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Abstract. The paper is concerned with the higher regularity properties of the minimizers
of the Mumford—Shah functional. It is shown that, near to singular points where the scaled
Dirichlet integral tends to 0, the discontinuity set is close to an Almgren area minimizing
set. As a byproduct, the set of singular points of this type has Hausdorff dimension at most
N — 2, N being the dimension of the ambient space. Assuming higher integrability of the
gradient this leads to an optimal estimate of the Hausdorff dimension of the full singular set.
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1 Introduction

In this paper we investigate the regularity properties of minimisers u of the Mumford—
Shah functional

/ |Vaul? + a(u — g)? doe + fHN 1S, N Q)
17

or, more generally, of quasi-minimisers of the main part [, [Vu|? dz+8HN ~(S,N
{2) of the functional. Here ¢ is bounded and measurable, @« > 0, 8 > 0, u is an
SBV function and S, is the discontinuity set of u (see [6] for a discussion of the
Mumford-Shah functional). As in [4-6], we are not making any restriction on the
number N of dimensions of the ambient space.

Let us define the scaled Dirichlet energy D(x, o) and the mean flatness A(x, o)
by

1
D(x,0) = ﬁ/ |Vu|? dy,
0 By ()
(1.1) 1 , Nt
A(z, 0) = ——— min dist*(y,T) dH" ~
) oN+L T SuNB,(z) ( )
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where the above minimum is taken over all the affine (N — 1)-planes 7. In [5] (see
also [6]) the first and second authors proved the existence of a relatively closed
and H™~1-negligible singular set ¥ (u) C S, such that S, \ X(u) is a C-1/4
hypersurface. Moreover, they proved that there exists an absolute constant g > 0
such that

Y(u) = {x €S,: limﬁ)nfD(x, 0) + A(z, 0) > 50} .
0

Therefore, for any small ball centered at © € X'(u), either the scaled Dirichlet
energy or the flatness are sufficiently large. Clearly we may split the singular set
XY(u) in three parts: points where the Dirichlet energy tends to 0, points where the
flatness tends to 0 and points where neither of them tends to 0. Notice that in the
case N = 2 the analysis in [19] suggests that the first set corresponds to the so
called “triple junctions” (or “propellers”, according to the terminology of [10]),
the second set corresponds to “crack tips” and the third set is empty. In general we
may expect that the Hausdorff dimension of X'(u) is at most N — 2; this result is
still open even in the two-dimensional case and, in our opinion, is the main open
problem in the regularity theory of the Mumford—Shah functional (see [5,8,10,17]
for partial results).
In this paper we make one step in this direction proving that the first set, i.e.

Y= {9: € X(u): limglfN/ \Vu|? dy = 0}
240 B, ()

has Hausdorff dimension at most IV — 2 (see Theorem 5.6). As a consequence, we
are able to prove in Corollary 5.7 that

(1.2) H—dim(X(u)) < max{N —2, N — p/2}

provided |Vu| € LY (£2) for some p > 2.

E. De Giorgi conjectured in [14] that |[Vu| is locally p-summable for some
p € (2,4) and this conjecture is still open; notice that p = 4 is exactly the critical
exponent leading to the optimal estimate on the Hausdorff dimension of X (u) in

(1.2) and that the crack tip local minimiser (see [9]), defined in polar coordinates

by
u(r,0) =1/ 27& sin(0/2) ,

satisfies |[Vu| € L (RY) for any p < 4.

Our proof of the estimate of the Hausdorff dimension is based on a blow-up
analysis of the properties of S,, near points 2z € X’: we prove that limit points S of
the rescaled sets (S, — x)/0 as o | 0 are local minimisers of the area functional.
Since we are not dealing here with boundaries or oriented sets, the local minimal-
ity must be properly understood: a concept perfectly tailored to our purposes is

Almgren’s minimality, saying that

(1.3) HNH (SN Br) < HV ! (¢(S N Bg))
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whenever R > 0, ¢ : RV — R is a Lipschitz map and {x : (x) # x} CC Bg.
The regularity theory for Almgren’s area minimising sets provides us with the
desired estimate.

In order to check (1.3) for the blown up discontinuity set .S,, the main source of
technical difficulties is the fact that the admissible maps ¢ need not be one to one
(and exactly for this reason the regularity theory for Almgren’s minimising sets is
stronger, compared to Allard’s regularity theory, see Theorem 4.1 and Theorem 4.3).
Therefore, in Sect. 2 we examine more closely the behaviour of BV or SBV maps
under Lipschitz change of coordinates, not necessarily one to one. Section 3 is
devoted to the proof of a delicate approximation theorem; using this result one
can check the minimality property (1.3) using only a special class of maps ¢ of
the form @ o y o W1, with @, @~ ¥, ¥~! close in C'' norm to the identity and
V'~ piecewise constant (see Theorem 3.1 for the precise statement). In Sect. 4 we
recall the main facts on Almgren’s area minimising sets and in Sect. 5 we prove the
asymptotic area minimality of the jump set S,, at points = € X’. Finally, in Sect. 6
we indicate other heuristic reasons suggesting (in two dimensions) that the gradient
of any minimiser is in L}, _ for any p < 4. This higher integrability property seems
to be related to a conjecture of Brennan stating that a conformal map from any
bounded open set of the plane into the unit disk has gradient in L? for any p < 4
(see [20, Chap.8]).

2 On the behaviour of BV maps under Lipschitz changes of coordinates

In this section we discuss the following problem: given u € BV, (f2) and a proper
one to one orientation preserving Lipschitz map ¢ : 2 — (2, we want to relate
the distributional derivative of u o ¢ ~! with the distributional derivative of 1. More
generally, if either ( is not one to one or  is not orientation preserving, we may
define the push forward of u through ¢ by

ppuly) = Y ulw)sign (det(Vip()))

z€p~(y)

ify € p(£2) and ppu(y) = 0if y € 2\ ¢(£2), and study its differentiability
properties. This map is well defined almost everywhere in (2’, since the image of
the set of points where either V¢ is not defined or V¢ is singular is £V -negligible.

Moreover, the area formula shows that ¢ u is the unique w € L] (£2") such that

// wody = /Q up(p)detVopdr Vo e CX ().

The following result is well known (see for instance [6, Theorem 3.16] for a proof).
In the language of the theory of currents, which identifies locally BV functions
with locally normal currents, it means that the push-forward operator induced by
o maps locally normal currents to locally normal currents.

Theorem 2.1 Let 2, {2 be open subsets of RN, let o : 2 — (2 be a proper
Lipschitz functionandw € BVioc(£2). Then pyubelongsto BVio.(£2) and satisfies
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2.1 |D(pgu)|(B) < [Lip(¢)]" " [Dul(¢ ™ (B))
for any Borel set B C (2.

In our setting we are interested in understanding whether additional properties
of u, as for instance u € SBV or u € W1, are preserved by the push forward
operator.

If ¢ has a Lipschitz inverse it is easy to see that the SBV (or Sobolev) property
is preserved. In fact, since ¢ ~! maps £ -negligible sets into £ -negligible sets,
(2.1) still holds with the singular part of derivatives. Hence, as the measure | D%u|
is concentrated on S, |D*®(wxu)| is concentrated on ¢(.S,,). Since this set has
o-finite H~ ~!-measure, and since the Cantor part of the derivative does not see
any set with o-finite 4V ~!-measure, it follows that pyu € SBV (and also, as a
byproduct, that %~ ~!-almost all of S, u is contained in ¢ (S.,)).

However, since we will be dealing with minimality in the Almgren sense, we are
forced to consider deformation maps ¢ which are not one to one. Quite surprisingly,
in [6, Section 3.1] it is shown that in this generality no SBV or Sobolev property
is preserved by the ¢4 operator: indeed, any w € BVi,c(R) can be represented as
@ for suitable Lipschitz maps ¢, u. Though the extension of this negative result
to higher dimensions seems to be a very hard problem, we are therefore led to make
additional assumptions on .

Our first result is concerned with the approximate differential of ¢4 u; we prove
that LP integrability of the approximate differential is preserved if the multiplicity
function card (o ~(y)) is essentially bounded and the essential supremum

22)  cplp) = esssup {[|(Vep(x)) 7 [[P|det(Vep(2))] = det(V(p(x)) # 0}

is finite. Notice that ¢ () is always finite, since it can be estimated with a constant

multiple of [Lip(p)]” ~". Notice also that ¢,(¢) < oo if ¢ is one to one and ¢!
is a Lipschitz function.

