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Abstract The need to classify audio into categories such as
speech or music is an important aspect of many multime-
dia document retrieval systems. In this paper, we investigate
audio features that have not been previously used in music-
speech classification, such as the mean and variance of the
discrete wavelet transform, the variance of Mel-frequency
cepstral coefficients, the root mean square of a lowpass sig-
nal, and the difference of the maximum and minimum zero-
crossings. We, then, employ fuzzy C-means clustering to
the problem of selecting a viable set of features that en-
ables better classification accuracy. Three different classi-
fication frameworks have been studied: Multi-Layer Percep-
tron (MLP) Neural Networks, radial basis functions (RBF)
Neural Networks, and Hidden Markov Model (HMM), and
results of each framework have been reported and compared.
Our extensive experimentation have identified a subset of
features that contributes most to accurate classification, and
have shown that MLP networks are the most suitable classi-
fication framework for the problem at hand.

Keywords Speech music classification · Audio signal
processing · Audio features · Neural networks · Hidden
Markov Models · Fuzzy c-means clustering

1 Introduction

The exponential growth of the Internet and the latest ad-
vances in networking and compression technologies have
made huge amounts of audio data easily available. It is not
unlikely that in the near future, on-line music services will
overtake the usual distribution of audio stored on physical
media. Currently, browsing and management of audio data
rely mostly on textual information attached manually, which
is an extremely time consuming task. Furthermore, this in-
formation is often incomplete or not available at all.
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Audio signal classification applications are potentially
far reaching and relevant. With the fast growth of multime-
dia repositories, in general, and audio data in specific, the
development of technologies for spoken document indexing
and retrieval is in full expansion. Audio data sources range
from broadcast radio and television, to the huge volumes of
recorded material in different forms, such as tapes and dig-
ital audio stored on the Web. Speech/music classification is
an important task in multimedia indexing. It is usually the
first step before any further processing on audio data. Some
of the applications of speech/music classification include:

• Automatic speech recognition: Broadcast radio feed may
contain music segments in between different programs.
Identifying the “Speech” segments will give more reli-
able data to the Automatic Speech Recognizer (ASR),
which contributes to the minimization of word error
rates, out of vocabulary words, and eliminates unneces-
sary computations on non-speech data.

• Content-based indexing and retrieval: After
speech/music classification process, one can give
meaningful descriptions such as speech, music, silence,
etc., to different segments of the audio data. Such
indexing will support querying speech segments only,
or music segments only from a multimedia database
perspective.

• Speaker recognition: Extracting speech from the audio
signals may enable speaker recognition techniques for
identifying and tracking specific speakers for indexing
or security purpose.

• Improving audio coding: Classifying audio data into
speech, music, and silence can be useful in the process
of decreasing the bit rate for silence segments and hence
improve audio coding.

• Improving compression techniques: Some signal com-
pression techniques are more suitable for speech signals,
whereas other compression techniques may be more ap-
propriate for music. By automatically determining the
audio signal, the appropriate compression technique can
be applied.
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• Hearing instrument: Automatically adapting a hear-
ing instrument for various listening situations (silence,
speech, noise, music, wind, etc.) would free users from
manually having to change the mode of the instrument
using a push button located on the hearing instrument,
sometimes a task that is problematic for many hearing
instrument users.

The paper is organized as follows: We first survey up-to-
date research work that has been carried out in music/speech
classification in Sect. 2. Then, we present the approach we
followed in selecting audio features to be considered for
classification using fuzzy C-Means clustering in Sect. 3.
Section 4 presents three different classification frameworks
used to carry out the classification process along with the
experimental setup. We follow this by presenting the exper-
imental results in Sect. 5. Finally, a summary highlighting
the interesting aspects of our work is presented and possible
directions for future work are mentioned.

2 Related work

Many researchers have addressed problems related to
speech/music classification, speech/music features, feature
extraction, and classification frameworks. Scheirer et al. [1]
and Saad et al. [2] have both examined the following five fea-
tures intended to measure conceptually distinct properties of
speech and music signals:

(1) Percentage of low energy frames,
(2) Roll off point of the spectrum,
(3) Spectral flux,
(4) Zero-crossing rate,
(5) Spectral centroid.

Scheirer et al. have additionally used the following eight
features:

(1) Four Hz modulation energy
(2) Variance of the roll off point of the spectrum
(3) Variance of the spectral centroid
(4) Variance of the spectral flux
(5) Variance of the zero-crossing rate
(6) The cepstral residual
(7) Variance of the cepstral residual
(8) Pulse metric

Five of those are “variance” features, consisting of the vari-
ance in a 1-s window of an underlying measure which is
calculated on a single frame. Scheirer et al. have used log
transformations on all thirteen features. As a classification
framework they have investigated four different classifiers:

• Multi-dimensional Gaussian maximum a posteriori
(MAP) estimator,

• Gaussian mixture model (GMM) classification,
• Spatial partitioning scheme based on k-d trees and
• k Nearest-neighbor classifier

They have reported that the MAP Gaussian classifier does
a much better job in rejecting music from the speech class
than vice-versa, and among the four classifiers, the k nearest-
neighbor classifier gave good results, around 92.2% ac-
curacy. Saad et al. have proposed an algorithm in which
speech/music classification is performed by using average
percentage deviation. This value is calculated by finding the
percentage deviation of each feature relative to the maxi-
mum deviation of that feature. If it is less than a particular
threshold value, it is labeled as speech otherwise it is labeled
as music. They have reported 94.25% accuracy.

