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Abstract Skin detection is a difficult and primary task in
many image processing applications. Because of the diversity
of various image processing tasks, there exists no optimum
method that can perform properly for all applications. In this
paper, we have proposed a novel skin detection algorithm that
combines color and texture information of skin with cellular
learning automata to detect skin-like regions in color images.
Skin color regions are first detected, by using a committee
structure, from among several explicit boundary skin models.
Detected skin-color regions are then fed to a texture analyzer
which extracts texture features via their color statistical prop-
erties and maps them to a skin probability map. This map is
then used by cellular learning automata to adaptively make a
decision on skin regions. Conducted experiments show that
the proposed algorithm achieves the true positive rate of about
86.3% and the false positive rate of about 9.2% on Compaq
skin database which shows its efficiency.
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1 Introduction

Skin detection refers to isolation of image (or video) pixels
that correspond to human skin. It is very useful for detecting
human body parts (faces, hands, etc.) in numerous applica-
tions, such as face detection [1], face tracking [2], filtering of
objectionable web images [3], and human-computer inter-
action [4,5] to mention a few. While multimedia data are
becoming popular in wireless ad hoc environments, some
methods try to cluster such multimedia data based on their
semantic contents [6]. Skin color can be an appropriate option
for this type of semantic clustering. More important proper-
ties of skin detection (SD) include increasing the total pro-
cessing speed (as only skin regions will be processed) and
being invariant against rotation, scale, partial occlusion, and
pose change. However, existence of various ethnic and indi-
vidual characteristics (e.g., race, age, body part) results in
having different skin colors appearances. Figure 1 shows
such different skin colors. As such, the main challenge is
to make the SD process robust against large appearance vari-
ations that can occur. In fact, skin appearance is affected
by changes in intensity, color, and emitting light direction.
Camera characteristics, cast shadows of other objects within
the scene, and additional light reflections also affect the skin
appearance. Occlusions (clothing, hair, eye glasses, etc.) can
also introduce major difficulties in SD. Furthermore, other
objects might also exist in the scene with skin-like colors
(e.g., certain types of wood, sand, clothes, and paintings).
Figure 2 shows some different skin appearances in natural
images.

When developing a system that employs skin color as
a feature for SD, the researchers usually face two major
questions: which color space should be chosen and how
exactly the skin color distribution should be modeled. Some
researchers investigate the effect of the chosen color space
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Fig. 1 Different skin colors [7]

on detected skin regions [8,9] and the aim of some others is
to model the skin color distribution [10,11]. Some authors
define explicitly (through a number of rules) the skin cluster
boundaries in some color spaces [12]. A good survey on the
performance of different color spaces for SD and explanation
of skin color modeling can be found in [12,13]. In Sect. 2.1
a review on some of these methods is given in detail.

In this work, we consider the cellular learning automata
(CLA) as a model for systems that consist of simple elements.
In fact, these simple elements (which have the learning capa-
bility) act jointly to represent the complicated behavioral
patterns. A CLA is the cellular automata (CA) in which a
learning automata (LA) is assigned to each cell. The learn-
ing automaton located in a particular cell determines its state
(action) based on its action probability vector. The assigned
rule of CLA and the actions selected by the neighboring
LA of any particular learning automaton determine the rein-
forcement signal to the learning automaton located in a cell.
These simple elements improve their performance based on
the behavior of their neighbors and previous experiences.
Nevertheless, they can expose complex behavior based on
their interactions. The neighborhood properties among image
pixels make CLA as a good candidate for image processing
tasks. A number of applications of CLA have been developed
recently: namely, image processing [14], cellular mobile net-
works [15], modeling of commerce networks [16], solving
NP-Complete problems [17], capacity assignment [18], and
neural networks [19].

In this paper, we propose an algorithm that combines color
and texture information of skin regions with CLA to detect
skin regions in color images more accurately. Skin color

regions in the input image are first detected by using a com-
mittee structure to make a decision from several explicit
boundary skin models [20]. This structure maintains the ben-
efits of different color spaces. The detected skin-color regions
are then fed to a texture feature extractor. Two approaches
are employed to extract texture features of skin regions, via
their statistical properties, which are then used to produce
a skin probability map. The probability map is then fed to
a cellular learning automaton to make the final decision on
skin regions.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a review on related work on SD and summa-
rizes some related concepts of CLA. Proposed SD algorithm
is presented in Sect. 3. Experimental results are discussed in
Sect. 4. Finally, concluding remarks are given in Sect. 5.

2 Related work

This section starts by presenting the basic structure of SD
methods and presents a review on some related work on SD
in Sect. 2.2. A summary of some related concepts of CLA
and its structure is described in Sect. 2.2.

