
Digital Object Identifier (DOI) 10.1007/s00530-004-0159-y
Multimedia Systems 10: 344–355 (2005) Multimedia Systems

Caption analysis and recognition for building video indexing systems

Fu Chang1, Guey-Ching Chen1, Chin-Chin Lin1,2, Wen-Hsiung Lin1

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
2 Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan

(e-mail: {fchang,ching64,erikson,bowler}@iis.sinica.edu.tw

Published online: 2 February 2005 – c© Springer-Verlag 2005

Abstract. In this paper, we propose several methods for an-
alyzing and recognizing Chinese video captions, which con-
stitute a very useful information source for video content. Im-
age binarization, performed by combining a global threshold
method and a window-based method, is used to obtain clearer
images of characters, and a caption-tracking scheme is used
to locate caption regions and detect caption changes. The sep-
aration of characters from possibly complex backgrounds is
achieved by using size and color constraints and by cross ex-
amination of multiframe images. To segment individual char-
acters, we use a dynamic split-and-merge strategy. Finally,
we propose a character recognition process using a prototype
classification method, supplemented by a disambiguation pro-
cess using support vector machines, to improve recognition
outcomes. This is followed by a postprocess that integrates
multiple recognition results. The overall accuracy rate for the
entire process applied to test video films is 94.11%.

Keywords: Background removal – Caption tracking – Char-
acter recognition – Support vector machines – Prototype clas-
sification

1 Introduction

The rapid increase in the use of digital videos in recent years
has raised the need for an archival storage system. Such a
system, in turn, requires an effective indexing technique for
retrieving and browsing video content [2]. Since video cap-
tions are rich sources of information, caption-based retrieval
has become a popular focus for research into video content
retrieval.

The aim of this paper is to provide systematic methods for
analyzing and recognizing video captions. We limit ourselves
to finding horizontal captions of a single color that stay the
same throughout a number of successive frames. The video
captions, moreover, are in Chinese, and most characters in the
captions are either light with dark borders or dark with light
borders. Chinese characters are unique in three ways. First,
there are thousands of commonly used characters in Chinese,

compared to the 26 uppercase and 26 lowercase letters in En-
glish. Second, Chinese characters are much more complicated
than English letters. Third, many Chinese characters are com-
posed of more than one component.

To deal with these complexities, we must solve the fol-
lowing problems. First, we must locate text regions in video
frames. Second, to separate text from background, we must
first binarize video images, that is, turn colored pixels into
black and white pixels. Third, because captions extend across
frames, we need to detect caption changes within succes-
sive frames. Fourth, as video captions are often embedded in
complicated backgrounds, we need to solve the background-
foreground separation problem. Fifth, character segmentation
is crucial for satisfactory character recognition. Sixth, we re-
quire a classifier that recognizes each individual character ob-
tained in the segmentation process. Finally, after character
recognition, we need a postprocessing method to select the
best possible recognition results from successive frames that
contain the same text. In general, Chinese characters require
delicate treatment in the image binarization, character segmen-
tation, and recognition processes. However, Chinese captions
are easier to locate than Roman (and other Western) language
captions because Chinese characters are often more compli-
cated than Roman (and other Western) letters.

The remainder of this paper is organized as follows. In
Sect. 2, we discuss related works and the main concepts of our
proposed methods. In Sect. 3, we propose a caption-tracking
scheme for acquiring spatial and temporal information from
video frames. Section 4 introduces a method for removing
backgrounds, and Sect. 5 describes character segmentation.
This is followed, in Sect. 6, by a description of character
recognition. In Sect. 7, we present a postprocessing scheme
that integrates multiple recognition results. Section 8 contains
the end-to-end performance of the entire caption analysis and
recognition process. Finally, in Sect. 9, we present our con-
clusions and discuss four major types of error in our results.

2 Background

In this section, we discuss related works for analyzing and
recognizing video captions and present our main ideas for
solving the seven major problems listed in the introduc-
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tion. For an overview of caption analysis and recognition,
readers can refer to the survey papers of [18] and [8].
Other references can be found on the following Web site:
http://www.videoanalysis.org/Research
Topics/Text Localization Text Segmen/
text localization text segmen.html.

There are a number of ways to find text in video frames,
including those that classify textual and nontextual regions by
their textural features [12,17,20], by connected components
[1,21,10,28], and by the spatial distribution of object edges
[14,27,31]. Kuwano et al. [14] propose a method to identify
text in individual video frames that overcomes some shortcom-
ings found in the method proposed by [27]. In this method, they
first calculate color gradients between neighboring pixels to
obtain edges and then examine adjacent edges with opposite
gradient signs to obtain edge-pairs. Text regions can be de-
tected by checking the spatial properties of edge-pairs. Mean-
while, Wu et al. [31] use Gaussian filters to extract character
strokes from text regions and then group these strokes into
rectangular bounding boxes. This approach is appropriate for
high-resolution scanned images, but not for video images that
are often in low resolution. The method of [14], on the other
hand, is suitable when a significant contrast exists between
characters and their background. We focus on this aspect be-
cause dark Chinese characters usually have light fringes, and
vice versa. Furthermore, we use the edge detection method
proposed by [14] to locate text regions because of its lower
processing cost and high accuracy rate.