Saunders [3] has described a technique for discriminat-
ing speech from music on broadcast FM radio based on the
zero-crossing rate of the time domain waveform. His tech-
nique emphasized detecting certain characteristics of speech
such as:

(1) limited bandwidth,
(2) alternate voiced and unvoiced sections, and
(3) energy variations between high and low levels.

It is indirectly using the amplitude, pitch and periodicity es-
timate of the waveform to carry out the detection process by
using a multivariate Gaussian classifier. He has reported an
average accuracy of 95%. Carey et al. [4] presents a com-
parison of several of the different features, some of them al-
ready used in [1, 3], and tested the same data by using Gaus-
sian Mixture Models (GMM) as a classifier and Expectation
Maximization (EM) algorithm for training. The following
features were used for classification:

(1) Cepstral coefficients
(2) Delta cepstral coefficients
(3) Amplitude
(4) Delta amplitude
(5) Pitch
(6) Delta pitch
(7) Zero-crossing rate
(8) Delta zero-crossing rate

Separate experiments were carried out in combination of
a feature and its derivative. The best performance resulted
from using the cepstra and delta cepstra which gave an equal
error rate (EER) of 1.2%. Parris et al. [5] have used cep-
stral coefficients, amplitude, and pitch features along with
GMM and has reported an equal error rate of 0.7%. Chou
and Gu [6] has proposed an approach for robust singing sig-
nal detection applied to applications of audio indexing in
multimedia databases. The following set of features were be-
ing used by a GMM-based classifier:

(1) 4 Hz modulation energy
(2) Harmonic coefficients
(3) 4 Hz harmonic coefficients
(4) MFCC
(5) Log energy

In order to efficiently index the sound-track of multimedia
documents, it is necessary to extract elementary and ho-
mogeneous acoustic segments. Pinquier et al. [7–9] have
explored such prior partitioning which consists of detecting
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audio signals as speech, music, speech-music, and other
by using GMM. Speech detection has been carried out
by considering cepstral coefficients, entropy modulation
and 4 Hz modulation energy. Spectral coefficients, the
number of segments and segment durations have been used
to carry out music detection. They have reported 90.1%
of accuracy. Harb and Chen [10] used first order sound
spectrum’s statistics as feature vectors, extracted using the
Fast Fourier transform, and then used a neural network to
estimate the probability of each mean/variance model. The
NN used is a Multi-Layer Perceptron with the error back
propagation training algorithm and the sigmoid function as
an activation one. They have achieved 96% classification
accuracy for context-dependent problems and 93% for
context-independent ones. In [11], Harb and Chen have
investigated audio for indexing purposes and proposed an
algorithm that needs no training phase as is the case with
GMM-based algorithms. It classifies audio signals into four
classes: speech, music, silence, and other. Different features
were used for different classes. For example, energy level
and the zero crossing rate have been used to detect silence.
To detect speech+music, the silence crossing rate and
frequency tracking have been employed. Classification is
achieved by thresholding these features. They have reported
90% classification accuracy. The possibility to discriminate
between speech and music signals using features based
on low frequency modulation has been investigated by
Karnebäck [12]. Three different low frequency modulation
parameters, 4 Hz amplitude and standard deviation, 4 Hz
normalized amplitude, and 2–4 Hz normalized amplitude
have been extracted and tested using GMMs. Classification
accuracy of 93.6% have been reported. Wang et al. [13]
present a simple and effective approach in which the
proposed modified low energy ratio is first extracted as the
only feature and then the system applies the Bayes MAP
(Maximum A-posteriori Probability) classifier to decide the
audio class. Around 97% of classification accuracy has been
achieved. El-Maleh et al. [14] have focused on frame level
narrow band speech/music discrimination by using four
feature sets for experimentation:

(1) Line spectral frequencies (LSF)
(2) Differential LSF, the successive differences of LSF.
(3) LSF with the zero crossing count of the filtered input

signal.
(4) LSF with Linear prediction zero crossing ratio, the ratio

of the zero crossing count (ZCC) of the input and the
ZCC of the output of the LP analysis filter.

They used two different classification algorithms: a
quadratic Gaussian classifier and a k-nearest neighbor
classifier. The k-nearest neighbor classifier gave the best
results of 80.85%. Panagiotakis and Tziritas [15] have
developed a system which first segments audio signals and
then classifies them into one of the three main categories:
speech, music, and silence. They have proposed an algo-
rithm for classification based on RMS and Zero-Crossings.
They have reported around 95% of classification accuracy.

One important note regarding previous related work is
the absence of the ability to compare the different ap-
proaches, let alone determining the most accurate approach.
The reason is that no standard set of audio data for the pur-
pose of speech/music classification exists.

3 Selection of audio features using fuzzy C-means
clustering

The first step in a classification problem is typically data
reduction. The data reduction stage which is also called
feature extraction, consists of discovering a few important
facts about each class. The choice of features is critical as it
greatly affects the accuracy of audio classification. The se-
lected features must reflect the significant characteristics of
each class of audio signals. In order to better discriminate
different classes of audio, we consider features that are re-
lated to the temporal and spectral domains.

Typically, audio features are extracted at two levels:
short-term frame-level and long-term clip-level. Here, a
frame is defined as a group of adjacent samples lasting for
10–40 ms. The audio signal within such periods presumably
remains stationary and short-term features both in the time-
domain and in the frequency-domain can be extracted. For
a feature to reveal the semantic meaning of an audio sig-
nal, we need to observe the temporal variations of frame
features on a longer time scale, usually from 1 s to several
tens of seconds. Such an interval is called an audio clip. An
audio clip consists of a sequence of frames and clip-level
features that characterize how frame-level features change
over a clip. Clip boundaries may be the result of audio seg-
mentation such that the content within each clip belongs to
the same class. Fixed length clips, lasting for 2–3 s may also
be used in determining clip boundaries.

