
Multimedia Systems (2006) 12:195–210
DOI 10.1007/s00530-006-0057-6

REGULAR PAPER

Calibrating and optimizing poses of visual sensors
in distributed platforms

Eva Hörster · Rainer Lienhart

Published online: 10 October 2006
© Springer-Verlag 2006

Abstract Many novel multimedia, home entertain-
ment, visual surveillance and health applications use
multiple audio-visual sensors. We present a novel
approach for position and pose calibration of visual sen-
sors, i.e., cameras, in a distributed network of general
purpose computing devices (GPCs). It complements our
work on position calibration of audio sensors and actu-
ators in a distributed computing platform (Raykar et al.
in proceedings of ACM Multimedia ‘03, pp. 572–581,
2003). The approach is suitable for a wide range of pos-
sible – even mobile – setups since (a) synchronization is
not required, (b) it works automatically, (c) only weak
restrictions are imposed on the positions of the cam-
eras, and (d) no upper limit on the number of cam-
eras under calibration is imposed. Corresponding points
across different camera images are established automat-
ically. Cameras do not have to share one common view.
Only a reasonable overlap between camera subgroups
is necessary. The method has been sucessfully tested
in numerous multi-camera environments with a varying
number of cameras and has proven itself to work ex-
tremely accurate. Once all distributed visual sensors are

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

E. Hörster (B) · R. Lienhart
Multimedia Computing Lab, University of Augsburg,
Augsburg, Germany
e-mail: hoerster@informatik.uni-augsburg.de

R. Lienhart
e-mail: lienhart@informatik.uni-augsburg.de

calibrated, we focus on post-optimizing their poses to
increase coverage of the space observed. A linear pro-
gramming approach is derived that determines jointly
for each camera the pan and tilt angle that maximizes
the coverage of the space at a given sampling frequency.
Experimental results clearly demonstrate the gain in
visual coverage.

Categories and Subject Descriptors

I.4.10 [Image Processing and Computer Vision]: Gen-
eral; I.5.4 [Pattern Recognition]: Applications

General Terms

Algorithms

Keywords Multi-camera calibration · Sensor
networks · Position calibration · Pose optimization

1 Introduction

Today we can find microphones, cameras, loudspeakers
and displays nearly everywhere - in public, at home and
at work. These audio/video sensors and actuators are
often a component of computing and communication
devices such as laptops, PDAs and tablets, which we refer
to as General Purpose Computers (GPCs). Often GPCs
are networked using high-speed wired or wireless con-
nections. The resulting array of audio/video sensors and
actuators along with array processing algorithms offers
a set of new features for multimedia applications such
as video conferencing, smart conference rooms, video

196 E. Hörster, R. Lienhart

surveillance, games, e-learning, home entertainment and
image based rendering.

Many of the above mentioned audio-visual array pro-
cessing algorithms require precise knowledge about the
positions and poses of the sensors and actuators as well
as the coverage that is achieved by those sensors. This
demands a simple and convenient calibration approach
to put all sensors and actuators into a common time and
space. Lienhart et al. [14] propose a means to provide
a common time reference to multiple distributed GPCs.
In [21] a method for automatically calibrating audio sen-
sors and actuators is presented. In this paper we focus on
visual sensors where a room or area is instrumented with
N ≥ 3 static cameras connected to networked GPCs.
No precise synchronization of the different devices is
required.

In the first part of this paper we focus on providing a
common space for multiple cameras by actively estimat-
ing their 3D positions and poses. We also address the
problem of effortlessly calibrating the intrinsic parame-
ters of multiple cameras.

In the second part of the paper another important
issue in designing visual sensor arrays is considered: ori-
enting the visual sensors such that they achieve opti-
mal coverage of a given space at a predefined ‘sampling
rate’ (see Sect. 3 for a precise definition). We assume
that the positions and inital poses are given. This is
reasonable because either cameras have been already
installed (e.g., at an airport), or they are put up arbi-
trarily. Currently there exists only few theoretical
research on planning visual sensor positions and poses.
Positions and inital poses of the multiple cameras can be
determined automatically by our calibration approach
(see Sect. 2). Given the fixed positions, we develop a
linear programming model that determines the optimal
poses (pan and tilt angles) with respect to coverage while
maintaining the required resolution (i.e., minimal ‘sam-
pling frequency’). Figure 1 shows one ineffective setup
that we desire to optimize.

Related work: Camera calibration is a well
researched topic in computer vision. Fundamentally
there are two different methods of camera calibration:
photogrammetric calibration and self-calibration [30].
The first method uses a 3D, a 2D (planar), or a virtual cal-
ibration object of precisely known geometry. Important
approaches are described in [4,11,26,27,30]. Planar
methods are very popular because it is easy to obtain
a calibration target by just printing the pattern and fix-
ing the paper on a flat surface. Although providing good
results, the major drawback of these calibration meth-
ods is that they require special equipment or precise
manual measurements. Virtual calibration objects are
constructed over time by tracking an easily identifiable

Fig. 1 Example of an inefficient setup we desire to optimize

object through a 3D scene. The cameras usually have
to be synchronized and thus the setup requires spe-
cial equipment. Self calibration techniques [9,19,25] do
not require any special calibration target. They
simultaneously process several images from different
perspectives of a scene and are based on point corre-
spondences across the images. The accuracy of these
methods depends on how accurately those point cor-
respondences can be extracted between images. Point
correspondences are extracted automatically from the
images by identifying 2D features and tracking those
between the different perspective views. Different fea-
ture extraction algorithms exist (see [8,15,23]). There
exist also self-calibration approaches using silouettes or
trajectories of moving objects [20,24]. Multiple camera
calibration can be solved globally in one step, or multi-
ple subsets of cameras and displays are calibrated first
and then merged into a global coordinate system. Since
the first method is only suitable if all cameras share
a common view, we follow the second more general
approach.

Although a significant amount of research exists in
designing and calibrating video sensor arrays, automated
visual sensor placement and alignment in general has
not been addressed often. There is some work in the
area of grid coverage problems with sensors sensing
events that occur within a distance r (the sensing range
of the sensor) [3,22,28,31]. Our work is based on those
approaches, but differs in the sensor model (since cam-
eras do not posses circular sensing ranges) as well as
the cost function and some constraints. In [5] a cam-
era placement algorithm based on a binary optimization
technique is proposed. The algorithm aims to find the
placement with minimum cost of a camera set such that
a given space is viewed with some minimal spatial reso-
lution. Space is represented as a occupancy grid and the
authors focused on planar regions. A similar task is con-
sidered in [12] and also solved by linear programming

Calibrating and optimizing poses of visual sensors in distributed platforms 197

techniques. In [18] the authors analyze the visibility from
static sensors probabilistically and present a solution for
maximizing visibility in a given region of interest. They
solve the problem by simulated annealing.