To transform color video images into binary images,
some works combine locally adaptive thresholding and global
thresholding to obtain better binary results [11,?]. These
works, however, do not have a quantitative basis for evaluating
their performance. Our solution to the binarization problem
combines the use of the global thresholding method proposed
by Otsu [24] and a window-based thresholding method pro-
posed by one of the authors of this paper [4,5]. To evaluate
the performance of our hybrid thresholding method, we de-
rive two classifiers from our machine learning method. One
classifier uses as training samples the caption characters bina-
rized using Otsu’s method, and the other uses the characters
binarized using our hybrid method. We apply each classifier
to a set of test samples that has been binarized using the corre-
sponding thresholding method, that is, either Otsu’s method or
the hybrid method. Recognition accuracy constitutes the quan-
titative basis for evaluating both Otsu’s and our binarization
methods.

For detecting caption changes, Sato et al. [26] propose a
temporal segmentation method, while Lin et al. [21] propose
a method that compares character contours across successive
frames. Li et al. [17] compare intensity and texture across
successive frames, and Lienhart and Wernicke [20] compare
vertical and horizontal projection profiles. The last two ap-
proaches track stationary as well as moving captions. Our ap-
proach, however, is limited to stationary captions. For this
purpose, we improve on the method in [21] by using images
derived from both character contours and edge pairs, since
these two features are well preserved by the aforementioned
sharp contrast between characters and their fringes.

For background removal, some methods use spatial char-
acteristics to filter nontext regions [14,30,31], while others
remove nontext regions by means of the temporal redundancy

of captions [9,26].Although some approaches combine spatial
characteristics and temporal redundancy to remove nontextual
objects, they have difficulty dealing with nontextual objects
that are similar to textual objects in spatial characteristics [21,
28]. Lienhart and Wernicke [20] combine text color and tem-
poral redundancy to remove nontextual objects. In this paper,
we employ a three-stage process that gradually removes back-
ground pixels via spatial characteristics, color constraints, and
multiframe information. The accuracy rate increases dramati-
cally, from 30.27% to 92.85%, as we proceed from the first to
the last stage.

For character segmentation, Lu [22] describes algorithms
for character segmentation, some of which rely solely on pixel
projection profiles. These algorithms achieve good segmenta-
tion results for Roman letters. Lee et al. [15] use recogni-
tion results to select the most suitable segmented points on
grayscale images. Sato et al. [26] first segment characters by
way of a vertical projection profile and then use a charac-
ter recognizer to refine the segmented candidates. For Chi-
nese characters that are composed of an indefinite number of
components, we propose an algorithm that performs dynamic
split and merge operations based on certain parameters derived
from the textlines containing those characters. Although this
method does not require any recognition process, it achieves
a very high accuracy rate of 97.87%.

Most works on video captions do not provide a classifi-
cation method for recognizing caption characters. Many rely
on a commercial recognizer to conduct recognition [19,20,26,
31]. To build a classifier based on machine learning methods
using caption characters as part of the training data, we pro-
pose a two-stage method that combines a prototype classifica-
tion method with the support vector machine (SVM) method
[29]. SVM is an effective classification method, but it is ex-
tremely slow in the training process when the number of class
types (character types, in our case) is large. The two-stage
method rectifies this by decomposing the original problem into
two subproblems. Experimental results show that this method
achieves accuracy rates on test data comparable to the SVM
and the nearest neighbor (NN) method [7] but has a much
lower training cost than SVM and runs faster than both SVM
and NN in the testing process.

There are two methods for character recognition postpro-
cessing: selection of the best possible recognition results from
successive frames [23] and recognition outcome refinement
via a dictionary [26]. The first method works for our appli-
cation, but the second is not so easily adapted to the Chinese
language without first solving the parsing problem, since Chi-
nese words are not separated by white spaces like words in
Western languages. For the first method, a recognition score
is assumed to exist. In our adaptation, we use ranks rather than
the recognition scores of candidates.

As well as providing solutions to the stated problems, this
paper provides a systematic solution for detecting, segment-
ing, and recognizing video captions. Few works in the lit-
erature present such a complete solution. To the best of our
knowledge, the only exceptions are Sato et al. [26] and Lin et
al. [21]. Sato et al. focus on the Roman alphabet, so its solu-
tions for character segmentation and recognition are not suit-
able for Chinese characters.Although Lin et al.’s work focuses
on Chinese captions, it lacks a systematic method for charac-
ter segmentation. Also, its character recognizer is restricted
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a b

Fig. 1. a An image containing a caption region. b
The number of edge-pairs is plotted on the x-axis,
and the vertical position of each row is plotted on
the y-axis

to characters of a single font. Our method has a multiple-font
recognizer constructed from machine learning techniques and
has a 94.11% recognition rate obtained from 26 test films con-
taining 114,590 characters, compared to Lin et al.’s 84.1%
obtained from 6 test films containing 7,818 characters.

3 Caption tracking

Caption tracking is comprised of three stages. The first locates
text regions within single video frames using spatial edge in-
formation, the second uses a binarization method to classify
pixels within a text region as either foreground or background,
and the third stage uses previously obtained binarized images
and edge information to detect caption changes across succes-
sive frames.

3.1 First stage: Locating caption regions

We choose the edge-detection method proposed by [14] to
locate caption regions. This method calculates color gradients
between neighboring pixels. If the gradient is larger than a
threshold T (T = 140), it is regarded as an edge. When two
adjacent edges with opposite gradient signs (i.e., one has a
positive and the other a negative gradient) are found within a
certain distance D, they form an edge-pair. Parameter D is set
at (frame width) × (20/352). The factor 20/352 stems from the
requirement that if the frame width is 352, D must be 20.When
a horizontal scan line contains at least M edge-pairs, it is said
to be an M -line. M is set at (frame height) ×(6/240). When
more than N (N = 10) contiguous M -lines exist, an area
consisting of these M -lines is regarded as a caption region.

