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Abstract. We prove a Korn type inequality for vector fields on a Riemann manifold. This
inequality includes the special cases proved in the literature for domains IfitRe domain
is convex, we can considerably weaken the needed assumption on the boundary values.
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1. Introduction

Korn’s inequality is the following integral inequality:
Let 2 C R"™ be a bounded open set with bound#@$ of classC''. For
u e HY2(02,R™), we put

gij(u) = %(Diuj + Djui).

Then there exists a constaritsuch that

Dul?dz < C / u2dﬂc+/ gii(w)|?dz).
[ ipupiz <o [ [ Llesturas)

Korn’s inequality is the basic tool for the existence of solutions of linearized
displacement-traction equations in elasticity. The essential content of Korn’s in-
equality is that the tensd;; ), ;=1.... .» incorporates only those components of the
Jacobian tensobu = (Diuj)i,jzly... n Of u that are orthogonal to infinitesimal
rotations. Thus, thé&2—norm of the Jacobian tenséru that measures the defor-
mation ofw is globally controlled by the norm of itself and those components of
D that do not correspond to rigid motionsafbut to “real” deformations of the
shape of:. See [4] for details.

This geometric interpretation suggests that such an inequality should also hold
in the more general context of Riemannian geometry. Itis the purpose of this note to
derive such a Korn inequality on a Riemannian manifold. On one hand, this sheds
new light on the geometric context of the original inequality. On the other hand it can
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be used for a linearized elasticity theory in the context of a Riemannian geometry
theory, e.g. modeling a gravitational field. Our inequality includes some special
versions given previously in [5] for domains in Euclide&nspace in curvilinear
coordinates. Our geometric approach, however, allows to weaken the assumption
on the set where the vector field has to vanish for a Korn inequality to hold for it.

Let (M, g) be an oriented Riemann manifold. The inner product on the tangent
bundleT M induces norms on all tensor spaces. For example, if

T =Ty ds' @da? € T*M@T*M,
its pointwise norm is o
|T|2 = Tisttgngt
where{g;;} is the matrix of the metrig and{¢% } its inverse.
Let X be a vector field on an open s&t ¢ M, T and £ be tensor fields

depending on the vector field in some way. More precisely, X = uli ina

O’
coordinate chartU, ), we assume
oul
T(X) = (gjza : +Cmu)d:c ® d’ (1.1)
and
Lx L4 Ol )dat @ da? 1.2
( ) (gjlal+glzaj+ Ulu)x®l’ ()

where theC;;; are smooth functions depending only on the mefrilm the sequel,
the constan€ and the functiong’;;; may be different from line to line but should
be independent of the vectat.

With these notations we can state:

Theorem 1.1.Let 2 C M be an open set with boundafy? of C':!, the tensors
T, L satisfying (1.1) and (1.2), then there is a positive constastch that

/Q|T(X)2dvol§0</n |X|2dvol+/Q£(X)2dvol> (1.3)

wheredvol is the volume form of the metric

Notice that ifg;; = 6;; andC},;; = 0, one get Korn’s inequality from Theorem
1.1 again.

Atensor will be called of'—type orL—type if it satisfies the conditions (1.1) or
(1.2) respectively The basic example of&ntype tensor will be the Lie derivative
Lxg= ( g“ + glzg 5+ 9iju ) dx’ ® dz? of a metricg. Let V be the Levi-
Civita connection of the metrig, thenVX € T* M ® T M. By duality we get a
T—type tensoV X € T* M ® T* M. The norms of the tensoféX andVX are
the same. Therefore we obtain

Theorem 1.2. Let £2 C M be an open set with bounda#y? of C*-!, X be a
vector field on the Riemann manifold, then there is a positive constafitsuch

that
/vxﬁmmgc(/ \X\2dvol+/ |LXg|2dvol). (1.4)
2 2 2
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Consider the differential system of first order
L(X)=0. (1.5)

This is an elliptic system of first order with the strong unique continuation property.
Therefore we have a Korn inequality with interior vanishing condition in the domain
0.

Theorem 1.3.Letf2 C M be an open set with boundady? of C1:!, X be a vector
field on the Riemann manifolt, e C {2 be a subset with Hausdorff dimension
larger thann — 2, then there is a positive constafitsuch that

/\T(X)|2dvoZ§C/ |L(X)|2dvol (1.6)
2 2

holds for every vector field of? with X |, = 0.

