the framework of the object-based indexing, we consider

applying on a new image (i.e., not indexed) a rectangular

grid defining nb_grid rectangular regions. Let us consider

a set rc comprised of one to nb_grid connected rectangular

regions. The reader shall note that this set of connected

rectangular regions does not forcibly define an IO (we

explicit in Sect. 3.2 the conditions for defining an IO).

z1(x) z2(x) zj(x)

   w1

    wj   w2

x

y

Fig. 2 Radial basis function for representing color or texture

categories
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We consider the existence of a probability distribution

P(.|rc) which can be seem as a finite set containing all

object concepts which possibly index a set of rectangular

regions as well as the color and texture categories char-

acterizing it with their associated probabilities.

The set rc is defined in terms of object concepts cobj[1]…
cobj[i] and color and texture categories {ccol_rc[1],…,

ccol_rc[j], ctex_rc[1],…, ctex_rc[k]}, i B Cardobj, j B 11 and

k B 11 (Cardobj is the maximum cardinality of the set of

object concepts). We would like to index rc with an object

concept. For this, we extract a concept cobj_rc from its

probability distribution P(.|rc) such that P(cobj_rc|rc) =

max[P(cobj[i]|rc)], i B Cardobj. We therefore need to esti-

mate the probability P(cobj[i]|rc) for each specified object

concept. Given that P(.|rc) is unknown, the probability of

extracting the object concept cobj[i] is approximated by

the conditional probability P(cobj[i]|ccol_rc[1],…, ccol_rc[j],

ctex_rc[1],…, ctex_rc[k]). We assume that the set of connected

rectangular regions rc (possibly unique) is generated with

respect to an undetermined distribution conditioned by

the set {ccol_rc[1],…, ccol_rc[j], ctex_rc[1],…, ctex_rc[k]}. We

will make no attempt to model the generation process of

rc from it. The connected rectangular regions are gathered

to constitute rc.

Considering the training set T of annotated IOs, we

estimate the joint probability of observing the object con-

cept cobj[i] with color categories ccol_rc[1],…, ccol_rc [j] and

texture categories ctex_rc[1],…, ctex_rc[k]. We take as a

hypothesis that the observation of cobj[i] and ccol_rc[1],…,

ccol_rc[j], ctex_rc[1],…, ctex_rc[k] are independent events, a

direct consequence of modeling connected regions by a

finite set containing all object concepts which can possibly

index these connected regions and all color and texture

categories. We operate the marginalization of the distri-

bution with respect to cobj[i], which is then determined as

an expectation over all IOs in T:

Probabilities P(io_t) are uniform considering all IOs of

the set T. To evaluate the probability P(cobj[i]|io_t), we use

maximum probability estimates.

Probabilities P(ccol_rc[1] | io_t)… P(ccol_rc[j] | io_t) and

P(ctex_rc[1] | io_t)… P(ctex_rc[k] | io_t) are given by the

processes, respectively, linking each color category

ccol_rc[1],…, ccol_rc[j] to its probability, i.e. the percentage

of pixels belonging to the corresponding set of connected

rectangular regions (cf. Sect. 2.1) and each texture category

ctex_rc[1],…, ctex_rc[k] to its posterior recognition probabil-

ity through the learning framework applied to the consi-

dered set of connected rectangular regions (cf. Sect. 2.3).

3.2 Application

Starting from a physical image (i.e., non-indexed), we

apply a fixed-size rectangular grid to subdivide it in rect-

angular regions r1,…, rnb_grid. Then we determine the color

and texture categories linked to the sets of connected

regions and their correlated probabilities (cf. Sects. 2.1,

2.2). We then use Eq. (1) to determine the object concept

with the highest probability to co-occur with the color and

texture categories within the set of connected regions.

When the object concepts with maximum probability

linked to all sets comprised of 1 to nbreg_grid connected

regions are determined, we define image objects as the sets

of connected regions with highest cardinality in which the

object concept with highest probability is the same as those

of their subsets of connected regions. Results are then

reconciled across sets of adjacent rectangular regions to

highlight image objects and their associated most probable

object concept.

Regarding the sets of connected regions with a zero

probability for all object concepts, we consider as an image

object the set of maximum cardinality for which all subsets

are composed of object concepts with zero probabilities. This

image object is indexed by the object concept unknown.

