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Video summarization and retrieval using singular value decomposition
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Abstract. In this paper, we propose novel video summariza-
tion and retrieval systems based on unique properties from
singular value decomposition (SVD). Through mathematical
analysis, we derive the SVD properties that capture both the
temporal and spatial characteristics of the input video in the
singular vector space. Using these SVD properties, we are able
to summarize a video by outputting a motion video summary
with the user-specified length. The motion video summary
aims to eliminate visual redundancies while assigning equal
show time to equal amounts of visual content for the original
video program. On the other hand, the same SVD properties
can also be used to categorize and retrieve video shots based on
their temporal and spatial characteristics. As an extended ap-
plication of the derived SVD properties, we propose a system
that is able to retrieve video shots according to their degrees
of visual changes, color distribution uniformities, and visual
similarities.
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1 Introduction

The widespread distribution of video images in computer sys-
tems and networks has presented both excitements and chal-
lenges. Video is exciting because it conveys real-world scenes
most vividly and faithfully. Handling video is challenging
because video images are voluminous, redundant, and their
overall contents can not be captured at a glance. With a large
video data collection, it is always a painful task to find either
the appropriate video sequence, or the desired portions of the
video. The situation becomes even worse on the Internet. To
date, more and more web sites provide video images for news
broadcasting, entertainment, or product promotions. However,
with very limited network bandwidths for most home users,
people spend minutes or tens of minutes downloading volu-
minous video images, only to find them irrelevant. To turn
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video collections into valuable information resources, tech-
niques that enable effective content-based search, and facili-
tate quick screening on the search result, become indispens-
able.

With a large amount of video data, presenting the user with
a summary of each video program greatly facilitates the task
of finding the desired video content. Video content search and
summarization are the two essential technologies that com-
plement each other. Video search engines return a set of video
data meeting certain criteria, and video summarizers produce
video content summaries that enable users to quickly grasp
the overall content of each returned video. On the Internet,
concise and informative video summaries are particularly im-
portant to accommodate limited communication bandwidths.
Video search engines serve as an information filter that sifts
out an initial set of relevant videos from the database, while
video summarizers serve as an information spotter that helps
the user to quickly examine through a given video set, and to
spot the final set of desired video images.

To date, video summarization is mainly achieved by ex-
tracting a set of keyframes from the original video and display-
ing thumbnails of the keyframes in a storyboard window. The
disadvantage of this approach is that keyframes are just a set
of static images that contain no spatio-temporal properties of
the original video. A video program is a continuous recording
of real-world scenes. What distinguishes the video medium
from the image medium is the video’s capability of depicting
the dynamics and the spatio-temporal evolution of the target
scene. A set of static keyframes by no means captures these
essential video properties, and is indeed a poor representation
of general visual contents of a video program.

In this paper, we propose novel video summarization and
retrieval systems based on unique properties from singular
value decomposition (SVD). Through mathematical analysis,
we derive the SVD properties that capture both the tempo-
ral and spatial characteristics of the input video in the sin-
gular vector space. Using these SVD properties, we are able
to summarize a video by outputting a motion video summary
with the user-specified length. The motion video summary
aims to eliminate visual redundancies while assigning equal
show time to an equal amount of visual content for the origi-
nal video program. The automatically generated motion video
summaries are not intended to replace the original videos, but



158 Y. Gong, X. Liu: Video summarization and retrieval using singular value decomposition

to facilitate better visual content overviews by which the user
is able to quickly figure out the general contents of the video
collection, and to judge whether the contents are of interest
or not. On the other hand, the same SVD properties can also
be used to categorize and retrieve video shots based on their
temporal and spatial characteristics. As an extended applica-
tion of the derived SVD properties, we propose a system that is
able to retrieve video shots according to their degrees of visual
changes, color distribution uniformities, and visual similari-
ties.

In the following, Section 2 describes related work in the
literature. Section 3 outlines the proposed video summariza-
tion and retrieval systems. Sections 4 to 7 describe the major
components of the proposed systems. Sections 8 and 9 present
the performance evaluations of the video summarization and
retrieval systems, respectively. Section 10 summarizes the pa-
per.

2 Related work

To date, video summarization is mainly achieved by using
keyframes extracted from original video sequences. Many
works focus on breaking video into shots, and then finding a
fixed number of keyframes for each detected shot. Tonomura
et al. [2] used the first frame from each shot as a keyframe.
Ueda et al. [3] represented each shot using its first and last
frames. Ferman and Tekalp [4] clustered the frames in each
shot, and selected the frame closest to the center of the largest
cluster as the keyframe.

An obvious disadvantage of the above equal-number
keyframe assignment is that long shots in which camera pan
and zoom as well as object motion progressively unveil the en-
tire event will not be adequately represented. To address this
problem, DeMenthon et al. [5] proposed to assign keyframes
of a variable number according to the activity level of the
corresponding scene shot. Their method represents a video
sequence as a trajectory curve in a high dimensional feature
space, and uses the recursive binary curve splitting algorithm
to find a set of perceptually significant points to approxi-
mate the video curve. This approximation is repeated until
the approximation error comes below the user specified value.
Frames corresponding to these perceptually significant points
are then used as keyframes to summarize the video contents.
As the curve splitting algorithm assigns more points to a larger
curvature, this method naturally assigns more keyframes to
shots with more variations.

