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Abstract. We prove a Korn type inequality for vector fields on a Riemann manifold. This
inequality includes the special cases proved in the literature for domains in IR3. If the domain
is convex, we can considerably weaken the needed assumption on the boundary values.
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1. Introduction

Korn’s inequality is the following integral inequality:
Let Ω ⊂ IRn be a bounded open set with boundary∂Ω of classC1,1. For

u ∈ H1,2(Ω, IRn), we put

εij(u) =
1
2

(
Diu

j +Dju
i
)
.

Then there exists a constantC such that∫
Ω

|Du|2dx ≤ C
(∫

Ω

|u|2dx+
∫
Ω

∑
ij

|εij(u)|2dx
)
.

Korn’s inequality is the basic tool for the existence of solutions of linearized
displacement-traction equations in elasticity. The essential content of Korn’s in-
equality is that the tensor(εij)i,j=1,··· ,n incorporates only those components of the
Jacobian tensorDu = (Diuj)i,j=1,··· ,n of u that are orthogonal to infinitesimal
rotations. Thus, theL2−norm of the Jacobian tensorDu that measures the defor-
mation ofu is globally controlled by the norm ofu itself and those components of
Du that do not correspond to rigid motions ofu, but to “real” deformations of the
shape ofu. See [4] for details.

This geometric interpretation suggests that such an inequality should also hold
in the more general context of Riemannian geometry. It is the purpose of this note to
derive such a Korn inequality on a Riemannian manifold. On one hand, this sheds
new light on the geometric context of the original inequality. On the other hand it can
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be used for a linearized elasticity theory in the context of a Riemannian geometry
theory, e.g. modeling a gravitational field. Our inequality includes some special
versions given previously in [5] for domains in Euclidean3−space in curvilinear
coordinates. Our geometric approach, however, allows to weaken the assumption
on the set where the vector field has to vanish for a Korn inequality to hold for it.

Let (M, g) be an oriented Riemann manifold. The inner product on the tangent
bundleTM induces norms on all tensor spaces. For example, if

T = Tijdx
i ⊗ dxj ∈ T ∗M ⊗ T ∗M,

its pointwise norm is
|T |2 = TijTstg

isgjt

where{gij} is the matrix of the metricg and{gij} its inverse.
Let X be a vector field on an open setΩ ⊂ M, T andL be tensor fields

depending on the vector fieldX in some way. More precisely, ifX = ul ∂
∂xl

in a

coordinate chart(U, x), we assume

T (X) =
(
gjl
∂ul

∂xi
+ Cijlu

l
)
dxi ⊗ dxj (1.1)

and

L(X) =
(
gjl
∂ul

∂xi
+ gli

∂ul

∂xj
+ Cijlu

l
)
dxi ⊗ dxj (1.2)

where theCijl are smooth functions depending only on the metricg. In the sequel,
the constantC and the functionsCijl may be different from line to line but should
be independent of the vectorX.

With these notations we can state:

Theorem 1.1.LetΩ ⊂ M be an open set with boundary∂Ω ofC1,1, the tensors
T , L satisfying (1.1) and (1.2), then there is a positive constantC such that∫

Ω

|T (X)|2dvol ≤ C

(∫
Ω

|X|2dvol +
∫
Ω

|L(X)|2dvol
)

(1.3)

wheredvol is the volume form of the metricg.

Notice that ifgij = δij andCijl = 0, one get Korn’s inequality from Theorem
1.1 again.

A tensor will be called ofT−type orL−type if it satisfies the conditions (1.1) or
(1.2) respectively. The basic example of anL−type tensor will be the Lie derivative

LXg =
(
gjl
∂ul

∂xi
+ gli ∂u

l

∂xj
+ gij,lul

)
dxi ⊗ dxj of a metricg. Let ∇ be the Levi-

Civita connection of the metricg, then∇X ∈ T ∗M ⊗ TM. By duality we get a
T−type tensor̃∇X ∈ T ∗M ⊗ T ∗M. The norms of the tensors∇X and∇̃X are
the same. Therefore we obtain

Theorem 1.2. LetΩ ⊂ M be an open set with boundary∂Ω of C1,1, X be a
vector field on the Riemann manifoldM, then there is a positive constantC such
that ∫

Ω

|∇X|2dvol ≤ C

(∫
Ω

|X|2dvol +
∫
Ω

|LXg|2dvol
)
. (1.4)
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Consider the differential system of first order

L(X) = 0. (1.5)

This is an elliptic system of first order with the strong unique continuation property.
Therefore we have a Korn inequality with interior vanishing condition in the domain
Ω.