Contributions: The main contributions of the paper
are:

• A procedure to automatically calibrate the posi-
tions and poses of sensors without using calibration
objects. Thus no special equipment is required. In
addition the setup does not have to be synchro-
nized. It only requires to filter out temporally unsta-
ble salient points and keep only stationary features.
Our method is simple and convenient to use and
offers mobility of the entire setup. The camera views
are assumed to overlap only partly, i.e., only some
cameras share a common view.

• The usage of an active display as our calibration tar-
get for intrinsic calibration giving us control over the
calibration pattern to be displayed. As a result the
extraction of feature points is easier and more reli-
able. The calibration pattern can be made adaptive
to the distance between the camera and the pattern’s
image on the LCD screen.

• The automatic extraction of control points and point
correspondences across images.

• A procedure to determine the optimal poses of the
cameras such that coverage is maximized while
maintaining a minimal resolution.

The rest of the paper is organized as follows. In
Sect. 2 we formulate the calibration problem and pres-
ent our solution. We describes how point features are
extracted and tracked between images and outline the
calibration of the intrinsic parameters of each camera.
The algorithm used to determine the extrinsic param-
eters, i.e., the positions and poses of all cameras in
a common coordinate system is presented. In Sect. 3
we formulate the optimization problem of maximizing
coverage with multiple cameras by pose variation. Our
solution is presented and results are reported. The paper
concludes with a summary and an outlook in Sect. 4.

2 Mulitple camera calibration

2.1 Problem formulation

Given M cameras, the goal is to determine the cameras’
internal parameters and the 3D positions and poses of
the cameras automatically. Therefore we only make the
assumption, that we know the number of visual sensors
in the network.

In this work we use an enhanced perspective model
to describe our cameras. The mapping performed by a
perspective camera between a 3D point X and its 2D
image point x, both represented by their homogeneous
coordinates, is usually represented by a 3×4 matrix, the
camera projective matrix P: x � PX. The matrix P can
be written as P = K[R|t] where K is a 3 × 3 upper trian-
gular matrix containing the camera intrinsic parameters:

K =
⎛
⎝

fx s px

0 fy py

0 0 1

⎞
⎠ (1)

The parameters fx and fy denote the focal length, px and
py denote the coordinates of the principal point, each in
terms of pixel dimensions. s denotes the skew. For most
commercial cameras, and hence below, the skew is con-
sidered to be zero. The 3 × 3 rotation matrix R and the
3 × 1 translation vector t describe the 3D position and
pose of the camera. As some desktop cameras exhibit
significant distortions, this model has to be enriched
by some distortion components. The distortion model
introduced in [11] accounts for tangential and radial
distortions using two coefficients. It describes distortions
occuring in practice sufficiently precise. In the following
discussion we assume that the distortion parameters of
each camera are known and the effects of those have
been removed from all images.

Different views of the same scene are related to each
other. These relations can be used for our multiple cam-
era calibration task. Therefore we need to determine a
set of corresponding points across the different images.
Points are said to correspond if they represent the same
scene point in different views. This general calibration
problem is illustrated in Fig. 2.

A set of 3D points Xi is viewed by a set of cam-
eras with matrices Pj . Let xj

i denote the coordinates
of the i-th point as detected in the j-th camera image.

X1

C2

C3

C4
C1

C5

X2

X3

Fig. 2 General calibration problem

198 E. Hörster, R. Lienhart

A 3D point may not be visible in all cameras, thus its
corresponding projected point will not be available in
all images. The calibration problem is then to find the
set of camera matrices Pj and points Xi such that for
all image points xj

i � PjXi holds. However, unless addi-
tional constraints are given, it is in principle only possi-
ble to determine the camera matrices up to a projective
ambiguity. Additional constraints arising from knowl-
edge about the cameras’ parameters and/or the scene
can be used to restrict this ambiguity up to an affine,
metric or Euclidean transformation.

Solution: We solve the camera calibration problem
in two stages. In a first stage we determine the cameras’
intrinsic parameters. Intrinsic calibration is done inde-
pendently for each camera by using a flat-panel display
as the planar calibration object. In a second stage camera
positions and poses are computed in a common coordi-
nate system (extrinsic calibration). Their positions and
poses can be determined relative to each other up to a
global scale factor. In a typical distributed camera envi-
ronment each camera can only see a small volume of
the total viewing space and different intersecting sub-
sets of cameras share different intersecting views. Hence
multiple camera calibrations are performed by calibrat-
ing subsets of cameras and then building a global coor-
dinate system from individual overlapping views.

2.2 Point correspondences

2D point correspondences between projections of the
same 3D point onto different camera planes can be gen-
erally used to recover the calibration matrices of the
cameras. Therefore establishing such correspondences
is the first step in determining the cameras parame-
ters. To establish point correspondences each image is
at first represented by a set of features. Each feature
describes a specific image point, and its neighborhood.
Subsequently these features are input to a matching pro-
cedure, which identifies features in different images that
correspond to the same point in the observed scene.
There are various approaches for extracting a set of
interest points and features from an image. Our
approach uses the so called SIFT-features proposed in
[15]. SIFT-based feature descriptors were identified in
[17] to deliver the most suitable features in the context
of matching points of a scene under different viewing
conditions such as different lighting and changes in 3D
viewpoint.

SIFT-features extraction: The SIFT-feature extrac-
tion method combines a scale invariant region detec-
tor and a descriptor based on the gradient distribution
in the detected regions. In order to compute a set of

caracteristic image features, first a set of interest points –
also called keypoints – is found by detecting scale-space
extremas. Only keypoints that are stable under a certain
amount of additive noise are preserved. An image loca-
tion, scale and orientation is assigned to each keypoint.
This enables the construction of a repeatable local 2D
coordinate system, in which the local image (pixel and its
surrounding region) is described invariantly from these
parameters. Finally a descriptor for each keypoint is cal-
culated based upon image gradients in the local image.
However this approach has its limitations. To ensure a
sufficient number of reliable matching points, the dis-
placement between the cameras should not exceed 15◦.
The resulting correspondences are within pixel accuracy.