Figure 1a is an image captured from one of our test video
frames. The area of dense edge-pairs is marked with a white
rectangle. The number of edge-pairs per scan line is shown in
Fig. 1b.

To evaluate the method adopted for locating captions, we
use 100 frames from each video as test data, totaling 2,600
frames. There are exactly 1,792 text regions in these test
frames.After implementing an edge detection method, we suc-
cessfully detect 1,791 text regions, missing only one. As our
proposed method only detects the vertical range of caption re-
gions, we consider the detection successful when the detected
range completely covers the vertical range of a caption region
but does not cover more than 130% of this range. The number
of false alarms, that is, the noncaption regions misidentified
as caption regions, is 197. The recall rate, calculated by (cor-
rectly identified items)/ (correctly identified items + missed

items), is 99.94%. The precision rate, calculated by (correctly
identified items)/ (correctly identified items + false alarms),
is 90.09%. At this point, we use the recall rate rather than the
precision rate because if we miss caption regions at this stage,
we will miss them at all later stages. However, we can still
filter out false alarms at later stages. To make a performance
comparison, we implement the method of [21] designed for
finding Chinese caption regions in videos. Using exactly the
same parameter values specified by them and adopting our
performance metric we measure their recall rate at 84.65%
and precision rate at 65.28%.

3.2 Second stage: Image binarization

Our character segmentation and recognition processes use bi-
nary images as input. To fulfill this requirement, we transform
color images first into grayscale images and then into binary
images. For typical video characters, such as Fig. 2a, the inten-
sity of white pixels that are physically closer to background
pixels degrades to a greater extent because of decayed sig-
nals. Pixels with a degraded intensity complicate binarization
because a global threshold method is not sufficient for classi-
fying them. A high global threshold tends to make a character
appear broken (Fig. 2b), and a low global threshold makes it
appear blurry (Fig. 2c). To solve this binarization problem, we
propose a binarization method [4,5] that combines a global
threshold method with a window-based method.

a b c

Fig. 2a–c. A typical video character affected by intensity degradation

A global threshold T is obtained using Otsu’s binarization
method [24]. Normally, T assumes a value between 100 and
150. For a pixel p to which the window-based binarization
method is not applied, we classify it as black if g(p) < T or as
white if g(p) > T . The window-based binarization method is
applied to pixels whose grayscales fall within a range between
S and T . S is determined as follows: If the population size of
pixels whose grayscales fall below T is Ψ , then the population
size of pixels whose grayscales fall between S and T is one
quarter of Ψ . Normally, S assumes a value between 90 and



F. Chang et al.: Caption analysis and recognition for building video indexing systems 347

Table 1. Recognition accuracy rates using Otsu’s binarization method
and our method

Otsu’s method Our method

92.74% 95.66%

120. To slightly extend the application range, we apply the
window-based binarization method to all pixels that are within
a 5×5 neighborhood of any pixel p such that S ≤ g(p) ≤ T .

For each pixel p to which the window-based binarization
method is applied, let Wp(n) be the n × n window centered
at p. Let Mini(p) = min{g(q): q ∈ Wp(n)} and Maxi(p)
= max{g(q): q ∈ Wp(n)}. We then use t(p) = (Maxi(p)-
Mini(p))/2 as the local threshold. Pixel p is classified as white
if g(p) ≥ t(p) or black if g(p) < t(p).

The window-based binarization method is based on find-
ing the correct window size so that the window centered at
each pixel has a good mixture of background and foreground
pixels. For this purpose, it is useful to estimate the stroke
width of each character and set the window size slightly larger
than that width. To estimate the stroke width, one can employ
Hadamard multiresolution analysis [4,5]. Hadamard kernels
of various scales are applied to each character pixel horizon-
tally and vertically to obtain the strength of each character
pixel. The stroke width of a character is then the Hadamard
scale at which the sum of the strengths reaches the maximum
value. The window size of each character is then set at W +1,
where W is the stroke width determined by Hadamard mul-
tiresolution analysis.

As noted, the window size is set so that it contains both
character and background pixels. Since most Chinese video
characters have sharp outlines, window-based analysis should
improve the quality of binarized images. For example, Fig. 3a
shows an original grayscale image, Fig. 3b is the binary result
using Otsu’s binarization method, and Fig. 3c is the binary
result using our method.

  

a b c

Fig. 3. a Grayscale image of a character. b Otsu’s global threshold
method result. c Our method’s result

We evaluate the results of Otsu’s method and our method
by measuring the accuracy rate of character recognizers ap-
plied to their binarized output. The test data are comprised of
well-segmented character images collected from the same im-
age sources, but binarized using the two different methods. To
make a fair comparison, we evaluate each binarization method
with a recognizer whose training data are binarized using the
corresponding method. The test data consist of 29,267 well-
segmented character images. The recognition accuracy results
are listed in Table 1.

3.3 Third stage: Caption change detection

To detect caption change, we need to find collections of succes-
sive video frames that contain the same text. Here, we compare
three methods for caption change detection. The first method
uses binarized images as the basis for comparison. It examines
pixels in two successive frames that have the same coordinates
but differ in binary values; that is, one of them is white and the
other is black. These pixels are called opposite-valued pixels.