Theorem1.3.LetΩ ⊂ M be an open set with boundary∂Ω ofC1,1,X be a vector
field on the Riemann manifoldM, e ⊂ Ω be a subset with Hausdorff dimension
larger thann− 2, then there is a positive constantC such that∫

Ω

|T (X)|2dvol ≤ C

∫
Ω

|L(X)|2dvol (1.6)

holds for every vector field onΩ withX|e = 0.

The Korn inequality with boundary condition usually requires that the vector
fieldX vanishes on a sete ⊂ ∂Ω of positive(n − 1)-Hausdorff measure. In the
case of the Lie derivative and ifΩ is convex, we have a weaker condition.

Theorem 1.4. LetΩ ⊂ M be a convex set with boundary∂Ω of C1,1, γ ⊂ ∂Ω
with dimH(γ) > n − 2, then there are positive constantsδ andC such that the
inequality ∫

Ω

|T (X)|2dvol ≤ C

∫
Ω

|LXg|2dvol (1.7)

holds for anyX ∈ H1,2(Ω, TΩ) that vanishes onγ.

Several schemes of proof have been introduced for the original Korn inequality.
We shall partially employ here the strategy of Duvaut - Lions [6].

Acknowledgements.W. Chen would like to thank Prof. Guofang Wang and Prof. Weike
Wang for their valueable conversations.

2. Special cases

If the vector fieldX has compact support or the manifold has no boundary, the
Korn inequality (1.3) is easy to deduce. In this section we will give an elementary
proof under those conditions.

Let (U, x) be a coordinate chart,X = ul ∂
∂xl

, then

|L|2 = 2gklgjt
∂uk

∂xj
∂ul

∂xt
+ 2

∂uk

∂xj
∂uj

∂xk
+ Cijku

k ∂u
j

∂xi
+ Cklu

kul (2.1)

and

|T |2 = gklg
jt ∂u

k

∂xj
∂ul

∂xt
+ Cijku

k ∂u
j

∂xi
+ Cklu

kul. (2.2)
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Lemma 2.1.

gklg
jt ∂u

k

∂xj
∂ul

∂xt
≥ λ

Λ

∑
i,j

∣∣∣∣∂uj∂xi

∣∣∣∣2 (2.3)

whereΛ ≥ λ are positive numbers with

λ|ξ|2 ≤ gklξ
kξl ≤ Λ|ξ|2.

Proof. Trivial.
For any fixedε > 0, by Lemma 2.1, we can find a positive constantCε which

depends on the metricg and the choice of the coordinate chart(U, x) such that

|T (X)|2 ≤ (1 + ε)
2

|L(X)|2 + Cε|X|2 − (1 + ε)
∂uk

∂xj
∂uj

∂xk
. (2.4)

So a crucial step in the proof of Theorem 1.1 should be to estimate the integral

∫
Uα

∂uk

∂xj
∂uj

∂xk
dvol.

It is easy to see that

∂uk

∂xj
∂uj

∂xk
− ∂uk

∂xk
∂uj

∂xj
=

∂

∂xk

{
uj
∂uk

∂xj
− uk ∂u

j

∂xj

}
. (2.5)

Lemma 2.2. Let(V, Y ) be another coordinate chart withU ∩V �= 0,X = vj ∂
∂yj ,

then

∂

∂xk

{
uj
∂uk

∂xj
− uk ∂u

j

∂xj

}
(2.6)

=
∂

∂yk

{
vj
∂vk

∂yj
− vk ∂v

j

∂yj

}
+ Cijkv

k ∂v
j

∂yi
+ Cklv

kvl.