In this section, we start by presenting audio features that
have been considered. Then, we use cluster analysis to assist
us in the process of selecting the smallest set of features that
can possibly produce the highest classification accuracy.

3.1 Previously used audio features

Among the many features that have been used by other
researchers for music/speech classification, we considered
three features, namely the percentage of low energy frames,
the spectral flux, and the linear predictive coefficients.

3.1.1 Percentage of “low energy” frames (%LEF)

This value measures the proportion of frames with root
mean-squared (RMS) power less than 50% of the mean
RMS power within a given period of time. According to
[3] the energy distribution for speech is more left-skewed
than that of music. The reason is that there are more quiet
frames in speech as some pause between every word exists
and hence the energy of the frame containing pauses is lower
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than that in frames containing no pauses. This feature has
been used in [1, 2, 16–21].

3.1.2 Spectral flux (SF)

This feature, also known as the delta spectrum magnitude,
measures frame-to-frame spectral difference, and is com-
puted according to the following equation:

Spectral Flux = ‖ |Xi | − |Xi+1| ‖ . (1)

Thus, it characterizes the changes in the shape of the spec-
trum. Speech goes through more drastic frame-to-frame
changes than music. The spectral flux value is higher for
speech than it is for music [22–24]. This feature has been
used in [1, 2, 18–25].

3.1.3 Linear predictive coefficients (LPC)

The basic idea behind linear prediction is that the next sig-
nal sample is predicted from a weighted sum of p previous
samples, given as follows:

ŝ(n) =
p∑

i=1

ai s(n − i), (2)

where ai represent the prediction coefficients, p is the pre-
dictor order, and s(n − i) is a sample at time instance n − i .
The prediction coefficients are determined by minimizing
the mean squared error between the actual sample and the
prediction. The prediction error signal, also called residual
error, is given by

e(n) = s(n) − ŝ(n) = s(n) −
p∑

i=1

ai s(n − i). (3)

The prediction error is significantly higher for unvoiced
speech than it is for voiced speech. The linear prediction co-
efficients considered in our work use the Levinson-Durbin
recursion to solve the normal equations that arise from the
least-squares formulation. This feature has been used in [19,
26–29].

3.2 Newly proposed audio features

This section presents audio features that we were first to pro-
pose and investigate for the purpose of music/speech classi-
fication, according to our knowledge.

3.2.1 Range of zero-crossings (R-ZC)

Zero-crossings count is a measure of the number of times
that the audio signal amplitude passes through a value of
zero, in a given time interval. Rather than using ZCC di-
rectly, we have used the difference of maximum and min-
imum zero-crossings as a feature vector. It is evident from
Fig. 1a that it gives discriminating patterns for different
classes of audio signal.

3.2.2 Mean (M-DWT) and variance (V-DWT) of the discrete
wavelet transform

A serious drawback of using Fourier transform is that after
transforming the audio signal into the frequency domain, the
time information is lost. Wavelet analysis is capable of re-
vealing aspects of data that other signal analysis techniques
miss, which include trends, breakdown points, discontinu-
ities in higher derivatives, and self-similarity. In wavelet
analysis, a signal is split into an approximation and a detail.
The approximation is then itself split into a second-level ap-
proximation and detail, and the process is repeated. For an
n-level decomposition, there are n + 1 possible ways to de-
compose or encode the signal. The approximations are the
low-frequency components of the signal, whereas the de-
tails are the high-frequency components. Since we have only
single dimensional data, we have used a single-level, 1-D
‘Haar’ wavelet transformation. We have investigated the sta-
tistical features of audio in the wavelet domain which are
the mean (M-DWT), shown in Fig. 1b and the variance (V-
DWT), shown in Fig. 1c. Lambrou et al. [30] have also used
the two features, but for music genre classification. Delfs et
al. [31] have used wavelet packet transform for the classifi-
cation of piano sound.

3.2.3 RMS of a lowpass signal (RMS-LPS)

Music signals have a wider bandwidth than speech extend-
ing up to 20 kHz. To limit the frequency band, we have ap-
plied a lowpass filter to filter out the high frequency con-
tents. We have applied the Butterworth filter of 4th order
with 1.1 kHz cutoff frequency. After that, we have taken the
root mean square value of that lowpass response. The RMS
value of a lowpass response for speech is higher than that of
music as most of the speech contents are in the lower fre-
quency band, as shown in Fig. 1d.

3.2.4 Variance of the mel frequency cepstral coefficients
(V-12MFCC)

Primarily, MFCC have been used for their ability to imitate
the behavior of a human ear. Psychophysical studies have
shown that human perception of the frequency contents of
sounds for speech signals does not follow a linear scale.
Thus for each tone with an actual frequency f , measured in
Hz, a subjective pitch is measured on a scale called the Mel
scale. The Mel-frequency scale is a linear frequency spacing
below 1 kHz and a logarithmic spacing above 1 kHz. Fil-
ters spaced linearly at low frequency and logarithmic at high
frequencies have been used to capture the phonetically im-
portant characteristics (voiced and unvoiced) of speech. The
commonly used formula to approximately reflect the rela-
tion between the Mel-frequency and the physical frequency
is given by

M( f ) = 1125 × log10

(
1 + f

700

)
. (4)
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Fig. 1 Discriminating abilities of R-ZC, M-DWT, V-DWT, and RMS-LPS, respectively

Although 12 coefficients are typically used for speech repre-
sentation, Srinivasan et al. and Lippens et al. have found that
the first five coefficients provide the best classification per-
formance [17, 18]. Instead of using the MFCC coefficients,
we have investigated the variance of the MFCC coefficients.