Let us note that blocks which do not correspond to any

object concept (i.e., the recognition probability for all

object concepts is null) are still taken into account and

aggregated. Although they do not convey any visual object-

based information, they will be characterized by symbolic

color, texture and relational information directly exploit-

able for query composition.

4 Coupling signal and object concepts

within the Semantic Level

The integration of signal and object-based information

within the retrieval framework is crucial since it expands

the query language with the possibility to query over both

object-based and visual information. At the Semantic

Level, we propose an image model considering an image as

P cobj i½ �jccol rc 1½ �;. . .; ccol rc j½ �; ctex rc 1½ �; . . .; ctex rc k½ �
� �

¼
P

io t2T
Pðio tÞPðcsem½i�jio tÞðPðccol rc½1�jio tÞ. . . Pðccol rc½j�jio tÞÞðPðctex rc½1�jio tÞ. . . Pðctex rc½k�jio tÞÞ½ �

P
csem½l�;l2½1;Cardobj�

Pðcsem½l�; ccol rc½1�; . . .; ccol rc½j�; ctex rc½1�; . . .; ctex rc½k�Þ
ð1Þ
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a multi-facetted object with the two principal facets being

the physical (considering an image as a matrix of pixels)

and the logical facets. The logical facet, grouping all

aspects of the image content and its general context, is

itself an aggregation of two basic facets: the object and

signal facets. It characterizes the index and query image

contents through a first-order logic formula.

• The object facet describes the image semantic content

and is based on labeling image objects with an object

concept. This facet gathers the sets Cobj of object

concepts.

• The signal facet describes the image signal content in

terms of symbolic perceptive features and consists in

characterizing image objects with signal concepts. It

itself consists of two subfacets.

The color subfacet features the image signal content in

terms of color categories. This facet gathers the sets Ccol of

color concepts. The texture subfacet describes the signal

content in terms of symbolic texture features. This facet

gathers the sets Ctx of texture concepts.

In order to instantiate this model as an image retrieval

framework, we shall consider a representation formalism

well-suited for our logical formulation and capable of

representing image objects as well as the visual semantics

and signal information they convey. Moreover, this repre-

sentation formalism should provide an intelligible repre-

sentation of the information related to an image. It should

therefore combine expressiveness and a user-friendly rep-

resentation. Meta-concepts are an efficient solution to

describe an image and characterize its components. The

asset of this knowledge representation formalism is its

flexible adaptation to the symbolic approach of image

retrieval and allows uniformly representing components of

our architecture and developing expressive and efficient

index and query frameworks. Formally a meta-concept is

represented by a vector-like syntactical structure with each

dimension corresponding to a value (boolean or quantified)

for a given concept. It is equivalent to a logical expression

where concepts are connected by the specified semantic

operator (for example the boolean AND or the quantifica-

tion operator AT MOST). The And meta-concept

\bumpy:0, cracked:0, disordered:0, interlaced:0, lined:1,

marbled:1, netlike:0, smeared:0, spotted:0, uniform:1,

whirly:0 [is equivalent to the logical expression: Ax s.t.

(x = lined) ^ (x = marbled) ^ (x = uniform). A meta-

concept description can therefore be soundly linked to a

logical formula. Moreover, it is interpreted as: the texture

distribution consists of lined, marbled and uniform tex-

tures. Therefore, the semantic interpretation of a meta-

concept structure is a natural language sentence. We are

then able to associate a user-formulated query through

natural language interaction with a meta-concept and vice

versa (e.g., a meta-concept characterizing an image index

description is linked to a natural language sentence).

In our framework, each IO is linked to a meta-concept

(either index or query) in the object facet and color and

texture subfacets.

4.1 Object-based characterization

Each IO is linked to an object meta-concept oc [ Cobj,

supported by a vector structure o with Cardobj elements

corresponding to the highlighted object concepts. Values

o[i], i [ [1,Cardobj] are booleans stressing that the consi-

dered IO is characterized by the object concept cobj[i].

In Fig. 3, the object meta-concept \sky:0, ground:0,

field:0, …, huts:1, people:0…[ characterizes Io2.

4.2 Texture characterization

Each IO is linked to a conceptual structure characterizing

its texture distribution. The importance of highlighting

symbolic texture features is correlated to the processing of

user queries without making use of low-level visual

features.