Theorem 2.2 Let 2, 2’ be open subsets of RN, let o : 2 — (2’ be a Lipschitz
function and w € BVioc(12). Then the approximate differential of pyu is given
almost everywhere in p({2) by

(2.3) > Vu(a)(Ve(z)'sign (det(Vip(z))) .
z€p~1(y)

Moreover; if card(o = (y)) < k for LN -almost every y, we have

2.4) / IV (psw)]? dy < cp(@)kP" / VP da
B »~1(B)

for any Borel set B C RV,

Proof. The proof can be easily achieved in the case when ¢ € C1(£2,2'), using
the local invertibility theorem. The general case can be obtained by a Lusin-type
approximation of ¢ by C* and equi-Lipschitz functions (see Theorem 3.6 below).

O
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Eventually we want to find conditions ensuring that @ uu € SBVic(RY)
whenever u € SBVj, (RN ). A sufficient one is given in the following theorem.

Theorem 2.3 Assume that ¢ : RN — RN is Lipschitz, piecewise affine and proper.
Then @4 maps SBVipc(RY) in S BVio. (RN ). Moreover, if the rank of V¢ is either
N oris strictly less than N — 1 in any open region where NV p is constant, we have

HN_l(Ssa#u \ ¢(Su)) =0.

Proof. Let (P;);er be the open regions where V is constant and has rank N and
let (Q;);e.s be the remaining open regions where V¢ is constant and its rank is
strictly less than N. We define

R=R"\ [{JPuUlJ@,

iel jeJ

The set I' = (R U U;Q;) U ¢(S,) has o-finite HY~!-measure, because
HN =1 (p(Q)) is o-finite for any j € J. Let B be a Lebesgue negligible Borel set
on which D°(pxu), the Cantor part of the derivative pu, is concentrated. Since
o~ Y(B) N P; is Lebesgue negligible for any i € I, by (2.1) we get

D% (ppu)|(RY) = |D(ppu)| (B\T) < O |Dul(P,n ¢~ (B)\ 54)

iel

<> \Vu|dz = 0,
ier Y Pine~1(B)

therefore Dpyu = 0 and pyu € SBV,.(RY).

Under the stronger assumption on the rank of Vi the set ¢(U;Q;) is H¥ ~1-
negligible. Taking into account the fact that | Du| is zero on any Borel set o-finite
with respect to H~~! and disjoint with S, we get

ID(4w)| (S \ () = [D(psu)l (S \ 9(Su U | @)))

jeJ

Z/ V| dz + | Dul(R\ Su)
icl Pin‘ﬂil(sw#u)

<C

=0.

Since

IDu|(AN S,) = / ot — v dHN !
ANS,

for any Borel set A and any v € BVj,.(R"), choosing v = pguand A = S, \

©(S,) we infer that HN~1(A) = 0. 0

Beside the piecewise affine functions satisfying the assumptions of Theorem 2.3
there are other useful Lipschitz functions ¢ such that ¢4 maps SBV into SBV/,
namely those considered in the next lemma. Notice that the map ¢ constructed in



192 L. Ambrosio et al.

the lemma squashes a whole neighbourhood of a Lipschitz graph I" over the graph
itself. In the sequel we denote by C'r the cylinder Bﬁ ! x (=3R,3R), where
BN !isthe (N — 1)-dimensional ball {z = (z1,...,2y_1) : |2| < R}.

Lemma 2.4 (Deformation) There exists a constant Cy depending only on the di-
mension N such that if g : B+ — Ris a Lipschitz function with LiplBg_l (9) <

1, g=00n0BY "ande € (0,1/2), then there exists a Lipschitz map ¢ : Cr —
Cg such that

Lip(p) < Cy, o(z) =z on OCR, ©(Uer) CITyN (BN(lls) x R),

where U. p = {(2,t) : z € Bg(lle), l9(2) — t| < 2¢R} and I, is the graph of
g over Bg_l. Moreover ¢ has the property that if w € SBV (CR), then ppu €

SBV (CR), pxu has the same trace of w on 0Cg and

/ IV (ppu)|® de < CO/ |Vu|? dz S\ I'g C@(Su\UcR).
Cr Cr\U: R

Proof. Let us fix 0 < € < 1/2 and define two functions g*, g~ : Bgfl — R
setting

gt () = {g(z) ver o fEe by
g(2) +2dist(z, 0By ') if 2 € By '\ Byl.,

v Ja(z) —2¢R if z € Bgala)
9 (2) = {g(z) — 2dist(z,0BN ') ifz€ BR* \Bg@e) ‘

Clearly Lip‘Bg—l(g+),Lip‘Bg—l(g_) < 3; moreover since sup |g(z)| < R we

have sup g™ (z) < 2R, inf g~ (2) > —2R. Let us now define ¢ : Cr — Cg as
follows

(2,3R+ (3—t/R)(g(z) — R— g™ (2)) if2R<t < 3R
(z,t+9(2) — g% (2)) if g*(2) <t <2R
p(z,t) = 4 (2,9(2)) if g7 (2) <t <g"(2)
(z,t+9(2) =g (2)) if —2R<t<g (2)
(2,-3R+ (3+t/R)(9(z) + R—g (z)) if —3R<t<—-2R.

It is easy to check that ¢(z) = z if z € OCg and that ¢ : Wr — Cg \ I}
is invertible, where Wr = {(z2,t) € Cr: t > g™ (z) ort < g~ (2)}, and that
@(Cr \ Wgr) = Iy, thus in particular (U, ) C I,. Notice also that ¢ is proper
and that since the Lipschitz constants of g*, g~ are less than 3, the derivatives
of ¢ and (go‘WR)_l can be estimated by an absolute constant independent of R.
Therefore if u € SBV(Cg) from Theorem 2.1 it follows that pxu € BV (Cg).
Moreover since for all y € Cr \ I, card(¢~!(y)) = 1 from (2.4) we have

/|V<so#u>|2dy: / IV (o) 2 der < Co / IVl de,
CR CR\FQ CR\UE,R
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where C is a constant depending only on /V and on the bounds on the derivatives of
¢ and (¢, ) ", hence ultimately only on the dimension N. Also, since (W) =
Cr\ Iy and @)y, is invertible, ppu € SBV (CR\ Iy) (see the observations made
after Theorem 2.1). Finally, the Cantor part of D(¢4u) cannot be concentrated on
I'y, hence we may conclude that pxu € SBV(Cg) and that S, ., C Iy U @(Sy)
and thus Sy, \ Iy C ©(Su) \ Iy C ©(Su \ Uz Rr)- O

3 Approximation in area of the Lipschitz image of a rectifiable set

In many situations one would like to approximate the #~ ~'-measure of the Lip-
schitz image M = ¢(S) of an HV~!-rectifiable set S by approximating ¢ (using
one of the many available classical constructions) with a sequence of piecewise
affine Lipschitz maps ¢j. However in general one may only expect, by the lower
semicontinuity of the area functional, that Y =1 (M) < liminf, HY 1 (4 (S)),
the inequality being possibly strict.

In this section we study the problem of approximating the 7~ ~!-measure of the
Lipschitz image o (.5) of arectifiable set. Namely, we show that the measure of (.5)
can be approximated by the measure of sets of the type (® 01 oW ~1)(S), where ¢
is a piecewise affine map whose Lipschitz constant is controlled by the Lipschitz
constant of ¢ and @, ¥ are suitable diffeomorphisms arbitrarily close to the identity
map. Our approximation result is stated in Theorem 3.1 and it is used in Section 5
to study the properties of certain singular points of the jump set of the minimisers
of the Mumford—Shah functional. We think that the approximation provided by this
result is interesting in itself and could be useful for other applications to geometric
measure theory; for this reason we dedicate a separate section to it.

Theorem 3.1 Let S C Bp be an HN ~'-rectifiable set and let p : RN — R be
a Lipschitz map such that () = x for all v ¢ Br and ¢(Br) C Bg. For any
€ > 0 there exist two diffeomorphisms ®,¥ : RN — RN and a piecewise affine
function v : RN — RY such that

HYTH (@ oy o™ 1)(S)) <HYTH(p(9)) + e

Moreover the maps @,V and v coincide with the identity map outside the ball Bp,
the Lipschitz constants of ®,W, &' and W=! are less than 1 + € and Lip(7y) <
cLip(p) + € for some constant ¢ depending only on N and R. Also, v can be chosen
so that HN =Y (@~1(S)N D) < ¢, where D is the discontinuity set of NV, and such
that detV+~y # 0 in each open set where N7y is constant.

The proof of the theorem makes use of the following result, saying roughly speaking
that any rectifiable set can be covered, apart from a set of small measure, with a
smooth compact manifold which is arbitrarily close to a polyhedron. The proof of
the result can be achieved by standard covering arguments, arguing for instance
as in [16, Theorem 4.2.19]), where an analogous property is proved for integral
currents.