3.3 Fuzzy C-means clustering

In order to verify the “discriminating abilities” of each fea-
ture, researchers have used different techniques such as clus-
ter analysis, distance measures, entropy analysis, and other
related methods [26]. We have chosen to use cluster analysis
in order to select the best combination of features that gives
the highest classification accuracy. In particular, we have
used the “Fuzzy C-Means Clustering”. Fuzzy C-Means is a

data clustering technique wherein each data point belongs to
a cluster to some degree that is specified by a membership
grade. This technique was originally introduced by James
C. Bezdek in [32] as an improvement on earlier clustering
methods. It provides a method that shows how to group data
points that populate some multidimensional space into a spe-
cific number of different clusters [33].

We have extracted RMS-LPS, M-DWT, V-DWT, SF,
%LEF, and R-ZC at frame-level where each frame is of
20 ms duration. Each clip was of 3 s duration containing 150
frames in each clip. After extracting those features at frame-
level, we have taken the mean of 150 values of each feature
to get a single feature value for each clip. For instance, we
get 150 values of M-DWT and V-DWT, each belonging to a
single frame. After that, we take the mean of 150 M-DWTs
and the mean of 150 V-DWTs to get a single M-DWT and
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V-DWT feature vector for each clip. In case of R-ZC, we
have first calculated the number of zero-crossings in each
frame and then we subtracted the minimum zero-crossings
from the maximum zero-crossings within a clip to get R-
ZC. The 12 coefficients of both LPC and V-12MFCC were
extracted at clip-level, where each clip was of 3 s duration.
The feature vector of each clip consists of: a single value
of RMS-LPS, M-DWT, V-DWT, SF, %LEF and R-ZC, 12
coefficients of LPC, and 12 coefficients of MFCC.

We have applied the Fuzzy C-Means clustering algo-
rithm to find the contribution of each feature in classifying
audio data into one of three different classes: Music, Speech,
and Speech+Music (i.e., Speech with background Music).
We have, then, applied the algorithm on all possible combi-
nations of those features in order to determine the best com-
bination. Since we are only examining the contribution of
each feature, we have selected few audio samples from our
audio database to extract those features. We have selected
50 audio samples of each class, i.e., 50 samples of Music,
50 samples of Speech, and 50 samples of Speech+Music.
In the samples of both Speech and Speech+Music, the lan-
guage was “English” and the speaker was “Male”.

3.3.1 Individual feature contribution to classification

We have taken into account the percentage accuracy of each
class to be above 80% in order to consider the feature’s con-
tribution for that class as significant. Tables 1 and 2 show
that RMS-LPS, SF, and V-12MFCC are good features for
classification of all three classes. It is obvious that the data

Table 1 Clustering results for RMS-LPS and SF

Classes

Music Speech Speech+Music
Cluster (%) (%) (%)

RMS of lowpass signal
Music 92 6 0
Speech 8 92 12
Speech+Music 0 2 88

Total 100 100 100
Spectral flux

Music 92 2 0
Speech 8 84 10
Speech+Music 0 14 90

Total 100 100 100

Table 2 Clustering results for V-12MFCC

Classes

Music Speech Speech +Music
Cluster (%) (%) (%)

Variance of MFCC (12 Coefficient)
Music 98 0 6
Speech 0 86 2
Speech+Music 2 14 92

Total 100 100 100

samples cannot be perfect, i.e. there lies some ambiguities
among the samples belonging to the same class. For exam-
ple, in the samples of Speech+Music, varying volume of
background music makes speech dominant or music domi-
nant, which explains some of those ambiguities. Similarly,
in the case of speech, one may have some noise in the back-
ground which could be mistaken by the classifier as back-
ground music.

While investigating the variance of MFCC, we have ap-
plied the Fuzzy C-Means clustering algorithm on each of
the 12 coefficients as shown in Table 3. We have found that
the first 4 coefficients give the same results when using the
12 coefficients, as shown in Table 4. In fact, we applied the
same experiment for 5, 6, up to 11 coefficients without any
notable change in the clustering accuracy. Therefore, the first
4 MFCC coefficients (V-4MFCC) seem to suffice for carry-
ing out the audio classification.

Regarding the use of wavelets as features, there exist
many families of wavelets that can be considered, like ‘Haar
wavelet’, ‘Daubechies wavelets’, ‘Meyer wavelet’, ‘Mex-

Table 3 Clustering results for each coefficient of the variance of
MFCC

Classes

Coefficient no. Music (%) Speech (%) Speech+Music (%)

