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Evaluation of MPEG-7 shape descriptors against other shape descriptors

Dengsheng Zhang, Guojun Lu
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Abstract. Shape is an important image feature – it is one of the
primary low level image features exploited in content-based
image retrieval (CBIR). There are generally two types of shape
descriptors in the literature: contour-based and region-based.
In MPEG-7, the curvature scale space descriptor (CSSD) and
Zernike moment descriptor (ZMD) have been adopted as the
contour-based shape descriptor and region-based shape de-
scriptor, respectively. In this paper, the two shape descrip-
tors are evaluated against other shape descriptors, and the
two shape descriptors are also evaluated against each other.
Standard methodology is used in the evaluation. Specifically,
we use standard databases, large data sets and query sets,
commonly used performance measurement and guided princi-
ples. A Java-based client-server retrieval framework has been
implemented to facilitate the evaluation. Results show that
Fourier descriptor (FD) outperforms CSSD, and that CSSD
can be replaced by either FD or ZMD.

Key words: Fourier descriptor – Curvature scale space – Mo-
ments – Grid descriptor – CBIR – Shape

1 Introduction

Shape is one of the primary low level image features exploited
in content-based image retrieval (CBIR). There are generally
two types of shape representation methods in the literature: the
region-based and contour-based methods. The classification
of the varieties of shape methods is given in Fig. 1. In the
next section, common shape methods used for image retrieval
are briefly discussed. For a comprehensive shape review, the
reader is referred to Loncarie [1].

1.1 Contour-based shape representations

Contour shape representations exploit only shape boundary
information. Contour based methods gain popularity because
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Fig. 1. Taxonomy of shape description techniques

it is usually simple to acquire and is descriptive sufficiently
in many applications. There are generally two types of very
different approach for contour shape modeling: conventional
and structural. Conventional approaches treat the boundary as
a whole, and a feature vector derived from the whole bound-
ary is used to describe the shape. The measure of shape sim-
ilarity is usually the Euclidean distance between the feature
vectors. Structural approaches break the shape boundary into
segments, known as primitives, using certain criterion. The
final representation is usually a string or a tree, and the mea-
sure of shape similarity is string matching or graph matching.
In the following subsections, these two methods are briefly
discussed.

1.1.1 Conventional shape representations

Conventional shape representations include global shape de-
scriptors [2], shape signatures [3], spectral descriptors [4–12],
curvature scale space (CSS) [13], elastic matching [14] and
autoregressive method [4]. Global descriptors such as area,
circularity (perimeter2/4π×area), eccentricity (length of ma-
jor axis/length of minor axis), and axis orientation used in
QBIC can only discriminate shapes with large dissimilarities,
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so they are usually used as filters to eliminate false hits, or com-
bined with other shape descriptors to discriminate shapes. The
elastic matching [14] is similar to global descriptors, because
only three global features are extracted from the boundary.

Shape signatures such as complex co-ordinates, curvature
and angular representations are local representations of shape
features in nature, and they are sensitive to noise and are not ro-
bust. In addition, shape representation using shape signatures
requires intensive computation during similarity calculation,
due to the complex normalization of rotation invariance. Con-
sequently, these representations need further processing using
a spectral transform such as the Fourier or wavelet transform.

The Autoregressive (AR) method [4] is based on the
stochastic modeling of a 1D function f obtained from the
shape. A linear AR model expresses a value of a function as
a linear combination of a certain number of preceding values.
Specifically, each function value in the sequence has some
correlation with previous function values, and can therefore
be predicted through a number of, say, m observations of pre-
vious function values. The drawback of the AR method is that,
in the case of complex boundaries, a small number of AR pa-
rameters is not sufficient for description. The choice of m is a
complicated problem, and is usually decided empirically. Be-
sides, the physical meaning associated with each descriptor is
not clear.

Spectral descriptors include the Fourier descriptor (FD)
and wavelet descriptor (WD). They are derived from spec-
tral transform on shape signatures. With FD, global shape
features are captured by the first few low frequency terms,
while higher frequency terms capture the finer features of the
shape. The FD overcomes not only the weak discrimination
capability of the global descriptors, but also the noise sensi-
tivity in the shape signature representations. Other advantages
of FD method include easy normalization and compactness.
Eichmann et al. [15] used the short-time Fourier descriptor
(SFD) in an attempt to locate local boundary features more
accurately. However, Zhang and Lu [9] have found that FD
outperforms SFD in image retrieval, because SFD does not
make use of global boundary features which are very robust
to shape variations. Furthermore, SFD is not rotation invariant
– the best shift matching is needed to match two sets of SFDs.
Recently, several researchers have proposed the use of WD for
shape representation [8, 16]. Similar to SFD, though, WD is
not rotation invariant, which means that a complex matching
scheme is required. In Yang et al. [8], the similarity measure-
ment algorithm needs 2L × N all-level shift matching, where
L is the number of levels of resolution of the wavelet trans-
form and N is the number of normalized boundary points. In
Tieng and Boles [16], the number of matchings for similarity
measurement is not only large but is also dependent on the
complexity of the shape, since the similarity measurement is
all-level shift matching of all the zero-crossing points of the
wavelet approximation of the shape. Furthermore, the WD of
a rotated shape will be very different from the WD of the orig-
inal shape, even after shifting reorder. This is because uniform
windows are used in calculating the dyadic wavelets.

Asada and Brady [17] used curvature scale space (CSS) to
derive “primitive events” from the shape boundary. Mokhtar-
ian and Abbasi [13, 18, 19] have used CSS for image re-
trieval. The CSS method is a method between the conventional
and structural approaches. The feature extraction process is

done globally, however, the extracted features are essentially
a structural representation of shape in nature. Therefore, a
non-conventional matching scheme has to be found.

1.1.2 Structural shape representations

Another member of the contour shape analysis family is
structural shape representation. With the structural approach,
shapes are broken down into boundary segments called prim-
itives. An invariant is derived from each segment to represent
the curve segment. A common method of deriving primitives
is to first apply an approximation process, such as polygon or
polynomial approximation [20, 21], curve fitting and Gaus-
sian smoothing [22, 23]. Then the primitives are found by
determining the breakpoints of the contour. After selection of
the primitives, a method of organizing the primitives is deter-
mined, so that classification and searching can be conducted
efficiently. The various structural methods differ in the selec-
tion of primitives and the organization of the primitives for
shape representation. Shape invariants [12, 24] can also be
viewed as a structural approach, because they also represent
shape based on boundary primitives.

The main merit of the structural approach is its capability
to do partial matching. However, there are several drawbacks
with structural methods:

1. The main drawback of the structural approach is the gener-
ation of primitives and features. Because there is no formal
definition for an object or shape, the number of primitives
required for each shape is not known. In addition, the pro-
cess to generate primitives is not algorithmic, and is usu-
ally empirical. Therefore, it difficult to apply it to general
cases.

2. Ambiguous matching. Since the shape and its represen-
tation is a many-to-one mapping, the matching of one or
more features does not guarantee full shape matching.

3. Failure to capture global shape features, which are equally
important for the shape representation, because structural
representation does not preserve the topological struc-
ture of the object. Variations of the object boundary can
cause significant changes to local structures. In these cases,
global features are more reliable.

4. Structural methods have a higher computational and im-
plementation complexity than conventional techniques.

1.2 Region-based shape representations

In region-based techniques, all pixels within a shape region are
taken into account to obtain the shape representation. Com-
mon region-based methods use moment descriptors to de-
scribe shape [2, 25–29]. These include geometric moments,
Legendre moments, Zernike moments and pseudo Zernike
moments.