Theorem 3.2 Let S C Bp be an H™ ~'-rectifiable set. For any ¢ > 0 there exist
a polyhedron K = Ui]\ilKi C Bg, where each K; is a closed (N — 1)-cube,
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KiNK; =0ifi+# j, and a diffeomorphism ¥ : RN — RY such that ¥ (z) = =
ifr ¢ Bg, Lip(¥),Lip(W 1) <1+¢, and

HNLSAW(K)) <€ .

In order prove Theorem 3.1 we start with the case when the rectifiable set S'is indeed
a polyhedron K. The next lemma deals with this simpler situation. However the
lemma, as a first step in the proof of the approximation result, provides a piecewise
affine map ¢ which is only defined on K and not on all RY. The extension of 1) to
a piecewise affine map defined on the whole R” is then given by the subsequent
Lemma 3.4.

In the sequel, whenever ¢ : S — R is a Lipschitz map and S is a countably
HN~L_rectifiable set, we denote the differential of ¢ at = by d°¢,. We recall (see
for instance [21]) that d,, is a linear map from the approximate tangent plane 7~
to R™V and that it is defined at H#~ ~!-a.e. point x of S. The corresponding Jacobian
is denoted by Iy _1d° ¢,

Lemma 3.3 Let K = UiAilKi C Bpgr be a polyhedron such that each K; is a
closed (N — 1)-cube contained in the affine (N — 1)-plane S;, K; N K; = 0
ifi # j, and let ¢ : RN — RN be a C' Lipschitz map such that o(K) C
Bpg. For any € > 0 there exist a piecewise affine map 1 : T — RN such that
Lipp(¥) < Lip(¢)+e and a diffeomorphism @ RN — RN suchthat ®(z) = x if
& & Bg, Lip(®),Lip(®~ 1) < (1+¢), withthe property that ||Bo)— || (1) < €
and

3.1) HY (@ o) (K)) < HNH(p(K)) + & .

MoreoverT = Uij\ilTi, where the sets T; are pairwise disjoint, K; C T; C S;NBg
and T;; is the union of a finite number of (N —1)-simplexes T; ; with pairwise disjoint
interiors such that for all i, j, d7i4) is a constant matrix of rank N — 1.

Proof.

Step 1. Let us denote by K" the set of points € K such that Jy_1d¥ ¢y, < r.
Using the local invertibility theorem it is easy to check that for any » > 0 there
exists M, € N such that card (¢~ (y) N K \ K") < M, forally € RV,

To prove this claim let us first notice that card (¢~*(y) N K \ K") < co. In fact
if this is not true there exists a sequence (zp,) in K \ K" such that z, # xy if
h # k, o(xp) = yforall h, z;, — x. Leti € {1,..., M} be such that z € K;
and let S; be the affine (N — 1)-plane containing K;. Since Jn_1d% @, > r,
there exists a neighbourhood U of z such that ¢jyns, is a diffeomorphism and
this contradicts the fact that in U N K there exist infinitely many points z;, such
that p(z;,) = y. Let us assume now that there exists a sequence (y;,) such that
card (¢~ (yn) N K\ K™) — oo and let us suppose, with no loss of generality,
that y, — y. Let us set m = card (¢~ '(y) N K \ K”). We can then construct
m + 1 sequences (}), ..., (") such that for h large enough z, # z if i # j,
o(zt) = yp foralli = 1,...,m + 1. Again, with no loss of generality we may
assume that for each i, z}, — z° € p~1(y) N K \ K". Thus at least two of these
points z* must coincide and, to fix the ideas, let us assume that z! = 22 = 2. As



Higher integrability of the gradient and dimension 195

before, we get a contradiction since there exists a neighbourhood U of x such that
¥|Unk is injective, but at the same time for h large the distinct points z},z7 belong
to U and p(z},) = ¢(z3).

Step 2. We now construct the diffeomorphism @ and the set 7" where the function
1) is going to be defined. To this aim, let us fix 0 < € < 1 and apply Theorem 3.2 to
the HN ~1-rectifiable set ¢ (K ), thus getting a diffeomorphism & : RN — R and
an open polyhedron P such that Lip(®), Lip(¢~1) < 1+¢,P(x) = x forx € Bg
and

(3.2) HY T (p(K)AD(P)) <

M.’

where M, is defined as in Step 1. Notice that we may always assume that P =
U7, P;, where each P; is an open (N — 1)-cube with dist(P;, P;) > 01if i # j.
Letussety) = @ togpand L = ¢(K) \ P, which is a compact subset of RY,
From the area formula, using (3.2), we have

~ 1
(33) HN! (w‘l(L)ﬂK\KE) < g/ . Iy 1d¥p, dHN !
1 N e

1

€ /sawl(L)nK\Ks)
1
gME’HN’l(@(L)) <e.

IN

card (¢~ (y) N K \ K°) dHN 1

IN

Letusdenoteby X' = {x € RN=1: x=tie1+-+ty_1en—1, ot <1, t; >
0Vj} the standard (N — 1)-simplex, and let p : X — R be a piecewise affine
function such that p(z) = 0 for all x € 9% and Jy_1d*p, > 0 in every open
region where d> pis constant. Forany i = 1, ..., M letus cover each face K; witha
mesh of simplexes congruent to X/, having pairwise disjoint interiors. Forany h > 1
and any ¢ each simplex of the covering of K; can be subdivided in a standard way in
QTL(N’U simplexes T;h of side 1/2" 1f Ti h= x; nt (1/2") X, we shall denot.e by
P}, the function obtained by rescalingpm Tiy.ie.phy(x) =27 " p(2"M(w -2t )
forallz € T ; - Notice that there exists h such that if b > h the following relations
hold:

(3.4) ILNKS#£) = Ti, C{reS: In1dp, < 2e};

1
pNK # 0 = diam(T},) < - 3 glélndlSt(Kl,K )

3.5) and Tj7h C Bpg;

(3.6) HN"'(B) <e, where B=U{T},: T}, NOK #0,i=1,....M}.

Given hy > h we denote by C' the union of all those Tz o Such that TZ ﬂz/z HrL)n
K\ K¢ # (). From (3.3) it is clear that hg can be chosen sufﬁ01ently large so that
HNY(C) < e. With such a choice of hg let us denote by D the union of all the



196 L. Ambrosio et al.

T; n, Naving not empty intersection with K and not contained in C'. Then let us

denote by G the union of those T’ ho Such that T, N K # () and which are not

contained in C nor in D. Notice that from (3.6) it follows that if G denotes the union
of those simplexes TZ o contained in G' N K, then HN-1(G\ G) < e. Notice also

that G C K \ ¢p~1(L), hence ¢(G) C P. Finally letus set T = C'U D U G and
for any ¢ let us denote by T; the union, running over j, of those TZ n, contained in
T. From (3.5) it follows immediately that every T; is contained in B r and that the
sets T are pairwise disjoint.

Step 3. We now define i with the required properties. For any & > hg let us denote
by Up : T — RN the piecewise affine function coinciding with 1 on the vertices
of any Tj 5. Then &h — 1/; and dT(Lh — dTiﬁ uniformly on 7'. Therefore, since
GCcK \ K¢, for h sufficiently large J 1dT(wh) > 0 forall z € G. Moreover,
since 9(G) is a compact subset of P, then ¢)(G) = UJ_, H;, where H, C P is
compact for any /. Thus, given o > 0, for any [ there exists 4; O Hj, relatively
open in P, such that HNV~1(U (A; \ H;)) < o. Let us recall that the faces P,
of P are at a positive distance one from the other. Thus for & large 1/)},( ) CcP
and therefore the uniform convergence of op — implies that for h large we have
¥n(G) C U, A;. From the arbitrariness of o we then get that

limsup 1 (0 (G)) < HYTH(W(G)) -
h— 00

Letusfixhy > hgsothatLipp (¢, ) < Lip(¢)+e, Iv_1d” (¥n, )z < Iv_1d" s
+eforall 2 € T, maxy [P o U, — | < Lip(®) maxy [¢, — | < € and
HY (¢, (G)) < HN7H(4)(G)) + €. With such a choice of hy we define a piece-
wise affine function ¢ : T — RN setting ¢(x) = ¢n, (z) if € Gorz € T},

for some 7%, C T\ G where Iy_1d" (¢pp,). > 0.6 T!, C T\ G is such
that in TZ 1, the constant matrix dTwhl has rank strictly less than N — 1, we set
P(z) = 1/Jh1( x) +71p%,, () forallz € T;, , where 7 > 0 is chosen small enough
so that the Lipschitz constant in 7" of the resulting function remains strictly less
that Lip(¢) + &, maxq [ o) — | < eand 0 < Iy_yd” (dn, +7p%,,) < € in
T7 1, - This choice of 7 is clearly possible since this Jacobian is constant on each
of the finite open regions of TZ n, Where d"pt .h, is constant and in each of these
regions is a polynomial of degree N —1in the Varlable 7. To conclude the proof

it remains to estimate the measure of (@ o ¢)(K ). From our construction of 7' we
then get

G7) HYTH@(W(K))) < (1+ )V THYTH(Y(K))

1+ HHY T @(0) + HY T (W(D N K))

IN

IN

FHY T (G G) + HY TN W(@))

Recall that HY ~1(C) < e, hence HN 1 (1(C)) < ce where the constant ¢ depends
only on N and Lip(y). Similarly, HV =1 (4)(G \ G)) < ce, while from the area
formula and (3.4) we have
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DNK

HY (D N K)) < / Tnoad iy dHN
<

/ In_1dT )y + ) dHN P < ece VUK,
DNK

where ¢ depends only on N. Therefore, recalling that &(C:') C P, from (3.7) and
(3.2) we have

HNTH@((K))) < (1+)V 7 [ee + YT B(G))| < HY T (p(K)) + e

where the constant & depends only on N, Lip(y), H"V~1(K). Hence the result
follows. O

We can now construct a piecewise affine extension to RV of the function 1
obtained in the previous lemma.