1 M = 80 M = 0 M = 20
S = 0 S = 60 S = 40
SM = 46 SM = 0 SM = 54

2 M = 96 M = 0 M = 4
S = 0 S = 72 S = 28
SM = 4 SM = 10 SM = 86

3 M = 92 M = 0 M = 8
S = 0 S = 62 S = 38
SM = 22 SM = 0 SM = 78

4 M = 92 M = 0 M = 8
S = 0 S = 76 S = 24
SM = 28 SM = 8 SM = 64

5 M = 98 M = 0 M = 2
S = 2 S = 38 S = 60
SM = 4 SM = 24 SM = 72

6 M = 90 M = 0 M = 10
S = 0 S = 70 S = 30
SM = 10 SM = 8 SM = 82

7 M = 98 M = 0 M = 2
S = 2 S = 64 S = 34
SM = 4 SM = 26 SM = 70

8 M = 100 M = 0 M = 0
S = 0 S = 58 S = 42
SM = 10 SM = 24 SM = 66

9 M = 96 M = 0 M = 4
S = 0 S = 46 S = 54
SM = 4 SM = 18 SM = 78

10 M = 100 M = 0 M = 0
S = 2 S = 46 S = 52
SM = 28 SM = 2 SM = 70

11 M = 94 M = 0 M = 6
S = 4 S = 68 S = 28
SM = 26 SM = 14 SM = 60

12 M = 94 M = 0 M = 6
S = 0 S = 52 S = 48
SM = 12 SM = 24 SM = 64
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Table 4 Clustering results for V-4MFCC

Classes

Music Speech Speech+Music
Cluster (%) (%) (%)

Variance of MFCC (4 Coefficient)
Music 98 0 6
Speech 0 86 2
Speech+Music 2 14 92

Total 100 100 100

ican hat wavelet’, and others. We have investigated Haar
wavelets, Meyer wavelets, and two types of daubechies
wavelets DB2 and DB15 [34]. The results show that fea-
tures extracted when using Meyer or DB15 wavelets do
not contribute much to the process of classification. The re-
sults for the Haar wavelets, however, indicate that they per-
formed more accurate clustering than that of DB2 wavelets,
as shown in Tables 5 and 6. Hence, we have only consid-
ered Haar wavelets and discard the rest. From this point on,
when we refer to discrete wavelet transform, we mean Haar
discrete wavelet transform.

Tables 5, 6 and 7 further indicate that M-DWT and LPC
do not contribute much to the process of audio classification.
However, it could be possible that they may be useful when
used with other features. Table 5 clearly shows that V-DWT
is a good feature to classify Music and can be useful for
Speech+Music as well. In addition, Table 7 shows that the
percentage of low energy frames is a good feature to identify
speech, whereas Table 8 shows that R-ZC can be useful to
classify Music and Speech data but not Speech+Music data.

3.3.2 Contribution of sets of features to classification

After studying the individual contribution of each feature in
the classification process, we elaborate on choosing a sub-
set of those features that maximize classification accuracy
and at the same time reduce computational time by choos-
ing the smallest such set. Selection of a proper feature subset
is not an easy task. For this reason, we applied the fuzzy C-

Table 5 Clustering results for the mean and variance of “Haar” dis-
crete wavelet transform

Classes

Music Speech Speech+Music
Cluster (%) (%) (%)

Mean of Haar DWT
Music 32 14 4
Speech 36 58 44
Speech+Music 32 28 52

Total 100 100 100
Variance of Haar DWT

Music 100 48 0
Speech 0 50 32
Speech+Music 0 2 68

Total 100 100 100

Table 6 Clustering results for the mean and variance of “DB2” dis-
crete wavelet transform

Classes

Music Speech Speech +Music
Cluster (%) (%) (%)

Mean of DB2 DWT
Music 18 8 4
Speech 41 64 40
Speech+Music 40 28 56

Total 100 100 100
Variance of DB2 DWT

Music 100 52 0
Speech 0 46 34
Speech+Music 0 2 66

Total 100 100 100

Table 7 Clustering results for linear predictor coefficients and the per-
centage of low energy frames

Classes

Cluster Music (%) Speech (%) Speech+Music (%)

LPC
Music 68 14 16
Speech 0 32 20
Speech+Music 32 54 64

Total 100 100 100

%LEF
Music 66 0 4
Speech 4 96 52
Speech+Music 30 4 44

Total 100 100 100

Table 8 Clustering results for the range of zero crossings

Classes

Cluster Music (%) Speech (%) Speech+Music (%)

R-ZC
Music 100 0 6
Speech 0 90 62
Speech+Music 0 10 32

Total 100 100 100

means clustering algorithm on all possible sets of features.
As it is not feasible to show the results for all the combina-
tions of features, we have included results for sets of features
that have given the highest clustering accuracy. Two differ-
ent sets of features have given the highest clustering accu-
racy. Both sets consist of three features, two of which exist
in both, viz R-ZC and V-12MFCC. The third feature in the
first set is SF and the one in the second set is %LEF. Per
class accuracy for both sets is the same as shown in Tables 9
and 10. After that, we repeated the same procedure including
V-4MFCC instead of V-12MFCC. In this case, the highest
clustering accuracy with minimum number of features was
achieved with only V-4MFCC.
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Table 9 Clustering result for SF, R-ZC, and V-12MFCC

Classes

Cluster Music (%) Speech (%) Speech+Music (%)

SF, R-ZC and V-12MFCC
Music 98 0 4
Speech 0 86 2
Speech+Music 2 14 94

Total 100 100 100

Table 10 Clustering result for LEF, R-ZC, and V-12MFCC

Classes

Cluster Music (%) Speech (%) Speech +Music (%)

%LEF, R-ZC and V-12MFCC
Music 98 0 4
Speech 0 86 2
Speech+Music 2 14 94

Total 100 100 100

After applying the clustering technique and short listing
the potential discriminative features, we apply a classifica-
tion scheme, as further elaborated in the next section.