SIFT-feature matching: The matching technique
used for the SIFT-features has been proposed in [15].
Point correspondences between two images are estab-
lished by comparing their respective keypoint descrip-
tors. Matching is performed by first individually
measuring the Euclidean distance of each feature vec-
tor (representing a certain keypoint) of one image to
each feature vector of the other image. The best match-
ing candidate for a specific keypoint is identified by the
keypoint belonging to the feature vector with the min-
imum distance. A match is found in the second image,
if the distance ratio between the nearest and the sec-
ond nearest neighbor (closest/second closest) is below a
threshold. An example of matched points between two
images is shown in Fig. 3.

Subpixel accuracy: The result of SIFT-feature
matching is only at pixel accuracy. For position esti-
mation of multiple cameras experiments have shown
that it is essential to keep all computations at a sub-
pixel accuracy level. So far the approximate positions
of the corresponding points are known. To achieve sub-
pixel precision we use the Affine Lucas Kanade feature
tracker [23]. This tracker assumes an affine transforma-
tion between the viewpoint of both images. This approxi-
mation is valid, if the viewpoints of the different cameras
are sufficiently close.

The basic optimization problem solved by the feature
tracker is:

min
d,D

ωx∑
x=−ωx

ωy∑
y=−ωy

(I(x + u) − J((D + I2×2)x + d + u))2

(2)

where I(u), J(u) represent the grey-scale values of the
two images at location u, the vector d = [dx dy]T is
the optical flow at location u, and the matrix D denotes
an affine deformation matrix characterized by the four
coefficients dxx, dxy, dyx, dyy:

Calibrating and optimizing poses of visual sensors in distributed platforms 199

Fig. 3 Matched points are
visualized by a connecting
line between images

D =
(

dxx dxy

dyx dyy

)
(3)

The objective of affine tracking is then to choose d and
D in a way that minimizes the dissimilarity between fea-
ture windows of size 2ωx + 1 in x and size 2ωy + 1 in
y direction around the point u and v in I and J respec-
tively. v denotes the corresponding point to u and can
be expressed in terms of u according to v = u + Du + d.
To handle changes in brightness and contrast a normal-
ization is applied to the image patches in the iteration
process.

An example result obtained by the subpixel feature
tracking algorithm is shown in Fig. 4. The correspond-
ing points obtained by SIFT-feature matching were used
to initialize the algorithm. They are shifted to a slightly
different position by the tracker. The improvement in
accuracy is especially obvious in the region marked with
a circle in both images. SIFT-feature matching in the
case of two very close points in the first image resulted
in the same feature in the second image. With this initial
guess the feature tracker regains the two different cor-
responding points and hence significantly improves the
accuracy of the image matching process.

2.3 Intrinsic calibration

Intrinsic calibration is done independently for each cam-
era using J.-Y. Bouguets Camera Calibration Toolbox [2]
in OpenCV [14]. The calibration algorithm requires to
record images of a known planar calibration target at a
few (at least two) different orientations for each cam-
era, where the motion of the different poses needs not to
be known. Therefore the target can be freely moved in
front of each camera separately. As the 2D geometry of
the calibration plane is known with high precision, the
camera observes in each image the projection of a set of
control points with known position in some fixed world
coordinate system. The Maximum Likelihood estimate
of the camera parameters is obtained by minimizing
the mean-squared distance between measured feature
points in the image and their theoretical position with

image position [pixel]

im
ag

e
po

si
tio

n
[p

ix
el

s]

10 20 30 40 50 60

370

380

390

400

410

420

430

matched feature points

image position [pixel]

im
ag

e
po

si
tio

n
[p

ix
el

]

170 180 190 200 210 220

380

390

400

410

420

430

matched feature points after tracking
matched feature points before tracking

Fig. 4 Matched feature points before and after the tracking algo-
rithm (points in the top image were taken as reference and tracked
in the bottom image)

respect to the camera’s intrinsic and extrinsic parame-
ters, i.e., by minimizing the following error:

ε =
n∑

j=1

m∑
i=1

‖xj
i − x̂(K, κ1, κ2, ρ1, ρ2, Rj, tj, Xi)‖2 (4)

where n denotes the number of images taken of the
model plane and m denotes the number of correspond-

200 E. Hörster, R. Lienhart

ing points each images gives rise to. x̂(K, κ1, κ2, ρ1, ρ2, Rj,
tj, Xi) is the theoretical position of the projection of point
Xi in the image j including distortion effects described
by the distortion coefficients κ1, κ2, ρ1, ρ2. This is a non-
linear optimization problem which requires a proper
initialization. Thus the complete calibration procedure
consists of an initialization stage, where a closed form
solution for the calibration parameters is computed, fol-
lowed by a nonlinear refinement based on the Maximum
Likelihood criterion. For more details on both stages the
reader is reffered to [2,30].

Control point extraction: In the calibration proce-
dure several different perspectives of a planar model
object of known geometry are fed into the calibration
routine. We used the pattern shown in Fig. 6 (right; from
http://www.lear.inrialpes.fr/people/mikolajczyk) as our
planar model object, since it gives rise to a large num-
ber of SIFT-features. It is displayed on a laptop or any
other screen of known size, whose surface is sufficiently
flat. Different images of the model plane from different
orientations are captured by waving the screen in front
of the camera. Some example images of the plane under
different orientations are shown in Fig. 5. Projected pat-
tern points in the images are determined by matching
extracted SIFT-features from each view with extracted
features from the calibration pattern. Subpixel matching
was not necessary to obtain sufficiently accurate results.
A matching example between the calibration pattern
and an image of the model plane is illustrated in Fig. 6.

Usually in other calibration procedures [2,27] a
checkerboard pattern is used as the calibration target
requiring some user interaction to obtain matching
points (in this case corners) between the this object and
its (different) image(s). The use of SIFT-feature match-
ing in combination with a flat screen displaying a known
pattern enables us to easily and automaticaly detect the
subset of image points. Additionally feature matching
can be performed with images containing only a par-
tially visible pattern.

Experimental results: In order to evaluate the cali-
bration routine, the algorithm was applied to a differ-
ent number of images of the model plane. The results
are shown in Table 1. As the number of pattern points
extracted varies per view, only the total number of points
used in the calibration procedure is given for each exper-
iment.

The influence of the number of images used for the
calibration with respect to the performance of the opti-
mization procedure was investigated in [30]. They found
that the estimation error decreases with an increasing
number of images of the model plane. This effect can
also be observed in Table 1. For n ≥ 40 images the esti-
mated intrinsic parameters are consistent between the

experiments, whereas in the case of only 20 views the
calculated values show a relatively large deviation from
these. Compared to algorithms using corner features,
the number of views necessary for reliable calibration is
larger, as corner correspondences can be extracted more
accurately than SIFT feature correspondences. Once the
intrinisc parameters are determined the distortion in the
original images can be corrected as shown in Fig. 7.