Proof. The transformation rule for tangent vectors gives

uk = vi
∂xk

∂yi
.

We have then
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∂

∂xk

{
uj
∂uk

∂xj
− uk ∂u

j

∂xj

}
=

∂

∂xk

{
uj

∂

∂xj

[
vi
∂xk

∂yi

]
− uk ∂

∂xj

[
vi
∂xj

∂yi

]}
=

∂

∂xk

{
uj
∂vi

∂xj
∂xk

∂yi
− uk ∂v

i

∂xj
∂xj

∂yi

}
+ Cijkv

k ∂v
j

∂yi
+ Cklv

kvl

=
∂

∂xk

{
vl
∂xj

∂yl
∂vi

∂xj
∂xk

∂yi
− vl ∂x

k

∂yl
∂vi

∂xj
∂xj

∂yi

}
+ Cijkv

k ∂v
j

∂yi
+ Cklv

kvl

=
∂

∂xk

{
vl
∂vj

∂yl
∂xk

∂yj
− vl ∂v

j

∂yj
∂xk

∂yl

}
+ Cijkv

k ∂v
j

∂yi
+ Cklv

kvl

=
∂

∂xk

{
vl
∂vj

∂yl

}
∂xk

∂yj
− ∂

∂xk

{
vl
∂vj

∂yj

}
∂xk

∂yl
+ Cijkv

k ∂v
j

∂yi
+ Cklv

kvl

=
∂

∂yj

{
vl
∂vj

∂yl

}
− ∂

∂yl

{
vl
∂vj

∂yj

}
+ Cijkv

k ∂v
j

∂yi
+ Cklv

kvl

=
∂

∂yk

{
vj
∂vk

∂yj
− vk ∂v

j

∂yj

}
+ Cijkv

k ∂v
j

∂yi
+ Cklv

kvl.

Proposition 2.1. LetΩ ⊂ M be an open paracompact set with boundary∂Ω of
C1,1. If the vector fieldX has compact support included inΩ and the tensorsT ,L
satisfy (1.1) and (1.2) respectively, for anyε > 0 there is then a positive constant
Cε such that∫

Ω

|T (X)|2dvol ≤ Cε

∫
Ω

|X|2dvol + (
1
2

+ ε)
∫
Ω

|L(X)|2dvol (2.7)

wheredvol is the volume form of the metricg.

Proof. Let {Uα} be a finite collection of open sets ofM such that

1. Uα ∩ Uβ = ∅;
2.
⋃
Uα = Ω;

3. Uα hasC1,1 boundary∂Uα.

We assume further more that for everyUα there is a coordinate representation
xα. By (2.4) and (2.5) we have∫

Ω

|T (X)|2dvol

≤
∑
α

∫
Uα

{
(1 + ε)

2
|L(X)|2 + Cε|X|2 − 1 + ε

2
∂ukα

∂xjα

∂ujα
∂xkα

}
dvol

≤ Cε

∫
Ω

|X|2dvol + 1 + ε
2

∫
Ω

|L(X)|2dvol (2.8)

−1 + ε
2

∑
α

∫
Uα

∂

∂xkα

[
ujα
∂ukα

∂xjα
− ukα

∂ujα

∂xjα

]
dvol.

For the last sum we can apply Green’s formula on every domainUα and obtain
a sum,I =

∑
α

∫
∂Uα

, of the integrals on the boundaries∂Uα. By the assumption
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that the vector fieldX has compact support inΩ, if one part of the boundary ofUα

appears in the summationI, it will appear twice. By Lemma 2.2 the terms∫
∂Uα

ujα
∂ukα

∂xjα

cancel because of the orientability of the manifoldM. Hence∣∣∣∣∣∑
α

∫
Uα

∂

∂xkα
[ujα

∂ukα

∂xjα
− ukα

∂ujα

∂xjα
]dvol

∣∣∣∣∣ ≤ C
∑
α

∫
Uα

∣∣∣∣ujα ∂ukα∂xjα

∣∣∣∣ dvol.
By Lemma 2.1 we can then find a constantCε such that

1 + ε
2

∣∣∣∣∣∑
α

∫
Uα

∂

∂xkα
[ujα

∂ukα

∂xjα
− ukα

∂ujα

∂xjα
]dvol

∣∣∣∣∣
≤ ε

2

∫
Ω

|T (X)|2dvol + Cε

∫
Ω

|X|2dvol.