4 Classification frameworks

In order for a classifier to be successful, it has to possess
certain characteristics. First, due to the variability of music
and speech signals, the classifier must be able to generalize
from a relatively little amount of training data. Second, the
notion of speech and music may differ from one application
to another. For example, speech with background music may
be considered as speech or music depending on the relative
volume of the music as compared to speech. Hence, the clas-
sifier must adapt to different situations in order to give ac-
curate results. In addition, since audio data is composed of a
large amount of information size-wise, a practical classifier
must be fast and simple.

We have considered two major approaches to carry out
the classification, Artificial Neural Networks (ANN) and
Hidden Markov Models (HMM). Two types of feedforward
neural network topologies have been investigated, the Multi-
layer Perceptron (MLP) and Radial Basis Functions (RBF).
In this section, we will briefly introduce the three classifi-
cation frameworks and then describe our experimental setup
and show the results for each framework.

4.1 Multilayer perceptron (MLP)

The Multilayer Perceptron (MLP) network is probably
the most often considered member of the ANN family in
classification. The main reason for this is its ability to model
simple as well as very complex functional relationships. An
MLP network consists of an input layer of source nodes,
one or more hidden layers of computation nodes, and an
output layer of computation nodes, as shown in Fig. 2. The

Input
layer

First
hidden layer

Second
hidden layer

Output
layer

Input
signals

Output
signals

Fig. 2 Multilayer perceptron with two hidden layers

input signal propagates through the network in a forward
direction, on a layer-by-layer basis. MLP networks success-
fully solve some difficult problems by training them in a
supervised manner with a highly popular algorithm known
as the error back-propagation algorithm or simply back-
propagation algorithm. The back-propagation algorithm is
based on the error-correction learning rule which requires
pre-existing training patterns, and involves a forward
propagation step followed by a backward propagation step.

We have employed an MLP network consisting of one
hidden layer. The reason behind our choice of one hidden
layer is the fact that continuous feedforward neural networks
with a single hidden layer and a nonlinear sigmoidal activa-
tion function provide good approximations to arbitrary de-
cision regions [35, 36]. Each neuron in the input layer cor-
responds to a feature value of the input feature vector. The
output layer consists of three neurons, each corresponding to
a class (Music, Speech, and Speech+Music). The MLP has
been chosen to be fully connected, i.e., a neuron in any layer
is connected to all neurons of the previous layer.

Prior to training, small random numbers have been gen-
erated to initialize weights on each communication link,
called connection, between neurons. In addition, the input
features have been normalized as neural networks risk satu-
ration.1 With regard to the number of neurons in the hidden
layer, we have used 5 neurons and 10 neurons. After carry-
ing out the classification process and comparing the results,
we decided to work with only 5 neurons as the accuracy was
not greatly affected by the increase in the number of neu-
rons, although the processing time of the classifier increased
substantially. Due to the nonlinear behavior of patterns, we
have used a sigmoidal function as an activation function. We
have used tan sigmoid function with output values between
−1 and 1 for the hidden neurons, and log sigmoid function
for the output neurons, with values ranging between 0 and 1.

4.2 Radial basis functions (RBF)

RBFs are feedforward network that are used in a wide va-
riety of contexts such as function approximation, pattern

1 Saturation refers to the situation where synaptic weights change
slowly causing a very long training time if feature vectors contain val-
ues greater than 1.
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Fig. 3 A general RBF network

recognition and time series prediction. Learning in RBF
networks involves only one layer with lesser computations.
This results in a reduction in the training time in contrast
to MLP that uses back propagation algorithm to update the
weights of all neurons. These features make RBF attractive
in many practical problems.

The construction of an RBF network, in its most ba-
sic form, consists of three layers: the input layer of source
nodes, the middle layer which is the only hidden layer in
the network that applies a nonlinear transformation, and the
output layer which is linear as shown in Fig. 3. Every input
node is connected to all nodes of the hidden layer through
unity weights (direct connection).

A reduced RBF classifier has been considered in our ex-
perimentation. A reduced RBF network is an RBF network
in which the number of centers is less than the total number
of input samples, as opposed to a complete RBF, where the
number of centers is equal to that of the input samples. The
number of centers used equals to 3, the number of classes.
We have extracted the centers from the input features by us-
ing the Fuzzy C-Means clustering algorithm. As a learning
algorithm we have used the average square error algorithm.

4.3 Hidden Markov models

Hidden Markov Models belong to a class of statistical mod-
els that employ the statistical properties of signals in car-
rying out recognition and/or classification. Other statistical
models in this domain include Gaussian processes, Pois-
son processes, and Markov processes. According to Ra-
biner [37]:

An HMM is a doubly stochastic process with an un-
derlying stochastic process that is not observable (it
is hidden), but can only be observed through another
set of stochastic processes that produce the sequence
of observed symbols.

A Markov chain or process is a sequence of events, usu-
ally called states, the probability of each of which is depen-
dent only on events preceding it. A Hidden Markov Model
(HMM) represents stochastic sequences as Markov chains
where the states are not directly observed, but are associated

1

4

2

3

Fig. 4 An ergodic hidden Markov model

1 2 3 4

Fig. 5 A left-to-right hidden Markov model

with a probability density function. A general HMM is as-
sumed to have a full state transition matrix, i.e. transitions
can be made from any state in some way to any other state.

Such models are called ergodic, an example of which
is shown in Fig. 4. In non-ergodic models, transitions can
only be made to a state whose index is as large or larger
than the index of the current state. Such models are called
left-to-right models. Figure 5 shows an example left-to-right
HMM.

In order to compare results obtained from using neural
networks to those using statistical models like HMM’s, we
have trained three HMMs, one for each class. After com-
puting the log-likelihood that a single sample generates, if
the i th model, where 1 ≤ i ≤ 3, gives the highest value,
the sample is classified to belong to class i . This is called
sequence classification.