2.1 Skin detection

Skin detection aims at detecting human skin pixels in color
images. The process results in a binary image (map) that
indicates the location of obtained skin pixels (see Fig. 3).
In SD process, a primary task is to choose a suitable color
space to represent image pixels and their related skin color
distribution model. Some color spaces are able to represent
skin colors more compactly. For example, human skin color
in Nrgb and YCbCr color spaces are more compactly rep-
resented in chromaticity space than in other color spaces,
such as RGB and HIS [21,22]. Dia and Nakano [23] used
the “I” component of YIQ color space to detect skin pixels
from images that mostly contain people with yellow skins.
A good assessment of different color spaces for skin color
representation and comparative evaluations among them can
be found in [22,24].

In general, some factors such as the chosen color space, the
amount of training data, and the application requirements can
affect the skin distribution modeling. In some applications,

Fig. 2 Different skin appearances in natural images [7]
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Fig. 3 A typical image of Compaq database and its corresponding
skin mask

SD is used as a preprocessing step and thus a fast SD method
is required. In some applications, hardware constraints
demand the use of specific methods. And finally, in some
applications, such as human tracking or face tracking, the
change of environmental lighting affects the choice of color
space and skin modeling. Note that SD in images with com-
plex background and non-human objects requires more com-
plicated and time-consuming methods.

Skin detection can also be considered as a classification
method having two classes: skin and non-skin. SD app
roaches that only use the pixel color are called pixel-based
skin detectors. These approaches are based on the same pixel-
wise processing paradigm, in which each image pixel is
individually analyzed. Jones and Rehg [25] claimed that in
most color spaces the skin colors distribute in some com-
pact regions. One of the simplest methods of this kind is to
define some rules to explicitly characterize the skin color
boundaries in a color space under an illumination-controlled
environment [26]. Explicitly defined skin color boundaries
in different color spaces are frequently used in the literature
[20,27–30] because of their simplicity and computational
efficiency. Brown et al. [31] used the self-organizing map
(SOM) to determine skin clusters. Several color spaces have
been tested for SOM, but the conducted experiments have
shown that the performance of SOM-based SD methods is
not affected by the used color space.

Another simple SD method is the histogram modeling
[32–34], or the normalized lookup table (LUT). In this
method, a 2-D, or 3-D color histogram is used to model the
skin distribution in different color spaces. After the train-
ing stage, the histogram counts are normalized to convert
the histogram values to a discrete probability distribution.
In histogram modeling, the conditional probability histo-
gram of the observing color, c, given skin, P(c|skin), and
non-skin, P(c| ∼ skin) data is computed (using the Bayes
rule). The obtained probability is then compared with a pre-
determined threshold to obtain the SD rule [25,35,36]. The
receiver operating characteristics (ROC) curve is usually
computed to indicate the true positive rate versus the false
positive rate for different thresholds to evaluate the detec-
tion performance. Both of these methods need to use a large
database for training and enough memory to hold the large

lookup table. To overcome these drawbacks, the parametric
skin distribution modeling is used.

Under controlled illumination conditions and for similar
skin color types, an elliptical Gaussian joint probability (sin-
gle Gaussian model) is used to model skin color distribution
in [1,36,37]. Parameters of the model can be achieved by
parameter estimation approaches from training data (such as
the maximum likelihood). The obtained probability is then
compared with a certain threshold to measure the skin color
likeliness. Alternatively, the Mahalanobis distance (λ) can be
used to classify the pixel color as skin or non-skin [38,39]
pixel color.

Yang and Ahuja [40] used a statistical test to show that
single Gaussian model is not adequate to model the skin
distribution in LUV color space for the considered data-
set. A more advanced and complicated model to describe
complex shaped distributions is the Gaussian mixture model
(GMM), the generalization of the single Gaussian model.
Skin color types and varying illumination conditions can be
modeled using GMM, where the number of Gaussian compo-
nents is assumed to be known beforehand. Parameters of this
model can be obtained by expectation maximization (EM)
algorithm, where it needs proper initial conditions to con-
verge. The details of training GMM with EM can be found
in [38,40]. Choice of the number of Gaussian components
is based on the used color space and the number of skin
types in the training data. Researchers have used 2 [40] to 16
[25] number of Gaussian components in their models. The
effect of this choice is discussed in [39] for Nrgb color space.
In [41], GMM has been used for skin color in a feature space
created by a non-linear map defined empirically by the use
of a polynomial estimated kernel.

Lee and Yoo [42] investigated the skin and non-skin
distribution in several color spaces. They concluded that
the shape of skin color cluster is almost elliptical. They
claimed that the usage of a symmetric Gaussian model leads
to a high false positive rate and hence proposed an ellip-
tical boundary model. They compared their model with a
single and mixture of Gaussian model on Compaq database.
In [43], a maximum entropy classifier is used for estimating
skin probability distribution from histogram of one pixel and
its two adjacent pixels. Then, the Gibbs sampler is used to
derive the probability of skin for each pixel. Other classifiers
such as multi-layer perceptron (MLP) [44,45], Bayesian net-
work (BN) [46], and support vector machine (SVM) [47] are
also used for SD. Fuzzy approaches are also used for
pixel-based SD [48]. A comparative assessment of traditional
pixel-based SD methods can be found in [11,12]. However,
standard SD techniques are not robust enough to deal with
complex environments containing surfaces and objects with
skin-like colors.