Lemma 3.4 Under the same assumptions of Lemma 3.3 and if o(x) = x for
x & Bg, for any € > 0 there exists a piecewise affine map v : RN — RN such
that v(z) = z if ¢ ¢ Bpg, Lip(y) < Lip(v) + ¢, detVy # 0 in each open set
where N7 is constant and there exists a diffeomorphism ® : RN — RN such that
@(x) = x ifv € Br, Lip(®),Lip(®~1) < 1 + ¢ such that

HYTH (@ oy)(K)) < HYTHp(K)) +e .
Moreover HN =1 (K N D) = 0, where D is the discontinuity set of V.

Proof. Let us fix 0 < e < 1,0 < 0 < & A R such that 30 < dist(K,0Bg) and
20 < min;; dist(K;, K;). Let us apply Lemma 3.3 with ¢ replaced by o¢ and
notice that from the proof of the lemma it is clear that we may always assume
that dist(T,0Br) > 3o and that dist(7;,7;) > 20 whenever ¢ # j. For any
i € {1,..., M} let us denote by N; the number of the (N — 1)-simplexes 7 ;
where the function 1) is affine. Let us extend v near each T;. To this aim let us fix ¢
and in order to simplify the notation let us assume that the affine (N — 1)-plane S;
containing 7 is the coordinate plane {x y = 0}.Forany j = 1,..., N, letus denote
by Ef ; and E; " the closed pyramids of height o (to be chosen later) and basis 7 ;
contained respectively in the half spaces {xy > 0} and {zy < 0}. We extend ¢
to the set ; = UYL, (E;T, U E; ) setting for all z € E; ¢(z) = ¢(2’,0) + axy,
where / = (x1,...,2ny_1) and a € R¥ is to be chosen. Notice that above
definition of E; implies that if ¢ is chosen small enough then dist(E;, E;) > 0
when i # j and dist(E,0BRr) > 20, where E = UM, E;. Notice that since
Jn_1dTiap > 0 for all i and j we may always choose « arbitrarily small in norm
and such that detV # 0 in all the sets Ej'] and E; . Thus, we choose « and ¢ so
that we have also

(3.8) Lip| (1) < Lip(p) + 2, @0t — ¢l L (p) < 20¢.

Let us now set

D) = {’L/J(CL’) ifre E

x if z € RV \ Br_,2,
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F = EURY \ Bg_,> and let us estimate Lip|p(1). To this aim, by the first
inequality in (3.8) it is enough to consider |¢)(z) — ¥ (y)| with * € E and y €
Bpr \ Br_o2. Given two such vectors, recalling that dist(E,9Bg) > 20 and
hence |x — y| > o, from the second inequality in (3.8) we get

() = d(y)| = [¥(@) =yl < [¥(@) — 27 (p())]
HE ™ (p(x) — 27 (p(y))]
D (p(y) — 2 (p(Ry/ly)| + |Ry/ly| — vl
< Lip(@™H)|@(¢(x)) — ()]
+Lip(@~ ) Lip(p)|x — y| + ¢(R — [y])
< 2(1 4+ €)oe + (1 +¢)Lip(p) |z — y| + co?
< (Lip(p) + ) [z — yl,

where ¢ depends only on Lip(¢). To conclude the proof we may extend 1), thanks
to Kirszbraun’s tEeorem (see [16, 2.10.43]), to a Lipschitz map fr(im RY to RV,
still denoted by 1, with Lipschitz constant in RY equal to Lip, (). Notice that

V) is continuous in the interior of each set EJr U E; ; and hence the intersection

of the discontinuity set D of V¢ with K is contalned in the union of the (N — 2)-

dimensional faces of the sets T; ;. Therefore Y ~1(D N K) = 0. Finally, let us
fix a finite union of congruent cubes ) such that Br_,2 CC Q CC Bp and letus
approximate v on  \ E with a piecewise affine map 7 such that Lipg\(¥) <

Lip|g\ £ (¥) +¢&, detV7 # 0 in each open subset of @ \ E where V7 is constant
and ¥ = ¢ on 3(Q \ E). The map + is then obtained setting v(x) = ¥ (z) if
r€ EURN\ Q) and y(z) =7(z)ifr € Q\ E. O

We can pass now to the proof of Theorem 3.1. This proof makes use of
Lemma 3.4 and of a suitable version of the Whitney extension theorem given at the
end of this section.

Proof of Theorem 3.1. Let us fix 0 < £ < 1. Since S is an H¥ ~!-rectifiable set,
there exist finitely many, pairwise disjoint, compact subsets of S, Hy,..., H,,
such that HN~1(S\ U™ | H;) < e. Moreover we may always assume that each H;
is contained in the graph of a C! function g; : U; — 73+, where U is an open subset
of a suitable (N — 1)-plane m;, and that Lip|y;, (¢;) < 1+ ¢, where ¢; : U; — RN
is the map ¢;(z) = (z,gi(z)). Since ¢ o ¢; is a Lipschitz continuous map from
Theorem 3.6 it follows that for any ¢ there exists a compact set C; C 7;(H;) such
that ¢ o ¢; coincides on C; with the restriction of a C* map @; : U; — RY.
Moreover the sets C; can be chosen so that V(L (H; \ ¢:(Ci)) < e. Let
us now apply the Whitney Extension Theorem 3.5 to the maps f and s defined
on C = U™ ¢,(C;) U (RN \ Bg) setting f = ¢ on this set and x(x) = [
ifx & Bg, k(z) = V(§; om;)(z) if z € ¢,(C;). Notice that the assumptions of
Theorem 3.5 are clearly satisfied and that since Lip,;, (¢;) < 1+¢ one immediately
gets that both sup{|x(z)| : = € C} and sup{|R(x,y)| : « # y, x,y € C} are
controlled by cLip(p), where ¢ is a constant depending only on the dimension
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N. Thus we get a C! map ¢ : RN — R¥ such that 3(z) = ¢(z) on C and
Lip(¢) < ¢(N, R)Lip(p). Moreover, since U, ¢,(C;) CC Bg and ¢(z) = x
when © ¢ Bp, by enlarging a little the Lipschitz constant of ¢ we may always
assume that ¢(Bg) C Bg. Thus we have

WY p(8) = 1 (U enl0)) + 1Y (2(5\ J 6:(0))
(3.9) < HYTH@(9)) + ce,

where ¢ depends only on Lip(p), N and R. Let us now apply Theorem 3.2 to
S, thus getting a polyhedron K and a diffeomorphism ¥ such that ¥(z) = =
for all x ¢ Br and HVN "} (SAW¥(K)) < e. Then we apply Lemma 3.4 to the
polyhedron K and to the function ¢ o ¥. Thus, we get a piecewise affine map
v : RYN — RY such that y(x) = x if * € Bpg, Lip(y) < ¢(NV, R)Lip(p) + ¢,
detV~ # 0 in each open set where V- is constant, and a diffeomorphism & such
that HY=1(® o v)(K)) < HN71((¢ o ¥)(K)) + . Therefore, using (3.9), we
obtain

HNY (@ oyow™1)(S)) < HN_l((éo'yoW H(S\¥(K)))
+HN 1( (o) (K))

<ce+HN (G o W)(K)) +

< HNTH@(S) + 1Y (@ ( )\ S)) + e

< HNTH@(S)) + e,
where the constant ¢ depends only on Lip(¢), N and R. To conclude the proof let
us remark that if D is the discontinuity set of V, since by Lemma 3.4 HV ~1(K N
D) =0and Lip(¢~1) < 1 + ¢, we have

HNL (@ (S)ND) =HN (@ N (S)\K)ND) < (1+e)N !