In Fig. 4, we display binarized captions in three successive
frames. Captions in Figs. 4a and b contain different texts. The
proportion of opposite-valued pixels in these two different-
text frames is 50%. Captions in Figs. 4b and c contain the
same text. The proportion of opposite-valued pixels in these
two same-text frames is 30%.

a

b

c

Fig. 4a–c. Binarized captions in three successive frames, where a
and b contain different texts, and b and c contain the same text

The second method, proposed by Lin et al. [21], compares
images using the contours of connected components as fore-
ground pixels; the images are called contour images (Fig. 5).
For these images, the proportion of opposite-valued pixels in
different-text frames (Figs. 5a and b) is 65%, while the pro-
portion of those pixels in same-text frames (Figs. 5b and c) is
25%.

a

b

c

Fig. 5a–c. Contour pixels are used as foreground pixels in the images

Recall that an edge-pair is a pair of edge points of opposite
gradient signs. In the third method, we first form images using
edge-pairs as foreground pixels; the images are called edge-
pair images. We then combine contour images with edge-pair
images through an AND operation (Fig. 6). In the combined
images, the proportion of opposite-valued pixels in different-
text frames (Figs. 6a and b) is 62%, while the proportion of
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a

b

c

Fig. 6a–c. A pixel that is both a contour pixel and a point in an
edge-pair constitutes a foreground pixel in the images

those pixels in same-text frames (Figs. 6b and c) decreases
dramatically to 7%.

To evaluate these three methods, we use 26 MPEG files
of 640×480 resolution as test data, each of which lasts 5 to
7 min, making approximately 150 min in total. There are 2,672
true caption changes in the test videos. When the proportion
of opposite-valued pixels exceeds 25%, the two successive
frames are judged to contain different texts. The results are
summarized in Table 2. Because of these results, we choose
the last method for detecting caption changes. This method
detects 2,624 caption changes and 108 false alarms. There are
also 48 missed changes.

4 Background removal

In the binarized caption region shown in Fig. 7b, many back-
ground pixels have the same binary value as foreground pixels.
The objective of background removal is to eliminate such pix-
els.

a

b

c

d

Fig. 7. a A grayscale image. bA binary image. c Background removal
using the size and height-to-width ratio constraint. d Background
removal using the size, height-to-width ratio, and color constraint

The first two stages of background removal are applied to
caption regions in single frames. For each frame, we record all
connected components (hereafter referred to as components
for short) found in binarized caption regions (Chang et al.

[6]). In the first stage, when a component C has height Hc and
width Wc, and the video frame has height Hf and width Wf ,
we filter out C if (i) Hc > 1/7×Hf or Wc > 1/7×Wf , (ii)
Hc < 4 and Wc < 4, or (iii) Hc/Wc > 10 or Hc/Wc < 0.1.
The remaining components are shown in Fig. 7c.

In the second stage, we first compute three standard chan-
nel values: average R-channel, average G-channel, and aver-
age B-channel, where each is the average of all the compo-
nent pixels. We also compute the average channel values of
each component and filter out a component if any of its av-
erage channel values differs from the corresponding standard
channel value by a threshold Tc (Tc = 30). The remaining
components at the end of this stage are called characterlike
components and are shown in Fig. 7d.

The third stage works on multiple frames containing the
same caption. To reduce the processing time, we only examine
caption regions in five samples that are evenly spaced tempo-
rally. These regions are called sampled regions.

We first derive the standard region from the sampled
frames. A pixel in the standard region is black if and only if
at least four corresponding pixels (i.e., pixels having the same
coordinates) in the sampled regions fall within a character-
like component. Figures 8a–e show the five sampled regions.
Figure 8f shows the derived standard region.

a

b

c

d

e

f

Fig. 8. a–e Five sampled regions. f The standard region derived from
them

To further refine the sampled regions, we use the standard
region as a reference region. Any component in the sampled
region that overlaps significantly with foreground pixels in
the standard region is regarded as a genuine component. The
details are as follows. For each component C in a sampled
region, we examine the subset C ′ of C that consists of pixels
whose corresponding pixels in the standard region are black.
If C ′ contains more than 60% of the pixels in C, we retain C;
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Table 2. Results of our caption change detection method

Hits Misses False alarms Precision rate Recall rate

Binary image 1,031 1,641 2,846 26.59% 38.59%

Contour image 2,052 620 739 73.52% 76.80%

Contour image AND edge-pair image 2,624 48 108 96.05% 98.20%

Table 3. Accuracy rates of character recognition at each stage of
background removal

Test images obtained Recognition accuracy

At the end of the 1st stage 30.27%

At the end of the 2nd stage 89.78%

At the end of the 3rd stage 92.85%

a

b

c

Fig. 9. a A sampled region. b The standard region derived from
sampled regions. c The refined region derived from the sampled and
standard regions

otherwise, we remove C from this region.After the refinement
process shown in Fig. 9, the refined region has a better image
quality than the standard region.

To evaluate the effects of the three stages of background
removal, we prepare a set of frames that contain 2,624 different
captions and 124,000 characters as input. Each caption exists
within five frames, and there are 13,120 frames in total. At
the end of each stage we collect the output images as test
data, which gives us three sets of test images. The recognition
accuracy rates for these three sets are listed in Table 3.

5 Character segmentation

If a Chinese character has several components whose bound-
ing boxes overlap, it can be treated as a single box (Fig. 10a).
However, about 15% of Chinese characters remain compos-
ite in that their component boxes do not intersect with each
other (Fig. 10b). If two composite characters are neighbors, we
need to decide which component boxes should be combined
as a character box. Occasionally, the touching of characters,
or partial characters, causes their bounding boxes to become
unusually large. Thus, we also need to divide these boxes into
correct parts.

a b

Fig. 10. a A composite character comprised of three components
whose bounding boxes overlap. b A composite character comprised
of two components whose bounding boxes do not overlap

5.1 Textline construction

A useful clue for character segmentation is that characters of
the same textline have similar heights and widths (Fig. 11),
so we can use the standard size of characters as the guideline
for combining or dividing boxes. First, we construct a textline
and then infer the standard width of the characters from that
textline.