In order to detect skin regions from non-human skin-like
objects, several region-based methods have been proposed,
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which take into account the spatial relationship among image
pixels. In fact, the texture features of skin-like regions are
counted to better distinguish between skin and non-skin areas.
As the pixel-based SD is the primary stage of these meth-
ods, the performance of the region-based SD still depends
on the outcome of pixel-based SD process. The idea behind
the region-based SD methods is that human beings can detect
skin regions in real scenes without specific difficulties. How-
ever, for a human being the classification of a single pixel
as skin or non-skin is a very difficult task. In fact, humans
use many high-level processes to assist the detection of skin
(detection of hair, clothes, etc). They also use some simple
diffusion mechanisms to detect colors and textures.

Diplaros et al. [49] assumed that each pixel in an image
has a hidden binary label associated with it that specifies
whether it is a skin pixel or not. A variation of EM algo-
rithm which incorporates the spatial constraints is then used
to solve the inference problem. In [50], a shape and color-
based model for SD has been proposed. The model is para-
metric and represents the spatial arrangement of skin pixels
as compact elliptical regions. Its parameters are estimated by
maximizing the mutual information between the distribution
of model-generated skin pixels and the distribution of skin
colors. Forsyth and Fleck [51] have subtracted the original
image from its median filtered image to extract the texture of
skin-like areas. In [52], the mean and standard deviation of
the magnitude of Gabor wavelet coefficients are considered
as texture features. Texture classification is then applied by
using GMM.

In general, the robustness of SD decreases under vary-
ing lighting conditions. Therefore, one of the most important
features of skin color model (especially in video applica-
tions) is its ability to adapt to the changes in lighting and
viewing conditions. In order to tolerate varying illumina-
tions, two major approaches exist. Illumination invariance
(or color constancy) is the most common approach for deal-
ing with lighting changes. In this approach, the image content
is transformed to a known canonical illuminant to estimate
the illuminant color. Then, the image is enhanced pixel-wise
based on the estimate of illuminant [53–55]. Skin color mod-
eling and detection are then applied on these color-enhanced
images [56–58]. In this approach, the color constancy algo-
rithm is applied as a preprocessing step. A good comparison
of different approaches with respect to color constancy is
reported in [59,60]. Alternatively, the adaptive (or dynamic)
approaches are to change the previous developed color model
into the new environment. Both pixel-based and region-based
SD methods can be adapted for illumination changes. Two
common methods for dynamical modeling of skin color dis-
tribution are histogram and GMM [57,61]. The advantage of
histogram approach is that the probability distribution can
be computed inexpensively. Also, if the number of Gaussian
components is known in prior, the parameters of GMM can

Fig. 4 Two neighborhood options: a Von Neumann, b Moore [14]

be updated in real-time. Adaptive thresholding is an intuitive
dynamic approach to detect skin pixels in varying illumina-
tions. For instance, Cho et al. [62] proposed a method based
on adaptive explicit thresholding in HSV color space. In [12]
and [24], a short review on illumination change handling
approaches is given. Fuzzy approaches are also presented to
overcome illumination changes in [63,64].

2.2 Cellular automata

Cellular automata were invented in the 1940s by the math-
ematicians John Von Neumann and Stanislaw Ulam [65].
Automata are simple agents for doing simple tasks by design.
The popularity of CA comes from their simplicity and enor-
mous potential in modeling complex systems. CA can be
viewed as a simple model of a spatially extended decentral-
ized system made from a number of individual components
(cells) [66,67]. They consist of an array of cells, where each
cell is allowed to be in one of a few states. Each cell considers
its neighbors to know their states. Based on this information,
each cell applies a simple rule to determine whether it has
to alert its state [68]. The communication between constit-
uent cells is limited to only local interactions. The overall
structure can be viewed as a parallel processing task. How-
ever, this simple structure when iterated for several times
produces complex patterns displaying the potential to simu-
late different sophisticated natural phenomena. Two possible
neighborhood options are shown in Fig. 4.

The states of all cells in the lattice are described by a
configuration that can be described as the state of the whole
lattice. The rule and the initial configuration of CA spec-
ify the evolution of CA that indicates how each configu-
ration is changed in one step. An approach to solve the
learning problem was initiated by the Russian mathematician
Tsetlin [69]. He introduced, in 1961, a new mode1 of com-
puter learning that is now called learning automata. LA inter-
act with a random environment to improve their behavior. The
term environment refers, in general, to the collection of all
external conditions and influences affecting the development
of a system. LA are connected to the environment in a feed-
back loop, such that the input of that automata is the output
of the environment, and the vice versa (see Fig. 5).