Therefore the inequality (2.8) implies that∫
Ω

|T (X)|2dvol ≤ Cε

∫
Ω

|X|2dvol + 1 + ε
2 − ε

∫
Ω

|L(X)|2dvol. (2.9)

This proves Proposition 2.1.

3. Sobolev norms

Let {Uα} be a finite collection of open sets inΩ. We choose the collection as a
cover ofΩ and require that there is a coordinatexα on every open setUα. For a
suitable choice of the cover{Uα}, one then has for every tensorL = Lijdx

i ⊗dxj∫
Uα

|L|2dvol �
∑
ij

∫
Uα

|Lij |2dxα (3.1)

wheredvol is the volume form on the Riemann manifold anddxα = dx1
α ∧ dx2

α ∧
· · · ∧ dxnα.

For an open setU of the Euclidean space IRn, we put

B = {v ∈ H1,2
0 (U); ‖v‖H1,2 ≤ 1}.

Forf ∈ C∞(U), we have

‖f‖H−1,2(U) = sup
v∈B

∫
U

fvdx.

The Hilbert spaceH−1,2(U) is the closure ofC∞ w.r.t. the norm‖ · ‖H−1,2(U).

H−1,2(U)maybedefinedas thedual spaceofH1,2
0 (U)with respect to theL2−prod-

uct. The equivalence of the two definitions may be verified by standard mollification
arguments. Obviously,L2 ⊂ H−1,2(U). We also note
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Lemma 3.1. For f ∈ L2(U), we haveDjf ∈ H−1,2(U), whereDjf has to be
interpreted as a distributional derivative.

Lemma 3.2. For f ∈ L2(U), we put

‖f‖∗ := ‖f‖H−1,2(U) +
n∑

j=1

‖Djf‖H−1,2(U).

Then there exist constantsC1, C2 with

C1‖f‖L2(U) ≤ ‖f‖∗ ≤ ‖f‖L2(U). (3.2)

Lemma 3.3. Let T = Tijdx
i ⊗ dxj andL = Lijdx

i ⊗ dxj be aT−type and
L−type tensor respectively, then

∂kTij =
1
2

[∂kLij + ∂iLkj − ∂jLik] + Clu
l + Ckl∂ku

l. (3.3)

Proof. We just need to write down the second order derivative of the component
ul.

∂kTij = gjl
∂2ul

∂xk∂xi
+ · · ·

∂kLij = gjl
∂2ul

∂xk∂xi
+ gil

∂2ul

∂xk∂xj
+ · · ·

∂iLkj = gjl
∂2ul

∂xk∂xi
+ gkl

∂2ul

∂xi∂xj
+ · · ·

∂jLik = gkl
∂2ul

∂xj∂xi
+ gil

∂2ul

∂xk∂xj
+ · · · .

Hence the identity (3.3) follows easily.

Now we give a proof of Theorem 1.1 by a closed graph argument.
LetX = ul ∂

∂xl
α

, L = Lijdx
i
α ⊗ dxjα on the chart(Uα, xα) and∫

Uα

|X|2dvol +
∫
Uα

|L(X)|2dvol

be finite, by (3.1), we have then

ul ∈ L2(Uα), Lij ∈ L2(Uα).

Lemma 3.1 implies that

∂ku
l ∈ H−1,2(Uα), ∂kLij ∈ H−1,2(Uα).

HenceTij ∈ H−1,2(Uα) and moreover∂kTij ∈ H−1,2(Uα). Therefore∫
Uα

|Tij |2dxα < ∞.
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What we have obtained is that∫
Uα

|X|2dvol +
∫
Uα

|L(X)|2dvol < ∞ ⇒
∫
Uα

|Tij |2dxα < ∞.