In order to integrate texture characterization within a

symbolic multimedia (image) information retrieval frame-

work, we moreover specify conceptual structures corre-

lated to several types of user queries. Our approach is based

on taking into account a language consisting of three

boolean operators. A user shall be able to associate object

concepts with a conjunction of texture categories such as in

Q1: ‘‘bumpy and cracked roads’’, a disjunction of texture

categories such as in Q2: ‘‘brick-like or cracked floors’’ and

a negation of texture categories such as in Q3: ‘‘trees with

non-interlaced leaves’’.

We introduce the conceptual structures correlated to

these query types which characterize the symbolic texture

distribution of IOs. We distinguish texture index meta-

concepts which feature the texture distribution of IOs

belonging to image index documents from query texture

meta-concepts which translate texture distributions speci-

fied within queries. The latter extend the basic texture

categories by taking into account the boolean semantic

operator expressed.

4.2.1 Index structures

Each IO is indexed by a texture index meta-concept

(TIC [ Cind_tx , Ctx). A TIC is supported by a vector

structure T with 11 elements corresponding to texture

categories ti. Values T[i], i [ [1, 11] are booleans stressing

that the texture distribution of the considered IO is char-

acterized by the texture category ti. For example, in Fig. 3,

the TIC \B:0,C:0,D:0,I:0,L:1,M:0,N:0,S:1,Sp:0,U:0,W:0[

140 M. Belkhatir

123



characterizes Io2 and can be interpreted as the texture

distribution consists of lined and smeared textures.

4.2.2 Query structures

Three types of texture query meta-concepts (TQC [
Cq_tx , Ctx) are specified to support the previously defined

query types. And texture meta-concepts (ATCs) represent

the signal distribution of an IO by a conjunction of texture

categories; Or texture meta-concepts (OTCs) by a disjunc-

tion of texture categories and Not texture meta-concepts

(NTCs) by a negation of texture categories. They are,

respectively, characterized by vector structures Tand, Tor

and Tnot such that values Tand[i], Tor[i] and Tnot[i], i [ [1,

11] are booleans stressing that the texture category ti is an

element of the conjunction, disjunction and negation of

texture categories mentioned in the query. The ATC\B:1,

C:1…I:0,L:0,N:0…[and, the OTC \B:0,C:1…I:0,L:0,

N:1…[or and the NTC \B:0,C:0…I:1,L:0,N:0…[not,

respectively, correspond to the texture distributions

expressed in queries Q1, Q2 and Q3. The correspondence

between TICs and TQCs is achieved through partially

ordered lattices which are organized, respectively, to the

type of the query processed.

4.3 Color characterization

In order to integrate color information within a symbolic

model for multimedia information retrieval, we specify

conceptual structures correlated to several types of queries

formulated by the user. The approach developed in this

paper is based on taking into account a rich query language

consisting of six quantification operators representing the

three categories of semantic quantification in [19]:

• A user is able to specify numerical quantifications

linked to the proportion of pixels corresponding to the

highlighted color categories through operators at least

and at most such as Q4: ‘‘images with a cloudy sky (At

Most 25% of cyan)’’ and Q5: ‘‘images with lake water

(At Least 25% of grey)’’.

We also specify queries with literal quantifiers (Mostly,

Few) easier to handle for a non-expert user and therefore

less interested in a precise quantification of the highlighted

color categories. These queries are such as Q6: ‘‘vegetation

mostly green’’ and Q7: ‘‘flowers with few red’’.

We finally introduce the comparative quantifiers

allowing comparing distributions of color categories within

IOs. They are used in queries such as Q8: ‘‘sky with more

cyan than grey’’.

We introduce the conceptual structures characterizing

the symbolic color distribution of IOs and correlated to the

type of queries defined. These structures extend the basic

concepts by taking into account the quantification operator

expressed. We distinguish in our approach the color index

meta-concepts (CIC [ Cind_col , Ccol) characterizing the

color distribution of IOs within index images (thus carrying

a conjunctive semantic) from the color query meta-con-

cepts (CQC [ Cq_col , Ccol) which themselves translate

the color distributions within queries. The latter can convey

a semantic not limited to a trivial conjunction and which

corresponds to the specification of several quantification

operators for query formulation. We will therefore specify

a formal framework for establishing a link between color

index and query concepts.

4.3.1 Index structures

Each IO is indexed by a color index meta-concept (CIC)

which features its color distribution by a conjunction of

color categories and their corresponding integer pixel

percentages. It is supported by a vector structure C with

values C[i] providing the pixel percentage of color cate-

gory ci. For example, in Fig. 3, the CIC \C:0,W:14,

Gn:51,G:0,R:0,Y:34,B:0,…, P:0,S:0[ characterizes Io3

and can be interpreted as the color distribution consists of

14% of white, 51% of green and 34% of yellow.