The functionality of LA can be described in terms of a
sequence of repetitive feedback cycles in which the automata
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Fig. 5 Feedback connections of learning automata and their environ-
ment [70]

interact with an environment. The automata have a finite
set of actions, αi , to choose from, and at each stage, k, the
choice of an action depends upon their action probability
vector, ρi (k). The automata choose an action that triggers a
response (reinforcement signal) from the environment. Such
a response can be either a reward or a penalty. The automata
use this response and the knowledge acquired in previous
actions to determine the next action. The automata update
their probability vector of actions depending upon the rein-
forcement signal received at that stage. Various learning algo-
rithms have been reported for LA. For example, in the linear
reward-εpenalty, L R−εP , scheme the recurrence equation for
updating ρ is defined by [70]

ρ j (k + 1)

=
{

ρ j (k) + α × (1 − ρ j (k)) if i = j

(1 − α) × ρ j (k) if i �= j
for β(k) = 0

(1)

ρ j (k + 1)

=
{

(1 − b) × ρ j (k) if i = j

b
r−1 + (1 − b) × ρ j (k) if i �= j

for β(k) = 1

(2)

in which αi denotes the action chosen at time k as a sample
from probability distribution ρ(k), and β(k) is the reinforce-
ment signal received from its environment.

If the environment rewards the selected action, then
β(k)=0 or else β(k) = 1. Parameters 0 < b < α < 1 repre-
sent the step lengths, and r is the number of actions for LA.
Parameters a and b are the increment and decrement factors
of the action probabilities. If α = b, then Eqs. (1) and (2)
are called the linear reward-penalty, L R−P , algorithm, and if
b = 0 they are called the linear reward-inaction, L R−I , algo-
rithm. Some applications of LA include telephone and traffic
routing and control [71], stochastic geometric problems [72],
stochastic point location problem [73], game theory, and pat-
tern recognition [74].

2.3 Cellular learning automata

The full potential of LA is realized when multiple automata
interact with each other. Interaction may assume different

Fig. 6 Illustration of cellular learning automata [70]

forms (e.g., tree, mesh, array, etc). Depending on the problem
under consideration, one of these structures for interaction
may be chosen. In most applications, a full interaction
between all LA is not necessary and natural. Local interac-
tions of LA, which can be defined in the form of a graph (such
as a tree, mesh, or array) are natural in many applications.
On the other hand, CA are mathematical models for systems
containing a large number of simple identical components
with local interactions. If CA and LA combine together, a
new model called cellular learning automata is created (see
Fig. 6). This model is superior to CA because of its ability to
learn. It is also superior to a single LA because it is a collec-
tion of LA which can interact with each other. The basic idea
of CLA, which is a subclass of the stochastic CA, is the usage
of LA to adjust the state transition probability of stochastic
CA [70].

In general, as mentioned above, CLA form a mathemati-
cal model for dynamic and complex systems that consist of
a large number of simple components. These simple com-
ponents (which have the learning capability) act jointly to
produce complicated behavioral patterns. CLA contain CA
in which LA are assigned to every cell. The LA residing in
a particular cell determines its state (action) based on their
action probability vector. The underlying rule of CLA and
the actions selected by the neighboring LA of any particular
LA determine the reinforcement signal (rewarding or penal-
izing signal) to the LA located in a cell. The neighboring
LA of any particular LA constitutes the local environment
of that cell. The local environment of a cell is non-stationary
because the action probability vectors of the neighboring LA
vary during the evolution of CLA.

Overall iterative behavior of CLA is illustrated in Fig. 7
which can be summarized as follows:

• Determine the state of every cell based on action proba-
bility vectors of LA located in that cell.
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Fig. 7 Functionality of cellular learning automata

• Choose the initial values of this state based on previous
experiences, or at random.

• Consider the CLA rule to determine the reinforcement
signal to LA located in that cell.

• Update the action probability vector of LA based on the
supplied reinforcement signal and the chosen action by
that cell.

• Iterate the process until the desired result is obtained.

A number of applications for CLA have been developed
recently. These include image processing [14,75,76], cellu-
lar mobile networks [15], modeling of commerce networks
[16], solving NP-complete problems [17], capacity assign-
ment [18], and neural networks [19]. In [70], a mathematical
methodology to study the behavior of CLA is given and its
convergence properties are investigated.

3 Proposed method

In this section, the proposed SD method that combines color
and texture information of skin regions with cellular learning
automata to detect skin areas in color images is presented.
Figure 8 shows the overall structure of the proposed SD
method. As shown in this figure, a pixel-based boosted SD is
used to recognize skin-like pixels. The output of this part is
fed to a texture analyzer which extracts texture features from
the skin-like region. As the texture contains some informa-
tion about the coarseness of the region, CLA use this infor-
mation to analysis texture features and make a decision on
skin and non-skin regions. Each part of the proposed method
is described more in detail next.