Keyframes extracted from a video sequence may contain
duplicates and redundancies. In a TV talk show with two
talking persons, the video camera usually switches back and
forth between the two persons, with the insertion of some
global views of the scene. Applying the above keyframe se-
lection methods to this kind of video sequence will yield many
keyframes that are almost identical. To remove redundan-
cies from keyframes, Yeung et al. [6] selected one keyframe
from each shot, performed hierarchical clustering on these
keyframes based on their visual similarity, and temporal dis-
tance, and then retained only one keyframe for each cluster.
Girgensohn and Boreczky [7] also applied the hierarchical
clustering technique to group the keyframes into as many clus-
ters as specified by the user. For each cluster, a keyframe is

selected such that the constraints of an even distribution of
keyframes over the length of the video and a minimum dis-
tance between keyframes are met. In recent clustering-based
video summarization Work, Dirk Farin et al. [8] proposed to
incorporate domain-knowledge to eliminate the selection of
keyframes from irrelevant or uninteresting shots. Examples
of such shots include transitional shots from fades and wipes,
shots of commercial advertisements, weather forecast charts,
etc. The domain-knowledge is incorporated into the cluster-
ing process by introducing the feature vectors of uninteresting
scenes as additional cluster centers, and frames grabbed by the
clusters of these additional cluster centers are excluded from
the keyframe selection process.

Apart from the above methods for keyframe selection,
summarizing video content using keyframes has its own lim-
itations. A video program is a continuous spatio-temporal
recording of real-world events. What distinguishes the video
medium from the image medium is the video’s capability of
depicting the dynamics and the spatio-temporal evolution of
the target scene.A set of static keyframes by no means captures
these essential video properties, and is indeed a poor represen-
tation of general visual contents of a video program. To reduce
the spatio-temporal content loss caused by the keyframe pre-
sentation, image mosaicing techniques have been utilized to
create a panoramic view of the entire scene recorded by each
shot [9–11]. For a given video shot, its mosaic is created by
warping all the frames into a common coordinate system, and
then stitching them together to reconstruct the full background
seen by each of the frames in the whole shot. However, a mo-
saic can be successfully created only when the target scene
satisfies several severe conditions, such as that the scene must
have no prominent 3D structures, should contain no moving
objects, etc. These strict prerequisites have certainly excluded
the majority of videos from the application range of mosaic-
based video summarization methods.

There have been research efforts that strive to output
motion video summaries to accommodate better content
overviews. The CueVideo system from IBM provides a fast
video playback function which plays long, static shots with
a faster speed (higher frame rate), and plays short, dynamic
shots with a slower speed (lower frame rate) [12]. However,
this variable frame rate playback causes static shots to look
more dynamic, and dynamic shots to look more static, there-
fore it dramatically distorts the temporal characteristics of the
video sequence. On the other hand, the Informedia system
from CMU provides video skim, that strives to identify and
playback only semantically important image segments along
with semantically important audio keywords/phrases in the
video sequence [13]. The importance of each image segment
is measured using a set of heuristic rules that is highly sub-
jective and content-specific. This rule-based summarization
system has certainly placed limitations on the handling of di-
versified video images.

In recent years, content summarization of TV broadcast
sports games has received increased attention from researchers
in the multimedia community. As sports videos have well
defined internal structures in which all the plays are rule-
based and predictable, sports video summarization systems
can achieve higher levels of content abstraction by explor-
ing domain-specific features and knowledge. Gong et al. [14]
developed a soccer game parsing system that classifies each
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shot of a soccer video according to its physical location in the
field, or the presence/absence of the soccer ball. The soccer
field line patterns, players’ positions and movements, and the
ball’s presence/absence were used to recognize the category of
each scene shot. Xu et al. [15] suggested that any soccer game
is composed of the play and break states, and developed a sys-
tem that partitions soccer videos into play/break segments by
looking at grass area (green color) ratio in video frames. Zhong
and Chang [16] focused on the fact that all the highlights in
baseball and tennis games start from pitchings and serves, re-
spectively, and they strove to detect baseball pitching views
and tennis serving views by classifying color histograms of
keyframes of the scene shots. Rui et al. [17] assumed that ex-
citing segments in baseball games are highly correlated with
an announcers’ excited speech, and mostly occur right after
a baseball batting. Based on these assumptions, they detected
baseball highlights based on the analysis of the announcers’
speech pitch, and the detection of the baseball batting sound.

3 System overview

In this paper, we propose a novel technique for video summa-
rization and retrieval based on the same framework: color his-
tograms together with singular value decomposition. For video
summarization, we strive to create a motion video summary of
the original video that: (1) has a user-specified summary length
and granularity; (2) contains little visual redundancy; and (3)
gives equal attention to equal amounts of visual content. The
first goal aims to meet different content overview requirements
from a variety of users. The second and third goals are intended
to turn the difficult, subjective visual content summarization
problem into a feasible and objective one. By common sense,
an ideal video summary should be the one that retains only
semantically important segments of the given video program.
However, finding semantically important video segments re-
quires an overall understanding of the video content, which
is beyond our reach given the state of the art of current video
analysis and image understanding techniques. The task is also
very subjective, and it is hard to find commonly agreed upon
criteria for measuring semantic importance. On the other hand,
it is relatively easy to measure the activity level of visual con-
tent, and to identify duplicates and redundancies in a video
sequence. For the purpose of visual content browsing and
overview, the video watching time will be largely shortened,
and the visual content of the original video will not be dra-
matically lost if we eliminate those duplicates/redundancies
and preserve those visually active contents. Therefore, instead
of summarizing videos by heuristically selecting “important”
video segments, we choose to create video summaries that
meet the above summarization goals using the derived SVD
properties. The automatically generated video summaries are
not intended to replace the original videos, but to facilitate
better visual content overviews, with which the user is able
to quickly figure out the general contents of the given videos,
and to judge whether they are of interest .