Geometric moments representations interpret a normal-
ized gray level image function as a probability density of a 2D
random variable. The first seven invariant moments, derived
from the second and third order normalized central moments,
are given by Hu [25]. There is no general rule in acquiring
higher order invariants. Orthogonal moments using the Leg-
endre polynomial, Zernike polynomials and pseudo-Zernike
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polynomials have been proposed [27] to obtain more moment
invariants for accurate shape description. Arbitrary order of
moment invariants can be constructed through these orthogo-
nal moments. It has been shown [28] that Zernike moments and
pseudo-Zernike moments outperform other moments in terms
of noise sensitivity, redundancy and reconstruction error. Re-
cently, Zernike moments have been used for image retrieval
and have shown good results [30].

The grid method has also been used in several applications
[31–33]. The grid-based method attracts interest for its sim-
plicity in representation, is intuitive, and also agrees with the
shape coding method in MPEG-4.

Since region-based shape representations combine infor-
mation across an entire object, rather than exploiting informa-
tion just at the boundary points, they can capture the interior
content of a shape. Other advantages of region-based meth-
ods are that they can be employed to describe non-connected
and disjoint shapes. However, region-based representations do
not emphasize contour features, which are equally crucial for
human perception of shapes.

1.3 Techniques to be evaluated

In the development of MPEG-7, six principles have been set to
evaluate the overall performance of a shape descriptor: good
retrieval accuracy, compact features, general application, low
computation complexity, robust retrieval performance, and
hierarchical coarse to fine representation [34]. According to
these principles, and based on the above discussion, conven-
tional shape methods such as the FD, CSSD, moments and
grid methods are suitable for image retrieval.

CSSD and ZMD have been adopted by MPEG-7 as the
contour-based shape descriptor and region-based shape de-
scriptor respectively [35–38]. However, these two descriptors
are not comprehensively evaluated against other important de-
scriptors. In Abbasi and Mokhtarian [1], CSSD is compared
with FD, but the comparison is not conclusive in three re-
spects. First, the FD is derived from boundary coordinates –
recent findings show that a FD derived from a centroid dis-
tance function significantly outperforms a FD derived from
boundary coordinates [10]. Secondly, the evaluation uses a
fish database, which does not reflect a general application.
Thirdly, only a small set of “carefully” selected shapes are
used to test the query.

ZMD has only been evaluated with geometric moments on
region-based shapes [30]. It has not been evaluated with the
recently proposed grid method, which has been used in several
applications. Since region-based methods can be applied to
contour shapes, it is also appropriate to evaluate them in a
contour shape database and against contour shape descriptors.

The evaluation of different shape descriptors is usually
challenging due to the lack of a standard methodology. One
of the most contentious issues in the evaluation is the test
database. The evaluation of shape descriptors in the litera-
ture generally uses their own data and query sets, which are
either too application-dependent or unacceptably small. Rec-
ognizing this important issue, the MPEG-7 developers have
established a shape database combining data sets from several
active research groups involved in the development of MPEG-
7. The database is of a reasonable size and generality. It has

been subjectively tested and organized into a number of indi-
vidual data sets to test the shape descriptors’ behavior under
various distortions. At the moment, the authors have not found
any other shape database which is more generic and acceptable
than this shape database.

It can be claimed that the evaluation in this paper uses
standard principles, a standard database, a large data and query
set, and common performance measurement.

The rest of the paper is organized as follows. In Sect. 2,
two contour-based shape descriptors, FD and CSSD, are de-
scribed and evaluated. In Sect. 3, three region-based shape
descriptors, ZMD, the geometric moment descriptor (GMD)
and the grid descriptor (GD), are described and evaluated. The
region-based descriptor is evaluated against the contour-based
shape descriptors in Sect. 4, and the paper concludes in Sect. 5.

2 Evaluation of contour-based shape descriptors

In this section, two contour-based shape descriptors, FD
and CSSD, are described and evaluated. FD is described in
Sect. 2.1, CSSD is described in Sect. 2.2, a comparison of
CSSD and FD will be given in Sect. 2.3, and the evaluation
results are discussed in Sect. 2.4.

2.1 Fourier Descriptor (FD)

In general, the FD is obtained by applying a Fourier trans-
form on a shape signature. The set of normalized Fourier
transformed coefficients is called the Fourier descriptor of
the shape. The shape signature is a one-dimensional function,
which is derived from shape boundary coordinates. Different
shape signatures have been exploited to obtain FD. Complex
coordinates, the curvature function, cumulative angular func-
tion, and centroid distance are the commonly used shape sig-
natures. It has been shown [10] that a FD derived from the
centroid distance function is more effective than a FD derived
from other shape signatures.

The first step of computing a FD is to obtain the boundary
coordinates (x(t), y(t)), t = 0, 1, . . . , N -1, where N is the
number of boundary points. The centroid distance function
is expressed by the distance of the boundary points from the
centroid (xc, yc) of the shape

r(t) = ([x(t) − xc]2 + [y(t) − yc]2)1/2,

t = 0, 1, . . . N − 1

where

xc =
1
N

N−1∑
t=0

x(t) yc =
1
N

N−1∑
t=0

y(t).

An example of a centroid distance function is shown in
Fig. 2.

The discrete Fourier transform of r(t) is then given by

an=
1
N

N−1∑
t=0

r(t) exp
(−j2π n t

N

)
, n=0, 1, . . . , N − 1



18 D. Zhang, G. Lu: Evaluation of MPEG-7 shape descriptors against other descriptors

Fig. 2. An apple shape and its centroid distance function
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an are the Fourier transformed coefficients of r(t). The ac-
quired Fourier coefficients are translation invariant due to the
translation invariance of the shape signature. To describe the
shape, the acquired Fourier coefficients have to be further nor-
malized so that they are rotation-, scaling- and start point-
independent shape descriptors. From Fourier transform theory,
the general form of the Fourier coefficients of a contour r(t)
generated through translation, rotation, scaling, and change of
start point from the original contour r(t)(o) is given by:

an = exp(jnτ) · exp(jφ) · s · a(o)
n

where an and a
(o)
n are the Fourier coefficients of the generated

shape and the original shape, respectively, τ and φ are the
angles incurred by the change of start point and the rotation,
respectively; s is the scale factor. Now consider the following
expression:

bn =
an

a0
=

exp(jnτ) · exp(jφ) · s · a
(o)
n

exp(jτ) · exp(jφ) · s · a
(o)
0

=
a
(o)
n

a
(o)
0

exp[j(n − 1)τ ] = b(o)
n exp[j(n − 1)τ ]

where bn and b
(o)
n are the normalized Fourier coefficients of

the generated shape and the original shape, respectively. The
normalized coefficient of the derived shape bn and that of the
original shape b