3.1 Pixel-based boosted skin detection

There is no explicit evidence which indicates a special color
space to have the best performance for SD in all situations

Pixel-Based Boosted Skin Detection 

Texture Extraction 

CLA-Based Texture Analysis 

Input Image 

Skin Mask

Fig. 8 Overall structure of proposed skin detection method

and images. The main difficulty in achieving high skin recog-
nition rates, and producing the smallest possible number of
false positive pixels, is defining the accurate cluster bound-
aries through simple (often heuristically chosen) decision
rules. Our experiments along with several previous works
which have been conducted in this area confirm this fact.
Thus, by combining different skin color spaces in an appro-
priate manner, we aim at obtaining a model which is near to
optimum in various situations. The combination of classifi-
ers has been widely studied as a method for improving the
efficiency and accuracy achieved by a single classifier [77].
Some combinations, such as those based on the Bayes theory,
assume that the classifiers are statistically independent. Vot-
ing methods present another type of combination that do not
require independency and thus can simply count the number
of classifiers that agree with their decision and accordingly
decide on the class to which the input pattern belongs.

In our approach, we assume a structure of classifiers in
which each classifier is an explicit boundary skin detector in
a specific color space. A boosting method called “unbiased
voting” [78] is used to combine the classifier results to make
a better decision. We use the RGB, YCbCr , HSI, Nrgb, and
YIQ color spaces in our boosting structure. In fact, in [79,80]
these color spaces are reported as good candidates to be used
in explicit SD methods.

Our proposed pixel-based boosted SD method assigns a
weight to the output of each classifier. This weight indicates
the effect of each classifier result on the final decision. The
conducted experiments show a direct relation between the
true positive (TP) and false positive (FP) rates in skin detec-
tors. We have found that if the classifier weights are deter-
mined such that a balance is achieved between the TP and FP
of each classifier, the best results will be obtained by boosting
of classifiers. The structure of our pixel-based boosted skin
detector is shown in Fig. 9. The weight of each classifier is
determined by

wi = Ti∑m
j=1 Tj

(3)

123



A new dynamic cellular learning automata-based skin detector 315

Fig. 9 Structure of pixel-based boosted skin detector

Fig. 10 Two skin candidate regions with different textures

where Ti is the TP rate of each explicit skin classifier on
the training data and m is number of explicit classifiers used
in the boosted structure. Threshold of pixel-based
boosted SD, θ , is determined empirically to detect 94.2%
of all skin-associated pixels. Assessment is then made in
terms of the percentage of non-skin pixels that are incorrectly
accepted. In our experiments, the lowest false acceptance rate
was about 25.8%. The threshold can be changed to achieve
higher TP versus lower FP. The aim of our proposed method
is to detect the early skin regions with high TP and FP and
then to reduce FP by employing the texture analyzer.

3.2 Texture extraction

To extract skin texture two facts should be considered. The
texture of skin regions is somewhat smooth and no spe-
cific texture feature can be recognized from a distant skin
region. Note that pixel-based approaches judge whether a
pixel belongs to skin based on its color appearance, while our
region-based approach combines the color and texture infor-
mation of skin region candidates to make its decision. As a
result, a non-skin region (with a skin-like color) can be dis-
criminated from the obtained set of skin-like regions by con-
sidering its different texture properties. Figure 10 shows an
example of two skin candidate regions with different textures.

We use a combination of two approaches to extract texture
features. In the first approach, we use the Euclidian distance
in a given color space to assess neighboring relations. The
output of this approach generates a probability map in which

Fig. 11 Calculation of RGB distances. a Input color image and its b
3 × 3 adjacency, c RGB distances

the corresponding skin pixels have a high probability. In the
second approach, we use the difference between the original
image and its median filtered image to obtain a coarseness
map. We use these two maps to obtain the final probability
map that is fed to the texture analyzer. The details of these
approaches are given in Sects. 3.2.1 and 3.2.2. In Sect. 3.2.3,
the combination strategy of two texture maps to achieve the
final probability map is described.

3.2.1 Approach 1

In the first texture extraction method, the texture of a region
is extracted based on the color information of its neighboring
pixels and their Euclidian distances in the RGB color space.
First, for each pixel Xi j (r, g, b) located at (i, j) position of
image “I ” (with red, green, and blue values “r”, “g”, and
“b”, respectively) the Euclidian distances between the color
of that pixel and all its neighbors in a W × W block around
it is calculated. Note that image the result of pixel-based
boosted SD process. Figure 11 shows the calculation of RGB
distances for a typical adjacency. The RGB distances are cal-
culated by

DY Xi j =
√

(rXi j −rY )2 + (gXi j − gY )2 + (bXi j − bY )2 (4)

The “coarseness map” is then generated by

Ci j = Variance
(
DY Xi j

)
Y ∈ W × W around Xi j (5)

The “probability map” is then computed using the calculated
coarseness value by

Pi j = 1 − Ci j

Max(Cmn)
m, n ∈ I (6)