As for video content retrieval, in addition to the basic re-
quirement of retrieving the shots from the database that are
visually similar to the sample shot, we also strive to real-
ize the retrieval of shots according to their degrees of visual
changes and color distribution uniformities. As demonstrated
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Fig. 1. Block diagram of the video summarization and retrieval sys-
tems

in Sect. 9, these new video retrieval capabilities are valuable
for spotting video shots that either contain visually active con-
tents, or consist of frames with skewed color distributions such
as black frames, white frames, frames with very few colors,
etc. These shots could either indicate semantically important
contents, such as quickly evolving events, important messages
displayed on uniformly colored background, etc., or represent
visually trivial contents that arise from flashlights, transitional
periods such as fades, wipes, etc.

Figure 1 shows a block diagram of the proposed video
summarization and retrieval systems. To reduce the number
of frames to be processed by the SVD, we roughly sample the
input video sequence with a fixed rate of five frames/second.
Our experiments have shown that this sampling rate is suf-
ficient for video programs without many dramatic motions,
such as news, documentaries, talk shows, etc. For each frame
i in the sampling set, we create an m-dimensional feature
vectorAi. UsingAi as column vector i, we obtain the feature-
frame matrix A = [A1 A2 · · · An]. Performing SVD on
matrix A will project each frame i from the m-dimensional
raw feature space into a τ -dimensional singular vector space
(usually τ � m). Through mathematical analysis, we derive
unique SVD properties that capture both the spatial and tem-
poral characteristics of the input video in the singular vector
space. By using these SVD properties, we are able to achieve
the goals we set for both the video summarization and retrieval
at the beginning of this section.

As shown in Fig. 1, both the video summarization and re-
trieval systems share the operations of video sampling, feature-
frame matrix creation, and singular value decomposition. The
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operations become different for the two systems after the video
frames are projected into the singular vector space. However,
both systems make use of the same set of singular vectors, and
no further feature extraction processes are involved in their
subsequent operations. The details of the major operations in
Fig. 1 are described in subsequent sections.

4 Feature-frame matrix creation

The video summarization and retrieval systems start from
feature-frame matrix creation. From a wide variety of image
features, we selected color histograms to represent each video
frame. As demonstrated in Sect. 7, the combination of color
histograms and SVD captures the information of color distri-
bution uniformity for each frame. Further, histograms are very
good for detecting overall differences in images [18], and are
cost-effective for computing. Using cost-effective histograms
here ensures feasibility and processing speed of the system
in handling long video sequences. In our system implementa-
tion, we create three-dimensional histograms in the RGB color
space with five bins for R, G, and B, respectively, resulting in
a total of 125 bins. To incorporate spatial information of the
color distribution, we divide each frame into 3 × 3 blocks,
and create a 3D-histogram for each of the blocks. These nine
histograms are then concatenated together to form a 1125-
dimensional feature vector for the frame. Using the feature
vector of frame i as the ith column, we create the feature-frame
matrix A for the video sequence. Since a small image block
does not normally contain all kinds of colors, matrix A is usu-
ally sparse. Therefore, SVD algorithms for sparse matrices can
be applied here, which are much faster and memory-efficient
as compared to regular SVD algorithms.

5 Singular value decomposition (SVD)

Given an m × n matrix A, where m ≥ n, the SVD of A is
defined as [19]:

A = UΣVT (1)

where U = [uij ] is an m × n column-orthonormal ma-
trix whose columns are called left singular vectors; Σ =
diag(σ1, σ2, . . . , σn) is an n × n diagonal matrix whose di-
agonal elements are non-negative singular values sorted in
descending order; and V = [vij ] is an n × n orthonormal
matrix whose columns are called right singular vectors. If
rank(A) = r, then Σ satisfies

σ1 ≥ σ2 · · · ≥ σr > σr+1 = · · · = σn = 0 (2)

In our video summarization and retrieval systems, ap-
plying SVD to the feature-frame matrix A can be inter-
preted as follows. The SVD derives a mapping between the
m-dimensional raw feature space spanned by the color his-
tograms and the r-dimensional singular vector space with all
of its axes linearly-independent. This mapping projects each
column vector Ai = [a1i a2i · · · ami]T of matrix A, which
represents the concatenated histograms of frame i, to column
vector ψi = [vi1 vi2 · · · vir]T of matrix VT , and projects
each row vector j of matrix A, which tells the occurrence
count of the concatenated histogram entry j in each of the

Fig. 2. Performance evaluation of the SVD-based shot boundary de-
tection using τ as a parameter

video frames, to row vector ϕj = [uj1 uj2 · · · ujr] of matrix
U.

The SVD requires that matrix A’s number of rows m is
greater than or equal to its number of columnsn. If the number
of frames is more than the number of elements in each con-
catenated histogram, the SVD must be carried out on AT , and
consequently, the role of matrix U and V, which is explained
above, will be exchanged. For simplicity, without loss of gen-
erality, only the processing of matrix A will be described in
the following part of this paper.

The SVD has the following dimension reduction property
that has been widely utilized by many applications in many
areas (see [20] for proof).

Theorem 1. Let the SVD of matrixA be given by Eq. (1),U =
[U1U2 · · ·Un], V = [V1V2 · · ·Vn], and rank(A)=r. Matrix
Aτ (τ ≤ r) defined below is the closest rank-τ matrix to A
for the Euclidean and Frobenius norms.