The Korn inequality with boundary condition usually requires that the vector
field X vanishes on a set C 942 of positive (n — 1)-Hausdorff measure. In the
case of the Lie derivative and §? is convex, we have a weaker condition.

Theorem 1.4. Let 2 C M be a convex set with boundady? of C*1, v C 912
with dimg () > n — 2, then there are positive constantsand C' such that the
inequality

/ |T(X)|*dvol SC/ |Lx g|*dvol (1.7)
7 o

holds for anyX € H2?(£2, T(2) that vanishes on.

Several schemes of proof have been introduced for the original Korn inequality.
We shall partially employ here the strategy of Duvaut - Lions [6].

AcknowledgementsWV. Chen would like to thank Prof. Guofang Wang and Prof. Weike
Wang for their valueable conversations.

2. Special cases

If the vector fieldX has compact support or the manifold has no boundary, the
Korn inequality (1.3) is easy to deduce. In this section we will give an elementary
proof under those conditions.

Let (U, z) be a coordinate chark = ! 9 then

ozl
9 it ouF gu! ouk gu’ L Ou? ko1
IL|* = 2gK19 %@—i— B p % +C’”ku e + Criu™u (2.1)
and
J
\T|2—gkngtau ou + Cyjpu® kOu ./+Cklukul. (2.2)

ox? ozt oz’
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Lemma 2.1.

whereA > ) are positive numbers with

MEP < gragheh < Al

Proof. Trivial.
For any fixede > 0, by Lemma 2.1, we can find a positive const@ntwhich
depends on the metricand the choice of the coordinate ch@lit ) such that

ou' ot
Oxd ok’

(1+¢)

TP < 55

LX) + Ce|X]? = (1+¢)

(2.4)

So a crucial step in the proof of Theorem 1.1 should be to estimate the integral

oot
v 929 9z

It is easy to see that

ouF gul  OuF oul 5‘{ jOuF kauj}
0

ou” ou’ - Ou” ou’ _ 2.
0x7 928 9zF oI (2:5)

oz oI

Lemma 2.2. Let(V,Y) be another coordinate chart witi NV # 0, X = v7 -2

OyI
then !
0 Bu ok o’
dzk { dxi Oz } (2.6)
_ i aU ka’UJ a J k1
= 8 { ay] —v oy } + C”kv By’ + Crv*v’.

Proof. The transformation rule for tangent vectors gives

We have then
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0 Bu k8u3 _ 9 jﬁ[ﬁx] ka[axﬂ}
Ok 8x3 8z |~ 9z " 9 oyt Oxi L Oyt

0 ot 0z* L OVt 07 OV
0k {uj 0z 0yi " 9l oy }Jrciﬂ'k” Dyt + Cv*!

7] l@xj ovt OxF lazk vt Ol O .
" Ot { Ayl dzI Byl Ayl dxd Oy + Cijkv By + Criv™v
0 lavj ox¥ lavj Oxk L 90

w { a l 87y3 - ayj 8y } + Cz_]kv a + Ckl’U ’U

0  Ov? o L Ov oxk ) kai )
~ OaF { 8311} 3y3 I { ayj} oy + Cijrv oy + Crv”v
9 ov’ OV L OVl

T oy { layl} { OyJ } + Cigv’® Dyt + Cu*!

g 8vk 1 OV k-avj k.l
At W}ww g7 O™

Proposition 2.1. Let {2 ¢ M be an open paracompact set with boundary of
CU1. If the vector fieldX has compact support included faand the tensorg’, £
satisfy (1.1) and (1.2) respectively, for any- 0 there is then a positive constant
C. such that

/\T(X)|2dvol§(]g/ \X|2dvoz+(1+s)/ L(X)dvol (2.7)
2 2 2 (9]

wheredvol is the volume form of the metric
Proof. Let {U,} be afinite collection of open sets #ff such that

1. U.NUg = 0;
2. YU = 2
3. U, hasC" 1 boundaryoU,.

We assume further more that for evéry there is a coordinate representation
Zo- By (2.4) and (2.5) we have

/ |T(X)|*dvol
2

(1+¢) 9 5 1+eouk oul,
< - .
_za:/U{ X))? + C.|X]| 5 ou Dk dvol
gcg/ | X|? X)|2dvol (2.8)
2

1+e 9 [ ;0ug kau
- XQ:/UO Dt {ua&’ca o J}dvol.