(o)
n have a difference of exp[j(n − 1)τ ]. If we

ignore the phase information and use only the magnitude of the
coefficients, then |bn| and |b(o)

n | are the same. In other words,
|bn| is invariant to translation, rotation, scaling, and change of
start point. The set of magnitudes of the normalized Fourier
coefficients of the shape {|bn|, 0 < n ≤ N} is used as the
Fourier descriptor, denoted as {fn, 0 < n ≤ N}. Since the
centroid distance is a real value function, only half of the coef-
ficients are distinct, therefore only half of the FD features are
needed to index the shape. Finally, a feature vector consisting
of half of the normalized FD features is created to index each
shape: f = {f1, f2, . . . , fN/2}. The similarity between a query
shape Q and a target shape T is determined by the city block

distance d between their FDs: d =
N/2∑
i=1

|fQ
i − fT

i | The whole

process of computing the FD from a shape is given in Fig. 3.
In the implementation, 10 very complex shapes are se-

lected from the database to simulate the worst convergence of
the Fourier series of their boundary representations, the aver-
age spectrum of the 10 shapes show that 60 FD features are

sufficient to describe the shape if FD features with normalized
magnitude greater than 0.01 are taken as significant features.
Based on this initial estimation, we test the retrieval perfor-
mance using a different number of FD features (i.e., 5, 10,
15, 30, 60, 90) to find the appropriate number of FD features
needed for shape description. It is found that the performance
of retrieval using 15, 30, 60 and 90 features is almost the same.
The retrieval performance only degrades slightly when using
10 FD features. The test reveals that when the number of FD
features is above 15, the retrieval performance does not im-
prove significantly with an increased number of FD features,
and the retrieval performance does not degrade significantly
when the number of FD features is reduced down to 10 FD
features. The results suggest that for efficient retrieval, 10 FD
features is sufficient for shape description [10]. This finding
also reduces the computation of FD from O(N2) to O(N) (N
is the number of boundary points), because only 10 Fourier
coefficients are needed.

2.2 Curvature Scale Space Descriptor (CSSD)

Mokhtarian et al. [13] propose the use of curvature scale space
for shape retrieval. In this section, CSSD is described in detail.
The computation of CSSD is given in algorithm forms to make
it more convenient for implementation.

2.2.1 Computing Curvature Scale Space Descriptor

Basically, the CSS method treats shape boundary as a 1D sig-
nal, and analyzes this 1D signal in scale space. By examining
zero crossings of curvature at different scales, the concavi-
ties/convexities of shape contour are found. These concavi-
ties/convexities are useful for shape description because they
represent the perceptual features of shape contour.

The first step of the process is the same as that in comput-
ing FD – the output is the boundary coordinates (x(t)y(t)),
t = 0, 1, 2, . . . , N −1. The second step is scale normalization,
which samples the entire shape boundary into a fixed number
of points so that shapes with a different number of bound-
ary points can be matched. The other two main steps in the
process are the CSS contour map computation and CSS peaks
extraction. The CSS contour map is a multi-scale organization
of the inflection points (or curvature zero-crossing points). To
calculate the CSS contour map, curvature is first derived from
shape boundary points (x(t)y(t)), t = 0, 1, 2, . . . , N − 1:

k(t) = (ẋ(t)ÿ(t) − ẍ(t)ẏ(t))/(ẋ2(t) + ẏ2(t))3/2 (1)

where ẋ(t), ẏ(t) and ẍ(t), ÿ(t) are the first and the second
derivatives at location t, respectively. Curvature zero-cross
points are then located in the shape boundary. The shape is then
evolved into the next scale by applying Gaussian smoothing:

x′(t) = x(t) ∗ g(t, σ), y′(t) = y(t) ∗ g(t, σ) (2)

where ∗ means convolution, and g(t, σ) is Gaussian function.
As σ increases, the evolving shape becomes smoother. New
curvature zero-crossing points are located at each scale. This
process continues until no curvature zero-crossing points are
found. The evolution process is demonstrated in Fig. 4.
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Fig. 4. The evolution of shape boundary as scale σ increases [13].
From left to right: σ = 1, 4, 7, 10, 12, 14. The points marked on the
boundary are the inflection points

The CSS contour map is composed of all curvature zero-
crossing points zc(t, σ), where t is the location and σ is the
scale at which the zc point is obtained. In practice, σ does not
increase by integer value. Instead, it increases by fractional
value, 0.01 for example. The acquired zero-crossing points
are then plotted onto the (t, σ) plane to create the CSS contour
map (Fig. 5 (middle)). The algorithm for computing the CSS
contour map is given below.

Algorithm of computing CSS contour map

1. Normalize shape to a fixed number of boundary points;
2. Create an array ZC[ ][ ] to record curvature zero crossing

points at each scale;
3. Compute curvatures of each position t at current scale σ

according to Eq. (1);
4. Record each curvature zero crossing point at current scale

σ to ZC[σ][t];
5. Smooth the boundary according to Eq. (2);
6. Repeat step 3–5 until no curvature zero crossing points are

found;
7. Plot all curvature zero crossing points found in ZC[ ][ ]

onto Cartesian space to create CSS contour map.

The CSS contour branches are usually close on the top,
with some exceptions of small gap (1 to 2 points) at the top
of the branches. The peaks, or the local maxima of the CSS
contour map (only those peaks higher than the threshold are
considered) are then extracted out and sorted in descending
order of σ. For example, the peaks of CSS contour map in
Fig. 5 are (84, 249), (33, 215), (112, 64), (7, 52), (84, 39), (60,
37), (32, 22) (see Fig. 5 (right)). The peak locations are not
readily available, and must be extracted from the CSS contour
image through a separate process. The extraction algorithm is
given in the following:

Algorithm of extracting CSS contour peaks

1. Scanning from the top row of CSS contour map;
2. If a zero-crossing point is found at a location (i, j), check

the above neighbor points (i−1, j −1), (i−1, j) and (i−
1, j + 1). If the three above neighbor points are non-zero-
crossing points, then the location (i, j) is a peak candidate;
find all the peak candidates in row i;

3. For each peak candidate (i, j) at row i, check its neighbor
peak candidates, if a neighbor candidate (i, k) is found
over five points away, then (i, j) is a peak. If a neighbor
candidate is found within five points, there is a peak in the
middle (i, (j + k)/2);

      

Fig. 5. A fish shape (left) and its CSS contour map (middle), CSS
peak map (right)
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Fig. 6. Block diagram of computing CSSD

4. Repeat steps 2 and 3 for each row, until all the CSS peaks
are found.

The next step is to normalize all the obtained CSS peaks.
The average height of all the peaks extracted from the database
is used for peak normalization. Finally, the normalized CSS
peaks are used as CSS descriptors to index the shape. For
convenience, here the CSS peak map will be used to illustrate
CSSD.

The whole process of computing CSSD is shown in Fig. 6.

2.2.2 Matching CSS descriptor

The CSS descriptor is translation invariant. Scale invariance
is achieved by normalizing all the shapes into a fixed num-
ber of boundary points. In our implementation, this number is
128 points. Since rotation of shape causes circular shifting of
CSS peaks on the t axis, the rotation invariance is achieved by
circular shifting the highest peak (primary peak) to the origin
of the CSS map. The similarity between two shapes A and B
is then measured by the summation of the peak differences
between all the matched peaks and the peak values of all the
unmatched peaks [13]. To increase robustness, four schemes
of circular shifting matching are applied to tolerate variations
of peak heights of potential matching peaks (more schemes of
circular shift matching can be applied to obtain more accurate
matching). The four schemes of shift matching are: shifting the
primary peak of A (other peaks of A are shifted accordingly)
to match the primary peak of B; shifting primary peak of A to
match the secondary peak (second highest CSS peak) of B;
shifting the secondary peak of A to match the primary peak
of B; shifting the secondary peak of A to match the secondary
peak of B. Since a mirror shape has different CSS descrip-
tors from the original shape, the matching has to include the
mirrored shape matching. Altogether, eight schemes of circu-
lar shift matching are needed to fulfil the matching between
two sets of CSS descriptors. The fact that the corresponding
peaks of two similar shapes are usually not matched exactly
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indicates that matching between two sets of CSS descriptors
also needs to accept a certain tolerance of position variation
between two potentially corresponding peaks. In the imple-
mentation, this tolerance value is 5% of all of the boundary
points, which means that if two peaks are within 7-point dis-
tance they are matched, otherwise they are not matched. The
matching algorithm is given as follows:

Algorithm of matching two sets of CSSD

1. Shift the primary peak of both sets to the left most. Call
MATCH procedure to calculate matching cost for this
match Distpp.
MATCH:
Start from the left most; if a peak in set 1 and a peak in set
2 are within a horizontal distance di < 7, they are a ma-
tched pair (p1

i , p
2
i ). Peaks in the two sets, which are not

matched pairs are ‘singles’ denoted as sj . The matching
cost for this match is then:

Dist(CSSD1, CSSD2)

=
∑

i

(|p1
i − p2

i | + di) +
∑

j

sj

2. Shift the primary peak of set 1 to the left most and shift
the secondary peak of set 2 to the left most. Call MATCH
procedure to calculate matching cost for this match Distps.