Aτ =
τ∑
i=1

Ui · σi · V Ti (3)

The use of τ -largest singular values to approximate the
original matrix with Eq. (3) has more implications than just di-
mension reduction. Discarding small singular values is equiv-
alent to discarding linearly semi-dependent or practically non-
essential axes of the singular vector space. In our case, axes
with small singular values usually capture either non-essential
color variations or noise within the video sequence. The trun-
cated SVD, in one sense, captures the most salient underlying
structure in the association of histograms and video frames,
yet at the same time removes the noise or trivial variations in
video frames. Minor differences between histograms will be
ignored, and video frames with similar color distribution pat-
terns will be mapped near to each other in the τ -dimensional
partial singular vector space. Similarity comparison between
frames in this partial singular vector space will certainly yield
better results than in the raw feature space.

To demonstrate the impact of discarding small singular
values on the similarity comparison between video frames, we
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implemented a shot boundary detection method in the singular
vector space, and evaluated the performance of the method
using τ as a parameter. More precisely, for each frame i, we
take the column vector ψi of matrix VT as its feature vector,
and use Eq. (4) as the similarity metric to compare it with
frame j = i + 1. Once the difference between frame i and j
exceeds the predefined threshold, we declare the detection of
a shot boundary:

D(ψi, ψj) =

√√√√ τ∑
k=1

σk(vik − vjk)2 (4)

In fact, Eq. (4) defines a Euclidean distance weighted by the
singular values σk. τ is the parameter that specifies how many
singular values are to be used in the metric.

The shot boundary detection method is evaluated using two
common measures, recall and precision, which are defined as
follows:

Recall =
No. of correctly detected boundaries

No. of true boundaries

Precision =
No. of correctly detected boundaries
No. of totally detected boundaries

The evaluation was performed using a set of TV video pro-
grams with a total length of three hours. These video programs
consist of a great variety of scene categories taken from news,
documentaries, movies, TV commercials, etc. All the video
programs are in MPEG1 format with a frame size of 352×240
pixels. Figure 2 shows the evaluation result with the value of τ
as a parameter. For each given τ value, we empirically deter-
mined the shot boundary detection threshold so that the best
recall and precision were obtained. It can be seen from the
figure that when τ takes values below 30, the shot boundary
detection yields poor recall and precision (below 0.5). When
τ equals 50, both the recall and precision reach their maxi-
mum. When τ further increases, the recall decreases slightly
and then flattens out, whereas the precision decreases by 10%
and then stabilizes at that level. Since the raw feature vector of
each video frame has 1125 dimensions, theoretically the SVD
operation can produce up to 1125 singular values. However,
because these 1125 dimensions are not fully independent of
each other, the SVD seldom produces 1125 non-zero singular
values. Our experiments have shown that the singular values
from rank 600 and onward are either very small or could be
ignored.

Based on the above experiments, we set the value of τ to 50,
and use this value as well as Eq. (4) as the similarity metric for
both the video summarization and the retrieval systems. With
τ = 50, the best threshold for the shot boundary detection
equals 8000.

For comparison, we also implemented the same shot
boundary detection method using the raw feature vectors. That
is, instead of using the column vectorψi of matrix VT , we use
the column vector Ai of matrix A for each frame i. The Eu-
clidean distance between two raw feature vectors is used as the
similarity metric. The performance evaluation using the same
test video set yielded a 73% recall and 67% precision. This
performance is compatible to that of the singular vector-based
method using the full set of singular values. This comparison
is further evidence for the impact of discarding small singular
values on the similarity comparison between video frames.

6 SVD-based video summarization

Besides the SVD properties described in the above section,
we have derived the following SVD feature, which constitutes
the basis of our video summarization system (see Appendix 1
for proof).

Theorem 2. Let the SVD of A be given by Eq. (1), A =
[A1 · · ·Ai · · ·An], VT = [ψ1 · · ·ψi · · ·ψn]. Define the norm
of ψi = [vi1 vi2 · · · vin]T in the singular vector space as:

||ψi|| =

√√√√rank(A)∑
j=1

v2
ij (5)

If rank(A)=n, then, from the orthonormal property of ma-
trix V, we have ||ψi||2 = 1, where i = 1, 2, . . . , n. Let

A′ = [A1 · · ·
k︷ ︸︸ ︷

A
(1)
i · · ·A(k)

i · · ·An] be the matrix obtained by

duplicating column vector Ai in A k times (A(1)
i = · · · =

A
(k)
i = Ai), andV′T = [ψ′

1 · · ·
k︷ ︸︸ ︷

φ′
1 · · ·φ′

k · · ·ψ′
n] be the corre-

sponding right singular vector matrix obtained from the SVD.
Then, ||φ′

j ||2 = 1/k, where j = 1, 2, . . . , k.

The above theorem indicates that, if a column vector Ai
of matrix A is linearly-independent, the SVD operation will
project it into the vector ψi whose norm defined by Eq. (5) is
one in the singular vector space. WhenAi has some duplicates
A

(j)
i , the norm of its projected vector φ′

j decreases. The more
duplicatesAi has, the smaller norm φ′

j holds. Translating this
property into the video domain, it can be inferred that, in the
singular vector space, frames in a static video segment (e.g.
shots of anchor persons, weather maps) will be projected into
the points closer to the origin, while frames in a video segment
containing a lot of changes (e.g. shots containing moving ob-
jects, camera pan and zoom) will be projected into those points
furthest from the origin. In other words, by looking at the lo-
cation at which a video segment is projected, we can roughly
tell the degree of visual changes of the video segment.