For the last sum we can apply Green'’s formula on every dorigiand obtain
asum,J =" faU(,v of the integrals on the boundari@®/,,. By the assumption
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that the vector field{ has compact support ifa, if one part of the boundary @f,,
appears in the summatidn it will appear twice. By Lemma 2.2 the terms

k

; Oug

Wy —

a J

AUy To

cancel because of the orientability of the maniféll Hence

’Z/ axk au ];a Jdvol <C’Z/

By Lemma 2.1 we can then find a constéhtsuch that

o . ouk ol
[y 2 k dvol
;/Ua 893(13[ * o, aaa:a]
<5 [ 1reopal +c. [ X P,
2 /5 Y

Therefore the inequality (2.8) implies that

/ |T(X)\2dvol§CE/ | X |2dvol + 1+5/ |L(X)|?dvol. (2.9)
Jo Q 2—¢cJo

—< | dwol.

1+e¢

This proves Proposition 2.1.

3. Sobolev norms

Let {U,} be a finite collection of open sets i. We choose the collection as a
cover of {2 and require that there is a coordinatg on every open sdt,. For a
suitable choice of the covgl/, }, one then has for every tensbr= £;;dz’ @ dz’

/ \£|2dv0122/ |Lij|%dza (3.1)
Uan ij Ua

wheredwvol is the volume form on the Riemann manifold afd, = dz} A dz? A
- ANdzl.
For an open sdV of the Euclidean space’Rwe put

B = {ve Hy*(U); |v]g.> <1}

For f € C>(U), we have
[fll =12y = SUP/ fodz.
veEB JU

The Hilbert space?~"2(U) is the closure of>> w.r.t. the norm| - || g-1.2(1).
H~12(U) may be defined as the dual spacégf (U ) with respect to thé&>—prod-

uct. The equivalence of the two definitions may be verified by standard mollification
arguments. Obviously,? ¢ H=%2(U). We also note
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Lemma 3.1. For f € L?(U), we haveD; f € H~'2(U), whereD; f has to be
interpreted as a distributional derivative.

Lemma 3.2. For f € L?(U), we put

1= W2y + D IDs flla-1euy.

j=1

Then there exist constants , C, with

Cillfllzzwy < Il < ey (3.2)
Lemma 3.3. LetT = T;;dz’ ® dz? and L = L;;dz" ® dz? be aT—type and
L—type tensor respectively, then
1
OTyj = 5 [OnLis + 0iLlj — 0;Lax] + Cru! + Cryopul. (3.3)

Proof. We just need to write down the second order derivative of the component

ul.

Ty = gﬂ%’g;i

OLij = gjlai’iglxi + gil af,ig;j 4+
2,1 29!

OiLy; = gjlaikgxi T g aii;ﬂ *

0;Lik = g aijglxl + il 8:(35;; 4+

Hence the identity (3.3) follows easily.

Now we give a proof of Theorem 1.1 by a closed graph argument.
Let X = u!' 32, £ = L;;dz}, ® dad, on the char{U,, z,,) and

/|X|2dvol—|—/ |L(X)|?dvol

e @

be finite, by (3.1), we have then
ut € L2(Ua), Lij € L*(Uy).
Lemma 3.1 implies that
ot € HY2(U,), OkLij € H2(U,).

HenceT;; € H~'?(U,) and moreove®, T;; € H=*(U,). Therefore

/ |T;|?dxe < oo
Ua
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What we have obtained is that
/ | X |*dvol —|—/ |L(X)2dvol < oo = / T, |*dwe < oo
Ua Ua U

Hoérmander's comparision theorem([8], Cl§&) about operators on Banach spaces
concludes that there is a constahtith

/ T3 dzo < C {/ | X|?dvol —|—/ |E|2dvol}.
U

@ @ a

Using (3.1) again, we obtain

/ |T(X)2dvol§0{/ |X|2dvol+/ |£(X)|2dvol}.
Ua U, U,

e a

If the cover{U,} is locally finite, we conclude then that

/U|T(X)|2dvol§C{/U|X|2dvol+/U|E(X)|2dvol}.