O

In the next theorem we state a classical result, due to Whitney (see for instance
[22], pp. 170-175), which gives sharp conditions ensuring the existence of a C'!
extension of a function u defined on a closed set C'. Moreover, the Lipschitz constant
of the extension can be estimated with the Lipschitz constant of u.

Theorem 3.5 (Whitney extension) There exists a constant Co(N) such that if
C c RV isaclosed setand f : C — R, k: C — RN are two continuous maps
such that for any compact set K contained in C

lim sup{|R(z,y)| : @,y € K,0 <[y —a[ <3} =0,

where forall x,y € C, © #y

fly) = f(@) = (k(x),y — )
ly — x|

R(z,y) =

bl
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then there exists a function f € CY(RY) such that f =f, Vf = k on C and such
that

(3.10) Lip(f) < Co(N)Lip(f).

Whitney theorem can be used to show a Lusin type property of Lipschitz func-
tions, i.e. that any Lipschitz function f coincides witha C' ! function f outside a set
of small measure. Moreover f can be constructed in such a way that its Lipschitz

constant remains smaller than Co(N)Lip(f). The proof is a simple consequence
of the a.e. differentiability of Lipschitz functions and of Egorov theorem.

Theorem 3.6 There exists a constant C1(N) such that for any function f &
Lip(RN) and for any € > 0, there exists f € C1(RY) such that

LN({z: fla) # f(2)}) <e
and Lip(f) < Co(N)Lip(f).

4 Almgren area minimising sets

In this section we recall some basic facts on sets minimising the area functional with
respect to local deformations, not necessarily one to one. This minimality property
is referred to as (M, 0, co)-minimality in Almgren’s seminal paper [2].

Let S be a countably H ™ ~L-rectifiable set with locally finite " ~!-measure.
We say that S is an Almgren area minimiser if

(4.1) HNTH SN Br) < HV ! (¢(S N Bg))

whenever ¢ : RV — R¥ is a Lipschitz map, R > 0 and {z € RY : p(z) #
z} CC Bp.
Theorem I1.3(12)-(13) of [2] (see also [13]) implies the density bounds

42) ot <HNTH(SN B,(z)) <doNTt Vo € suppHNTILS, 0> 0

for suitable dimensional constants ¢, d > 0. In particular, denoting by S’ the support
of HN=L1LS, we have
HN1(SAS") =0.

For this reason in the following we shall always assume, possibly modifying S in
a HV 1 negligible set, that S = suppH V1L S.

Choosing one to one deformations . (z) = x + e¢(x) it is easy to check that
any area minimiser is stationary for the area functional, i.e.

/ divigdH Nt =0 V¢ e CHRY;RY).
S

We first state a compactness property of Almgren minimising sets.
Theorem 4.1 Let S}, be Almgren area minimisers and let x € (), Sy. Then

(i) the family Sy is relatively compact with respect to the convergence of the
associated varifolds as h — oo;
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(ii) any limit point of the varifolds associated to Sy, is the varifold associated to a
suitable Almgren area minimising set C

(iii) if x = 0 and Sy, = S/ on, where oy, . 0 and S is an Almgren area minimiser,
then any limit point is an Almgren area minimising cone C.

Proof. The proof of this theorem is analogous to the one of Proposition 5.3 and
Theorem 5.4 in the next section, and actually simpler (since only surface energies
are involved). For this reason we only briefly indicate the main ingredients of the
proof.

(1) Denoting by V}, the rectifiable varifolds associated to Sy, (i.e. measures in G =
RY x G py_1, where G y_1 is the set of unoriented (N — 1)-subspaces of RM), by
(4.2) we get

Vi(Br x Gn_1) = HV "1 (S,NnBg) <dRM™' VR >0.

Hence, the family (V},) has limits points as h — oo.

(i) Let V' = lim; V},, with h; — oo. By the general theory of rectifiable varifolds
(see for instance [1,21]), we know that V' is a stationary rectifiable varifold induced
by a countably H N ~!-rectifiable set C' and a multiplicity function §. Moreover, the
upper semicontinuity of the multiplicity function (see [21], Theorem 42.7) implies
thatd > 1 HN1-a.e.on C.

It remains to show that # < 1 HV~'-a.e. on C and that C is an Almgren area
minimiser. To this aim let us remark that from the density bound (4.2) we may
deduce (see the proof of Proposition 7.4 in [6]) the following height bound: if S is
an Almgren area minimiser, 7 is any (N — 1)-plane, ¢ > 0 and z is any point in
RY, then

(4.3) sup |7 (y — @)V < e(N) [ (y — @) M)
yESNB,(x) SNBa,(x)

where ¢(N) is a constant depending only on the dimension N. Letus fix now z € C
such that there exists the approximate tangent plane 7, = 7 at « to C' and let us
assume, with no loss of generality that x = 0. Applying (4.3) to the sets .S;, and
arguing as in the Step 2 of Proposition 5.3, we get that for any € > 0 there exists
0. such that if o < o,

(4.4) limsup sup |7ty| < co(N)oe.
h—o0 ShHEQ

Let us now fix € > 0 such that ¢o(N')e < 1 and ¢ < ¢. and let us denote by ¢, the
function defined on (RN \ B,) U F, ., where F,. = {y € B,_ ) : Imhy| <

co(N)o(1 — \/e)e}, setting
¢ly) =y ify¢B, Ply) =m(y) ifyeFpe.
Notice that if y; ¢ B, and ys € F, . then

B(y1) — B(y2)| = |y — T (2)| < ly1 — ol + 7" (y2))
< ly1 — y2| + co(N)oe < (1+ co(N)Ve)|yr — v,
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hence the Lipschitz constant of ¢ is less than or equal to 1 + ¢o(N)+/e. Hence
we may use Kirszbraun’s theorem (see [16, 2.10.43]) to extend ¢ to a function
¢ : RN — R with the same Lipschitz constant of (. From the minimality of the
sets Sy, we then have, using (4.4) and (4.2),

HN"HCNB,) = Jim HN=Y(S, N B,) < limn inf HY "1 (p(Sh N By))
1— 00 — 00
<limsup HY 1 (B(Sh N Byi—yz)))

h—o0

+limsup HY " (p(Sy N B, \ By(1-va))

h— o0

< wy—10" T (Lip() Y lim HYTHSH N B\ By yz)
<wn 10N T A+ a(N)Ve) N TIHN (e n Bo\ By1-z))
<wn 10V T HHYTHC N B\ By—yg) + ca(N) Ve !
and thus
HYHCN B,i-yz) < N-10" T+ o (V)N T

w

From this inequality the estimate J(x) < 1 immediately follows, letting first 0 — 0
then ¢ — 0.

Notice that, since ¥(z) = 1 for ¥ ~!-a.e. € C and the varifold V induced by
C is stationary, we have

/Cdivcn dHN"1 =0 vn € CH(RN;RY).

Therefore Allard’s regularity theorem for stationary varifolds (see [1], [21]) implies
that there exists a closed set X'(C), with HN ~1(X(C)) = 0 such that C'\ 2(C) is
a C'! hypersurface.

To prove that C' is an Almgren area minimizer let us take a Lipschitz map ¢ :
RY — RY such that {z € RY : p(x) # 2} CC Bg for some R > 0 and let us
fixe € (0,1/2). Forany z € C'\ X(C) let us denote by 7, the (classical) tangent
plane to C at  and by p,, a radius such that if ¢ < g, then C' N C,(x) is the graph
over  + 7, of a C' function g, with Lipschitz constant less than e, where

Colx) ={y eRY : |m,(y — 2)| < o, |7y (y — 2)| < 30},
and moreover
4.5) limsup sup |mi(y — )| <e’o
h—oo  5,NC,(z)

(see (4.4) above). By a standard argument, based on an extension of the Besicovitch—
Vitali covering theorem to cylinders (see for instance [18, Theorem 5.11]), we may
find a finite number of these cylinders C), (z;), i = 1,...,m, pairwise disjoint and
such that HV=1((C \ UiZ, Cp, (z:)) N Br) < € and HN~1(C N IC,, (x)) = 0.
Therefore we have

(4.6) Jim. HNH(Sh\ | Coi (1)) N BRr) <.
=1



Higher integrability of the gradient and dimension 203

Since the Lipschitz constant of the functions ¢, is less than ¢, we can easily
construct a Lipschitz function g; defined on (z; + m,) N B, (x;), with Lipschitz
constant less than 1, and such that g;(z) = g.,(z) for all z € (x; + m,) N
By, (1-¢) (i) and §;(2) = 0 on (z; + 7y, ) N OBy, (;); clearly, sup |g;(2)| < €o;.
Let us now apply the deformation Lemma 2.4 to each cylinder C,,(x;) and to
the corresponding function g;. Thus for all ¢ = 1,...,m we get a Lipschitz map
i+ Oy, (x;) = Cy, (x;) such that