Fig. 11. Characters in the same textline that display similar charac-
teristics

To start textline construction, we first randomly choose a
component as the starting point and expand horizontally to
merge adjacent components that are properly aligned along
the top and bottom margins. After this process, two or more
textlines may still overlap (Fig. 12a); however, we only select
textlines that do not overlap with other textlines (Fig. 12b).

a

b

Fig. 12. a Textline I is composed of components A, B, and C, and
textline II is composed of D, E, and F. bTextline III contains textlines I
and II, so only textline III is retained

After textline construction, we further estimate the com-
mon character height of each textline. We first merge two com-
ponent boxes into one if their vertical projections overlap and
let these boxes cast votes to boxes of similar height. The com-
mon character height is the height of the box that receives
the maximum number of votes. We assume that the common
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character height is the standard character width of a textline
because the height-to-width ratio of a typical Chinese video
character is close to 1.

5.2 Character segmentation

We first project all component boxes in a textline onto the hor-
izontal axis and form the nonzero intervals on the projection
profile (Fig. 13). Working from left to right, we merge and
split these intervals. Components in the merged intervals are
regarded as constituents of a character.

Fig. 13. Nonzero intervals in the projection profile; each interval
contains at least one component

Because punctuation marks can cause problems in this
process, we eliminate them before we start character segmen-
tation.As shown in Fig. 14, a comma and the left part of a char-
acter ( ) might combine into a proper, though false, character
box. Punctuation marks are easily identified by their heights,
widths, cross-counts, and the standard gap in the textline. The
standard gap G in a textline is defined as the most common gap
size found in the textline. The cross-count of a character box
is obtained as follows. Our procedure works from left to right
on each scan line. If two adjacent pixels in a scan line Li have
different binary values, we increase C(Li) by one [C(Li) = 0
initially]. The cross-count of a character box is then defined
as

∑n
i=1 C(Li)/n, where n is the number of scan lines found

in the box. Character box B is then identified as a punctuation
mark if it conforms to all of the following rules. (1) The height
and width of B are less than half the common character height
of the textline. (2) The gaps between B and the boxes to its
left and right are larger than 0.6×G. (3) The average value of
the cross-count for the character is less than four.

Fig. 14. A textline with Chinese characters and a punctuation mark

When punctuation marks have been eliminated, we per-
form character segmentation. For interval J , we must decide
whether to divide J , to leave J as is, or to join J to neighbor-
ing intervals. To decide this, we consider three cases. Let the
standard character width of this textline be denoted as W .

Case 1. Length l(J) of J exceeds 1.2×W .
We look for a point P at which to divide J . P is the point
between the positions 0.8×W and 1.2×W measured from
the left margin of J , at which the projection profile has the
minimum value (Fig. 15). When J is divided, we reset J to be

Fig. 15. Two touching characters are divided
at a point P that lies at the minimum value
of the projection file

the first section of the original interval. The second section is
considered an untreated interval, and the procedure stops.

Case 2. Length l(J) falls below 0.8×W .

Subcase 2.1. If the adjacent interval of J is identified as a
punctuation mark, we stop the procedure.

Subcase 2.2. If not, we extend J by joining adjacent inter-
vals to J , until l(J) exceeds 0.8×W . If l(J) still falls below
0.8×W and a punctuation mark is encountered, then we stop
the procedure. If l(J) falls below 0.8×W , but the adjacent in-
terval K has a length exceeding 1.2×W , we cut K at a point
P between the positions 0.8×W and 1.2×W , measured from
the left margin of J (Fig. 16). When K is divided, we extend J
up to point P . The remaining section of K is now an untreated
interval, and the procedure stops.

Fig. 16. A partial character touches a full
character. The latter is cut at point P , which
lies at the minimal value of the projection
file

Case 3. Length l(J) falls between 0.8×W and 1.2×W .

Subcase 3.1. If a further extension of J results in a length
exceeding 1.2×W or encounters a punctuation mark, we stop
the procedure.

Subcase 3.2. If not, we extend J up to a point before its length
exceeds 1.2×W , or before we encounter a punctuation mark.
We then let k be the rightmost interval of J and denote the
maximal extension of k as L. If l(L) <0.8×W , we decide that
J is a proper interval and stop the procedure; otherwise, we
have to decide whether k belongs to J or to L by comparing
the space to the left of k with the space to its right. If the
former space is smaller, we decide that J is a true character;
otherwise, we decide that L is a true character (Fig. 17). If
we reach the end of the procedure and there are still untreated
intervals in the textline, we restart the procedure, this time
using the leftmost untreated interval as J .

We use caption regions output from the background re-
moval process (Sect. 3) to test the performance of our segmen-
tation method. There are 13,100 regions and 114,590 charac-
ters in the output. The results are listed in Table 4.

6 Character recognition

For character recognition, we employ a two-stage classifi-
cation method for pattern recognition within a large set of
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a b

Fig. 17. a The space to the left of k is smaller than the space to the
right of k; k is attributed to J . b The space to the left of k is larger
than the space to the right of k; k is attributed to L

Table 4. Character segmentation performance

Number of true characters (Nt) 114,590

Number of segmented characters (Ns) 115,512

Number of correctly segmented characters (Nc) 112,151

Recall rate (Nc/Nt) 97.87%

Precision rate (Nc/Ns) 97.09%

class types. At the first stage, we match each unknown char-
acter against a set of prototypes. At the second stage, an SVM
method is used to work on the top-k classes that have been se-
lected in the prototype-matching process. The prototypes used
for the first stage are derived from an offline training process
that constructs prototypes from training samples. This training
process has two advantages. First, it produces a small set of
prototypes compared to the set of training samples. Second,
if SVM is used solely for classifying an object into one of
N classes, it has to solve N(N − 1)/2 binary classification
problems in the training phase. The prototype learning process
dramatically reduces the number of binary classification prob-
lems to be solved, thereby making it possible to use SVM for
large-scale character recognition. The core of our two-stage
classification method is, therefore, the learning mechanism
that constructs prototypes in the offline training process.