This ends the proof of Theorem 1.1.

Remark.We can deduce some special kinds of Korn’s inequality without boundary
conditions. For example we have

Corollary 3.4. Let{2 be an domain ink? and letd € C3(£2, R3) be an injective
mapping such that the two vectars = 9,0, a = 1,2 are linearly independent at
all points of(2. Givenn = (n;) € HY2(2) x HY?(2) x H?2({2). Let

'704,3(77) = %(%ﬁa + aan,@) - Fgﬁ - baﬁn37
Pozﬁ(ﬂ) = 8045773 + R(na V77)a aaﬁ = 1; 2

with R a linear function ofy and V!, then there exists a constafit= C({2, )
such that

2 2
Z |77a|H172(n) + ‘773|H2,2(n) <C (Z ‘77&|L2(Q) + ‘773|H1~2(!2)

a=1 a=1

2 2
+ Z |’Y04[3(77)‘L2(Q)+ Z |paﬂ(n)|L2(Q) . (3.8)
a,B=1 a,B=1

Proof. Setg;; = d;; in Theorem 1.1 and notice that

2

M3l m22(2) < Z |Paﬁ(U)|L2(Q) + |TI3|H1,2(Q) :
a,B=1

The inequality (3.4) is deduced from (1.3).

! For the precise formulation d&, I" andb,s in terms of the mapping see [5] Ch.2.
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4. Deformations

Given a vector field{ on the manifoldM, there is a local 1-parameter groyp
of diffeomorphisms of the manifold1 generated by the systems of ODEs

doe _ .
(Pt‘t:() =

In general, a local 1-parameter group may not be a group, i.e. the equation (4.1)
may have only a short time solution. However if the vector fi&lhas compact
support, we have a 1-parameter grayof diffeomorphisms (See [7]). Define the
deformation of the diffeomorphism; asG! = VT g(¢;)Ve. The deformation

G" is also a metric on the manifol§1. In the coordinate chaft, z), the metric

G! has the form

Ay ¢!
& = S A 4.2
D, gri(pr) oz, (4.2)
Hence \ z z
dG ou Hu . .
W‘t:o - (gjl@xz‘ + G5 + gij,lul> dz' @ dx’. (4.3)
So, dTCf = Lxg, the Lie derivative of the metrig along the vector field¥.

On the other hand, for the Levi-Civita connectiorof the metricg, one has

ow’ , . 0
X = It ) det @ —. 4.4
v (8$¢ + llu) e oxJ ( )
Define a dual tensov X of VX as
—_— k . .
VX = (8u + Thul)gjpda’ @ da?.

(')xi
The tensoV X is then ar—type tensor. Obviously,
IVX| = |VX|.

Hence
/VX|2dvol§C</ \X\deolJr/ |LXg|2dvol). (4.5)
J 2 J 2 2

This proves Theorem 1.2.

As an illustration of Korn’s inequality, we can see the well known fact that the
vector space of Killing fields on a finite dimensional compact Riemannian manifold
M s finite-dimensional itself. (Passing to a two-sheeted cover, we may assume that
M is oriented.) A Killing vector fieldX is by definition an infinitesimal isometry
and thus satisfies

LXg = 0.

Thus, by Theorem 1.2,

/|VX|2dvol§C/ | X|?dvol. (4.6)
M M
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Combining the Korn inequality with the compactness theorem of Rellich, we con-
clude that the unit ball in the space

{X vector field onM : Lxg = O,/ | X [2dvol < oo}
M
is compact, hence of finite dimension.

5. Ellipticity and boundary conditions

We can view the tensat as a map from the tangent spac#1 to the tensor space
T*M & T* M. This is a linear differential operator of first order. It is interesting
that the map is elliptic.

FixedP € M,¢ € TsM,u € TpM.Takef € C°(M),X € C°(M,TM)

such that
df(P)=¢&, f(P)=0;
X(P) = u,

the relation
oc(§u=L(fX)(P)

thendeterminesamag: (¢) : TpM — TEMQTjH M. o isthe principal symbol
of the differentiall. Trivially,

oc(§u = (gjlfi + gizfj)ulda:i ® da’ .