Figure 12 shows a typical image and its related probability
maps for 3×3 adjacency. Brighter pixels indicate higher skin
probability. From this figure, one can observe that skin-like
regions which contain a coarse texture have small and irreg-
ular probability maps while smooth skin-like regions have
higher and more regular probability maps.
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Fig. 12 a Original image. b Resulted probability maps (for 3 × 3
adjacency) obtained by Approach 1

Fig. 13 a Original image. b Resulted probability maps obtained by
Approach 2

3.2.2 Approach 2

In the second approach, median filtering is used to obtain
smoothed textures. The median filter is applied on regions
which are classified as skin in the previous pixel-based
boosted SD process. This method is similar to the texture
extraction algorithm proposed in [22,51]. The grayscale
masked image is used to compute the texture data. The inten-
sity of gray image is smoothed with a median filter and the
result is subtracted from the masked gray image. Absolute
values of these differences are fed to the second median fil-
ter. The result must be converted to a probability map to
be combined with the previously obtained texture map. The
probability map is obtained by

Pi j = 1 − Mi j

Max(M)
(7)

where Mi, j is the resulting value at location (i, j). Figure 13
shows a typical image and its related probability maps using
a 5 × 5 median filter.

3.2.3 Combination of probability maps

In this section, the combination strategy of the two probability
maps yielded from previously described approaches is
described to achieve the final probability map. To combine
these two maps, we use a weighted average of them using

ProbabiltyMap = ω × ProbabiltyMap1 + (1 − ω)

× ProbabiltyMap2 (8)

in which weight 0 ≤ ω ≤ 1 is obtained by examining differ-
ent values ranging from [0 to1] (the value which results in
a high TP and a low FP is chosen as a proper candidate for
ω). Figure 14 shows the result of the combination method for
some typical images and their resulted maps. The final prob-
ability map is fed to a CLA-based texture analyzer to make a
decision based on the overall texture information. The detail
of texture analysis stage is explained next.

3.3 CLA-based texture analysis

In this section, CLA is used to make the final decision on skin
or non-skin regions using their obtained probability maps.
The main idea for using CLA is to use the neighborhood rela-
tion of skin-like regions for making better decisions and thus
to improve the SD performance. In fact, CLA can propagate
the skin probability of neighboring regions to all directions
and then by means of this propagation can make a better
decision based on the overall available texture information.

To do so, first the 2-D CLA is created with the same dimen-
sions as the input image (using the 3×3 Moore adjacency).
Then, a dynamic structural LA is allocated to each cell of
CLA, where each LA takes two actions according to skin and
non-skin regions. The initial probability associated with CLA
is obtained from the final probability map. LA selects each
action based on its probability. Then, each learning automa-
ton is rewarded or penalized based on the selected action of
the central LA and its neighbors. A rule analyzes the selected
action of adjacent automata and makes a decision to reward
or penalize the central LA.

CLA performance is very sensitive to some parameters
such as α and β in the learning process and the adjacency
window size. In most applications, these parameters are con-
sidered to be fixed during the iterations. But, fixed values
do not perform well in all states. Consequently, we have let
these parameters to change dynamically to improve the CLA
performance. In fact for SD, in the early iterations the adja-
cent cells in CLA do not have much information exchange
among them and therefore have almost no information. Thus,
at first, a large adjacency window is chosen which causes
more LA to contribute to the decision making process. Then,
after some iteration, the adjacent LAs will gain more accurate
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Fig. 14 a Original image and the resulted probability maps obtained from: b Approach 1, c Approach 2, d combination process

information (because they have exchanged their knowledge)
and hence the window size is reduced.

Moreover, the lack of information can affect the rewarding
and penalizing policy and hence reduce the CLA efficiency.
Therefore, in the early iterations the rewarding and penaliz-
ing must be performed with a low risk. To do so, parame-
ters α and β initially must be chosen with low values. This
decreases the influence of incorrect decisions on the final
results. After some iteration, the knowledge of LA gets more
accurate and we can reward or penalize the decisions with
higher confidence and thus increase the values of α and β.
These tasks increase the convergence speed of CLA. The
relation of changing α and β values with the number of iter-
ations is modeled by

αCur = αMin +
(

αMax − αMin

IMax

)
× ICur

(9)

βCur = βMin +
(

βMax − βMin

IMax

)
× ICur

in which α1 and β1 are initial values of α and β, respec-
tively, αMax, αMin, βMax, and βMin are the maximum and
minimum acceptable values of α and β, IMax is the number
of maximum CLA iteration, and ICur is the number of current
iteration. Also, αCur and βCur are the values of α and β in
the current iteration. The adjacency window size is changed
dynamically between WMin and WMax using

WCur = WMax − 2 ×
[
(K + 2) × (ICur − 1)

IMax

]
(10)

where WMin and WMax are the maximum and minimum size
of the adjacency window, respectively, and K is the num-
ber of odd values between WMin and WMax. Note that WMin

and WMax must be initialized with odd values to define a
legal adjacency around the central pixel. Equation (10) indi-
cates that the adjacency window size changes dynamically
from WMin to WMax with decreasing factor 2. For Example,
if WMax = 7 and WMin = 3, then K will be 1 and W changes

123



318 A. A. Abin et al.

Fig. 15 Examples of a reward and b penalize states

dynamically after each 25 iterations from 7 to 5 and then
to 3.