6.1 The prototype-construction problem and its solution

We want to construct a set of prototypes, or standard patterns,
from training samples to serve as the basis for classification.
When the prototypes are specified, to classify a character c in
the testing process is to find a prototype p nearest to c. The
character c is then assigned the class type of p.

Prototypes are derived from training samples. We assume
that a set of samples is given and labeled with their class type.
Each training sample is a vector in n-dimensional Euclidean
space. In this space, let dist(x, y) be the square of the Euclidean
distance between two vectors x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn). A prototype can be any vector in the same
space. For a set P of prototypes, where p is a prototype in P,
the attraction domain of p is the collection of all samples s for
which p is the nearest prototype, i.e., dist(s, p) < dist(s, q) for
all other prototypes q in P. For a set of prototypes to serve as
a solution for the prototype-construction problem, we require
that the attraction domain of each prototype be homogeneous,

namely, it contains only same class-type samples. This condi-
tion reflects the requirement that each prototype serves as the
representative of its neighboring samples.

The learning algorithm we propose for solving the
prototype-construction problem dynamically alters both the
number and the location of prototypes. For this reason, it is
called a dynamic algorithm (DA), which is stated as follows:

1. Initiation: for each class type C, the initial C-prototype is
the statistical average of all C-samples.

2. Absorption: for each sample s, find its nearest prototype
p. Let type(x) be the class type of x, where x is either a
sample or a prototype. If type(s) = type(p) and dist(s, p)
< dist(s, q) for all other prototypes q, then s is absorbed;
otherwise, it is unabsorbed.

3. New prototype construction: for each class type C, let
the number of C-prototypes be num(C). If there are un-
absorbed C-samples, construct num(C)+1 C-prototypes;
otherwise, C-prototypes remain the same as in the previ-
ous iteration.

4. Process termination: if there are still unabsorbed samples,
go to step 2; otherwise, stop the whole process.

In step 3, the construction of new C-prototypes is performed
as follows. First, we select a sample from the unabsorbed
C-samples. Then, we use the selected sample and existing
C-prototypes as seeds and employ the K-means clustering
method to form new C-prototypes. To select an unabsorbed
C-sample, we focus on a set U consisting of unabsorbed C-
samples that are not themselves C-prototypes. We let each
sample in U cast a vote to its nearest sample in U and select
the sample in U that gains the highest number of votes. To
construct new C-prototypes, we apply the K-means method
to group all C-samples according to the following procedure.
The K-means method uses the seeds as initial cluster centers.
It then assigns each sample to the cluster whose center is near-
est and resets each cluster center as the statistical average of
all elements in that cluster. This procedure continues until all
cluster centers no longer change. The final cluster centers are
then assigned as new prototypes.

DA terminates within a finite number of iterations, where
the number of iterations is the number of times step 3 is exe-
cuted. This is because the total sum of the distances between
samples and nearest prototypes of the same class types de-
creases by at least a constant number in each iteration. A
sample thus remains unabsorbed for only a finite number of
iterations.

6.2 Disambiguation

Although the prototype-matching method achieves very high
accuracy rates for k nearest prototypes when k > 1, there is a
noticeable gap between the top-k and top-1 accuracy rates. The
disambiguation procedure bridges this gap. There are some
requisites for the disambiguation. In the training process, we
must determine which class types can be mistaken for another
in the prototype classification. These types are always paired
and are thus referred to as confusing pairs. For these pairs, we
have to specify reassessing schemes using an SVM method.
We use these schemes in the testing process to reassess the
top-k candidates for each object.
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Recall that, in the prototype construction, we must deter-
mine the nearest prototype for each training sample s. At the
end of the construction, we find k (k = 3 in our application)
nearest prototypes for each s. The class types of these k pro-
totypes are referred to as candidates of s. We collect the pairs
(Ci, Cj), where Ci and Cj are, respectively, the class types of
the ith and jth nearest prototype of s for 1 ≤ i, j ≤ k.

For each confusing pair (A, B) and its training samples,
we use SVM to create a reassessing scheme. The purpose
of the SVM is to provide decision functions for classifying
objects into class A or class B, where the parameters and sup-
port vectors that appear in the decision function are derived
from an optimization problem using training samples of A and
B as components. Details are given in [29]. For handwritten
character recognition, we adopt the dual formulation of the
optimization problem using a first-degree polynomial as the
kernel function. In [29], comparisons of SVM and other meth-
ods for classifying UPS handwritten numerals are given, and
SVM is shown to perform competitively.

After completing the offline process by determining the re-
assessing scheme for each confusing pair, we can address the
online process. Suppose that an object O is given and its first
k candidates are already found. We apply reassessing schemes
to all confusing pairs found within the top-k candidates of O.
When the confusing pair is (A, B) and the unknown object
is classified as A, then A scores one unit. When all the con-
fusing pairs in the candidate list are reassessed, we reorder
the involved candidates. The candidate with the highest mark
is ranked first, the candidate with the second highest mark is
ranked second, and so on. If two candidates receive the same
score, their relative positions remain the same as before. We
then rearrange the involved candidates according to their as-
signed ranks.