Consider a video and ignore its audio signals. From the
viewpoint of visual content, a static video with little visual
change contains less visual content than a dynamic video with
lots of changes. In other words, the degree of visual changes
in a video segment is a good indicator of the amount of visual
content conveyed by the segment. Since the degree of visual
changes of a given video segment has a strong correlation
with the location of its corresponding cluster Si in the singular
vector space, we define the following quantity as a metric of
visual content contained in cluster (video segment) Si:

CON(Si) =
∑
ψi∈Si

||ψi||2 (6)

Using the above visual content metric, we strive to group
video frames into units with approximately equal amounts of
visual content in the singular vector space. More precisely, in
the singular vector space, we first find the most static frame
cluster, define it as the visual content unit, and then use the
value of the visual content metric computed from it as the
threshold to cluster the rest of the frames. The main opera-
tions of the video summarization system are given as follows
(Fig. 1).
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Main process

Step 1. Roughly sample the input video sequence with a fixed
rate.

Step 2. Create the feature-frame matrix A using the frames
in the sampling set (see Sect. 4).

Step 3. Perform the SVD on A to obtain matrix VT in which
each column vector ψi represents frame i in the singular
vector space.

Step 4. In the singular vector space, find the most static clus-
ter, compute the value of its visual content metric using
Eq. (6), and cluster the rest of the frames into units that
have approximately the same amount of visual content as
the most static cluster.

Step 5. For each cluster Si obtained, find the longest shot
Θi contained in the cluster. Discard the cluster whose Θi
is shorter than one second. Output a summarized motion
video with the user-specified time length.

In Step 4 of the above operation, finding the most static
cluster is equivalent to finding the cluster closest to the origin
of the singular vector space. Referring to the notation in The-
orems 1 and 2, the entire clustering process in Step 4 can be
described as follows.

Clustering

1. In the singular vector space, sort all the vectors ψi in as-
cending order of their norms defined by Eq. (5). Initial-
ize all the vectors as unclustered vectors, and set cluster
counter C = 1.

2. Among the unclustered vectors, select the one that has
the shortest norm as the seed to form cluster SC . Set the
average internal distance of the cluster R(SC) = 0, and
the frame count PC = 1.

3. For each unclustered vectorψi, calculate its minimum dis-
tance to cluster SC , which is defined as:

dmin(ψi,SC) = min
ψk∈SC

D(ψi, ψk) (7)

where D(ψi, ψk) is defined by Eq. (4). If cluster counter
C = 1, go to Case (a); otherwise, go to Case (b).
(a) add frame ψi to cluster S1 if

R(S1) = 0 or

dmin(ψi,S1)/R(S1) < 5.0

(b) add frame ψi to cluster SC if

R(SC) = 0 or

CON(SC) < CON(S1) or

dmin(ψi,SC)/R(SC) < 2.0

If frame ψi is added to cluster SC , increment frame count
PC by one, update the content value CON(SC) using
Eq. (6), and update R(SC) as follows:

R(SC) =
(PC − 1)R(SC) + dmin(ψi,SC)

PC
(8)

4. If there exist unclustered points, increment the cluster
counter C by one, go to Step 2; otherwise, terminate the
operation.

In the above operations, it should be noticed that differ-
ent conditions are used for growing the first and the rest of
the clusters. The first cluster relies on the distance variation
dmin(ψi,S1)/R(S1) as its growing condition, while the re-
maining clusters examine the visual content measure as well
as the distance variation in the growing process. Condition 2
in Case (b) ensures that the cluster under processing contains
the same amount of visual content as the first cluster, while
Condition 3 prevents two frames that are very close to each
other from being separated. With Condition 2, a long video
shot with large visual variations will be clustered into more
than one cluster, and consequently, will be assigned more than
one slot in the summary. On the other hand, with the combi-
nation of Conditions 2 and 3, video shots with very similar
visual content will be clustered together, and only one slot
will be assigned to this group of video shots. These character-
istics exactly meet our goals set for the video summarization
system.

In the main process, Step 5 forms another unique charac-
teristic of our video summarization system: it is able to output
a summarized motion video of the original video sequence
with the user-specified time length and granularity. The sys-
tem composes a summarized video according to the two user
inputs: the time length of the summarized video Tlen, and the
minimum time length (the granularity) each shot should be dis-
played in the summarized video Tmin. The process consists of
the following main operations:

Summary composition

1. Let C be the number of clusters obtained from the above
clustering process, and N = Tlen/Tmin. For each cluster
Si, find the longest video shot Θi.

2. If C ≤ N , go to Case (i); otherwise, go to Case (ii).
(i) Select all the shots Θi where i = 1, 2, . . . , C, and

assign an equal time length L = Tlen/C to each of the
shots.

(ii) Sort shotsΘi in descending order by length, select the
topN shots, and assign an equal time lengthL = Tmin
to each selected shot.

3. From each selected shot, take the first L seconds of the
shot, and concatenate these video segments in their origi-
nal time order to form the motion video summary.

Given the user’s input Tlen and Tmin, the maximum num-
ber of shots the summarized video can include equals N =
Tlen/Tmin. If the total number of shots C ≤ N , then all the
shots will be assigned a slot in the summarized video (Case
(i)); otherwise, the shots will be selected in descending order
of length to fill the summarized video. Here, the parameter
Tmin can be considered as a control knob for the user to select
between depth-centric and breadth-centric summarization. A
small value forTmin will produce a breadth-centric video sum-
mary (or summary with a small granularity), which consists
of more shots that are shorter in length, while a large value
for Tmin will produce a depth-centric video summary (or sum-
mary with a large granularity), which consists of fewer shots
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that are longer in length. Moreover, because the clustering pro-
cess is performed such that all the resultant clusters contain
approximately the same amount of visual content, it is natural
to assign the same time length to each selected shot to form
the summarized video.