3. Shift the secondary peak of set 1 to the left most and shift
the primary peak of set 2 to the left most. Call MATCH
procedure to calculate matching cost for this match Distsp.

4. Shift the secondary peak of set 1 to the left most and shift
the secondary peak of set 2 to the left most. Call MATCH
procedure to calculate matching cost for this match Distss.

5. Match set 1 and mirror set of set 2 using steps 1–4. The
matching cost for this match is Distmirror.

6. The distance between the two sets of CSSD is
Dist(CSSD1, CSSD2) = min{Distpp, Distps,
Distsp, Distss, Distmirror}

2.3 Comparison of FD and CSS Descriptor

In this section, a comparison of retrieval performance and
computational efficiency of FD and CSSD is given in detail.

2.3.1 Comparison of retrieval effectiveness

To test the retrieval performance of the FD and CSSD, a Java-
based indexing and retrieval framework which runs on a Win-
dows platform is implemented. The retrieval test is conducted
on an MPEG-7 contour shape database [30]. The MPEG-7
contour shape database consists of shapes acquired from real
world objects. It takes into consideration common shape dis-
tortions in nature and the inaccurate nature of shape bound-
aries from segmented shapes. It is designed to test a contour
shape descriptor’s behavior under different shape distortions.
The database consists of three parts: Sets A, B and C. Set
A has two parts, Set A1 and Set A2, each consisting of 420
shapes of 70 classes. Set A1 is for testing scale invariance,
and Set A2 is for testing rotation invariance. Set B has 1400
shapes, which have been classified into 70 classes. Set B is for

testing similarity-based retrieval and the shape descriptors’ro-
bustness to various arbitrary shape distortions. Set C consists
of 200 affine transformed bream fish and 1100 marine fish,
which are unclassified. The 200 bream fish are designated as
queries. Set C is for testing the shape descriptors’ robustness
to non-rigid object distortions. Since all of the member IDs
in each class of the sets are known, the retrieval is conducted
automatically.

Commonly used performance measurement, i.e., a preci-
sion and recall pair, is used to evaluate the query result [39].
Precision P is defined as the ratio of the number of retrieved
relevant shapes r to the total number of retrieved shapes n, i.e.
P = r/n. Precision P measures the accuracy of the retrieval.
Recall R is defined as the ratio of the number of retrieved
relevant images r to the total number m of relevant shapes
in the whole database, i.e., R= r/m. Recall that R measures
the robustness of the retrieval performance. For Sets A and B,
all shapes in the sets are used as queries. For Set C, the 200
bream fish are used as queries. For each query, the precision
of the retrieval at each level of the recall is obtained. The final
precision of retrieval using a shape descriptor is the average
precision of all the queries. The average retrieval precision
and recall using FD and CSSD are shown in Fig. 7a–d. On-
line retrieval using the two contour shape descriptors can be
accessed at http://www.gscit.monash.edu.au/∼dengs.

It can be seen from the precision recall charts that FD out-
performs CSSD significantly on the performance of scaling,
rotation, affine, and similarity retrieval, indicating that FD is
more robust to general boundary variations than CSSD. In
the experiments, it has been found that CSSD robustness to
boundary variations is very limited. It is not robust to com-
mon boundary variations such as defections and distortions.
For example, in the database, there are occluded apple shapes
for testing occlusion retrieval. The two occluded apple shapes
are both retrieved in the first screen (Fig. 8a) using FD; the
ranks of the two occluded apple are 5 and 13, respectively.
The CSSD fails to retrieval any of the occluded apples in the
first 36 retrieved shapes (Fig. 8b), four example apple shapes
and their CSSD are shown in Fig. 9a–d. The CSSD also has
very poor performance on the fork shape (Fig. 8e), while FD
has very high performance on this shape (Fig. 8d). CSSD is
easily trapped by shapes with five prominent protrusions. Four
example fork shapes and their CSSD are shown in Fig. 10a–d.

From Figs. 9 and 10, it can be seen that CSSD is able to
preserve the number of convexity features on the boundary in
the presence of distortions (Fig. 9a,d and Fig. 10a,b,d). How-
ever, defections add new peaks to the map (Figs. 9b,c and 10c),
which consequently add net cost to the matching result. The
peak heights change drastically in the presence of distortions
(Figs. 9d and 10c,d); in particular, the peak positions have
changed so significantly that they cannot be matched properly
by circular shift in many cases. For example, the two highest
peaks of Fig. 9c will not be matched to the two highest peaks
in Fig. 9d, because the difference between the gaps of the two
highest peaks in the two peak maps is greater than 7. Similarly,
the two highest peaks in Fig. 10a will be out of match with the
peaks in Fig. 10c,d.

Even though the number of peaks of two CSSDs (of two
similar shapes) is the same and there is a match between the
two highest peaks in horizontal positions – for example, in
the case of Fig. 9a,d – they are very different descriptors after
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Fig. 7a–d. Average precision and recall of retrieval using FD, CSSD
and CSSD+ on MPEG-7 contour shape database CE-1. a Average
precision-recall of 420 retrievals using FD, CSSD and CSSD+ on
Set A1. b Average precision-recall of 420 retrievals using FD, CSSD
and CSSD+ on Set A2. c Average precision-recall of 1400 retrievals
using FD, CSSD and CSSD+ on Set B. d Average precision-recall of
200 retrievals using FD, CSSD and CSSD+ on Set C

normalization, due to the different order of the height of the
two peaks (especially when the height of the two highest peaks
has a large difference). The increase of peaks and mismatch
of peaks adds a heavy cost to the matching result, effectively
resulting in false retrievals.

In recognizing the problem of sensitivity of CSSD to local
variations, MPEG-7 also recommends combing CSSD with
global shape descriptors such as eccentricity and circularity to
form a more robust shape descriptor (the weights of the global

     

a b c

        

d e f

Fig. 8a–f. Retrieval of apple shapes using a FD; b CSSD; c CSSD+.
Retrieval of fork shapes using. d FD; e CSSD; f CSSD+. In all the
screen shots, the top left shape is the query shape and the retrieved
shapes are arranged in descending order of similarity to the query.
The screen shots are retrieval examples from Set B

                                 

a b c d

Fig. 9a–d. Four apple shapes on the top and their corresponding
CSSD at the bottom

descriptors are provided in the document) [35]. The combined
shape descriptor is denoted as CSSD+. The retrieval perfor-
mance of CSSD+ is also shown in Fig. 7 and the corresponding
retrievals for the above three queries are shown in Fig. 8c,f.
It can be observed that CSSD+improves CSSD, however its
retrieval performance on all the sets is still lower than FD.