4.3.2 Query structures

• Our conceptual architecture is powerful enough to

handle an expressive query language integrating object

concepts and color characterization through quantified

operators. We specify three categories of color query

meta-concepts linked to the semantic of the operators

defined for query color characterization:

• Numerical color meta-concepts linked to queries Q4 and

Q5 which involve operators At Most and At Least,

respectively. At Most color meta-concepts (AMCCs) and

At Least color meta-concepts (ALCCs) represent the

color distribution of an IO by a conjunction of color

categories and, respectively, their associated maximum

(translating the keyword At Most in a query) and

minimum (translating the keyword At Least) pixel

percentage. They are, respectively, supported by vector

structures Cap, Cam such that values Cap[i] and Cam[i],

i [ [1, 11] are percentages (integer) stressing that the

color category ci is an element of the conjunction,

disjunction and negation of texture categories mentioned

<B:0,…,L:1,M:0,N:0,S:1,Sp:0,U:0,W:0> 

<C:0,W:14,Gn:51,G:0,R:0,Y:34,B:0,..,P:0,S:0> 

Io1

Io2

Io3

<Foliage:0, Sky:1, Ground:0, …, Huts:0…> 

Fig. 3 Partial index representation of an example image
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in the query. For instance, the AMCC <c:25,w:0,gn:

0,g:0,r:0…>AM and the ALCC <c:0,w:0,gn:0,g:25,

r:0…>AL, respectively, correspond to the signal distri-

butions expressed in queries Q4 and Q5.

• Literal color meta-concepts associated to queries Q6

and R7 making, respectively, use of operators Mostly

and Few. Mostly and Few color meta-concepts repre-

sent the color distribution of an IO by a conjunction of

color categories whose pixel proportions are, respec-

tively, majoritary (translating the keyword Mostly in a

query) and minoritary (translating the keyword Few).

They are, respectively, supported by vector structures

Cmaj (Cmin) such that values Cmaj[i] (Cmin[i]), i [ [1, 11]

are booleans translating that color catgory ci is linked to

a majoritary (minoritary) pixel proportion within the

color distribution of the considered IO. For example,

the Mostly color meta-concept <c:0,w:0,gn:1,g:0,

r:0…>Mostly and the Few color meta-concept <c:0,

w:0,gn:0,g:0,r:1…>Few, respectively, correspond to the

color distributions expressed in queries Q6 and Q7.

• Literal color meta-concepts associated to queries Q6

and R7 making, respectively, use of operators Mostly

and Few. Mostly and Few color meta-concepts repre-

sent the color distribution of an IO by a conjunction of

color categories whose pixel proportions are, respec-

tively, majoritary (translating the keyword Mostly in a

query) and minoritary (translating the keyword Few).

They are, respectively, supported by vector structures

Cmaj (Cmin) such that values Cmaj[i] (Cmin[i]), i [ [1, 11]

are booleans translating that color catgory ci is linked to

a majoritary (minoritary) pixel proportion within the

color distribution of the considered IO. For example,

the Mostly color meta-concept <c:0,w:0,gn:1,g:0,

r:0…>Mostly and the Few color meta-concept <c:0,w:0,

gn:0,g:0,r:1…>Few, respectively, correspond to the

color distributions expressed in queries Q6 and Q7.

• Comparative color meta-concepts linked to the query

Q8 involving the operators More than and Less than.

More/Less color meta-concepts, correlated to two sets

dmore and dless, are linked to the color distribution of

an IO whose pixel proportions of some color

categories (elements of the set dmore) are more

important than that of other color categories (elements

of the set dless). Elements of the sets dmore and dless

are, respectively, preceded by keywords More and

Less. More/Less color concepts are characterized by a

pair of vectors (Cm, Cl), each vector with a number of

elements equal to the number of color categories.

Values Cm[i] and Cl[j], i,j [ [1, 11] are boolean

values which are true when the proportions of the

dominant color categories ci are higher than those of

the dominant color categories cj. For example, the

More/Less color concept (<c:1,w:0,gn:0,g:0,r:0…>m,

<c:0,w:0,gn:0,g:1,r:0…>l) corresponds to the color

distribution in query Q8.

Color meta-concepts are elements of partially ordered lat-

tices which are organized, respectively, to the type of the

query processed.