7 SVD-based video retrieval

The video retrieval system shares the operations of video sam-
pling, feature-frame matrix creation, and singular value de-
composition with the video summarization system. As camera
shots are considered to be a natural and appropriate process-
ing unit for indexing and retrieval, we segment the input video
into individual camera shots using the shot boundary detec-
tion method described in Sect. 5. From each camera shot, we
extract a keyframe and use it for matching and retrieval of
visually similar shots. In the singular vector space, the fol-
lowing three metrics are defined to measure visual similarity
between shots, degree of visual changes, and uniformity of
color distributions of each shot.

Similarity metric

As demonstrated in Sect. 5, the similarity metric using the sin-
gular vectors (Eq. (4)) is superior to that using the raw feature
vectors for shot boundary detection. By analogy, the superi-
ority of Eq. (4) should also apply for matching and retrieval
of visually similar keyframes. However, for Eq. (4) to accu-
rately measure the similarity among keyframes from different
video sequences, all the keyframes must be processed by the
same SVD . To handle this problem, we propose the follow-
ing scheme, consisting of the database creation and updating
stages.

1. Database creation, which builds a video database from
scratch with the following steps: (a) Collect all the video
sequences to be indexed by the database. (b) Segment each
sequence into individual shots, and record the boundary
of each shot in the database. (c) Extract a keyframe from
each shot, and create the raw feature vector (see Sect. 4)
for each keyframe. (d) Use the raw feature vectors of all
the keyframes together to create the feature-frame matrix
A, and perform the SVD on matrix A. Store the matrices
U, Σ, and VT into the video database. (e) Use column
vector ψi from VT as the feature vector of keyframe i for
matching and retrieval.

2. Database updating, which adds new keyframes to the ex-
isting video database using the following folding-in tech-
nique [21]. Let Ax be the raw feature vector of a new
keyframe x. The projected feature vector ψx of frame x in
the singular vector space is computed by

ψx = Σ−1UTAx (9)

If the similarity metric Eq. (4) uses only τ singular values,
then in the above equation, only the top τ singular values
from matrix Σ need to be used to compute ψx, which
produces ψx as a τ -dimension vector.

In the above database updating stage, instead of recomput-
ing the SVD, the folding-in technique is used to add new

keyframes to the database. Folding-in is based on the exist-
ing singular vector space obtained at the database creation
stage, and hence new keyframes have no effect on the repre-
sentation of the pre-existing keyframes stored in the database.
Folding-in requires much less time and memory for comput-
ing, but can have deteriorating effects on the representation of
the new keyframes. Therefore, folding-in is a preferable choice
when a small number of new keyframes need to be added into
the database, whereas recomputing the SVD for the whole
keyframe set should be performed when new keyframes to be
added exceed a certain percentage (i.e. 20%) of the database
population.

Color distribution uniformity

For each keyframe extracted from the corresponding camera
shot, its color distribution uniformity can be measured using
the following SVD property (see Appendix 2 for proof).

Theorem 3. Assume that the SVD of A be given by Eq. (1),
A = [A1 · · ·Ai · · ·An], VT = [ψ1 · · ·ψi · · ·ψn]. Let Ai =
[a1i a2i · · · ami]T , and ψi = [vi1 vi2 · · · vin]T . Define the
singular value weighted norm of ψi as:

||ψi||Σ =

√√√√rank(A)∑
j=1

σ2
j v

2
ij (10)

Then, ||ψi||2Σ = Ai ·Ai =
∑m
j=1 a

2
ji

In the above theorem, because Ai is the concatenated his-
tograms of frame i, the sum of its elements aji equals a con-
stant value

∑m
j=1 aji = P (the number of pixels in the frame).

Hence, ||ψi||2Σ reaches the minimum when a1i = a2i = · · · =
ami = P

m , while it reaches the maximum when one element
aki = P and the remaining elements all equal zero. In other
words, the norm ||ψi||2Σ is proportional to the uniformity of the
color distribution of frame i. This norm becomes the shortest
when frame i has a complete uniform color distribution, and it
becomes the longest when frame i consists of only one color.
||ψi||2Σ is a measurement that can be computed independent
of other video sequences. Therefore, in contrast to the sim-
ilarity metric, there is no need to compute the SVD for all
the keyframes stored in the database before we can compute
||ψi||2Σ for each frame i.

Degree of visual changes

Besides the similarity and color distribution measures, it is
also desirable to measure the temporal characteristics of each
shot. Theorem 2, which was used to derive the visual content
metric in Sect. 6, can be used here to measure the degree of
visual changes for each shot. Let ψi be the projected feature
vector of frame i in the singular vector space. Since the norm
||ψi||2 is strongly related to the visual variation level of the
shot to which frame i belongs, the quantity

∑
ψi∈Si

||ψi||2 can
be used as a metric to measure the degree of visual changes of
shot Si. Similar to the color distribution metric, this quantity
can be computed independent of other video sequences, and
it is not necessary to compute a second SVD incorporating all
the video sequence.
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Table 1. Evaluation for video summarization

Time Total Similar shots Dynamic shots
Length Shots Properly merged Assigned more slots
120 min. 683 79% 86%

8 Evaluation of video summarization

Conducting an objective and meaningful evaluation for a video
summarization method is particularly difficult and challeng-
ing, and is an open issue deserving more research. The chal-
lenges are mainly from the fact that research for video sum-
marization is still at an early stage, and there are no agreed-
upon metrics for performance evaluations. These challenges
are further compounded by the fact that different people carry
different opinions and requirements towards video summaries,
making the creation of any agreed-upon performance metrics
even more difficult.