Hörmander’s comparision theorem([8], Ch.2§6) about operators on Banach spaces
concludes that there is a constantC with∫

Uα

|Tij |2dxα ≤ C

{∫
Uα

|X|2dvol +
∫
Uα

|L|2dvol
}
.

Using (3.1) again, we obtain∫
Uα

|T (X)|2dvol ≤ C

{∫
Uα

|X|2dvol +
∫
Uα

|L(X)|2dvol
}
.

If the cover{Uα} is locally finite, we conclude then that∫
U

|T (X)|2dvol ≤ C

{∫
U

|X|2dvol +
∫
U

|L(X)|2dvol
}
.

This ends the proof of Theorem 1.1.

Remark.We can deduce some special kinds of Korn’s inequality without boundary
conditions. For example we have

Corollary 3.4. LetΩ be an domain inR2 and letθ ∈ C3(Ω,R3) be an injective
mapping such that the two vectorsaα = ∂αθ, α = 1, 2 are linearly independent at
all points ofΩ. Givenη = (ηi) ∈ H1,2(Ω) ×H1,2(Ω) ×H2,2(Ω). Let

γαβ(η) := 1
2 (∂βηα + ∂αηβ) − Γ σ

αβ − bαβη3,
ραβ(η) := ∂αβη3 +R(η,∇η), α, β = 1, 2

withR a linear function ofη and∇η1, then there exists a constantC = C(Ω, θ)
such that

2∑
α=1

|ηα|H1,2(Ω) + |η3|H2,2(Ω) ≤ C

(
2∑

α=1

|ηα|L2(Ω) + |η3|H1,2(Ω)

+
2∑

α,β=1

|γαβ(η)|L2(Ω) +
2∑

α,β=1

|ραβ(η)|L2(Ω)

 . (3.8)

Proof. Setgij = δij in Theorem 1.1 and notice that

|η3|H2,2(Ω) ≤
2∑

α,β=1

|ραβ(η)|L2(Ω) + |η3|H1,2(Ω) .

The inequality (3.4) is deduced from (1.3).

1 For the precise formulation ofR, Γ andbαβ in terms of the mappingθ see [5] Ch.2.
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4. Deformations

Given a vector fieldX on the manifoldM, there is a local 1-parameter groupϕt
of diffeomorphisms of the manifoldM generated by the systems of ODEs{

dϕt

dt = X(ϕt);
ϕt|t=0 = x.

(4.1)

In general, a local 1-parameter group may not be a group, i.e. the equation (4.1)
may have only a short time solution. However if the vector fieldX has compact
support, we have a 1-parameter groupϕt of diffeomorphisms (See [7]). Define the
deformation of the diffeomorphismϕt asGt = ∇ϕT g(ϕt)∇ϕ. The deformation
Gt is also a metric on the manifoldM. In the coordinate chart(U, x), the metric
Gt has the form

Gt =
∂ϕkt
∂xi

gkl(ϕt)
∂ϕlt
∂xj

. (4.2)

Hence
dGt

dt

∣∣∣
t=0

=
(
gjl
∂ul

∂xi
+ gli

∂ul

∂xj
+ gij,lul

)
dxi ⊗ dxj . (4.3)

So, dG
t

dt

∣∣∣
t=0

= LXg, the Lie derivative of the metricg along the vector fieldX.

On the other hand, for the Levi-Civita connection∇ of the metricg, one has

∇X =
(
∂uj

∂xi
+ Γ j

ilu
l

)
dxi ⊗ ∂

∂xj
. (4.4)

Define a dual tensor̃∇X of ∇X as

∇̃X = (
∂uk

∂xi
+ Γ k

ilu
l)gjkdxi ⊗ dxj .