And we have
o2 (©ul® = 20&[ul® +2(< §u>)*. (5.1)

Hence the principal symbat,(£) has maximal rank o’ M for every ¢ €
T*(M) \ {0}. This just means the ellipticity of the differential operator
For a vector fieldX € C*°(M, T M) we denote its zero set by

N(X)={P e M;X(P)=0}.
If X is a solution of the equation
L(X)=0. (5.2)
we have a differential inequality by (3.3)
VX2 < O(IVX? + [X]?).

Hence the solution of the equation (5.2) has the strong unique continuation property.
That is to say that if a solution of the equation satisfies

lim p(P,P,) VX (P)=0, VN >0
P—Py

with p(-, -) the metric on the manifold1, X will vanish on.M everywhere. See
[2] for details. In fact we can prove that a nontrivial solution of the equation (5.2)
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has only zero points of first order. We will give a direct proof for this fact in the
following proposition.

Proposition 5.1. Let the vector field( satisfy the equation (5.2) on the doman
and vanish at a poinf € (2 of second order, i.eX(P) = 0 and VX (P) = 0,
thenX = 0.

Proof. Let v be a geodesic starting from the poiif v(0) = P. From (3.3) we
have a differential inequality

%IVXIQ(W)) < CUVXP(y(1) + Co| X (1(1)). (5:3)

Multiplying this inequality byd — ¢ and integrate w.r.t. on the interval0, ¢) then
gives by the conditiofV X |(v(0)) = 0 that

5
/0 VX P(y(t))d (5.4)

o )
e / (6 — DIVX[2(y(8))dt + Cs / (6 — 1) X[2(+(1))dt.
0 0

We also have the elementary inequality

) )
/ (6 — OIXP(v()dt < / (6 — 02VX|- |X|(v(e)dt  (55)
0 0

becauseX|(+(0)) = 0. Combining (5.5) and the Schwarz inequality implies

o )
/ (6~ 8)|X2(()dt < 2 / (6 — DRIV X2 (y(1))dt
0 0

ford < % Inserting this into (5.4) we see that

/ IVX|?(y(t))dt < 0/6(5 — )| VX2 (y(t))dt. (5.6)

Therefore| VX|(v(t)) = 0, and thenX (v(¢)) = 0 on |0, §,) provideds,C < 1.
From the above procedure we see that the constamtepends only on those
guantities that appear in (3.3) and the connec®orso there is a neighbourhood
B(P,4) of the pointP € 2 on which the vector field{ vanishes. The fact that
the radius is independent of the poir? gives us the chance to extend the above
argument step by step to every point in the donfairT herefore the vector field
vanishes everywhere on the domainThis ends the proof of Proposition 5.1.

Let Ny, (X) be the zero sets of finite order. A theorem of GrB3] says that
the set\y;,, (X)) has Hausdorff dimension at last— 2 providedX is a nontrivial
solution of an elliptic system. By this result and Proposition 5.1 we getimmediately

Corollary 5.2. Let X € C*°(M,TM) be a nontrivial solution of the equation
(5.2), then the Hausdorff dimension of the zero set of the vectorXiefdat least
of codimension two, i.e.,

dimg (N(X)) <n—2. (5.7)
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We use Corollary 5.2 to deduce a new kind of Korn type inequality with interior
vanishing condition in the domaif2.

Theorem 5.3.Lete C 2 ¢ M withdimg(e) > n— 2, then there exists a constant
C such that inequality

/\T(X)quozgc/ |£(X)|*dvol (5.8)
2 2

holds for anyX € H2?(2,T2) with X |, = 0.

Proof. The proof is a standard contradiction argument. If the announced inequality
were false, there would exist a sequefidg } ¢ H2(£2, T2) with

T(X;)|* =1,
fﬁ LX) =0, (5.9)

Combining the Korn inequality with the compactness of Rellich, we may assume
that this sequence convergesXan H*2(£2, T2) strongly. Hence

L(X)=0.

By (3.3)we haveX € H?2(02,T(2)andthenforallintegrat, X € H*2(§2,T2).
ThereforeX € C*°(£2,T{2). What we want to deduce is that

X|e=0. (5.10)

We derive it by an extended version of Egorov’s theorem which says that a strongly
convergent sequence iH2(£2,T2) has a pointwise convergent subsequence
outside a set of Hausdorff dimension atleas®. See [1]and [9]. By our assumption

of dimg(e) > n — 2, the vector fieldX will vanish on the set and then vanishes

on the whole domairi? by Corollary 5.2. This is a contradiction with (5.9).