With the above observations in mind, we choose to eval-
uate our video summarization system using the objectives set
at the beginning of Sect. 3, which are (1) adjustable sum-
mary length and granularity, (2) redundancy reduction, and
(3) equal attention to an equal amount of visual content. The
realization of the first objective is obvious from the algorithm
itself. The redundancy reduction can be measured by show-
ing how many visually similar or duplicated shots have been
deprived, and how many static shots with little visual change
have been shortened. For the objective of equal attention to
an equal amount of visual content, we show the percentage of
long, dynamic shots that have been assigned more play time in
the summaries produced. We used a portion of the video data
set described in Sect. 5 that excludes TV commercials and
many short video programs which are not very meaningful for
summarization. The test data set has a total of two hours in
length, and consists of news reports, documentaries, political
debates, talk shows, and live coverage of breaking events.

Figure 3 details a one minute summary of a six-minute
news report covering the Clinton–Lewinsky scandal. The se-
quence consists of 29 shots, and Fig. 3 displays the 15 major
shots. Each row on the left hand rectangle represents a shot in
the original video, and the number of frames in each row is
proportional to the time length of the corresponding shot. The
same row on the right hand rectangle depicts the number of
slots assigned to the corresponding shot. Each slot has an equal
play time that are calculated using the algorithm described in
Sect. 6. In our experiment, the thirteenth shot (represented by
row 13) was detected as the most static shot, and was used
as the visual content unit to cluster the rest of the shots. The
anchor person appeared two times, one at the beginning (row
1), the other at the end (row 15) of the whole sequence. How-
ever, as the two shots are quite static and visually similar, they
were clustered together, and were assigned only one slot in the
summary (row 1 on the right hand rectangle). The similar sit-
uation occurs for shot 2 and 14 as well. Shot 12 is the longest
shot, and contains lots of changes in the whole sequence. It
was clustered into three clusters together with shot 10, and
assigned three slots. Similarly, as shot 5 contains many visual
changes, it was also assigned two slots. Figure 3 demonstrates
that this one minute motion video summary has largely met
the objectives we set for video summaries.

Table 2. Evaluation for video retrieval

Recall Precision
Similarity retrieval 76% 72%
Color Uniformity 91% 94%
Dynamic Degree 94% 95%

Table 1 shows the overall evaluation result on the two hour
test video set. The result shows that our video summarization
method has an 86% accuracy for segmenting long, dynamic
shots into multiple clusters, hence giving more attention to
this type of shot. For merging visually similar or duplicated
shots, our method shows a 79% accuracy. The failure of merg-
ing some visually similar shots occurs mainly when two shots
have similar color distributions but different illumination con-
ditions, or position shifts of the main objects (e.g. anchor per-
sons, buildings).

9 Evaluation of video retrieval

The video retrieval system is evaluated using the same three
hour video set used for testing the shot boundary detection
method. Each video program in the test set has been seg-
mented into individual shots, and this shot segmentation pro-
cess has yielded 1100 camera shots, and hence produced 1100
keyframes.

The video retrieval system supports three basic types of
video search: search based on the visual similarity, the color
distribution uniformity, and the degree of visual changes. Any
combination of the three basic search types are also supported.
For similarity-based video search, the user must present a sam-
ple frame of the desired video shot. The system matches the
sample frame with all the keyframes stored in the database,
and retrieves 16 shots whose keyframes are among the top 16
matches. On the other hand, searching shots based on the color
distribution uniformity and the degree of visual changes are
mainly realized using the predefined thresholds. With the color
distribution uniformity metric defined by Eq. (10), keyframes
with a value above 19,000 are composed of very few colors,
with their histograms containing many empty bins. In contrast,
keyframes with a value below 4000 are composed of many col-
ors, and relatively uniform color distributions are observed in
their histograms. On the other hand, using the visual change
metric defined by Eq. (5), shots with the value above 2000 can
be categorized as the dynamic shots containing high degrees
of visual changes, while shots with the value below 1000 can
be categorized as static shots with very little change.

Figure 4 shows examples of video retrieval based on the
visual similarity, the color distribution uniformity, and the de-
gree of visual changes. Figures 4(a), (b), and (c) display the
top 16 returns from the database using the respective retrieval
methods. In Figure 4(a), a frame from a scene of the Clinton
testimony before Kenn Starr is used as a sample frame (dis-
played in the top large window). and the system returns the
top 16 matches, 12 of which belong to the other shots of the
Clinton testimony. The rest of the four images are similar ei-
ther with the overall color layout and distribution (thirteenth
and fourteenth images), or with the main object (fifteenth and
sixteenth images). In Figure 4(b), retrieval of shots with skew
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Fig. 3. A video summarization result

color distributions is conducted, and the 16 keyframes shown
in the picture are either black-white images, or composed of
very few colors. In Figure 4(c), the results of retrieving dy-
namic shots are displayed, and they represent shots that contain
dissolves, fast moving objects, camera panning, etc. For the
second and third types of video retrieval, if no other constraints
are imposed, the system will return all the keyframes that sat-
isfy the predefined threshold. If more than 16 keyframes are
returned from the database, the arrow buttons at the bottom of
the window can be used to move to the previous, or the next,
page of the returned keyframes.