2.4 Extrinsic calibration of multiple cameras

The main objective of the algorithm presented in this
section is to recover the 3D positions and poses of
multiple cameras in a common coordinate system in a
fully automatic manner from the captured images of the
different cameras. The considered situation is illustrated
in Fig. 2. The mapping of a 3D point Xi to a 2D image
point xj

i can be described according to (assuming distor-
tion effects have been removed):

xj
i � PjXi (5)

As a 3D point Xi might only be observed by a sub-
set of cameras, the corresponding projected point will
not appear in every view. Since we know the intrinsic
parameters of all cameras in the scene, the locations of
the projected points can be given in normalized image
coordinates, denoted in the following with x j

ni . The nor-
malized image coordinates xn of a measured point x are
derived by removing the effects of the internal parame-
ters from the measured image point:

xn � K−1x (6)

where K is the calibration matrix of the particular cam-
era. The mapping between a point Xi to its projected and
normalized point x j

ni in the j-th image is then described
by the normalized camera matrix P j

n:

x j
ni � Pn

jXi (7)

where

P j
n = K−1

j Pj = K−1
j Kj[Rj|tj] = [Rj|tj] (8)

The matrix Pn
j only consists of a rotation Rj and a trans-

lation tj, which define the position of the specific camera.
Given a set of image correspondences, represented by
their normalized coordinates x j

ni our goal is now to find
the appropriate set of normalized camera matrices P j

n
and points Xi such that

Calibrating and optimizing poses of visual sensors in distributed platforms 201

Fig. 5 Four sample images of
the model plane used for
calibration

Fig. 6 Matches between
calibration pattern (right) and
its imaged version (left)

Table 1 Results obtained for the intrinsic parameters of a camera

Images 20 30 40 50 60

Points 2,218 3,735 5,171 6,735 8,039

fx 818.38 831.29 834.17 836.79 838.16
fy 818.16 830.87 833.64 836.38 837.98
px 305.02 307.19 308.77 307.69 308.51
py 263.87 257.35 255.35 255.32 254.48
κ1 −0.421 −0.432 −0.437 −0.433 −0.436
κ2 0.092 0.108 0.126 0.101 0.111
ρ1 −0.005 −0.003 −0.002 −0.002 −0.002
ρ2 0.004 0.003 0.002 0.003 0.003

x j
ni � P j

nXi (9)

As the intrinsic parameters of each camera are known,
the relative position of the cameras is computed uniquely
up to an overall scale factor, i.e., the position of the cam-
eras is determined up to a metric transformation.

2.4.1 Algorithm

There are several strategies for solving this multiple
camera calibration problem. The superior method is
bundle adjustment. The process of bundle adjustment is
an estimation involving the minimization of the repro-
jection error, which is defined as the – summed squared –
distance between the theoretical image positions of the
projections of the estimated 3D points Xi and the mea-
sured image points. Bundle adjustment can handle miss-
ing correspondences, which appear if only a subset of
cameras shares a common view. However, it involves
a nonlinear optimization process and it does not have
a direct solution. A sufficiently good starting point is
required. We use a hierarchical method to obtain an ini-
tial guess for all camera matrices Pn

j and 3D points Xi.
The method is mainly based on the approach presented
in [6]. It partitions the set of cameras into manageable
subgroups that share a common view. A coordinate

202 E. Hörster, R. Lienhart

Fig. 7 Original and rectified
image

C1

C2 C3

C4

C5
C6

C7

cameras

observed scene

triplets

T1

T2
3

sub-group

T

Fig. 8 Camera positions and the structure of the scene are com-
puted by registering the basic building block (triplets of cameras)
hierarchically

system is build for each of these subgroups. Based on
points and cameras being common to different subsets,
these different coordinate frames are merged in a hier-
archical fashion in order to build a global coordinate sys-
tem from the individual overlapping systems. The main
advantage contributed by a hierarchical procedure is
that the error can be distributed evenly over the en-
tire set of estimated camera matrices. As in [6], we also
use image triplets as the basic building block. The cam-
eras’ positions in such a basic unit and the structure
of the scene observed by three cameras can be com-
puted automatically by calculating the associated trifo-
cal tensor from point correspondences across the three
views. Then the triplets are registered into sub-groups,
followed by merging these subsets and thus building the
entire group. This situation is illustrated in Fig. 8.

The first step in our algorithm is to segment the set of
cameras into appropriate subgroups and those subsets
into triplets. Consequently neighboring cameras with

sufficient view overlaps have to be determined since
camera triplets are required to share a common view as
a reliable trifocal tensor estimation demandes a suffi-
cient number of point correspondences over the three
images. Thus only triplets with a sufficient number of
corresponding points are kept. Cameras will only have
point correspondences if they are close and share a
common view. Thus, even in cases where the set con-
tains many cameras, the number of triplets with a suffi-
cient number of corresponding points will not be large
compared to the number of possible camera combina-
tions. Next the triplets need to be clustered into sub-
groups. Triplets in a certain subgroup and also different
subgroups need to share two cameras to enable their reg-
istration in a common coordinate frame. Therefore com-
binations of the above determined triplets are tested. In
a second stage the cameras in each triplet are
calibrated extrinsically. Robust ways of computing the
trifocal tensor and extracting the according camera
matrices based on corresponding image points have been
extensively studied in [10]. To establish point corre-
spondences, one image of a triple is arbitrarily selected
to be the reference image. Two-view point correspon-
dences between this reference image and each of the
other two images are then determined by SIFT-feature
matching. These correspondences are refined by using
them as initializations for the Affine Lucas Kanade fea-
ture tracker. The required three-view correspondences
are derived by joining the two-view match sets. Features
which arise from moving objects can be simply elim-
inated by removing all keypoints whose positions are
temporally unstable. However, the observed 3D scene
needs to be sufficiently textured in order to ascertain
detection and tracking of enough point features from
the acquired images to ensure reliable results in the tri-
focal tensor estimation.

Registering all triplets into the same coordinate frame
is done in a hierarchical manner as proposed in [6]. Reg-
istration of triplets and sub-groups is achieved by com-
puting a homography of 3-space between the different

Calibrating and optimizing poses of visual sensors in distributed platforms 203

metric structures. The objective is to obtain a common
set of 3D points and a normalized camera matrix for
each view, such that the reprojection error is minimized.