2.3.2 Comparison of computational efficiency

To compare the computational efficiency of the two shape
descriptors, the feature extraction and retrieval are tested on
the Windows platform of a Pentium III-866 PC with 256M
memory. The average time taken for the feature extraction
and retrieval on Set B of the MPEG-7 contour shape database
is given in Table 1. It can be seen from Table 1 that FD is much
more efficient, especially in terms of average retrieval time.
On average, the retrieval time of FD is less than one-third the
retrieval time of CSSD.
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Table 1. The elapsed time of feature extraction and retrieval for 1400 shapes

Time Total time of feature ex-
traction of 1400 shapes

Average time of feature
extraction of each shape

Total time of retrieval of
1400 queries

Average time of retrieval
of each query

Shape descriptors

FD 80960 ms 57.8 ms 49894 ms 35.6 ms

CSSD 120629 ms 86.1 ms 163570ms 116.8ms

                        

                           

a b c d

Fig. 10a–d. Four fork shapes on the top and their corresponding
CSSD at the bottom

2.4 Discussion

In the previous section, the two contour shape descriptors FD
and CSSD are evaluated in detail. The contrast of the two
descriptors is given here. The similarities between FD and
CSSD are as follows:

• Both FD and CSSD are robust to boundary noise. With
FD, the more significant lower frequencies preserve shape
global structures which are robust to noise on the boundary.
Noise influence is eliminated through truncation of high
frequencies. With CSSD, higher peaks capture merged
convexities (concavities) which are robust to noise on the
boundary. Noise influence is eliminated through thresh-
olding out short peaks.

• Both representations are compact. The number of FD fea-
tures needed to describe shape is 10, while the average
number of CSSD features needed to describe shape is 8
including global descriptors.

The differences between FD and CSSD are as follows:

• Feature domains. A FD is obtained from a spectral domain
while CSSD is obtained from a spatial domain.

• Dimensions. The dimension of FD is constant (once the
number of coefficients is chosen), while that of CSSD
varies for each shape.

• Feature extraction complexity. The computation process
of CSSD is more complex than that of FD. The computa-
tion of CSSD requires scaling normalization before CSSD
extraction, and the extraction of the CSSD feature takes
three processes, i.e., CSS map computation, height ad-
justed CSS map computation, and CSS peaks extraction.

• Online matching computation. The online matching of two
sets of FDs is simply the city block distance between two

feature vectors of 10 dimensions. The online matching
of two sets of CSSD involves at least eight schemes of
circular shift matching, and for each scheme of circular
shift matching, it involves eight shifts and the city block
distance calculation between two feature vectors of eight
dimensions.

• Type of features captured. FD captures both global and
local features, while CSSD captures only local features.

• Parameters or thresholds influence. For FD, the only pa-
rameter is the number of FD features, which is predictable
(Sect. 2.1). For CSSD, the parameters are the number of
sampling points, the threshold to eliminate short peaks,
the tolerance value for peak position matching and the
database dependent value used for peak height normal-
ization. The parameters are determined empirically. The
parameter difference indicates that FD is more stable than
CSSD when they are applied to different applications.

• Hierarchical representation. FD supports hierarchical
coarse to fine representation while CSSD does not. To sup-
port hierarchical representation, CSSD has to incorporate
global shape features such as eccentricity and circularity,
which are unreliable.

• Suitability for efficient indexing. FD is suitable to be or-
ganized into an efficient data structure, while CSSD is not,
due to its variable dimensions and complex distance cal-
culation.

3 Evaluation of region-based shape descriptors

In this section, three region-based shape descriptors, GMD,
ZMD, and GD, are described and evaluated. GMD, ZMD,
and GD are described in Sects. 3.1– 3.3, respectively. A com-
parison of the three shape descriptors is given in Sect. 3.4, and
evaluation results are discussed in Sect. 3.5.

3.1 Geometric Moment Descriptor (GMD)

The technique based on moment invariants for shape repre-
sentation and similarity measure is extensively used in shape
recognition. Moment invariants are derived from moments of
shapes, and are invariant to 2D geometric transformations
of shapes. The central moments of order p + q of a two-
dimensional shape represented by function f(x, y) are given
by

µpq =
∑

x

∑
y

(x − x̄)p(y − ȳ)qf(x, y)p, q = 0, 1, 2...

(3)

where x̄ = µ10/m, ȳ = µ01/m and m is the mass of the
shape region. µpq are invariant to translation. The seven mo-
ment invariants were derived by Hu [25]: Φ1, Φ2, . . . Φ7.
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A feature vector consisting of the seven moment invari-
ants, f = (Φ1, Φ2, . . . Φ7), is used to index each shape in the
database. The values of the computed moment invariants are
usually small – values of higher order moment invariants are
close to zero in some cases. Besides, there are always outliers
in the feature values, i.e., abnormal values generated due to
noise or other uncertain factors. Therefore, the acquired in-
variants need to be further normalized. Several normalization
methods can be used, including min-max normalization, zs-
core normalization, and sigmoidal normalization. Our results
show that zscore produces the best result. Basically, zscore
normalization translates the input variable data so that the
mean is zero and the variable is one [40]. It computes the
mean and standard deviation of the input data, and then trans-
forms each input value by subtracting the mean and dividing
by the standard deviation. In mathematical form, it is given by

y′ =
y − mean

std
(4)

where y is the original value, y′ is the new value, and the mean
and std are the mean and standard deviation of the original
range, respectively. Since zscore normalization is based on the
standard deviation of the example population, it is especially
suitable for the situation where there are outliers in feature
values. The commonly used min-max normalization is easily
affected by outliers.

The advantage of using GMD is that it is a very compact
shape representation and the computation is low.

3.2 Zernike Moment Descriptor (ZMD)

Teague [27] proposed the use of orthogonal moments to re-
cover the image from moments based on the theory of orthog-
onal polynomials, and introduced Zernike moments, which
allow independent moment invariants to be constructed to an
arbitrarily high order. The complex Zernike moments are de-
rived from Zernike polynomials:

Vnm(x, y) = Vnm(ρ cos θ, ρ sin θ) = Rnm(ρ) exp(jmθ) (5)

where

Rnm(ρ)=
(n−|m|)/2∑

s=0

(−1)s (n−s)!

s!(n+|m|
2 −s)!(n−|m|

2 −s)!
ρn−2s

(6)

where ρ is the radius from (x, y) to the shape centroid, θ is the
angle between ρ and the x-axis, and n and m are integers and
subject to n − |m| = even, |m| ≤ n. Zernike polynomials are
a complete set of complex-valued function orthogonals over
the unit disk, i.e., x2 +y2 = 1. The complex Zernike moments
of order n with repetition m are then defined as:

Anm =
n + 1

π

∑
x

∑
y

f(x, y)V ∗
nm(x, y), x2 + y2 ≤ 1

(7)

where * means complex conjugate. Due to the constraint of n−
|m| = even and m < n, there are n/2 repetitions of moments
in each order n.