The last result in this note will concern the boundary conditions for the Korn
inequality. The special feature in the Korn inequality is that one only needs partial
information on the boundarsp.

Theorem 5.5. Let 2 C M be an open set with boundafy? of C'!:1, then there
are positive constantsand C such that the inequality

/\T(X)|2dvol§(]/ 1£(X) 2dvol (5.11)
(9] (9]

holds foranyX € H'?(£2, T(2) that vanishes on the intersection® with some
ball B(P,4), P € 012.

Proof. Let X € H?(£2,T M) be a vector field with’(X) = 0 and X|, = 0.
It can be proved by (3.3) thaX € H*2(£2, TM) for any k. ThereforeX ¢
COY 2, TM).

We can take a positive constaintvith the property that at every poift € 02
there are coordinates around the pdihsuch thatB(P,25) N 2 = {z : 2! >
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0} N B(P,20). Let 2. = (0,7) x {B(P,d) N 9£2}. Suppose the vector field
satisfies the condition in the Theorem. Multiplying the two sides of the inequality

a 2 2 2
@\)ﬂ < |V%X| + 1X|

by r — ! and integrating on the domai, we will get

/ | X|2dvol < r/ (\VLXF + |X|2) dvol.
2, Q ol

r

We also have a consta@ which depends only on the metrgcso that

' 9 2 . 2
|VﬁX| <Oy | |£(2)] +Z|vﬁX‘

Jj=2

Using Theorem 1.1 w.r.t. the variableg?, - - - | 2™) gives

/ |X[2dvol < r/ (1 + O) X2 + ClL(X)P) dvol (5.12)
with a constan€' independent of. If the vector fieldX also satisfies the equation
(5.2) on the domaini2, we have then an inequality

/ X 2dvol < r(1 + C) / X [2dvol. (5.13)

This implies thatX = 0 onthe domain?, providedr(1+C) < 1. Hence the vector
field X vanishes at every point of the domdihby the strong unique continuation
property. The same contradiction argument as in the proof of Theorem 5.3 gives
the announced inequality (5.11).

In the case of the Lie derivative and if we assume s convex in the sense
that the shortest geodesic between any two point® iis also contained 2,
we can weaken the condition on the size of the set at whickanishes. The key
observation is the following Lemma.

Lemma 5.6. Leti(M) be the injectivity radius of the manifolé1, X a Killing
field, i.e.,Lxg = 0. If the Killing field X vanishes at the point®, Q with the
distance betwee® and Q less than the injectivity radiug. M), then it will also
vanish on the shortest geodesic connecting the pdiraad Q.

Proof. Let v, be thel—parameter group generated by the vector fietdsThis
group consists of local isometries. It also has fixed pointand Q by the van-
ishing condition. Since the distance is less than the injectivity radius, the shortest
geodesic between the poinftsand@ will be unique and therefore invariant under
the isometry group);. Hence the Killing fieldX vanishes on the geodesic.

Corollary 5.7. Let M, i(M) and X be as in the above Lemma, C 2 with
diameterd(y) = max{dist(P,Q); P,Q € 2} < i(M). If the Killing field X
vanishes at every poitit € « then it will also vanish on the convex envelope of
Furthermore, if dim; () > n — 2, thenX vanishes identically on the sét
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Proof. The first statement is a direct application of Lemma 5.6 ell the convex
envelope of the set, thene, as a convex set, has Hausdorff dimension at least
codimension 1 because diffy) > n— 2. Ifdimgy(en §2) < n—2,thenthereisa
point P € 92 with B(P,§) N oS C e for somed > 0. An application of Theorem

5.5 gives the second statement in the Corollary 5.7. Otherwise, we use Corollary
5.2 to assure thaX vanishes at every point @¢?.

Theorem 5.8. Let £2 C M be a convex set with boundady? of C11, v C 902
with dimg () > n — 2, then there are positive constantsand C' such that the
inequality

|T(X)|?dvol < c/ |Lxg|*dvol (5.14)
(7] (7]

holds for anyX € H'?(£2, T(2) that vanishes on.

Proof. Using Corollary 5.7 and the same contradiction argument as above.
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