In the following only the registration of two trip-
lets that share exactly two cameras is discussed. All
registration problems in the algorithm are analogously
solved. In general different overlaps are possible, but
as our implementation specifically forces the triplets in
a subgroup and the different subgroups to share two
cameras, only this case is discussed here. For a detailed
description and evaluation of other registration methods
the reader is referred to [6]. Given 3D points common
in the sets of two different triplets and the homoge-
neous representation of these points by Xi in the frame
of the first triplet and X′

i in the second frame (their
inhomogeneous representation is denoted with X̄i, X̄′

i),
their representations in the different metric frames are
related by a 3-space homography H according to

Xi = HX′
i (10)

Equivalently P j
n = P′ j

nH−1 holds for the correspond-
ing normalized camera matrices of both triplets. The
homography between two metric frames can be de-
scribed by a metric transformation:

H =
(

σ · R t
01×3 1

)
(11)

where R denotes a 3 × 3 rotation matrix and t a 3 × 1
translation vector. σ identifies the relative scale between
the structures. Since R can be parametrized by a 3-
vector, the transformation between the two different
metric frames counts seven unknowns. Two stages are
used to derive accurate estimates for those parameters:
first a closed-form solution is obtained, which is further
refined in a nonlinear stage. In order to compute a di-
rect solution, the first step is to estimate the relative
scale σ via the quotient of the mean distances of the 3D
points X̄i, X̄′

i to their respective centroid (denoted with
inhomogeneous coordinates M̄, M̄′):

σ

1
n

∑n
i=1 ‖ X̄i − M̄ ‖

1
n

∑n
i=1 ‖ X̄′

i − M̄′ ‖ (12)

where ‖ · ‖ denotes the L2-norm and n is the number
of common points. Now the second structure is rescaled
according to

X̄′
si = σ X̄′

i (13)

so that Xi = HX′
i becomes

Xi = HsX′
si (14)

where

Hs =
(

R t
01×3 1

)
(15)

In order to obtain an initial estimate for the coefficients
of R and t the squared distance between the two struc-
tures consisting of points Xi and X′

si, is minimized with
respect to the coefficients of Hs using linear algebraic
methods:

min
R, t

∑
i

d2(Xi, HsX′
si) (16)

where d(x, y) denotes the Euclidean distance between
the inhomogeneous points corresponding to x and y.

Finally the derived initial values are refined in a non-
linear minimization stage where the reprojection error
to the originally measured and normalized image points
is minimized with respect to all parameters of H:

min
σ , R,t

∑
ij

d2(Pn
jHX′

i, x j
ni) + d2(P′

n
jH−1Xi, x j

ni) (17)

This nonlinear minimization is solved using the
Levenberg–Marquardt algorithm.

By registering all triplets hierarchically in one com-
mon coordinate frame as described above an initial
guess for the observed 3D structure (represented by 3D
points) and all normalized camera matrices in the entire
set of cameras is obtained. Finally a Maximum Likeli-
hood estimate of the entire set of camera positions and
the 3D-structure is computed via bundle adjustment:

min
Pn

j,Xi

∑
ij

d2(Pj
nXi, xn

j
i) (18)

Each normalized camera matrix is parameterized by six
entries, three representing the rotation matrix and three
representing the translation vector. The dimension of
the minimization problem adds then up to a total num-
ber of 6(N − 1) parameters for the camera matrices,
plus a set of 3L parameters for the coordinates of the L
reconstructed 3D points.

2.4.2 Experimental results

The extrinsic camera calibration algorithm has been
implemented for the case of 11 cameras; the size of
the sub-groups was chosen to five cameras. We used
cheap web cams for our experiments. Figures 9 and 10
show some of the images taken from the different view-
points of the cameras in two different experiment. The
change of viewpoint between the different locations of
the cameras is restriced due to the matching algorithm.
The feature extraction algorithm requires the scene to

204 E. Hörster, R. Lienhart

Fig. 9 Example images of the
lab scene from different
viewpoints (cameras)

be sufficiently texured. Sub-pixel matching was required
to obtain accurate results in both experiments. We also
conducted experiments where we used affine invariant
feature detectors [16] instead of the SIFT detector, but
those did not improve our results.

The resulting camera positions and scene reconstruc-
tions are shown in Figs. 11 and 12. Camera positions
are marked with yellow pyramids, reconstructed scene
points with blue dots. In Fig. 13 the final reprojection
error is illustrated for one estimated camera in our lab
scene experiment. The distance between the reproject-
ed points and the measured image points is very small.
Therefore the overall estimation is highly accurate.

Discussion: In the given examples the implemen-
tation performs very well. However experiments with
different data sets have shown that sporadically the
accuracy of the algorithm can be severly affected. Thor-
ough analysis showed that mis-estimations were caused
by inaccurately estimated triplets. If the camera posi-
tions and/or the 3D points in one triplet are estimated
inaccurately, the homography estimation to register this
triplet in a subgroup fails as well. As a result the whole
subgroup configuration is determined incorrectly lead-
ing to an initial guess for the entire group too far away
from the actual value. As the optimization problem of
the final bundle adjustment is of very high dimension,
a poor initial guess commonly results in the nonlinear
optimization to fail completely, i.e., to converge to a
suboptimal solution or to not converge at all.

One source of failure in the triplet estimation may
consist in corresponding image points that are not
extracted sufficiently accurate, due to the performance
limits of the feature extraction and matching algorithm
and/or the feature tracker. Those algorithms are only
partly invariant to perspective transformations. Another
cause of failure arises from the fact that the intrinsic
camera parameters can only be estimated with a certain
accuracy. This may also have an impact on the noise level
in the corresponding normalized points.

3 Optimizing coverage

In the previous section we have shown how to calibrate
all visual sensors. Now we focus on post-optimizing their
poses to increase coverage. We assume, that the camera
positions in a given space are known. As the calibra-
tion procedure presented in this paper only enables us
to determine the relative positions of the cameras up to
a global scale factor, we need to determine this global
scale factor. This can be done e.g., by placing a known
calibration pattern in the scene, visible by at least two
cameras. As the absolute distance of two points on this
pattern is known, the absolute distance of the two cam-
eras observing the pattern can be calculated and thus
the overall scale factor is determined. Another option
is to place microphones and loudspeakers close to the

Calibrating and optimizing poses of visual sensors in distributed platforms 205

Fig. 10 Example images of
an office desk scene from
different viewpoints
(cameras)

cameras and to determine the absolute distance by the
algorithm presented in [21].

Starting from this knowledge our aim is to increase
the coverage of the space observed by calculating new
optimal pan and tilt angles for each camera such that
coverage of the space at a given sampling frequency
is maximized. This optimization can be done with any
type of camera. However, with pan-tilt cameras we can
remotely and automatically drive the cameras into the
right poses. This allows for an interative optimization
approach that can easily handle inaccuracies in the esti-
mation and control part.