Translation 
Normalization 

Scale 
Normalization

Binary 
Image

Zernike 
Moments 

Normalized 
ZMD

Basis 
Calculation 

Fig. 11. Block diagram of computing ZMD

Since Zernike basis functions take the unit disk as their
domain, this disk must be specified before moments can be
calculated. In our implementation, all shapes are normalized
into a unit circle of fixed radius of 64 pixels. The unit disk is
then centered on the center of mass of the shape. This makes
the moments obtained both scale and translation invariant. Ro-
tation invariance is achieved using only the magnitudes of the
moments. The magnitudes are then normalized into [0, 1] by
dividing them by the mass of the shape. The similarity between
two shapes indexed with Zernike moments descriptors is de-
termined by the city block distance between the two Zernike
moments vectors. A block diagram of the whole process of
computing ZMD is shown in Fig. 11.

The theory of Zernike moments is similar to that of Fourier
transform, to expand a signal into a series of orthogonal basis.
However, the computation of a Zernike moments descriptor
does not need to know boundary information, making it suit-
able for more complex shape representation. Like the Fourier
descriptor, Zernike moment invariants can be constructed to
arbitrary order, thus overcoming the drawback of geometric
moment in which higher order moment invariants are difficult
to construct. The precision of shape representation depends
upon the number of moments truncated from the expansion.
For efficient retrieval, the first 36 moments of up to order 10
are used in our implementation.

3.3 Grid Descriptor (GD)

The grid descriptor was proposed by Lu and Sajjanhar [32].
It has been used in MARS [31] and other applications [33].
When Lu and Sajjanhar proposed the grid method, it was only
applied to contour-based shape, and this convention is also
followed by Chakrabarti et al. [31] and Safar et al. [33]. In this
section, it is improved to describe both contour and region
shape.

3.3.1 Grid Method

In grid shape representation, a shape is projected onto a grid
of fixed size, 16×16 grid cells, for example. The grid cells
are assigned the value of 1 if they are covered by the shape
(or covered beyond a threshold), and 0 if they are outside
the shape. A shape number consisting of a binary sequence
is created by scanning the grid in a left–right and top–bottom
order, and this binary sequence is used as the shape descriptor
to index the shape.

For two shapes to be comparable using grid descriptors,
several normalization processes have to be done to achieve
scale, rotation, and translation invariance. A block diagram of
computing grid descriptor for a contour-based shape is given
in Fig. 12.

It begins with finding out the major axis (MA), i.e., the
line joining the two furthest points on the boundary. Rotation
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Fig. 12. Block diagram of computing GD

Fig. 13. Grid representation of two shapes

normalization is achieved by turning the shape so that the
major axis is parallel with the x-axis. Scale normalization can
be done by resizing the shape so that the length of the major
axis is equal to the preset grid width, and by shifting the shape
to the upper-left of the grid, the representation is translation
invariant. The next step is scanning the grid cells so that a
binary value is calculated for each cell based on the coverage
of the cell by the shape boundary. Finally, a binary sequence
is generated as the shape descriptor. The distance between
two sets of grid descriptors is simply the number of elements
having different values. For example, the grid descriptors
for the two shapes in Fig. 13 are 001111000 011111111
111111111 111111111 111110011 001100011 and
001100000 011100000 111100000 111100000 011111100
000111000, respectively, and the distance between the two
shapes will be 27 by XOR operation on the two sets.

Since horizontally flipped and vertically flipped shapes
will have representations different to the original shape even
after normalization, the matching has to take into consid-
eration the two types of flipped shapes. To avoid multi-
normalization results for mirrored and flipped shapes, the cen-
troid of the rotated shape may be restricted to the lower-left
part, or a mirror and a flip operation on the shape number are
applied in the matching stage.

3.3.2 Improving the grid method for region shape

The above GD computing algorithm is for contour-based
shape, and it assumes That shape boundary coordinates have
been known. In this section, it is extended into describing re-
gion shape. The main improvement to the grid method is the
major axis finding and region interpolation after scale and ro-
tation.

Normally, the major axis is found by traversing all the
points on the shape Boundary, and the line joining the two
boundary points with the furthest distance is the major axis.
However, for region shape, boundary information is not known
a priori. It is impossible to find the major axis of a region
shape by traversing all the points in the shape region – the
computation would be O(N2) (N is the number of image
pixels). Therefore, an optimized algorithm for finding an ap-
proximated major axis is proposed. The optimized major axis
algorithm (MAA) involves three steps [41]: (i) finding the
bounding box of the shape; (ii) finding the pair of boundary
points in a number of directions (360 in our case); and (iii) find-

ing the two points of the furthest apart in the found boundary
points. This reduces the MA computation to less than O(N).

An interpolation process is needed for rotation normaliza-
tion, because after arbitrary angle rotation, the region points
are scattered. A similar interpolation is also needed for the
scale normalization (interpolation is not needed for contour
shape, because contour shape does not consider interior con-
tent – all the interior point values are the same as the boundary
point value). An 8×8 nearest neighbor interpolation technique
is used to fix up the rotation impairment. Specifically, if the
number of shape pixels within the 8×8 neighborhood of a
pixel under consideration is greater than 15, then the pixel
under consideration is reinstated as a shape pixel. Scale inter-
polation is achieved by spreading or shrinking the current pixel
along the x and y directions to the new scaled coordinates.

3.4 Comparison of Geometric Moment, Zernike Moment and
Grid descriptors

In this section, a comparison of retrieval performance and
computational efficiency of GMD, ZMD, and GD is given
in detail.

3.4.1 Comparison of retrieval effectiveness

In this section, we compare the retrieval performance of the
three shape descriptors. Since region-based shape descriptors
can be applied to both contour and region shape, two sets of
experiments are carried out. One test is carried out on the
MPEG-7 contour shape database CE-1, and the other test is
carried out on the MPEG-7 region shape database CE-2. CE-1
has been described in Sect. 2.3. CE-2 has been organized by
MPEG-7 into six datasets (Sets A1, A2, A3, A4, B) and the
whole database CE-2. CE-2 is designed to test a region shape
descriptor’s behavior under different shape variations. The use
of each data set in the region shape database is given in detail
in the following:

• Set A1 consists of 2881 shapes from the whole database,
and it is used for testing scale invariance. In Set A1, 100
shapes have been organized into 20 groups (five similar
shapes in each group), which can be used as queries for
test the retrieval. In our experiment, all 100 shapes from
the 20 groups are used as queries to test the retrieval.

• Set A2 consists of 2921 shapes from the whole database,
and it is used for testing rotation invariance. In Set A2, 140
shapes have been organized into 20 groups (seven similar
shapes in each group), which can be used as queries to test
the retrieval. In our experiment, all 140 shapes from the
20 groups are used as queries to test the retrieval.

• Set A3 consists of 3101 shapes from the whole database,
and it is used for testing rotation/scale invariance. In Set
A3, 330 shapes have been organized into 30 groups (11
similar shapes in each group), which can be used as queries
to test the retrieval. In our experiment, all 330 shapes from
the 30 groups are used as queries to test the retrieval.

• Set A4 consists of 3101 from the whole database, and it
is used for testing robustness to perspective transform. In
SetA4, 330 shapes have been organized into 30 groups (11
similar shapes in each group), which can be used as queries
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to test the retrieval. In our experiment, all 330 shapes from
the 30 groups are used as queries to test the retrieval.

• Set B consists of 2811 shapes from the whole database,
and it is used for subjective test. In Set B, 682 shapes have
been manually sorted out into 10 classes by MPEG-7. The
number of similar shapes in each class is, respectively, 68,
248, 22, 28, 17, 22, 45, 145, 45, and 42. In our experiment,
all 682 shapes from 10 classes are used as queries to test
the retrieval.