4.4 Experimental setup

The experiments were carried out using a database of
music, speech, and speech+music data. All speech and
speech+music data were conversational and included exam-
ples from both genders. The following languages were rep-
resented: American English, Urdu, Japanese, Spanish, and
Hebrew. The audio samples were extracted from documen-
taries and from different movies. There were approximately
2.25 h of speech, 2.72 h of music and 0.62 h of speech/music
data distributed over 3-s audio files as shown in Table 11.
Audio samples consist of 16-bit, 44.1 kHz, mono PCM wave
files.

5 Experimental results

The three classifiers, MLP, RBF, and HMM have been
applied on various sets of features. The results of each
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Table 11 Audio data samples

Language Number of samples

Music Speech Speech+Music

English – 50 50
Urdu – 1543 100
Japanese – 427 336
Spanish – 542 154
Hebrew – 140 100
Total 3268 2702 740

experimentation on a set of features have been recorded in
a table, where the accuracy for music is denoted by M, the
accuracy for speech is denoted by S, and the accuracy for
speech+music is denoted by S+M.

First, we have examined seven features, namely RMS-
LPS, M-DWT, V-DWT, SF, %LEF, R-ZC, and LPC.
Table 12 shows the percentage accuracies achieved by ap-
plying the three classifiers on this set.

MLP performance on English data has been consis-
tently well, whereas HMM performed reasonably well, re-
gardless of the language. RBF performed well in recog-
nizing speech, but very poorly with speech+music data.
HMM’s outperformed the other two classifiers in recogniz-
ing speech+music in all languages except English and Urdu.

Next, we added the V-12MFCC to the previous set of
features and ran the three classifiers to get the results shown
in Table 13.

HMM outperformed RBF and MLP for English data
and for “all” data, which consists of audio samples from
all languages. MLP outperformed the overall classification
accuracy of HMM and RBF for Urdu data. RBF continues
exhibiting low accuracy on speech+music data.

Table 12 Classification results for RMS-LPS, M-DWT, V-DWT, SF, %LEF, R-ZC, and LPC

Accuracy with MLP (%) Accuracy with RBF (%) Accuracy with HMM (%)

Language M S S+M Total M S S+M Total M S S+M Total

English 100 93.33 93.33 95.55 100 100 30 76.67 100 84 73.33 85.78
Urdu 73.33 76.66 53.33 67.77 90 25 5 40 82 97.34 44 74.45
Japanese 89 85 31 68.33 86.57 94.03 0 60.20 58.40 76.60 44.20 59.73
Spanish 93.48 63.04 26.09 60.87 70 43.33 3.33 38.89 99.13 57.39 56.09 70.87
Hebrew 11.54 80.77 7.7 33.34 95 70 15 60 96.67 69.33 54.67 73.56
All 85.85 82.65 32.42 66.97 77.7 68.92 0 48.87 91.17 71.71 52.61 71.83

Table 13 Classification results for RMS-LPS, M-DWT, V-DWT, SF, %LEF, R-ZC, LPC, and V-12MFCC

Language Accuracy with MLP (% ) Accuracy with RBF (% ) Accuracy with HMM (% )

M S S+M Total M S S+M Total M S S+M Total

English 100 100 90 96.67 100 100 90 96.67 100 100 90.67 96.89
Urdu 95 90 100 95 25 65 0 30 55.33 100 64 73.11
Japanese 92.54 89.55 70.15 84.08 2.98 10.45 7.46 6.96 97 88 38.20 74.40
Spanish 93.33 86.67 23.33 67.78 80 30 23.33 44.44 95.65 34.78 78.26 69.56
Hebrew 95 65 75 78.33 90 0 25 38.33 91.33 70 28 63.11
All 86.48 57.43 60.81 68.24 76.35 31.76 0 36.04 97.66 52.79 80.81 77.09

When the Fuzzy C-Mean clustering algorithm was ap-
plied on individual features in Sect. 3.3.1, it was shown that
M-DWT and %LEF do not seem to be good candidates for
discriminating speech and music. Therefore, we have re-
moved M-DWT and %LEF from the previous two sets and
then applied the classification process on the new sets, which
has given the results shown in Tables 14 and 15.

When the V-12MFCC was not used, it was evident that
an overall degredation in performance has occured in the
three classifiers. It seems that M-DWT and %LEF contribut
to the speech+music classification accuracy most. However,
when V-12MFC was added, Table 15 shows a significant in-
crease of performance of the MLP classifier in all language
categories. Such improvements were not evident in the other
two classifiers.

Next, we consider using the variance of only the
first four coefficients of MFCC, V-4MFCC, instead of
V-12MFCC as the clustering results in Sect. 3.3.1 have
indicated similar performance traits to V-12MFCC. Ta-
ble 16 shows the classification performance after adding
V-4MFCC to the original seven features (before removing
M-DWT and %LEF), and Table 17 shows the performance
after removing the two features.

One interesting result is the 100% accuracy achieved
by MLP for English data after removing M-DWT and
%LEF, and adding V-4MFCC to the original set of seven
features. We can also notice a degradation in performance
of classifying speech+music in MLP and HMM, which
was reflected in the overall performance of the HMM
framework, specifically.