The new poses of the cameras have to be calibrated
again, as the automatic pan-tilt navigation is often imper-
fect. This could be done as described in Sect. 2 or by
recording images during the cameras’ motion and then
perform pose and position calibration, i.e., extrinsic cal-
ibration, with those images similar to the method pre-
sented in Sect. 2.

3.1 Problem statement

Definitions: In the following the term space denotes a
convex physical three-dimensional room.

A point in that space is covered if that point is cap-
tured with a required minimal resolution. The minimal
resolution is satisfied if the point in space is imaged by at
least one pixel of a camera that does not aggregate more
than x cm2 of a surface parallel to the imaging plane

through that point. x is expressed in terms of the sam-
pling frequency fs and converted into the field-of-view of
a camera. The field-of -view of a camera is defined as the
volume in which a pixel aggregates no more than 1

f 2
s

cm2

of a surface parallel to the imaging plane. Thus an object
that appears in the camera’s field-of-view is imaged with
at least this resolution assuming the object has a planar
surface orthogonal to the optical axis.1 Occlusions are
not considered.

Problem statement: Given a space to be covered at
a sampling frequency fs by visual sensors, we are inter-
ested in the following problem: given a set of cameras
and their current positions and initial poses in space,
determine their new poses, defined by means of pan and
tilt angles, such that coverage is maximized.

3.1.1 Modeling a camera’s field-of-view

We consider a simple model for our cameras. Since each
camera is assumed to be able to pan and tilt, the possi-
ble camera motion is modeled as two idealized rotations
around the origin. This simple pan-tilt motion model is
shown in Fig. 14 a. A rotation around the x-axis and then
around the y-axis correspond to tilt and pan, respec-
tively. Our simple model assumes that the pan and tilt
axes are orthogonal, aligned with the image plane, and
through the cameras optical center. The field-of-view

1 Clearly the resolution is smaller if the surface is not orthogonal.

206 E. Hörster, R. Lienhart

–4–3–2–1012345
–5

0

5
–5

0

5

10

–4–3–2–1012345

–4

–2

0

2

4

–5

0

5

10

Fig. 11 Two different views of the reconstructed 3D scene points
and camera positions for the entire group of 11 cameras for the
lab scene experiment

can then be described by a pyramid. The parameters of
this pyramid can be easily calculated given the intrinsic
camera parameters and the sampling frequency fs using
well known geometric relations.

Defining the field-of-view by a pyramid enables us to
describe the area covered by a camera at position (cx,
cy, cz) in the world coordinate system and pose (R, α, β)
linearly. R denotes here the inital pose of the camera,
α and β denote the variable tilt and pan angles that are
varied to optimize the coverage. It should be mentioned
that bold letter denotes vectors such as X and x the first
component of that vector.

To define our field-of-view, we express the coordinate
vectors of points in the final camera coordinate system
C as a function of the coordinate vectors of the same
points in the world coordinate system A, i.e., we trans-
form points from the world coordinate system to the
camera coordinate system (see Fig. 14 b). Therefore we
first transform the point to the inital camera coordinate
system B (without pan and tilt) and from there to C,

–2 –1.5 –1 0.5 0 0.5 1 1.5
–0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

–2 –1.5 –1 –0.5 0 0.5 1 1.5

–1

–0.5

0

0.5

1
–1

0

1

2

3

4

5

Fig. 12 Two different views of the reconstructed 3D scene points
and camera positions for the entire group of 11 cameras for the
office desk scene

the final camera coordinate system including pan and
tilt angle. We denote by FX the coordinate vector of the
point X in the frame F. According to [7], the transfor-
mation of a point from a coordinate system A to another
coordinate system B is expressed by :

BX = B
ARAX + BOA (19)

where BOA denotes the origin of the world coordinate
system A in coordinate system B, i.e.,:

BOA = −t =
⎛
⎝

−cx

−cy

−cz

⎞
⎠ (20)

The frames B and C are seperated by pure rotation.
This rotation models the motion of a pan-tilt camera.
The coordinate system attached to the cameras origin
rotates around the x- and y-axis, by α and β respectively:

CX =C
B RBX (21)

Calibrating and optimizing poses of visual sensors in distributed platforms 207

–0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3
–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 13 Final reprojection error illustrated in one camera image

where

C
BR = RyRx (22)

and

Rx =
⎛
⎝

1 0 0
0 cos(α) sin(α)

0 −sin(α) cos(α)

⎞
⎠ (23)

Ry =
⎛
⎝

cos(β) 0 −sin(β)

0 1 0
sin(β) 0 cos(β)

⎞
⎠ (24)

Concatenating the transformation gives the coordinates
of a point in the world coordinate system transformed to
its coordintates in the final camera coordinate system:

CX =C
B RB

ARAX −C
B R · t (25)

The resulting area covered by the field-of-view of a cer-
tain camera can now be defined by five equations (see
Fig. 14 c):

zc ≤ d (26)

yc ≤ a
2d

· zc (27)

yc ≥ − a
2d

· zc (28)

xc ≤ b
2d

· zc (29)

xc ≥ − b
2d

· zc (30)

3.1.2 Modeling space

We only consider convex spaces without obstacles con-
stricting the field-of-view of our visual sensors. In order
to define coverage, we sample the space by means of reg-
ular grid points. The minimum distance 	 between two

grid points in the x-, y- and z- direction is determined
by the spatial sampling frequency fa: 	 = 1/fa. With
that our problem turns into a grid coverage problem. In
order to optimize coverage, we determine the camera
poses that cover the largest percentage of grid points
in the space. For fa → ∞ our approximated solution
converges to the continuous-case solution.

If some parts of the room are known to be more
important, e.g., at doors, a higher weighting can be given
to those parts by sampling here with a higher frequency,
whereas e.g., parts that are less likely interesting might
be sampled with a lower frequency.

In the ideal case cameras’ poses are continuously in
the space, i.e., the variables α and β that define a cam-
era’s pan and tilt are continuous variables. As we are
not able to solve our problem for the continuous case
we approximate the continuous case by sampling the
poses. Cameras can only adopt those discrete poses.

3.2 Linear programming

Considering N cameras that are calibrated, i.e., their
fields-of-view as well as positions in the space are known,
we formulate our camera positioning problem in terms
of maximizing the coverage. We assume for notational
convenience, that our space consists of sx,sy and sz grid
points in the x- and y- and z-dimension respectively.2

Similarily we discretize the angles α and β defining a
camera’s tilt and pan to sα and sβ different angles only.
A camera at position (cx, cy, cz) with orientation R and
pan and tilt α and β respectively covers a grid point
(x, y, z) if and only if (26)–(30) are satisfied.