“@.7 Lip(’lpi) < (Y, 1/%(30) =x on GCQL (.’L’i), '(/Jz<Uz) cCn CQi (33,),

where U; = {z € RN : |m,, (z — 2:)| < 0:(1 =€), |§i(zi + 7o, (x — 7)) —

7L (z—m;)| < 2e0;}. Notice that from (4.7) we get that for any h sufficiently large

X4

(4.8) ¥i(Sh N Co, (1)) C (S N C, (i) \ Us) U(CNCy, () -

Let us now define ¢ : RY — RY setting ¢(z) = zif & € U™, C,, (2:)), ¥(z) =
Yi(z) if x € Cp,(x;) for some ¢ = 1,...,m and notice that from (4.7) it follows
that Lip(¢)) < max{1, Cp}. Then, using the minimality of the sets .S}, we have

HNH(C N Bg) < lim inf HN=1(S), N Bg)
— 00
< lim inf HY "' (9 0 9)(Sn N Br))
—00
< limsup HY (9 0 ) ((Sh \ U241 Cy, () N Br)

h— o0

+limsup HY ™ (9 0 ) (Sp U, Cy, (1)) -

h—o0

Therefore, from (4.6) and (4.8), we get

HN~H(C N Bg) < ¢(N)[Lip(p)]V e
+limsup HY 7 (@(UF 190 (Sh N Cy, () \ T;))

h—o0

AHNT (UL (C N Cy, (24))))

< MLip(@)Y T (4 Y HY O N Gy (@) \ U)

i=1

+HN " (p(C N BR)) .

Since C'N Cy, (z;) \ U; coincides with the graph of g,;, on (z; + 7y, ) N (B, () \
Bo,(1-e) (1)),

4.9) HYNH(CN O, (x:) \U;) < c(N)eN 7 < e(N)eHN 1 (C N Oy, (7)),
and thus
HNTH(C N Br) < e(N)[Lin(@)]Y e (14 HYH(C N Br))
+HN" (o(C N BR)) .

From this inequality the minimality of C' immediately follows letting € | O.
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(iii) This is a consequence of (i) and of the monotonicity formula (see [21], Corol-
lary 42.6). ad

The singular set X(S) of an Almgren area minimising set is the HN~1-
negligible set of all points x € S where the approximate tangent plane to S at
x does not exist. Allard’s regularity theory for stationary varifolds (see [1], [21])
implies that X(.S) is a relatively closed subset of S and that S\ X'(.S) is a smooth
hypersurface. The crucial ingredient in Allard’s proof is the so-called tilt—excess,
defined by

T(S,z,0) = min QlfN/ |y — 7|2 dHN T
SNB,(x)

T€EGN_1

where 7, is the approximate tangent space to .S at y.
Allard characterized singular points of area stationary sets S as those points
x such that, for any ball Bg(x), either the tilt—excess is sufficiently large or the
density
HY-1(S 0 B, (x))

wy—10V 1

is sufficiently larger than 1. In the special case of Almgren minimisers we can
neglect the density condition, as the following corollary shows.

Corollary 4.2 There exists an absolute constant 6o > 0 such that
X(S)={xzeS: T(S,z,0) >d Vo>0}
for any Almgren area minimiser S.

Proof. The inclusion D holds for any choice of §; > 0; we will prove that for dg
small enough the opposite one holds by a simple contradiction argument. Assume
that (up to homotheties and translations) Almgren area minimisers 53, and numbers
dp, > 0 exist such that 0 € X'(Sy,), T(Sh,0,1) < &y, and &y, | 0. By Theorem 4.1
we can assume that the varifolds V}, associated to S;, converge to the varifold
associated to some Almgren area minimiser .S. The continuity of 7~ under varifold
convergence implies 7 (S,0,1) = 0, hence SN By is a (N — 1)-disk. In particular

lim 7(Sx,0,1/2) =0 and lim HY (S, N Byjg) = ey

h—o0 h— o0 o IN-1

and therefore, by Allard’s regularity criterion, 0 ¢ X'(S},) for h large enough. O

Theorem 4.3 For any Almgren area minimising set S we have H-dim(X(S)) <
N —2.

Proof. We apply the abstract version of Federer’s dimension reduction argument in
Theorem A.4 of [21] with the set of characteristic functions

F :={xc : C isan Almgren area minimising set}



Higher integrability of the gradient and dimension 205

endowed with the convergence

h—o0

Xc, = Xc — lim gdHN—lz/gcmN—l Vg € C.(RY)
Ch C

and with the “singularity map” sing(x¢) = X(C).

It is easy to check that the assumptions A.1 (scaling invariance of F), A.3(2)
(scaling invariance of ¢) and A.3(1) (sing(¢) = () if ¢ is the characteristic func-
tion of an hyperplane) of the theorem are satisfied. The validity of assumption A.2
(existence of homogeneous degree zero tangent functions) is the content of Theo-
rem 4.1(iii). Assumption A.3(3) (upper semicontinuity of ¢ — sing(¢)) is a direct
consequence of the varifold convergence and of the representation of X'(C') given
in Corollary 4.2. a

5 Limit behaviour of sequences of quasi-minimisers

Let u be a function in SBVj,.({2). In the following we shall set
F(u, 2) :/ |Vu|? de +HY1(S,) .
Q

We say that w is a quasi-minimiser of the functional F' in (2 if there exists a constant
w > 0 such that

(5.1) F(u, By()) < F(v, By(x)) + wo®

whenever B,(z) CC {2 and v is any function in SBVje.(2) such that supp(u —
v) CC B,(z). If w = 0 then u will be called a local minimiser of F in (2.
We recall that if w € SBV ({2) is a minimiser of the Mumford—Shah functional

(5.2) /|Vu|2dx+a/ lu — g|?dx +HN (S, NN),
2 2

where g € L*°(£2), o > 0, ¢ > 1, then it is easy to check (see [6, Section 7.2])
that u is a quasi-minimiser satisfying (5.1) with w = 2%awy ||¢|| L.

In this section we study the limit behaviour of a sequence (uj) of quasi-
minimisers of the functional F' whose volume energies | o |Vu|?dx vanish as
h — oo and we prove that, up to a subsequence, the corresponding jump sets
S, converge weak™ locally to an Almgren area minimiser. This result is then ap-
plied to the case when the sequence is obtained by blowing up a quasi-minimiser at
a singular point of the jump set S,. This fact can be used to estimate the dimension
of a subset of the singular set of S,, where the rescaled volume energy vanishes
asymptotically. A consequence of this estimate (see Corollary 5.7) is that if u is a
local minimiser of F such that Vu is in LP for some p > 2 then the dimension of
the singular set X'(u) is less than or equal to max{N — 2, N — p/2}.

Remark 5.1 (Scaling of quasi-minimisers) If u € SBV (B,(x)) and we set

up(y) = 0 ?u(xo + oy) Vy € By,
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thenu, € SBV(B1), Su, = (Su — 20)/0 and moreover the Dirichlet integral and
the area term in the functional F' both rescale by QlfN , hence

F(u,, B1) = Ql_NF(u,BQ(xO)) .

From this inequality it follows also that if u € M, ({2) is a quasi-minimiser, then
Up € My, (£2,)) with 2, = (2 — z0) /0.

The following Euler-Lagrange inequality can be easily checked by comparing
the energy of a quasi-minimiser u in B,(x¢) with the energy of u(®;*(y)), where
&, (x) = &+ en(x) and n is a Lipschitz map with compact support in B, (z) (see
[6, Section 7.4]).

Proposition 5.2 Ifu € M,,(£2) isa quasi-minimiser, B,(x¢) CC 2, F(u, B,(x))
< M and n € Lip(By(xo),RY) has compact support in By,(zo), there exist
e(n) > 0and c(n, M) such that if 0 < |e| < e(n)

5/ [[Vul*divy — 2(Vu, Vu - V)] dx + 5/ divSen dHN 1
By (zo)

u

(5.3) > —c(n, M)e? —woV .

Let us now consider the limit behaviour of a sequence of quasi-minimisers
whose volume energies are infinitesimal. To simplify the presentation of proofs we
have split our result in two parts. First, in the next proposition, we prove that limit
of the jump sets is area stationary and then in Theorem 5.4 we show that this set is
an area minimiser in the Almgren sense.

Proposition 5.3 Let up, € M, (12) be a sequence of quasi-minimisers such that

Vuy, — 0in L2 (2,RY), wp — 0,

loc

HNTLS,,, — u weakly* locally in £ .

Then there exists a countably H™N ~1-rectifiable set C C 2 suchthat = HYN 'L C.
Moreover C' is area stationary, i.e.