It is clear that the classification results in this section
confirm our findings of the clustering study of Sect. 3. This
highlights the importance of carrying out clustering anal-
ysis before considering certain features for classification
purposes.
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Table 14 Classification results for RMS-LPS, V-DWT, SF, R-ZC, and LPC

Accuracy with MLP (%) Accuracy with RBF (%) Accuracy with HMM (%)

Language M S S+M Total M S S+M Total M S S+M Total

English 100 100 70 90 100 100 70 90 100 58.67 93.33 84
Urdu 70 95 25 63.33 55 75 30 53.33 34.67 96.67 52.67 61.33
Japanese 91.04 82.09 32.83 68.65 85.07 89.55 0 58.21 82.80 70.60 33.20 62.20
Spanish 93.33 0 26.67 40 76.67 36.67 0 37.78 94.35 33.48 72.61 66.81
Hebrew 100 75 0 58.33 95 70 0 55 93.33 51.33 58.67 67.78
All 88.51 27.70 62.84 59.68 33.78 33.78 16.90 28.15 87.48 57.21 49.48 64.72

Table 15 Classification results for RMS-LPS, V-DWT, SF, R-ZC, LPC, and V12-MFCC

Accuracy with MLP (%) Accuracy with RBF (%) Accuracy with HMM (%)

Language M S S+M Total M S S+M Total M S S+M Total

English 100 100 90 96.67 100 100 90 96.67 100 81.33 81.33 87.56
Urdu 80 100 95 91.67 25 60 0 28.33 47.33 98 42.67 62.67
Japanese 100 89.55 61.20 83.58 0 4.48 10.45 4.98 87.20 76 34.60 65.93
Spanish 93.33 83.33 43.34 73.33 80 26.67 23.33 43.33 94.78 47.83 67.39 70
Hebrew 95 70 75 80 90 0 45 45 66 57.33 42.67 55.33
All 86.48 37.16 78.38 67.34 71.62 23.65 0 31.76 91.62 49.01 62.25 67.63

Table 16 Classification results for RMS-LPS, M-DWT, V-DWT, SF, %LEF, R-ZC, LPC, and V-4MFCC

Accuracy with MLP (% ) Accuracy with RBF (% ) Accuracy with HMM (% )

Language M S S+M Total M S S+M Total M S S+M Total

English 100 100 93.33 97.78 100 100 90 96.67 100 66.67 84 83.56
Urdu 90 65 85 80 15 50 25 30 68.67 96.67 49.33 71.56
Japanese 82.1 95.52 71.64 83.09 2.98 5.97 11.94 6.96 73 84 31.20 62.73
Spanish 86.67 90 16.67 64.45 76.67 30 26.67 44.45 90.44 44.35 62.61 65.80
Hebrew 95 60 90 81.67 90 0 20 36.67 89.33 84.67 27.33 67.11
All 86.04 75.67 39.19 66.97 72.97 28.38 0 33.78 94.32 84.05 33.51 70.63

Table 17 Classification results for RMS-LPS, V-DWT, SF, R-ZC, LPC, and V-4MFCC

Accuracy with MLP (%) Accuracy with RBF (%) Accuracy with HMM (%)

Language M S S+M Total M S S+M Total M S S+M Total

English 100 100 100 100 100 100 90 96.67 100 89.33 85.33 91.56
Urdu 100 95 40 78.33 0 45 25 23.33 60.67 96.67 42 66.64
Japanese 95.52 85.07 71.64 84.08 0 2.98 11.94 4.97 94.80 79.80 25.60 66.73
Spanish 93.33 43.33 56.67 64.44 80 26.67 30 45.56 97.39 50 66.52 71.31
Hebrew 95 80 65 80 90 0 45 45 48 76.66 19.33 48
All 83.11 39.86 64.2 62.39 70.27 20.27 0 30.18 95.32 95.32 7.30 65.98

6 Conclusion and future work

Many techniques have been proposed in the literature for
speech/music classification. In order to achieve acceptable
performance, most of them require a large amount of train-
ing data, rendering them difficult for retraining and adapta-
tion to new conditions. Other techniques are rather context
oriented, as they have been tested on specific applications,
such as speech/music classification in radio programs or in
the context of broadcast news transcription. We have con-
ducted extensive experimentation on a diverse set of audio
data using three classification frameworks and introducing

features that have not been used earlier for music-speech
classification.

The results clearly show that RBF networks give satis-
factory results only for the English language. Since RBF net-
works depend on the centers of clusters, the results indicate
that for all languages, except English, the center of each
cluster has not been correctly chosen by the classification
algorithm.

Both, MLP networks and HMMs have given good re-
sults. A disadvantage of using HMMs is that it requires
long training and testing time as compared to MLP. With 35
samples for training and 15 samples for testing, HMMs took
close to 21 s for training and 1.3 s for testing, whereas MLPs
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took 7.3 s for training and 0.046 s for testing. Also, HMMs
need to be trained for each audio class separately, which re-
quires more memory space. MLP is trained only once for all
the audio classes simultaneously and the synaptic weights
are stored once.

After investigating nine major audio features, one can
conclude that applying an MLP classification framework on
six of them, namely the range of zero-crossings, the variance
of the Haar discrete wavelet transform, the root mean square
of a lowpass signal, the spectral flux, the linear predictive
coefficients, and the variance of four Mel frequency cepstral
coefficients, has given the best results, achieving a 100%
classification accuracy for English. As other languages
have not achieved such accuracy, one must explore more
audio features that behave similarly for different languages.
Otherwise, one may need to have a closer look at different
languages, closely studying their distinctive properties and
the degree of similarity to music in order to justify the
varying performance. There is, also, a need for an audio
data benchmark that can be shared by researchers interested
in music speech classification to facilitate more objective
comparisons of various approaches.
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