Thus, we can state the optimization problem as fol-
lows: given a set of grid points and camera models, max-
imize the coverage by optimally assigning pan and tilt
angles to cameras.

In the following we derive an binary integer program-
ming (BIP) model to solve this problem. Our approach
is based on the algorithm presented in [3]. First we
define some binary variables. Let a binary variable cijk
be defined by:

cijk =
⎧⎨
⎩

1 if grid point (i, j, k) is covered by a
minimum of M cameras

0 otherwise
(31)

where M ≥ 1 denotes the minimum number of cameras
that should cover each grid point. This variable will be
usually chosen to 1, but can be easily changed to e.g., two
cameras or more. This is e.g., usefull for the case that an
object at a certain grid point should be exactly located

2 Given a rectangular space sx, sy and sz can be easily calculated
given the room’s dimensions and the spatial sampling rate fa.

208 E. Hörster, R. Lienhart

Fig. 14 Deriving the model
of a camera’s field-of-view

(a) (b)

(c)

in depth. This is only possible if the object is viewed by
at least two cameras. Then the position of the object can
be calculated by triangulation.

The total number Nb of covered sample points is then
given by

Nb =
sx−1∑
i=0

sy−1∑
j=0

sz−1∑
k=0

cijk (32)

We define two further binary variables xnαβ

and gn(α, β, i, j, k):

xnαβ =
⎧⎨
⎩

1 if camera n at point (cx, cy, cz) with
initial orientation R has tilt α and pan β

0 otherwise
(33)

gn(α, β, i, j, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if a camera at point (cx, cy, cz)

with intial orientation R
and tilt α and pan β, covers
grid point (i, j, k)

0 otherwise

(34)

gn(α, β, i, j, k) can be calculated in advance for each
camera and stored in a table.

We now need to express the variables that define cov-
erage in terms of the other above defined variables. This
is done as shown below. Since cijk = 1, if and only if at
least M cameras cover the grid point (i, j, k) we introduce
the following inequality for each grid point:

cijk ·
⎛
⎝ ∑

n,α,β

xnαβ · gn(α, β, i, j, k) − M

⎞
⎠ ≥ 0 (35)

The constraint (35) involves a product of binary vari-
ables, thus it is nonlinear. In order to linearize the inequal-
ity, we introduce a new binary variable for the appear-
ance of this nonlinear term, as well as two additional
constraints [29]. Therefore we replace cijk · xnαβ by the
binary variable vijknαβ and introduce the following con-
straints:

cijk + xnαβ ≥ 2 · vijknαβ (36)

cijk + xnαβ − 1 ≤ vijknαβ (37)

To ensure that exactly one pan-tilt combination is
assigned to each camera, we also need for each cam-
era the constraint:
∑
α,β

xnαβ = 1 (38)

Our sensor deployment problem can now be formulated
as an BIP model:

max
sx−1∑
i=0

sy−1∑
j=0

sz−1∑
k=0

cijk (39)

subject to the constraints:

cijk + xnαβ ≥ 2 · vijknαβ (40)

cijk + xnαβ − 1 ≤ vijknαβ (41)

for 0 ≤ i ≤ (sx − 1), 0 ≤ j ≤ (sy − 1), 0 ≤ k ≤ (sz − 1),

1 ≤ n ≤ N, 0 ≤ α ≤ (sα − 1), 0 ≤ β ≤ (sβ − 1)∑
n,α,β

vijknαβ · gn(α, β, i, j, k) − cijk · M) ≥ 0 (42)

Calibrating and optimizing poses of visual sensors in distributed platforms 209

Fig. 15 Results obtained for the 2D case: a start configura-
tion (coverage=34.69%); b optimized configuration (coverage=
49.98%)

for 0 ≤ i ≤ (sx − 1), 0 ≤ j ≤ (sy − 1), 0 ≤ k ≤ (sz − 1)∑
α,β

xnαβ = 1 (43)

for 1 ≤ n ≤ N

cijk, vijknαβ , xnαβ ∈ {0, 1} (44)

for 0 ≤ i ≤ (sx − 1), 0 ≤ j ≤ (sy − 1), 0 ≤ k ≤ (sz − 1),

1 ≤ n ≤ N, 0 ≤ α ≤ (sα − 1), 0 ≤ β ≤ (sβ − 1)

The number of variables and constraints depends on the
number of grid points and samples. Thus, if we increase
the number of grid points and possible pan-tilt config-
urations to achieve a better approximation of the con-
tinuous case, the number of variables and constraints in
our BIP model increases accordingly.

3.3 Experimental results

The above presented linear programming approach has
been implemented in C++ using the lpsolve package [1].
However for better visualization we first present results
obtained in the 2D case and subsequently we report our
results for 3D.

Figure 15 illustrates a result for one configuration
obtained by solving our implemented BIP model in the
2D case. On the left side, the initial configuration is
shown, while on the right side the optimized configura-
tion is depicted. Red dots mark camera positions, blue
and red triangles illustrate the cameras’ field-of-views.
Light-blue dots mark covered grid points. The coverage
of the space increases in this experiment from 34.69 to
49.98%. We restricted the pan and tilt angle α and β to
be sampled in the range of ±45◦, as this seems a realistic
range for pan-tilt cameras.

Table 2 shows results obtained with our optimization
algorithm in 3D for different parameter settings. The
number of cameras has been set to three in all experi-
ments. The x- and y-dimension of the considered space
are set to 4 units, the z-dimension to 2 units. The intial

Table 2 Results obtained for different parameter settings by solv-
ing our BIP model in 3D

N 3 3 3 3

fa 0.5 0.5 0.8 1.0

sα/β 5 7 5 3

percentage of space covered
before optimization 33.33 33.33 37.50 34.67

percentage of space covered
after optimization 55.56 61.11 65.69 52.00

0

1

2

3

4 0

1

2

3

4

0

0.5

1

1.5

2

yellow pyramids = cameras’ poses before optimization
red pyramids = cameras’poses after optimization

Fig. 16 Example result obtained by solving our BIP model in 3D

configuration of the cameras is shown in Fig. 16. Yel-
low pyramids mark the initial cameras’ position and
orientation, red pyramids mark the optimized cameras’
poses for fa = 0.8, sα/β = 5. For better visualization the
cameras’ field-of-views are not shown. In our optimiza-
tion we restriced the pan and tilt angles to be sampled in
the range of ±45◦. The results clearly demonstrate the
gain in coverage in every experiment.