6.3 Experimental results

To build a classifier for multiple-font video characters, we
collect 147,118 character images as training samples derived
from two major sources: (1) 84,000 computer-generated char-
acters compressed using a JPEG algorithm to simulate blurred
video characters and (2) 63,118 characters segmented from
video frames (we remove poorly segmented ones). There are
2,973 class types in our collected samples. We call this set of
class types the 2,973-class. Each character image is normal-
ized to a bitmap of 64×64 pixels and represented as a vector.
Each vector component takes as its value the number of black
pixels found within a 4×4 cell. Since there are 256 (16×16)
nonoverlapping cells within a 64×64 bitmap, the dimension
of each vector is 256. From this large set of training samples
we also extract a smaller set of training samples that consists
of 340 class types. We call this set the 340-class. Each class
type contains the same number of samples as the full train-
ing data. In order to test the accuracy of our method and to
compare it with alternative methods, we prepare 29,263 char-
acter images as test data for the 2,973-class. These images are
obtained from video frames and are not part of the training
samples. Within this set of images, there are 18,569 samples
whose class types fall in the 340-class. The 18,569 samples
are thus used as test data for the 340-class. All these samples
are well-segmented character images. They serve to test the

performance of classification methods only. The end-to-end
performance of the whole caption analysis and recognition
process is given in Sect. 8.

As shown in Table 5 for the 340-class data and the
2,973-class data, the DA prototype construction process pro-
duces 1,033 prototypes and 8,484 prototypes, respectively.
The proportions of prototypes to training samples are 2.2%
and 5.8%, respectively. For disambiguation, we use the top-3
candidates to form confusing pairs. In so doing, we produce
8,782 pairs and 76,514 pairs, respectively. The ratio of con-
fusing pairs to the total number of character pairs is 15% and
1.7%, respectively. These results show that our method effec-
tively reduces the large set of training data to a small set of
prototypes and reduces the even larger set of all possible pairs
of class types into a tiny set of confusing pairs.

In addition to the DA and the two-stage classification
methods, we also measure three other classification methods
using the same training and test data. These are 1-NN [7],
one-against-one SVM [13], and DAGSVM [25]. The 1-NN
method regards all training samples as prototypes and classi-
fies a test sample as the type of its nearest prototype. Both the
one-against-one SVM and DAGSVM solve N (N -1)/2 binary
classification problems in the training phase, where N is the
number of class types. In the testing phase, the one-against-
one technique conducts N (N -1)/2 classifications for each test
sample. DAGSVM employs a directed acyclic graph that has
N (N -1)/2 nodes and N leaves. The number of classifications
for each test sample reduces to N -1 in DAGSVM. The accu-
racy rates of 1-NN, DA, one-against-one, DAGSVM, and the
two-stage methods are listed in Table 5. The missing items are
the accuracy rates of the two SVM methods in the 2,973-class
data because it is too costly to complete their training phase.
From the results we can see that all methods have comparable
accuracy rates. In all our SVM experiments, we use LIBSVM
[3] as it provides SVM tools for solving binary classification
problems.

In Table 6, we list the time consumption (in seconds) and
the number of support vectors of all methods. The comput-
ing environment is an Intel Pentium IV CPU, 2.4 GHz with
256 MB RAM. The training time, testing time, and number of
support vectors for the SVM methods in the 2,973-class data
are extrapolated from those obtained in the 340-class data.
As shown in Table 6, the time needed to complete the training
phase of SVM in the 2,973-class is estimated at 2,483,760 s, or
690 h, while that of the two-stage method takes only 36,600 s,
or 10 h. The results in Tables 5 and 6 show that the two-stage
method not only achieves comparable accuracy rates to the
other three methods but is also more effective in computation
than all of them (with the exception of 1-NN training, which
takes no time).

7 Multiframe integration

To illustrate our proposed method, we examine the recognition
results for the five sampled caption regions shown in Fig. 18.
There are five recognition results, each corresponding to one
sampled region. Correctly recognized characters are placed
in white boxes and misrecognized characters in gray boxes.
Recognition results that do not correspond to true characters
are denoted by “&” or “&&.”



F. Chang et al.: Caption analysis and recognition for building video indexing systems 353

Table 5. Training and testing results of the classification methods

1-NN DA 1-against-1 SVM DAGSVM Two-stage

Acc # Pr Acc # Pr Acc # CP Acc # CP Acc # CP

340 class types 99.04% 47,537 98.44% 1,033 99.03% 57,630 99.03% 57,630 98.76% 8,782
2,973 class types 97.91% 147,118 97.05% 8,484 4,417,878 4,417,878 97.87% 76,514

(Acc: accuracy rates; #Pr: number of prototypes; # CP: number of confusing pairs)

Table 6. Training time, testing time, and number of support vectors

1-NN 1-against-1 SVM DAGSVM Two-stage

testing Training Testing Testing Training Testing

Time Time # SVs Time Time Time (DA+SVM) # SVs Time (DA+SVM)

340 class types 1,163 32,400 1,193,310 1,521 51 5,640 (600+5,040) 209,702 24 (23+1)

2,973 class types 3,960 2,483,760 9.1×107 116,599 446 36,600 (18,480+18,120) 1,745,709 284 (278+6)

Fig. 18. Recognized results of five sampled frames that contain the
same caption

We register characters by their bounding boxes and then
align bounding boxes A and B on two successive frames if
the size of A∩B is at least 90% the size of A and of B. At
the first stage, we group aligned bounding boxes that contain
the same character. Those groups that contain more than three
elements are assumed to correspond to true characters and are
retained. The remaining groups are assumed to correspond to
spurious characters and are eliminated. As shown in Fig. 19,
eight groups, G1–G8, are obtained from results in Fig. 18.
Groups G2–G7 are retained because they contain at least four
elements; G1 and G8 are eliminated since they contain only
one element.