4.4 Index representation

To build a meta-conceptual image index representation I,

object meta-concepts, TICs and CICs are automatically

derived for each IO. We provide in Fig. 3 a partial index

representation for an example image with the object meta-

concept related to Io1, the TIC related to Io2 and the CIC

related to Io3.

5 The query module

5.1 Query expression

Our conceptual architecture is based on a unified full-text

framework allowing a user to query over the visual

semantics and signal information. This obviously optimizes

user interaction since the user is in ‘charge’ of the query

process by making his information needs explicit to the

system.

To build a meta-conceptual image query representation

Q, object meta-concepts, TQCs and CQCs are automati-

cally derived for each IO. Without going into details, a

simple grammar composed of a list of the previously

introduced concepts is used to parse the user full-text

query.

5.2 The matching process

The matching framework is based on Van Rijsbergen’s

logical model which measures to which extent the image

document I satisifies the query Q through the exhaustivity

function P:

Relevance I;Qð Þ ¼ P I ! Qð Þ: ð2Þ

P consists of two operations. It first checks that all

concepts described within the query are also elements of

the index representation. For this, we use lattice projection

to compare query and index concepts. Then, for each

selected image, we provide an estimation of its relevance

with respect to the query, which corresponds to the

quantitative evaluation of their similarity. It is given by

the exhaustivity value between query q and index

representation i:
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EV q; ið Þ¼MAX½ROCqconceptof q;OCi matchingconceptof i Imp OCið Þ
þCpt Match OCq;OCi

� �

�RTQCqconceptof q;TICi matchingconceptof i

�Cpt Match TQCq;TICi

� �

þRCQCqconceptof q;CICi matchingconceptof i

�Cpt Match CQCq;CICi

� �
�

The Imp function measures the ‘importance’ of an

object concept within an image. It is both proportional to

the size of the corresponding visual object and its global

localization with respect to the image center. The

Cpt_Match function is the negative Kullback–Leibler

divergence between the probabilities of visual semantic,

texture and color query concepts which are themselves

certain (i.e. P(OCq), P(TQCq) and P(CQCq) = 1) and:

• the posterior recognition probabilities of object con-

cepts of graph i

• the average of posterior recognition probabilities of

texture and color categories within matching index

texture and color concepts of graph i.

5.3 Organization of the lattice of object concepts

The conceptual structures are organized within latticed-

based structures defined by a specific/generic partial order

(corresponds to a specialization operation in Fig. 4). To

derive the lattice of object concepts, several experimental

studies presented in [2] have led to the specification of 20

categories or picture scenes describing the image content at

a global level. Web-based image search engines (google,

altavista) are queried by textual keywords corresponding to

these picture scenes and 100 images are gathered for each

query.

These images are used to establish a list of semantic

concepts characterizing objects that can be encountered in

these scenes. A total of 72 object concepts to be learnt and

automatically extracted are specified. These are further

enriched with the concepts of the LSCOM-lite taxonomy

(which includes concepts related to the characterization of

multimedia news information and in particular individuals’

identities in the TRECVid topic search task) and a part of

the object lattice is provided in Fig. 4.

6 Validation experiments

The SIR (Signal/object/semantic integration for Image

Retrieval) prototype implements the theoretical framework

and validation experiments are carried out on both a corpus

of consumer photographs and the TRECVid corpus of

image keyframes extracted from news videos. We choose

to deal with these multimedia collections instead of the

Corel professional collection since it has been argued and

demonstrated experimentally that the latter is much easier

to annotate and retrieve; and in fact does not capture the

difficulties inherent in datasets used in real world. We first

introduce these empirical test collections then deal with the

experimental Object Level characterizations, detailing the

algorithmic processes for the object highlighting frame-

work and its evaluation. We finally evaluate the Semantic

Level characterization with queries involving multiple

characterizations of the visual content.

6.1 Test collections

The first collection consists of 2,500 heterogeneous con-

sumer photos. The images are of resolution 256 9 384, in

both portrait and landscape layouts and comprise outdoor

and indoor scenes. For outdoor images, the content varies

from natural landscape (beach, lakeside, river, pond, park,

forest, garden, mountain, rocky area…) to city scenes

(urban area, rural area, crowded street, market, road with

vehicles, swimming pool, temple, mosque, castle…) from

different countries and cultures (Singapore, France,

Belgium, China, Cambodia, Malaysia, Indonesia…). The

indoor images are taken with different focuses (portrait of

single person or a few people, groups of different sizes,

people eating, cultural performance, wedding ceremony,

interior layout, display of objects like painting, toys,

antique collection…). In both outdoor and indoor images,

the subject of focus could be people (or faces in photo

frame), statues, animals, flowers, buildings (or their mini-

ature in theme park), etc., and their mixture with occlusion,

taken with different postures, during the day or at night,

from different viewpoints, and at different distances. We

can also find photographs of low quality which are how-

ever kept for processing in order to illustrate the hetero-

geneity of this particular type of image collections.