The rule which controls the rewarding and penalizing
actions in an adjacency window is as follows. In each W ×W
Moore adjacency, if the numbers of LA which select the
action related to skin is greater than 70% of all LA enclosed
in the W × W window, the central LA is rewarded by means
of its learning process. In other words, if more than 70%
of all LA enclosed in a W × W window, report a weak
texture region (high probability value in probability map)
around it, the region around the central LA can be a can-
didate skin region. Also, if the numbers of LA that select
an action related to non-skin are lower than 40% of all LA
enclosed in the W × W window, the central LA is penal-
ized by its learning process. In other words, if less than 40%
of all LA enclosed in a W × W window report a strong
non-skin texture region (low probability value in probability
map) around it, the region around the central LA can be a
non-skin region candidate. Figure 15 shows some states in
which the central automata must be rewarded or penalized in
a 3 × 3 window.

An example of this rule is as follows. In each 3×3 Moore
adjacency, if the numbers of LA which select an action related
to skin is greater than 6, reward the central LA (i.e., if more
than 6 automata report a weak texture region around it, the
region around the central LA can be a candidate skin region).
If the numbers of LA that select an action related to non-skin
is lower than 4, penalize the central LA by its learning algo-
rithm (i.e., if less than 4 automata report a strong non-skin
texture region around it, the region around the central LA can
be a non-skin region candidate).

After several iterations, the existing automata in CLA
converge to select the skin or non-skin state with a high
probability (i.e., the skin and non-skin probability associated
with each LA converges to 0 or 1). Thus, after several iter-
ations, the overall system converges and the process stops.
Now, each pixel can be classified as a skin or non-skin by
applying a threshold on its probability. Figure 16 shows the
convergence of skin probability map obtained by CLA and
its thresholding on some typical images. In this figure the
change in probability map is shown for some determined
CLA iterations.

4 Experimental results

Proposed SD method was carried out on a 2- GHz processor
with 1024 MB RAM on Windows XP professional platform.
We have used MATLAB 7.1 package and its image process-
ing toolbox 5.0.2. Experiments were conducted using the
standard Compaq database (13640 web images, 4675 skin,
and 8965 non-skin images) [27].

In [14], we suggested a simpler version of the CLA-Based
SD method which was running under some fixed learning
parameters and adjacency window sizes. Here, to improve the
performance, we have applied a combined texture extractor
and the CLA which benefits from dynamic learning param-
eters. The provided ROC plots show the superiority of the
proposed method. In the pixel-based boosted SD process, we
used five color spaces RGB, YCbCr , HSI, Nrgb, and YIQ.
Table 1 shows the used color spaces, their explicit rules for
SD, and their weights, Wi , in the boosted structure. Also,
Fig. 17 shows the obtained ROC of the proposed pixel-based
boosted skin detector for different thresholds θ . The thresh-
old θ was set to 0.65 to detect 94.2% of all skin-associated
pixels with false positive rate 25.8%.

Texture extractor in Approach 1 was applied with a 3×3
window size and in Approach 2 the first and second median
filters had 5×5 and 7×7 window sizes, respectively. Table 2
shows the configuration parameters of texture analysis pro-
cess. The learning algorithm of each dynamic structural LA
considered the L R−ε I algorithm with the Moore neighbor-
hood. The results of these configurations are shown in Fig. 18.
In this figure, the ROC curves of the proposed method are
shown for some different IMax values (25, 50, 75, and 100)
when all discussed parameters (ω, αCur, βCur, and WCur) are
changing dynamically. As can be seen in this figure, differ-
ent iteration numbers, IMax, result in different ROC curves.
It is because IMax is an important parameter which affects
the dynamic CLA parameters (αCur, βCur, and WCur) and
changes the final result considerably. For example, IMax =
100 causes the step size, αCur, and window size, WCur, to
change to 0.0002 and 33, respectively. And, IMax =25 causes
the step size and window size to change to 0.0008 and 8,
respectively.