Fig. 19. An example of grouping characters based on location and
size

Table 7. Scores assigned to candidates

Rank 1 Rank 2 Rank 3

5 3 2

At the second stage, we redetermine candidates for each
retained group based on the candidates obtained from sampled
regions. Let us take G2 in Fig. 20 as an example. This group
has five elements, each corresponding to a sampled region. For
each element, we consider its top-3 recognition candidates,
C1–C3. We want to derive candidates for G2 from all top-3
candidates in the five frames.

Although 15 top-3 candidates are found, there are only 4
class types. We want to assign each candidate a score and sum
up the scores contributed by candidates of the same class type.
The score assignment for each candidate is made according to
its rank, as listed in Table 7. The rationale for this assignment
is that a class type serving twice as a rank 2 candidate should
score higher than a class type that serves only once as a rank 1
candidate. Similarly, a class type serving twice as a rank 3
candidate should score higher than a class type that serves
only once as a rank-2 candidate.

The class type with the highest score is ranked first, the
class type with the second highest score is ranked second, etc.
The outcome of candidate redetermination for group G2 is
shown in N1 through N3 in Fig. 20.

Fig. 20. Candidates for G2 are derived from
the top-3 candidates for the five elements
of G2
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Table 8. Accuracy rates before and after multiframe integration

Candidates Before multiframe After multiframe

integration integration

Top-1 93.33% 94.11%

Top-2 93.63% 94.50%

Top-3 93.75% 94.71%

8 End-to-end performance of caption analysis
and recognition

Our test data are derived from a set of 26 videos collected
from TV programs on the Public Television Service station in
Taiwan. Each lasts from 5 to 7 min. The videos are in MPEG2
format and have a resolution of 640×480 pixels. The end-
to-end process being tested combines our proposed methods
for locating caption regions, binarization, caption change de-
tection, background removal, character segmentation, charac-
ter recognition, and multiframe integration. Our process se-
lects 13,100 individual frames, as well as 114,590 characters
from the test data. At the end of multiframe integration, we
are left with 2,624 integrated regions and 22,778 characters.
Since multiframe integration removes spurious characters, it
improves recognition accuracy rates. The results are shown in
Table 8.

Note that multiframe integration improves the top-1 ac-
curacy rate by 0.78%. The time consumption of each process
is shown in Table 9, where the time is measured in terms of
seconds per unit of work item. If a process works on a sin-
gle frame, then a unit of work item is one frame. If it works
on multiple frames, a unit of work item is a set of successive
frames over which the same caption text resides. The com-
puting environment is a PC with a Pentium III 1.0-GHz CPU
with 128 MB RAM. We spend approximately 1,560 min of
processing time to detect and recognize texts in the 26 videos,
which last 156 min and contain 13,100 frames and 114,590
characters.

9 Conclusion

In this paper, we have proposed various techniques for building
video indexing systems using captions as sources of informa-
tion. We summarize these techniques as follows. (1) Locat-

Table 9. Time consumption of each process per unit of work item

Process Unit Run time

(s)

Locating caption regions Single frame 0.32

Binarization Single frame 0.19

Caption change detection Single frame 0.076

Background removal – single frame Single frame 0.072

Background removal – multiframe Multiple frames 0.39

Character segmentation Single frame 0.072

Character recognition Single frame 0.5

Multiframe integration Multiple frames 0.193

ing caption regions: our method extracts caption regions us-
ing edge pairs extracted from video frames. (2) Binarization:
our method combines a global thresholding method with a
window-based method to binarize video images. (3) Caption
change detection: our method tracks caption changes using
contours and edge-pairs. (4) Background removal: our method
uses size and color constraints, as well as integrated informa-
tion from multiple frames, to filter out background compo-
nents in video frames. (5) Character segmentation: we use
a dynamical split-and-merge method to segment characters.
(6) Character recognition: we use a two-stage classification
method that combines a prototype classification technique and
an SVM technique. (7) Multiframe integration: our method in-
tegrates multiple recognition results to determine final output
candidates.

When we combine all these techniques to analyze and rec-
ognize Chinese video captions, we obtain 94.11% as the top-1
accuracy rate and 94.71% as the top-3 accuracy rate from test
data consisting of 26 videos. These figures represent the end-
to-end performance of the combined processes.

Finally, we identify four major types of errors that occur in
our end-to-end results. The first occurs when binarized char-
acters connect to background objects, so that they fail to be
segmented (Fig. 21). This connection occurs when a “leak”
exists in the character fringe, causing the characters to be-
come part of a large background object. This character is thus
removed in the background removal process. The second type
of error occurs when noises are included in segmented charac-
ters in the character segmentation process (Fig. 22). The third

     

Fig. 21. Left panel: The character connects
to its background at the encircled area. Right
panel: Context in which this character appears

Fig. 22. The second character in this caption contains a background
noise

  

a b c

Fig. 23. a Blurry characters. b Disconnected characters. c Distorted
characters
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Fig. 24. Two different caption texts differ in
only one character (the second character in
each text)

error occurs when the binarization process produces blurry,
disconnected, or distorted characters (Fig. 23), causing mis-
recognition of these characters. The fourth type of error occurs
in caption change detection. This happens when there is very
little change between different captions (Fig. 24). This type of
error causes further errors in multiframe integration.
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