• The whole database consists of 3621 shapes, 651 of which
have been organized into 31 groups (21 similar shapes in
each groups). For the 21 similar shapes in each group, there
are 10 perspective-transformed shapes, 5 rotated shapes
and 5 scaled shapes. The 31 groups of shapes reflect overall
shape operations, and they test the overall robustness of a
shape descriptor. The whole database is 17–29% larger in
size than the individual sets.

Each shape in the individual data set of the two databases
is indexed using the three described region shape descriptors.
The test methods are the same as those used in Sect. 2.3, e.g.,
the retrieval is carried out both automatically and online. On-
line retrieval using these three region shape descriptors can be
accessed at http://www.gscit.monash.edu.au/∼dengs/.

The precision recall is used for evaluation of retrieval ef-
fectiveness. For each query, the precision of the retrieval at
each level of the recall is obtained. The final precision of re-
trieval using a shape descriptor is the average precision of all
the query retrievals using that shape descriptor. The average
precision and recall of the retrieval on each data set are shown
in Figs. 14a–d and 15a–f. Some screen shots are shown in
Fig. 18.

From the precision-recall charts in Figs. 14 and 15, it can
be seen that ZMD outperforms GMD and GD in all the data
sets tested. For simple shape transformation such as scaling,
rotation, and affine transform, ZMD has a much higher per-
formance (Figs. 14a,b,d and 15a–c). It also has robust per-
formance for generic shape variations (Figs. 14c and 15f).
On average, its retrievals are more perceptually acceptable
than GMD and GD (Fig. 15e). However, ZMD has an intrin-
sic problem for a perspective transformed shape or a shape
with relatively large stretching. This is because of the concen-
tric circular scanning method it uses during the sampling pro-
cess. For a perspective-transformed shape, when the scanning
moves from the center of the shape to the periphery, it encoun-
ters more positions without shape information. This is con-
trasted with a non-transformed shape, where all the scanned
positions contain shape information. As can be expected, the
derived ZMD for a perspective transformed shape and a non-
transformed shape will be quite different because a different
amount of information has been used. The concentric circular
sampling problem causes a significantly lower retrieval effec-
tiveness for perspective-transformed shapes and generally dis-
torted shapes compared with retrieval in other sets (Fig. 15d,f).
This problem will be examined in future research.

GMD generally has robust performance for a simple con-
tour shape or a shape with simple transformations such as scal-
ing, rotation, and affine transformation (Fig. 14a,b,d), shapes
in Sets A1, A2, and C are generally simple compared with
shapes in Set B). GMD even hits a 100% retrieval precision
for rotated contour shapes (Fig. 14b). For complex shapes and
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Fig. 14a–d. Average precision-recall of the three region-based shape
descriptors on MPEG-7 contour shape database. aAverage precision-
recall of 420 retrievals using three region shape descriptors on Set
A1 of CE-1. b Average precision-recall of 420 retrievals using three
region shape descriptors on Set A2 of CE-1. Both GMD and ZMD
have 100% retrieval precision. c Average precision-recall of 1400
retrievals using three region shape descriptors on Set B of CE-1. d
Average precision-recall of 200 retrievals using three region shape
descriptors on Set C of CE-1

shapes with generic variations, it cannot describe shape as ac-
curately (Fig. 14c). This is also supported by its retrieval per-
formance on region shapes. For example, in the region shape
database test, it only produces satisfactory performance on ro-
tation (Fig. 15b), while on all the other data sets, it performs
poorly. It is notable that GMD is very sensitive to scaling for
region shape (Fig. 15a). This is because region shape usually
has rich interior content, so when it is under distortion its con-
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Fig. 15a–f. Average precision-recall of the three region-based shape descriptors on MPEG-7 region shape database. a Average precision-recall
of 100 retrievals using three region shape descriptors on Set A1 of CE-2. b Average precision-recall of 140 retrievals using three region shape
descriptors on Set A2 of CE-2. c Average precision-recall of 330 retrievals using three region shape descriptors on Set A3 of CE-2. d Average
precision-recall of 330 retrievals using three region shape descriptors on Set A4 of CE-2. e Average precision-recall of 682 retrievals using
three region shape descriptors on Set B of CE-2. f Average precision-recall of 651 retrievals using three region shape descriptors on CE-2

Table 2. Time of feature extraction and retrieval of CE-2 shapes using region shape descriptors

Time Total time of feature ex-
traction of 3621 shapes

Average time of feature
extraction of each shape

Total time of retrieval of
651 queries

Average time of retrieval
of each query

Descriptor (ms) (ms) (ms) (ms)

ZMD 4325010 1194.4 63854 98

GD 2628034 725.7 729909 1121.2

GMD 748176 206.6 33380 51.2

tent changes substantially. This is difficult for GMD to deal
with because it is only derived from the three lower order mo-
ments. For example, on the right of Fig. 18c, GMD can only
retrieve shapes of a similar size. If the first shape in this group
is used as a query, it cannot retrieve any of the other shapes in
the group, because the first shape is seven times smaller than
the other shapes in this group. Scaling is not a problem for GD
and ZMD (see the right of Fig. 18a,b). Perceptually, GMD is
poor in describing general shapes. This can be observed in the
subjective retrieval (Fig. 15e), where GMD has an unaccept-
ably lower performance. It can be said that GMD is suitable for

describing simple shape – during retrieval, GMD can usually
retrieve shapes that are similar to the query shape.

For simple shapes and shapes under simple transforma-
tions, GD is outperformed by GMD (Figs. 14a,b,d and 15b),
because GMD is good at describing simple shape and shape
with simple transformation. However, GD is more accurate in
describing complex shape, and is much more robust to generic
shape variations compared with GMD (Figs. 14c, 15a,c–f).
From Fig. 15e, GD is also far more perceptually accurate than
GMD. Perceptually, GD’s description capability is compara-
ble with ZMD. The main problem associated with GD is its
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a b

Fig. 16a,b. Two similar shapes with very different grid representation.
a a nail shape (left) and its grid representation (right); b another nail
shape (left) and its grid representation (right)

a

b

Fig. 17a,b. From left to right: original shape, normalized shape and
grid representation

problematic major axis normalization. The major axis is sensi-
tive to noise and can be unreliable even if there is no noise. For
example, the two shapes in Fig. 16a,b are perceptually similar,
but are very different under grid representation, as the major
axis of shape (a) is horizontal, while the major axis of shape
(b) is vertical. On the other hand, if the major axis is reliable
for a type of shapes, the retrieval can be quite accurate. For
example, in Fig. 18b, the second and third retrievals are quite
accurate, because the major axis for these two shapes is re-
liable. The rotation normalization does not guarantee interior
rotation invariance. For example, the rotation normalization
does not work for the two region shapes in Fig. 17. This is also
reflected in the retrieval (see the left of Fig. 18b). The problem
caused by major axis normalization also explains why GD is
easily outperformed by GMD in the retrieval of rotated shapes
(Figs. 14b and 15b). The accuracy of shape representation us-
ing GD also depends upon the cell size and the threshold to
determine the binary value of a cell based on its coverage by
the shape. The online retrieval usually involves high computa-
tion due to the high dimensionality of the feature vectors (for
a shape of 192×192 pixels using cell size of 12×12 pixels,
the dimension is 196).