Figure 5 illustrates some of the photos of poor quality (e.g.,

faded, overexposed, blurred, etc.).

Unlike professional images, which are well defined,

with sharp contrast and homogeneous signal distributions;

  Beach Lake   Pool

Sky  Physical Object Thing

 Wood

Vegetation/Flora

WaterLiving Ground   Manmade Object

               Construction    Way

Window  Pillar  Building  Fence  WallRoad  Stairs

Field  Forest  Beachfront  Floor  Organism

Flower GrassBody PartPlant PartRock Geological Form

Pebble Leaf   Foliage  Trunk Face Beach Mountains Dune

Natural Object
Person    Plant

Object_Concept

Fig. 4 A part of the lattice of object concepts
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or domain-specific images such as medical images, which

have a clear classification and are usually attached with

semantic annotation, consumer image content varies sig-

nificantly. Image segmentation is furthermore challenging

due to the heterogeneity of color and texture regions. Also,

the lack of content annotation does not make it possible to

assume availability of text for straightforward joint visual/

text characterization.

The TRECVid_04 corpus consists of 70 h of US

broadcast news video in MPEG-1 format. It comprises 128

videos segmented in 33,366 shots, each one itself repre-

sented by 1 or more keyframes (cf. Fig. 8 for keyframe

samples). A total of 48,817 keyframes are specified. The

key-frame extraction process is here integrated with the

processes of shot segmentation. Each time a new shot is

identified, the keyframe extraction process is invoked,

using parameters already computed during shot boundary

detection. These parameters are related to visual data such

as color or camera motion descriptors. Keyframe selection

differs depending on the application needs. For example,

we require only a few keyframes (1–2) for a video-captured

meeting since camera motions are sparse. However, in

broadcast news documents, we find more animation (rela-

ted to visual aspects) which entails highlighting more shots

and keyframes. In our approach, the keyframes are selected

as the most stable images of a given shot and there are up

to 10 keyframes representing a shot.

6.2 Experimental Object Level characterization

As far as the feature extraction processes are concerned,

our algorithm is summarized below:

• Given an image in the index corpus.

• We apply a rectangular grid to it highlighting the

nb_grid rectangular regions of size 35 9 35 pixels

which override of 12 pixels in [Ox) and [Oy).

• For each rectangular region, we characterize the color

and texture categories as presented in Sects. 2.1 and 2.2

respectively. It is then described by a 22-dimension

structure.

• After a step of low-level characterization in the RGB

space, the color categories with their probabilities

are highlighted in the perceptual HVC space.

• For texture characterization, the 49-dimension

Gabor energy vectors are linked to the texture

categories.

For the learning process, 554 rectangular image regions

are cropped from 138 images taken from the collection of

2,500 home photographs. Additionally, 885 keyframe

regions are extracted from the TRECVid_03 collection.

Samples are provided in Fig. 6. 965 (i.e., two-thirds) of

them are used as training data and the remaining one-third

(i.e., 474) as test data for generalization performance. In

other words, both the training and test data utilize only a

small percentage of the original collections. Color and

texture features are computed for each training region as an

input vector for the neural network.

The learning algorithm is summarized as follows:

• Given a ‘positive’ visual object, i.e., corresponding to

the object concept being learned:

• We apply to it a rectangular grid highlighting the

rectangular regions with size 35 9 35 pixels

• We extract the color and texture categories for each

rectangular region with their associated recognition

probabilities.

• Features corresponding to the block are used as

training input for the probabilistic visual semantic

tagging framework.

For the recognition step, the algorithmic process is

based on five steps:

• Given a physical keyframe segmented into rectangular

regions.

• For each object concept, we use the probabilistic

classifier which provides an output value.

• We obtain for each rectangular region the probabilities

linked to the object concepts.