(5.4) / divindH Nt =0  vne C}RN,RY).
C

Proof. The proof can be achieved arguing as in Theorem 8.8 of [6], where the
stronger assumption that the quadratic oscillation of tangent planes was infinites-
imal was made (with the stronger conclusion that C' is a locally finite union of
m-planes). However the arguments used in the proof of that theorem still work in
this more general situation. a

Theorem 5.4 Let uj, € M., (RY) be a sequence of quasi-minimisers of F satis-
fying in RY the assumptions of Proposition 5.3. Then the set C' in the conclusion
of the proposition is an Almgren area minimiser.
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Proof. Let us fix a Lipschitz map ¢ : RY — RY such that {x € RN : p(z) #
x} CC Bg. To prove that

HN1(C N Br) <HY ! (o(C N Bg))

we may always assume, with no loss of generality, that ¢(Br) C Bg and that
HN_l(C N 8BR) =0.

Let us fix € € (0,1/2) and let us follow the argument of the proof of part (ii) of
Theorem 4.1. In this way we can find a finite number of pairwise disjoint cylinders
C; CC Bg, i=1,...,m,and of open sets U; CC C; such that

(5.5) Jim. HN (S, N Br) \U™,Cy) < ¢,

and such that for all 7 (see 4.9)

(5.6) HNHCNC\Uy) < e(N)eHNL(CNCy).

Moreover we can construct a Lipschitz map v : RN — R¥ such that
Lip() <e(N), ¢(z) =2 Vo eRV\ULC,

5.7 Y(C)=C; Yi=1,....m

and such that for all 7 (see 4.8)

(5.8) Y(Su, NCi) CY(Su, NC \U;) U(CNC).

Recalling the Deformation Lemma 2.4, we have also that if v € SBV(C;), then
uv € SBV(C;), that v has the same trace of v on OC; and that

(5.9) | NP dy <) [ (vops.
Finally, we have also, with the same notation used in the proof of Theorem 4.1,
(5.10) Sy v C Iy U P(Sy),
where I3, C C; is a Lipschitz graph with the property that
(5.11) HN N, A(CNC)) < e(N)eHNHONG).
Let us now set

vp = Ypup

and let us apply Theorem 3.1 to S = C' N Bpg, and to the map ¢, thus getting two
diffeomorphisms @, ¥ and a Lipschitz map + as in the statement of that theorem.
In particular we have

(5.12) HN (@ oy oW 1) (CNBg)) < HY " YHp(CNBR)) +¢.

Then we set
wi, = Dy (v (T 1) on)) -
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Since @ and ¥ are diffeomorphisms and - is a piecewise affine function such that
detVy > 0 in each region where V7~ is constant, from Theorem 2.3 it follows
that wy, € SBVioc(RY) and that HN =1 (S, \ (@ oy o¥~1)(S,,)) = 0 for all
h. Moreover wy, coincides with vy, (and thus with uj,) outside Bg and from (2.4),
(5.9) we have

/|th|2dx§c/ \Vvh|2dx§c’/ |Vupy|? dz
Br Br Br

where ¢’ is a constant depending only on N and on ~. Therefore from the quasi-
minimality of u, comparing F'(uy, Br) with F/(wy,, Bgr), we have

lim HY71(S,, N Bg) < hmmeN (@ oyow™1)(S,, NBr))

h—o0

(5.13) < (1+5)N iminf HY ! ((y o 1)(S,, N Br)) -

h—o0

Recalling (5.7), we have that

Sy, N Br = (Suh N Bg\ 6 CZ-> U (Sy, N O Cy)

i=1 i=1
and from (5.10) and (5.8) we have the following inclusion
Su, NCi = (Sy, NCy\ Ig,) U (S, N1G,)

C P(Su, NC) U5 \ (CNEC))U(CNCY)
C P(Su, NCi\Ui) U (I3 \ (CNCy))u(CNG).

Therefore, from (5.5), (5.6) and (5.11),we get

liminf HY~* ((y 0@ ™)(S,, N Br))
h—o0

< [Lip(y o YNt lim #N~Y(S,, N Br \ U™, C))

h—o0

+[Lip(y o &t o))V~ 1E:hmsup’;’-{N 1Sy, NCi \ Uy)

1 h—o0
+[Lip(y o 1)V = IZHN L\ (CNnGy)
+HN T (o w )(CmUm1C))

< Cie[1+HYHC N BR)] + HY (o) (C N Br)),

where C; depends only on N and Lip(«y), hence only on N, Lip(y) and R. Finally
from the inequality above, (5.13) and (5.12) we obtain

HN=H(C N Bg) = Jim HN (S, N BR)
—00
ce [1+HY"H(C N Bg)]

+(1+e)*NUUNY (@ oy 0w 1) (C N Br))
Coe [L+HYH(CN BR)] + HY 1 (p(C' N Br)),

IN

IN
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with Cy again depending only on N, Lip(y) and R. The result then follows letting
el 0. a

Theorem 5.5 Let u € M,,(2) and let x € S, be a point such that

(5.14) lim QHV/ |Vul?dy =0.
ol0 By (x)

Then for any sequence o, — 0 there exist a subsequence gy, and a closed set C
such that

S
HN-1 2u T Ty N-1 o weak™ locally in RY .
Oh;

Moreover C' is an Almgren area minimiser.

Proof. We recall the energy upper bound (see [6, Section 7.2]) which states that if
u € M, (By(z)) then

(5.15) / |Vaul? dy +HY71(S, N B,(2)) < Nwno™¥ ™ +wo? .
By(x)

Given the sequence gy, let us set uy,(y) = Q;l/QU(J) + ony) fory € (2 — x)/on.
From Remark 5.1 it follows that uj, € M,, ., ((£2 — )/ os), while the assumption
(5.14) implies that |[Vuy| — 0in L2 (R™). Moreover the energy upper bound
(5.15) implies that the measures HY ~1L(S, — x)/on, = HN 1L S, are locally
equibounded in R™V . Therefore (up to a not relabelled subsequence) we may assume
that the measures H¥ 1S, converge weak* locally in RY to a Radon measure
. Then Proposition 5.3 and Theorem 5.4 imply that 1 = HYV~1L_C for some

Almgren area minimising set C. a

We recall the following regularity result proved in [4], [5] (see also [6, Ch.
8]). For any u € M,,({2) there exists an H¥ ~!-negligible set X'(u) C S, N 2,
relatively closed in 2, such that S, N 2\ X (u) is an (N — 1)-manifold of class
C™1/% Moreover there exist €9, Ry depending only on w and N such that

(5.16)  X(u)={r €S, NN2: D(z,o0)+ Alx,0) > o forall o < R},
where the quantities D and A are defined in (1.1).

Theorem 5.6 Let u € M, (12) and let

Y = {x € X(u): lim Ql_N/ |Vul? dy = 0},
010 By ()

Then H-dim(X') < N — 2.
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Proof. Let s € (N — 2, N — 1). We claim that %°(X’) = 0. To prove this claim
we argue by contradiction, assuming that 7*(X") > 0. If this is true then we have
also H: (X’) > 0 and (see [21, Theorem 3.6]) for H*-a.e.z € X’

(5.17) limsup o~ "H2, (X' N B,) > =2 |
ol0 9s

Let us fix a point z € X’ such that (5.17) holds and let assume for simplicity that
x = 0. Let us also denote by p;, an infinitesimal sequence such that

s n Ws S
(5.18) H3o(X N By,) > 5700

Then from Theorem 5.5 it follows that, up to a subsequence, "V 'S, /on —
HN =1L C weak* locally in R™V, where C' is an Almgren area minimising set. Let
us set Xy = X' /pp,. Given any open set A containing X (C) N By, let us show the
existence of hg such that

(5.19) SNnBCA Vh > hg.

In fact, otherwise we could find a sequence of points zj,; € 2/ ;L]' NB1\ A converging

to a point 2o ¢ X'(C). Since the approximate tangent plane wg) to C' at xq exists,
there exists o such that

g_l_N/ dist?(y, 7750) dHN ! < gy,
CNBe(xo)
where £¢ is as in (5.16). Hence we have that

lim g_l_N/ distz(y,wg])dHN_l <e€g.
Su/@hije(whj)

Jj—o00

Therefore, by (5.16), for j large enough xp,; ¢ E;L]» This contradiction shows
(5.19) and then from (5.18) it follows that

s n s n . s n Ws
H* (Z(C)NBy) > HE (2(C)NBy) > hglj;ljp?-loo (X, NBy) > 5T
Then, the contradiction follows by Theorem 4.3. O

Assuming higher integrability of the gradient we can obtain an estimate on the
Hausdorff dimension of the full singular set X'(u).