As can be seen in Fig. 18, 75 iterations of CLA result in
a superior ROC. In fact, the reason of low performance of
other number of iterations is the influence of other dynami-
cally chosen parameters on the behavior of CLA. It shows that
IMax =75 andω=0.6 are proper parameters for CLA and tex-
ture combination, respectively. This configuration achieves
TP rate of about 86.3% and FP rate of about 9.2% on Com-
paq skin database which shows its efficiency. Note that there
are many values which can be selected for parameters αMin,
αMax, βMin, and βMax from a continuous range. As we aim at
performing a slow learning for confident CLA convergence,
these parameters are selected to be small and vary in a small
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Fig. 16 Convergence of CLA for skin probability map. a Original image. b Combined probability map. Probability map after: c 25 CLA iterations,
d 50 CLA iterations, e 75 CLA iterations, f 100 CLA iterations

Table 1 Used color spaces and their explicit rules and weights in the boosted structure

Color space Explicit skin detection rule Weight in boosted structure (Wi )

RGB [29]
R > 95 and G > 40 and B > 20 and Max{R; G; B} − Min{R; G; B} > 15
and |R − G| > 15 and R > G and R > B

0.2143

YCbCr [30] Cb ∈ [77, 127] and Cr ∈ [133, 173] 0.2122

HSI [81] H ∈ [0, 50] and S ∈ [0.23, 0.68] 0.2120

Nrgb [20] r
g > 1.185 and r×b

(r+g+b)2 > 0.107 and r×g
(r+g+b)2 > 0.112 0.1802

YIQ [23] I ∈ [0,50] 0.1813

range. Higher values of these parameters result in immature
and unreliable convergence of CLA. However, very small
values of these parameters increase the convergence time of
CLA. The adjacency window size WCur can also take vari-
ous odd values greater than 1. The dynamic range of WCur

is limited to [WMin, WMax]. The large WCur decreases the
TP rate, because it does not consider small skin-like regions
and segments them as non-skin regions. Thus, the param-
eters WMin and WMax are configured so that WCur be 3, 5,
and 7.

As mentioned in Sects. 3 and 4, many parameters contrib-
ute to producing of the final SD result. In fact, our conducted
experiments show that although we have not claimed that the
dynamically chosen parameters of the CLA reach the global
optimum values in the parameter space (to achieve the high-
est TP versus the lowest FP), but it leads to a promising
suboptimal point in the solution space.

Table 3 lists the performance of the proposed methods
and some previous work which were reported on this data-
set in terms of TP and FP rates. Unfortunately, we could not
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Fig. 17 ROC curve of proposed pixel-based boosted skin detection

Table 2 Configuration parameters of CLA

Parameter Value

αMin 0.04

αMax 0.06

βMin 0.02

βMax 0.03

IMax 75

WMax 7

WMin 3

find any region-based skin detectors applied on Compaq skin
database for comparison. Thus, we have compared our results
with some skin detectors which have reported their results on
Compaq. As shown in this table, the usage of texture analy-
sis and dynamic CLA has reduced the FP rate of the pixel-
based skin detector but has also decreased the TP rate of it.
Figure 19 shows the result of the proposed method on some
typical images of Compaq skin database. The elapsed time
of the proposed method was about 8 s for 288 × 352 input
images which contain skin pixels of about 60%, in average.

Fig. 18 ROC of proposed method with different number of maximum
CLA iterations, IMax, and probability map weights ω

5 Conclusions and future work

The main aim of this article was the classification of each
query skin-like pixel as a skin or non-skin pixel based not only
on its color appearance but also on the existing texture around
that pixel. We proposed a skin detection algorithm which
extracts some raw information from the color and texture
of skin-like regions. This raw information was then fed to a
dynamic cellular learning automaton that was able to con-
verge to a stable state based on the related color and texture
information. Skin regions were then detected after the con-
vergence of CLA. Our pixel-based method did not consider
the texture information of skin-like regions and made a deci-
sion purely based on the color appearance of that pixel. The
result of skin detection was then fed to a texture analyzer
which performed based on CLA and statistical information
of skin-like regions. Previous works achieve a high TP rate
but with a high FP rate (as shown in Table 3), but our pro-
posed skin detector obtains candidate skin regions with a TP
of about 86.3% versus a FP rate of 9.2%. One of the benefits
of the proposed method compared with the existing methods

Table 3 Performance of different skin detector methods (on Compaq database)

Detection method Pixel-based (P) / Region-based (R) Color space TP FP

Bayes [82] P RGB 93.4 19.8

Elliptic model [42] P Xyz 90 20.9

Thresholding [22] P YCbCr 82 18.7

MaxEntropy model [43] P RGB 82.9 10

GMM (16 mixtures) [27] P RGB 90 15.5

Proposed boosted P RGB, YIQ, HSI, Nrgb, YCbCr 94.2 25.8

CLA-Based [14] R RGB, YIQ, HSV, Nrgb, YCbCr 83.4 11.3

Proposed dynamic CLA R RGB, YIQ, HSI, Nrgb, YCbCr 86.3 9.2
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Fig. 19 Obtained skin regions by proposed method: a and d input images, b and e pixel-based results, c and f dynamic CLA-based results

which are based on texture features is that in those methods
the decision on skin regions at each block is made by using
only the information of that block and its surrounding blocks,
but in the proposed method the information of the whole
image is counted for to make the final decision. Employ-
ment of CLA-based texture analysis and dynamic changes
of parameters are the main contributions of this work. More-
over, the boosted pixel-based skin detection can be replaced
by any other pixel-based skin detection method, as well.
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