The above presented BIP problem is practically solv-
able for only a small number of grid points. For a large
number appropriate solutions need to be developed.

4 Conclusion

In this paper we have presented a flexible and easy way
to calibrate multiple cameras in a distributed platform
of GPCs. Our method needs minimal user intervention.
Hence the proposed method can be used in a vari-
ety of places ranging from single desktop cameras to
multi-camera lab setups. All stages of the calibration
algorithms have been implemented and experimental
results on real data showed that the presented methods
work very well. As the change in viewpoint between the
different cameras is restricted, future work is needed to

210 E. Hörster, R. Lienhart

improve the automatic extraction of point correspon-
dences between images.

We have also derived an LP approach for post-opti-
mizing the camera poses to increase coverage of the
space observed. Our experimental results demonstrate
the gain in coverage. Future work on this topic will in-
clude the investigation of how to handle large numbers
of grid points.

Acknowledgements Special thanks to Jean-Yves Bouguet and
Walter Kellermann for their valuable advise and support on the
calibration work.

References

1. Berkelaar, P.N.M., Eikland, K.: lpsolve: Open souce (mixed-
integer) linear programming system. Eindhoven U. of
Technology. http://www.groups.yahoo.com/group/lp_solve/
files/Version5.5/

2. Bouguet, J.-Y.: Camera Calibration Toolbox for Matlab.
http://www.vision.caltech.edu/bouguet/calib_doc/

3. Chakrabarty, H.Q.K., Iyengar, S.S., Cho, E.: Grid coverage
for surveillance and target location in distributed sensor net-
works. IEEE Trans. Comput. 51(12), 1448–1453 (2002)

4. Chen, X., Davis, J., Slusallek, P.: Wide area camera calibration
using virtual calibration objects. In: Proceedings of CVPR ’00,
pp. 2520–2527 2000

5. Erdem, U., Sclaroff, S.: Optimal placement of cameras in
floorplans to satisfy task requirements and cost constraints.
In: OMNIVIS Workshop, 2004

6. Fitzgibbon, A., Zissermann, A.: Automatic camera recovery
for closed or open image sequences. In: Proceedings of Euro-
pean Conference on Computer Vision, pp. 311–326 1998

7. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Ap-
proach. Prentice Hall Professional Technical Reference, 2002

8. Harris, C., Stephens, M.: A combined corner and edge detec-
tor. In: Proceedings of the 4th Alvey Vision Conference, pp.
147–152, 1988

9. Hartley, R.: An algorithm for self-calibration from several
views. In: Proceedings of CVPR ’94, pp. 908–912, Seattle,
USA, 1994

10. Hartley, R., Zisserman, A.: Multiple View Geometry in Com-
puter Vision. Cambridge University. Press, Cambridge (2003)

11. Heikkilä, J., Silven, O.: A four-step camera calibration proce-
dure with implicit image correction. In: Proceedings of CVPR
’97, pp. 1106–1112, 1997

12. Hörster, E., Lienhart, R.: Approximating optimal visual sen-
sor placement. In: Proceedings of ICME ’06, 2006

13. Intel corporation. OpenCV Computer Vision Library.
http://www.intel.com/research/mrl/research/opencv/

14. Lienhart, R., Kozintsev, I., Wehr, S., Yeung, M.: On the impor-
tance of exact synchronization for distributed audio process-
ing. In: Proceedings of ICASSP ’03, pp. 840–843, 2003

15. Lowe, D.G.: Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vis, 60(2), 91–110 (2004)

16. Mikolajczyk, K., Schmid, C.: A performance evaluation of
local descriptors. In: Proceedings of CVPR ’03, vol. 2, pp.
257–263, 2003

17. Mikolajczyk, K., Schmid, C.: An affine invariant interest point
detector. In: ECCV (1), pp. 128–142, 2002

18. Mittal, A., Davis, L.: Visibility analysis and sensor planning in
dynamic environments, vol. I, pp. 175–189, 2004

19. Pollefeys, M.: Self-Calibration and Metric 3D Reconstruction
from Uncalibrated Image Sequences. PhD thesis, K. U. Leu-
ven, Belgium (1999)

20. Rahimi, A., Dunagan, B., Darrell, T.: Simultaneous calibra-
tion and tracking with a network of non-overlapping sensors.
CVPR 01:187–194 (2004)

21. Raykar, V., Kozintsev, I., Lienhart R.: Position calibration of
audio sensors and actuators in a distributed computing plat-
form. In: Proceedings ACM Multimedia ’03, pp. 572–581,
2003

22. Sahni, S., Xu, X.: Algorithms for wireless sensor networks.
Int. J. Distrib. Sensor Netw. 1(1), 35–56 (2005)

23. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of
CVPR ’94, pp. 593 – 600, 1994

24. Sinha, S.N., Pollefeys, M.: Calibrating a network of cameras
from live or archived video. In: Proceedings of CVPR ’04,
2004

25. Sturm, P., Triggs, W.: A factorization based algorithm for
multiple-image projective structure and motion. In: Pro-
ceedings of European Conference on Computer Vision, pp.
709–720, 1996

26. Svoboda, T., Martinec, D., Pajdla, T.: A convenient multi-cam-
era self-calibration for virtual environments. PRESENCE
Teleoper. Virtual Environ. 14(4), 407–422 (2005)

27. Tsai, R.: A versatile camera calibration technique for high-
accuracy 3d machine vision metrology using off-the-shelf tv
cameras and lense. IEEE J. Rob. Autom. RA-3, 323–344
(1987)

28. Wang, J., Zhong, N.: Efficient point coverage in wireless sensor
networks. J. Comb. Optim. 11(3), 291–304 (2006)

29. Williams, H.: Model Building in Mathematical Programming
2nd edn, Wiley, New York, (1985)

30. Zhang, Z.: A flexible new technique for camera calibration.
Technical Report MSR-TR-98-71, Microsoft Research, Red-
mond, USA, 1998

31. Zou, Y., Chakrabarty, K.: Sensor deployment and target local-
ization in distributed sensor networks. Trans. Embed Comput
Syst. 3(1), 61–91 (2004)

	Calibrating and optimizing poses of visual sensorsin distributed platforms
	Abstract
	Introduction
	Mulitple camera calibration
	Problem formulation
	Point correspondences
	Intrinsic calibration
	Extrinsic calibration of multiple cameras
	Algorithm
	Experimental results
	Optimizing coverage
	Problem statement
	Modeling a camera's field-of-view
	Modeling space
	Linear programming
	Experimental results
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