The video retrieval system is evaluated using the recall
and precision whose definitions are analogous with those de-
fined in Sect. 5. Table 2 shows experimental results using the
three hour test video set. It is clear from the table that, while
similarity-based video retrieval has obtained reasonable per-
formance, video retrieval based on the color uniformity and
degree of visual changes have achieved impressive recall and
precision. This result has demonstrated the effectiveness of
those SVD derived metrics described in Sect. 7.

10 Summary and discussion

In this paper, we have proposed a novel framework that re-
alizes the video summarization and retrieval by sharing the
same features and the same singular vector space. Through
mathematical analyses, we have derived the SVD properties
that capture both the temporal and spatial characteristics of
the input video sequence in the singular vector space. Using
these SVD properties, we are able to categorize and retrieve
video shots according to their degrees of visual changes, color
distribution uniformities, and visual similarities. On the other
hand, these SVD properties also enable us to derive a metric to
measure the visual content value of a given video segment. Us-
ing this metric, we are able to group video frames into clusters
with approximately the same visual content value. With this
clustering technique, we strive to generate video summaries
that (1) have an adjustable length and granularity controllable
by users, (2) contain little redundancy, and (3) give equal at-
tention to the same amount of visual content.

In the experimental evaluations, we have used the above
objectives to measure the effectiveness of the video summa-
rization system, and used the common recall and precision
metrics to evaluate the performance of the video retrieval sys-
tem. The evaluation results have shown that the video sum-
marization system has certainly met our objectives, and the
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a Fig. 4a–c. Video retrieval examples

video retrieval system has revealed the effectiveness of re-
trieving video shots based on the visual similarity, the color
distribution uniformity, and the degree of visual changes.

The SVD and certain SVD properties (e.g. Theorems 1 and
2) can be applied to other image features as long as the features
have a fixed number of dimensions. The advantages of using
SVD will become more obvious with high dimension features
(e.g. more than 100 dimensions), because SVD can tell which
dimensions are important and which are not. As showcased in
Sect. 5 and in [21], in singular vector spaces, discarding unim-
portant dimensions is more than just the dimension detection;
in many cases, it improves system performance.

Our future work includes the improvement of the summary
composition process so that the generated motion video sum-

mary will have a better audio effect, the testing of the singu-
lar value decomposition on different color spaces to compare
them with the RGB color space. We are also going to apply the
SVD to other image features such as edges, textures, etc., and
conduct performance comparisons with the histogram+SVD
combination.

Appendix 1: Proof of Theorem 2

Assume that except for k duplicates of Ai, the rest of the col-
umn vectors in A′ are all linearly-independent. By performing
the SVD on A′, and, without loss of generality, by conducting
some permutations, we have matrix V′T as shown in Fig. 5.
In the figure, the row vectors from 1 to n are the right sin-
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b

c Fig. 4a–c. (continued)

gular vectors whose corresponding singular values are non-
zero, and each column vector φ′

j = [yj1 yj2 · · · yj(n+k−1)],
j = 1, . . . , k, in the hatched rectangle area corresponds to
A

(j)
i in A′. Because the SVD projects the identical column

vectors in A′ to the same point in the refined feature space,
the following condition holds:

y1s = y2s = · · · = yks where 1 ≤ s ≤ n (11)

Because V′T is an orthonormal matrix,

φ′
a · φ′

b=δab (12)

ψ′
c · φ′

d=0 (13)

where φ′
a, φ

′
b, φ

′
d represent any column vectors from the

hatched rectangle area, and ψ′
c represents any column vec-

tor in the dotted rectangle area. From Eq. (11) and Eq. (12),
the condition in Eq. (11) does not hold for n < s ≤ n+k−1.
From Eq. (11) and Eq. (13), elements of n+ 1 to n+ k− 1 in
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V’T

n

k
(n+k-1) (n+k-1)

0

...... ...1
ψ’

c
ψ’ ψ’n-1

n-1

k-1

φk’φ1’

Fig. 5. The structure of matrix V′T with some permutations

each vector ψ′
c all equal zero. From the orthonormal property

of V′T

k∑
i=1

n+k−1∑
s=n+1

y2
is = k − 1 (14)

k∑
i=1

n+k−1∑
s=1

y2
is = k (15)

subtracting Eq. (14) from Eq. (15), we have

k∑
i=1

n∑
s=1

y2
is = 1 (16)

From Eq. (11) and Eq. (16), we have

||φ′
j ||2 = 1/k, where 1 ≤ j ≤ k (17)

Appendix 2: Proof of Theorem 3

Assume that the SVD of A is as given by Eq. (1). Let
A = [A1 · · ·Ai · · ·An], VT = [ψ1 · · ·ψi · · ·ψn], Ai =
[a1i a2i · · · ami]T , and ψi = [vi1 vi2 · · · vin]T . Then
we have

ATA = VΣUT · UΣVT = VΣ2VT (18)

The last step makes use of the orthonormal property of ma-
trix U. In the above equation, the diagonal element i of the
left-hand side matrix ATA equals Ai · Ai =

∑m
i a

2
ji , and

the diagonal element i of the right-hand side matrix VΣ2VT

equals
∑n
j=1 σ

2
j v

2
ij . Therefore, we have ||ψi||2Σ = Ai · Ai =∑m

j=1 a
2
ji .
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