Fig. 5 Photographs of low quality kept in the collection

Fig. 6 Example of cropped image regions used as training data (top
down, left to right): face, people, crowd, body part, sky (clear), sky

(cloudy), sky (blue), floor, beachfront, field, pool, pond, lake, foliage,

flower, trunk, mountain, pebble, pillar, building, stairs, wall (white),

wall (wooden), fur, cycle, fire
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• We consider as the representative object concept the

one associated to the maximum recognition probability.

• In case of a ‘‘conflict’’ (i.e. a rectangular region

such as two distinct object concepts have the same

maximum probability values), the decision will be

based on taking into account the object concepts

with the maximum recognition probabilities in

adjacent regions.

• We agglomerate the blocks with respect to the protocol

described in Sect. 3.2 so as to highlight the image

objects.

6.3 Evaluation of the Semantic Level characterization

As opposed to trivial object concept queries, we wish to

retrieve images that represent elaborate image scenes

through queries involving multiple characterizations at the

Semantic Level (as proposed in the TREC multimedia

track). For this evaluation, we use two validation corpora:

the first is the previously introduced collection of real-

world photographs and the second is the TRECVid_04

keyframe corpus.

6.3.1 Evaluation on the collection of home photographs

For this, we specify 45 queries implying non-trivial infor-

mation needs based on object concepts with additional

signal characterizations such as swimming-pool water or

interlaced foliage with their ground truths.

For each proposed query, we construct relevant textual

query characterizations at the Semantic Level using cor-

responding object and signal concepts as input to SIR (e.g.

‘water mostly cyan’ for swimming-pool water or ‘people

lined’ for lined people). S1 processes 3 series of 3 random

relevant photographs for each query (they correspond to

swimming-pool water, lined people in our example que-

ries). Also these queries are translated in relevant textual

symbolic entities to be processed by the semantic frame-

work of S2 (‘Find images with water’ for swimming-pool

water, ‘Find images with people’ for lined people). Then to

refine the results, 3 random relevant photographs are

selected as input to the RF framework.

Recall/precision curves of Fig. 7 illustrate the average

results obtained for queries involving object concepts and

signal characterizations: the curve associated with the SIR

legend illustrates the results in recall and precision

obtained by SIR, the curve associated with the VK legend

by S1 and the curve associated with the SignSymb legend

by S2. The average precision of SIR (0.4292) is approxi-

mately 78.54% higher over the average precision of the VK

system (0.2404) and approximately 35.61% higher over the

average precision of the loosely coupled state-of-the-art

system (0.3165). We notice that improvements of the

precision values are significant at all recall values.

6.3.2 Evaluation on the TRECVid corpus

First, image objects within the 48,817 image keyframes are

automatically assigned an object concept as presented in

Sect. 3 and characterized with conceptual object, color and

texture structures presented in Sects. 4.1, 4.2 and 4.3.

The search task is based on topic retrieval where a topic

is defined as a formatted description of an information

need, therefore involving multiple characterizations such as

images, audio, text… The complexity inherent in topic

search revolves around the difficulty to design the intended

meaning and interrelationships between the various char-

acterizations. We therefore design the evaluation task in

the context of manual search, where a human expert in the

search system interface is able to interpret a topic and

propose an optimal query to be processed by the system. 15

multimedia topics provided in Table 1 and their ground

truths developed by NIST for the search task express the

need for video concerning people, things, events, locations

and combinations of the former. Topics are designed to

reflect many of the various sorts of queries users propose:

requests for documents with specific people or people

types, objects or instances of object types, activities or

locations or instances of activity or location types.

We propose in Table 1 their formulation at the Semantic

Level of our architecture as a SIR query. The latter is

compared with signal-based and object-based systems

operating manual search on visual features. The signal-

based system, representative of the category of systems

tackling the Signal Level, is based on a query-specific

combination of visual content-based retrieval: color char-

acterization consists of the concatenation of a global 166-

dimensional HSV color correlogram and 3 9 3-grid based

81-dimensional Lab color moments; texture characterization

is based on the concatenation of a global 96-dimensional
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Fig. 7 Recall/precision curves for the signal/object queries
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co-occurrence feature and a 3 9 3 grid-based 27-dimen-

sional Tamura feature. Each query is manually formulated as

a boolean or a weighted average combination of queries

based on visual examples [20]. The object-based system,

representative of the category of systems tackling the Image

Object Level, relies on a generative probabilistic model

(Gaussian Mixture Model). Queries are created by manual

construction and selection of visual examples [21].