The main reason why ZMD is more robust than GMD and
GD is that ZMD captures spectral features in circular direc-
tions. The spectral feature is robust to noise and shape varia-
tions, while GMD and GD only capture features in the spatial
domain that is sensitive to noise and other variations. Besides,
ZMD does not have the rotation problem in GD because it
uses polar space, and ZMD does not have the scaling problem
in GMD because it uses more moment features.
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c

Fig. 18a–c. Screen shots of shape retrieval using a ZMD; b GD; c
GMD. In all the screen shots, the top left shape is the query shape.
The retrieved shapes are arranged in descending order of similarity
to the query

3.4.2 Comparison of computational efficiency

To study the efficiency of the three region-based descriptors
during the feature extraction and online matching, we test
feature extraction and shape matching using MPEG-7 region
shape database CE-2. All shapes in CE-2 are used to calcu-
late the average feature extraction time, and the 651 classified
shapes are used as queries to calculate the average online re-
trieval time. The time taken for feature extraction and retrieval
on CE-2 using the three region shape descriptors are given in
Table 2. It can be seen from Table 2 that both ZMD and GD
involve more expensive offline computation than GMD, while
the online matching of GD is the most expensive among the
three region shape descriptors.

3.5 Discussion

In the previous subsections, ZMD, GD, and GMD are de-
scribed and studied in detail. The comparison of the three
region-based shape descriptors is given in the following:

• Feature domains. ZMD captures circular features from the
spectral domain, while GD and GMD are only extracted
from the spatial domain.

• Compactness. The dimensions of GMD and ZMD are low,
while the dimensions of GD are high.

• Robustness. Based on the precision recall, ZMD is most
robust to shape variations among the three region-based
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shape descriptors. GD is more robust than GMD for com-
plex shapes and shapes with arbitrary variations. GMD is
only more robust than GD for simple shapes under simple
transformations.

• Computation complexity. The extraction of GD and ZMD
involves expensive computation, while it is simple to ex-
tract GMD. The online matching of GD is the most expen-
sive.

• Accuracy. ZMD is more suitable for generic shape descrip-
tion. GD is suitable for situations where exact matching is
needed. GMD is suitable for situations where very rough
matching is needed, for example, it can serve as an initial
matching before a refining matching is taken.

• Hierarchical representation. Both ZMD and GD support
hierarchical representation. The number of ZMDs can be
adjusted to meet hierarchical requirements. For GD, hier-
archical representation can be achieved by adjusting the
cell size, or by combining it with eccentricity and circu-
larity. GMD does not support hierarchical representation
because higher geometric moment invariants are difficult
to obtain.

4 Evaluation of Zernike Moment Descriptor against
Fourier Descriptor
and Curvature Scale Space Descriptor

In the above two sections, two contour-based shape descrip-
tors and three region-based shape descriptors have been eval-
uated, respectively. It has been found that for contour-based
shape descriptors, FD outperforms CSSD; and for region-
based shape descriptors, ZMD outperforms GD and GMD.
Since the region-based shape descriptor can be applied to
general shapes, in this section, ZMD is compared with the
contour-based shape descriptors FD and CSSD. The purpose
is to test whether the region-based shape descriptor outper-
forms the contour-based shape descriptors.

4.1 Comparison of retrieval effectiveness

Since FD and CSSD can only be applied to contour shapes,
the comparison is conducted on the MPEG-7 contour shape
database CE-1. The test method is the same as that described in
Sect. 2.3. The average retrieval precision and recall using the
three shape descriptors on different data sets of the MPEG-7
contour shape database CE-1 are shown in Fig. 19a–d.

It can be seen from Fig. 19a that ZMD outperforms FD
and CSSD on all the Data sets of the MPEG-7 contour shape
database.

4.2 Comparison of computational efficiency

To compare the computational efficiency of the three shape
descriptors, the feature extraction and retrieval are tested on
Set B of the MPEG-7 contour shape database. The time taken
for feature extraction and retrieval is given in Table 3. It can be
seen from Table 3 that both contour-based shape descriptors
are more efficient than ZMD in the feature extraction. FD is
also more efficient than ZMD in online retrieval. However,
ZMD is more efficient than CSSD in online retrieval.

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 70 80 90 100

Recall

P
re

ci
si

o
n FD

CSSD

ZMD

a

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 70 80 90 100

Recall

P
re

ci
si

o
n FD

CSSD

ZMD

b

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Recall

P
re

ci
si

o
n FD

CSSD

ZMD

c

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Recall

P
re

ci
si

o
n FD

CSSD

ZMD

d

Fig. 19a–d. Average precision recall of FD, CSSD and ZMD on
MPEG-7 contour shape database CE-1. a Average precision recall
of 420 retrievals using FD, CSSD, and ZMD on Set A1. b Average
precision-recall of 420 retrievals using FD, CSSD, and ZMD on Set
A2. c Average precision recall of 1400 retrievals using FD, CSSD,
and ZMD on Set B. d Average precision recall of 200 retrievals using
FD, CSSD, and ZMD on Set C

4.3 Discussion

In the above, ZMD has been compared with FD and CSSD.
Results show that in terms of retrieval effectiveness, ZMD out-
performs both of the contour-based shape descriptors. In terms
of computational efficiency, FD shows advantage over ZMD.
CSSD is only more efficient than ZMD in feature extraction,
and it is less efficient than ZMD in online retrieval. For image
retrieval, feature extraction is usually carried out offline; on-
line retrieval efficiency is more essential. Therefore, overall,
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Table 3. Time of feature extraction and retrieval using FD, CSSD, and ZMD

Time Total time of feature ex-
traction of 1400 shapes

Average time of feature
extraction of each shape

Total time of retrieval of
1400 queries

Average time of retrieval
of each query

Shape descriptors

FD 80960 ms 57.8 ms 49894 ms 35.6 ms

CSSD 120629 ms 86.1 ms 163570 ms 116.8 ms

ZMD 1576681 ms 1126.2 ms 136642 ms 97.6 ms

ZMD is more desirable than CSSD for contour shape retrieval.
Since ZMD can be applied to generic shapes, ZMD is better
than CSSD in general applications.

5 Conclusions

In this paper, two MPEG-7 shape descriptors have been evalu-
ated against three other shape descriptors according to the six
principles set by MPEG-7. The implementation of CSSD has
been given in algorithm form. The grid descriptor has been im-
proved to describe region-based shape, and an optimal major
axis algorithm suitable for general shape normalization has
been proposed. The experimental results in the paper were
obtained using standard shape databases and common perfor-
mance measurements.

In terms of computation complexity, robustness, hierar-
chical coarse to fine Representation, and retrieval accuracy,
the Fourier descriptor (FD) outperforms The curvature scale
space descriptor (CSSD). The main problems with CSSD are
that it does not capture global features, and the matching is
too complex. FD is also more stable than CSSD when applied
to different applications, because the computation of FD is
simpler and involves fewer parameters than that of CSSD.

Overall, the Zernike moments descriptors (ZMD) is most
suitable for region-based shape retrieval among the three re-
gion shape descriptors studied. ZMD captures spectral shape
features, which are more robust than spatial shape features.
However, the use of concentric circular sampling causes a
problem in describing perspective transformed or stretched
shapes. GMD is a very inaccurate shape descriptor because
it is only derived from the three lower order moments. GD is
less robust than ZMD due to the use of the major axis as the
scaling and rotation normalization. However, GD outperforms
GMD significantly in a generic retrieval test, and GD agrees
more with human perception than GMD.

Overall, ZMD outperforms CSSD, therefore we conclude
that CSSD can be replaced by ZMD. If computational effi-
ciency and storage are essential requirements, FD can be used
as a replacement to CSSD for contour shape description.
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