Corollary 5.7 Letu € M, (2). If Vu € L (2;RYN) for some p > 2 then

loc

H-dim(X(u)) < max{N — 2, N — p/2}.
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Proof. Letus fix s € (N —p/2, N — 1). We set

As ={z € 2: limsup g_s/ |VulP dy > 0}

o0 By(z)

and recall that H®(As) = 0. Then the result will follow from (5.16) and from
Theorem 5.6 if we show that X'(u) \ As C Y. In fact, notice that if ¢ A, then

we have
N 1-2/p ¢ 2/
o'~ / [Vul?dy <wy "o (@‘s/ Vupdy) :
B,(x) By(x)

where 6 = 1+ 2(s — N)/p > 0, and the right hand side of this inequality is
infinitesimal as o | 0. a

We conclude this section showing that if u is a quasi-minimiser of F', then
at any singular point of S,, where the rescaled Dirichlet integral D(x, 9) goes to
zero there exists a blow-up limit C' of S, which is a cone. In two dimensions this
property, together with the fact that C'is an Almgren area minimiser, implies that
C is a propeller, i.e. the set consisting of three half-lines meeting at a point with
equal angles.

Proposition 5.8 Let u be a quasi-minimiser of the functional F' andlet x € X, bea
point satisfying (5.14). Then there exists a sequence oy, | 0 such that H¥ ~*1_ (S, —
x)/on — HN"LLC, where C is an Almgren area minimising cone. Moreover:
(a) if N = 2, C is a propeller;

(b)if N = 3, C'is either the three sheeted cone consisting of three half planes meet-
ing along a line at equal angles or is the cone over the 1-skeleton of a tethraedron
with vertex at the center of the tethraedron.

Proof. Let us fix x € X, such that (5.14) holds and let ; be an infinitesimal se-
quence such that HN 11 (S,—x)/r; — HN~1L_C, where by Theorem 5.5 C'isan
Almgren area minimiser. Moreover from the proof of Theorem 5.6 it is clear that 0 is
asingular point of C'. From [23, Corollary I1.2] we know that there exists an increas-
ing sequence ny, with nj, € N, such that the sets nyC converge to an Almgren area
minimiser tangent cone C' as h — oo. Since for all b HN 1 ny (S, — x)/r; —
HN 1L n,C as i — oo, we get easily that there exists an infinitesimal sequence
on = np /i, such that HN~1L(S, — x)/on — HN 1L C.

The last part of the assertion then follows again from [23, Proposition II.3] a

Remark 5.9 If u is a local minimiser of F' satisfying the assumptions of Corol-
lary 5.7, the conclusion of Proposition 5.8 can be strengthened. In fact it is possible
to show that if x € Y, is a point satisfying (5.14) and gy, is any infinitesimal se-
quence such that HY =11 (S, —x)/on — HN 1L C, then C is a cone and hence,
by Proposition 5.4, an Almgren area minimising cone. The proof can be obtained
by deriving a suitable monotonicity formula for S,, and then passing to the limit in
that formula.
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6 Final remarks

In this section we prove that if N = 2 and u € SBV,.({?2) is a local minimiser of
the functional F' then Vu is p-summable for any p < 4 in a neighbourhood of any
crack tip point or any triple junction.

Lemma 6.1 Let A C R? be a connected open set and let ' C R? be a C!
graph such that A\ I' = Ay U Ag, where Ay and Ay are connected open sets. Let
u € WH2(A\ I') be a weak solution of the equations

6.1) / (Vu,Vn) =0 YneCy(A), i=1,2 .
A

For all p > 2 there exists ¢, > 0 depending only on p, I' such that if Py € I' and
BQQ(P()) C A, then

p/2
(6.2) ][ |VulP < ¢, ][ |Vul|? .
Bo(Po) Bao(Po)

Proof. By rotating and translating we may always assume that P, = (0,0) and
that I' = {(z,y) : a < x < b,y = ¢(z)} for some ¢ € CH*([a,b]). We set
L= /14 |¢||2 and R, = (—t,t) x (—4Lt,4Lt) for t > 0. Let us fix g so that
Rs, C A.Letus set also &(z,y) = (x,y — p(x)), Uz = ®(Ra,), U1 = P(R,),
while 7" denotes the z-axis and, if U C R? is any open set, U™ is the set of points
of U respectively above or below T'. Moreover it is easy to check that there exists
a strictly positive constant ¢ depending only on L such that

(6.3) dist(0U3, U7) > cp .
The function v(r, s) = u (@(r, s)) is a weak solution of the equation

(6.4) / a;; V;oVndrds =0
U+

2

for all n € C’l(U;) vanishing in a neighbourhood of AU, \ T, where a;; =
1, ajo = a1 = —¢'(r), asa = 1 + ¢"%(r). Let us extend v and the coefficients
a;j to Uy setting for all (r,s) € Uy

v(r,s) =v(r,—s), an =1, aio2=as =¢'(r), ax=1+¢?) .
In this way we get immediately that for all n € C§(Uz)

/ ai; V,oVindrds =0 .
Uz

By a standard difference quotient argument we then have that V v € VVﬁ)f(Ug)
and that for all n € C}(Us)

(6.5) / |V(Vs0)|*n? drds < c/ |Vo|?|Vn|? drds |
U2 UZ
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where ¢ depends on L, Lip(¢’). By (6.3) we can find a function n € C} (Us), such
that 0 < n <1, n = 1onU; and |Vn| < ¢/p. Inserting this function 7 in (6.5) we
have by the Sobolev—Poincaré inequality that for all p > 2

1/p 1/2
(6.6) <g_2/ |vsv|”) < c(p)o (@‘2/ IV(nst)z)
U] U2
1/2 1/2
<eo(o® [ molwaR) se(o [ wr)
U2 U2

Integrating by parts the equation satisfied by v we have that for all n € C§(Uz)

Vm(auvrv + a12vsv) = — Vsn(algvrv + CLQQVS'U)
U2 U2

0
/U2 n%(algvrv + ag V),

hence |V,.(a11V,v+a12Vsv)| < ¢|Vs(Vv)|. In particular we have that [ V2, v| <
c[|Vu| + |V(Vsv)|] and thus that |V(V,v)| < ¢[|Vv| + |V(V,sv)]]. Therefore,
arguing as before we have also that for all p > 2

1/p 1/2
(o f5or) "o )
U1 U2

and this inequality together with (6.6) immediately implies the assertion. O

Remark 6.2 Notice that in the above lemma, since w is harmonic in A \ I, the
inequality (6.2) clearly holds with another constant c,,, depending only on p, if the
ball By, (F) is contained in A \ I".

We are now in position to prove the desired property of SBV minimisers of the
functional F'.

Proposition 6.3 Let A C R? be open and I' = UM | I'; CC A, where each T'; is a
CYY graph. Assume that if i # j then either I'; 0 I'; = () or they intersect with a
strictly positive angle at a finite number of points. Let u € SBVi,.(A) be a local
minimiser of F. Then Vu € LY. (A, R?) forall p < 4.

loc

Proof. We limit ourselves to prove that if Py € I forall ¢+ = 1,..., M then
Vu € LP for all p < 4 in a neighbourhood of P, since the other possible cases
can be dealt with in a similar (and simpler) way. To this aim notice that we may
assume with no loss of generality that Py = (0, 0), that P, is an endpoint of all
the curves I'; and that there exist a ball B such that in Bg \ { Py} the curves do
not intersect and do not have other endpoints. Moreover, since the curves intersect
each other at P, with positive angles it is easy to check that there exists a constant
vy € (0,1/2) such that if 30 < R then

diSt(Fi n ng \EQ/Q,F]' ﬂng\EQ/Q) > 10 Vi#£j .

Let us fix ¢ < R/3 and denote by F the covering of BQQLEQ containing either
closed balls of the type B,,,/4(P), with P € I'; N By, \ B, for some i, or balls
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of the type B,,,/s(P), with P € By, \ B, and dist(P, ;) > vppo/4 for all i.
Notice that in the first case (when P € I for some ) the open ball B, ,/2(P)
does not intersect neither the endpoints of I'; nor the other curves and in the second
case trivially the open ball B, ,,4 does not intersect any of the curves I';. By the
Besicovitch covering theorem we can extract a finite number £ (with £ an absolute
constant) of disjoint subfamilies F}, of F so that the family G = Ui:l}—h is still a
covering of By, \ B,. Since the balls in each family J}, are pairwise disjoint and
have radius comparable with g, we have #(G) < -y, where «y depends only on
and vp. From Lemma 6.1, Remark 6.2 and the energy upper bound (5.15) for any
p > 2 we have

[ v > [ e
B2,\B, B, (P)€G By, (P;)
p/2
< 0 ][ Vul? | < eye® P2
e > ([

Bri (P,L)Eg

Therefore from this inequality, if p < 4 we may conclude that

00 o R 2—p/2
/ [VulP = Z/ [Vul|P < CZ (Z) < 00,
Bry2 i=17B 2

R/z’i\BR/ziJrl i=1

which proves the assertion. ad
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