We propose the top retrieval results for four multimedia

topics in Fig. 8. Also, Table 2 details the precision at

n documents for the compared systems. We can note that

the precision at 10 documents for SIR (0.113) is approxi-

mately 116.48% higher than this of the semantic-based

system (0.052) and more than 25 times better than this of

the signal-based system (0.004). This clearly indicates that

on average the first keyframe images returned by SIR

are particularly relevant compared to the first keyframe

images retrieved by other systems. SIR is therefore preci-

sion-oriented, which is an interesting property since

according to studies related to users’ behavior, an

Table 1 TRECVid topics, their query transcription and equivalent logical formulations at the Semantic Level

TRECVid topic SIR query transcription

Street scene with multiple pedestrians in motion and multiple vehicles in motion People and cars

One or more buildings with flood waters around it/them Buildings and water smeared

One or more people and one or more dogs walking together People and fur

US Capitol dome IO mostly grey and lined

Hockey rink with at least one of the nets fully visible from some point of view IO netlike and IO mostly white and marbled

Person hitting a golf ball that then goes into the hole People and IO mostly green and uniform

One or people going up or down some visible steps or stairs People and stairs

Handheld weapon firing IO black and fire

One or more bicycles rolling along Bicycles lined

Tennis player contacting the ball with his or her tennis racket People and IO netlike and mostly yellow

Bill Clinton speaking with at least part of a US flag visible behind him Face and IO lined and blue and white and red

One or more horses in motion Fur

One or more skiers skiing a slalom course with at least one gate pole visible People and ground mostly white

One or more buildings on fire, with flames and smoke visible Buildings and fire

One or more signs or banners carried by people at a march or protest Crowd and IO white

Fig. 8 Top 4 retrieval results

for topics 127 (one or more

people and one or more dogs

walking together), 130 (hockey

rink with at least one of the nets

fully visible from some point of

view), 136 (person hitting a golf

ball that then goes into the

hole), 140 (one or more bicycles

rolling along)
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individual is mostly interested in the first retrieval results

provided by a system.

In the framework of the TRECVid experiments, we

notice that the results obtained by the compared systems

are much poorer than those obtained considering the corpus

of home photographs, which is explained by the very low

image quality of keyframes extracted from videos. This

strongly penalizes all extraction processes operating at the

image level (e.g., color, texture…).

7 Conclusion and perspective

To address the difficulty to reconcile the heterogeneous

ways of interpreting the multimedia visual content (and in

particular the gap between the signal and semantic inter-

pretations), we have proposed an architecture based on the

use of multiple representations of the visual content cor-

responding to three abstraction levels, namely the Signal,

Object and Semantic levels.

At the Signal Level, we specify a framework mapping

the extracted low-level features to high-level visual infor-

mation through the use of a population of learning agents

which have the ability to perceive signals (color or texture),

categorize their perception and lexicalize their symbolic

representation.

At the Object Level, we highlight a correspondence

between the signal information and object concepts (such

as mountains, sky, grass…). The automatic object-based

indexing framework, based on a statistical model which

considers the joint distribution of semantic concepts and

symbolic signal information, addresses the curse of

dimensionality contrary to traditional frameworks consi-

dering high-dimensional spaces of low-level extracted

signal features.

At the Semantic Level, signal and object characteriza-

tions are coupled within a logic-based framework. The

latter is instantiated by a knowledge representation for-

malism allowing to define an expressive query language

consisting of several operators as well as a theoretically

sound matching module for query processing.

Empirically, the SIR prototype implements the theore-

tical proposition and validation experiments are carried out

on both a corpus of consumer photographs and the

TRECVid corpus of image keyframes instead of ‘‘easy-to-

process’’ professional collections. They allow us to stress

the gain in precision at both Object and Semantic levels of

characterization of our framework in comparison with

state-of-the-art architectures.

There are however limitations when learning semantic

concepts through the use of low-level features. In such

frameworks, solutions to multimedia indexing and retrieval

could only be applied using broad semantic concept

detectors, e.g. ‘‘sky’’ or ‘‘foliage’’, therefore leading to

restrained index vocabularies. Perspectives in large-scale

multimedia indexing and retrieval would consist in using

the Web and in particular the widely available contextual

image information (however, not only restricted to tags

available in social websites). However, it is believed that

indexing based on contextual image information solely

gives tolerable results. But if used jointly with both the

signal features and semantic concepts derived from the

visual content, the precision of image search engines could

be further improved. This idea will be further explored in

subsequent works.
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