The tensor̃∇X is then aT−type tensor. Obviously,

|∇X| = |∇̃X|.
Hence ∫

Ω

|∇X|2dvol ≤ C

(∫
Ω

|X|2dvol +
∫
Ω

|LXg|2dvol
)
. (4.5)

This proves Theorem 1.2.
As an illustration of Korn’s inequality, we can see the well known fact that the

vector space of Killing fields on a finite dimensional compact Riemannian manifold
M is finite-dimensional itself. (Passing to a two-sheeted cover, we may assume that
M is oriented.) A Killing vector fieldX is by definition an infinitesimal isometry
and thus satisfies

LXg = 0.

Thus, by Theorem 1.2,∫
M

|∇X|2dvol ≤ C

∫
M

|X|2dvol. (4.6)



526 W. Chen, J, Jost

Combining the Korn inequality with the compactness theorem of Rellich, we con-
clude that the unit ball in the space{

X vector field onM : LXg = 0,
∫

M
|X|2dvol < ∞

}
is compact, hence of finite dimension.

5. Ellipticity and boundary conditions

We can view the tensorL as a map from the tangent spaceTM to the tensor space
T ∗M ⊗ T ∗M. This is a linear differential operator of first order. It is interesting
that the map is elliptic.

FixedP ∈ M,ξ ∈ T ∗
PM,u ∈ TPM. Takef ∈ C∞(M),X ∈ C∞(M, TM)

such that
df(P ) = ξ, f(P ) = 0;
X(P ) = u,

the relation
σL(ξ)u = L(fX)(P )

then determines a mapσL(ξ) : TPM → T ∗
PM⊗T ∗

PM.σL is the principal symbol
of the differentialL. Trivially,

σL(ξ)u =
(
gjlξi + gilξj

)
uldxi ⊗ dxj .

And we have
|σL(ξ)u|2 = 2|ξ|2|u|2 + 2(< ξ, u >)2. (5.1)

Hence the principal symbolσL(ξ) has maximal rank onTPM for every ξ ∈
T ∗(M) \ {0}. This just means the ellipticity of the differential operatorL.

For a vector fieldX ∈ C∞(M, TM) we denote its zero set by

N (X) = {P ∈ M;X(P ) = 0}.
If X is a solution of the equation

L(X) = 0. (5.2)

we have a differential inequality by (3.3)

|∇2X|2 ≤ C(|∇X|2 + |X|2).
Hence the solution of the equation (5.2) has the strong unique continuation property.
That is to say that if a solution of the equation satisfies

lim
P→P0

ρ(P, P0)−NX(P ) = 0, ∀N > 0

with ρ(·, ·) the metric on the manifoldM, X will vanish onM everywhere. See
[2] for details. In fact we can prove that a nontrivial solution of the equation (5.2)
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has only zero points of first order. We will give a direct proof for this fact in the
following proposition.

Proposition 5.1. Let the vector fieldX satisfy the equation (5.2) on the domainΩ
and vanish at a pointP ∈ Ω of second order, i.e.,X(P ) = 0 and∇X(P ) = 0,
thenX ≡ 0.

Proof. Let γ be a geodesic starting from the pointP , γ(0) = P . From (3.3) we
have a differential inequality

d

dt
|∇X|2(γ(t)) ≤ C1|∇X|2(γ(t)) + C2|X|2(γ(t)). (5.3)

Multiplying this inequality byδ− t and integrate w.r.t.t on the interval(0, δ) then
gives by the condition|∇X|(γ(0)) = 0 that∫ δ

0
|∇X|2(γ(t))dt (5.4)

≤ C1

∫ δ

0
(δ − t)|∇X|2(γ(t))dt+ C2

∫ δ

0
(δ − t)|X|2(γ(t))dt.

We also have the elementary inequality∫ δ

0
(δ − t)|X|2(γ(t))dt ≤

∫ δ

0
(δ − t)2|∇X| · |X|(γ(t))dt (5.5)

because|X|(γ(0)) = 0. Combining (5.5) and the Schwarz inequality implies∫ δ

0
(δ − t)|X|2(γ(t))dt ≤ 2

∫ δ

0
(δ − t)2|∇X|2(γ(t))dt

for δ ≤ 1
2 . Inserting this into (5.4) we see that∫ δ

0
|∇X|2(γ(t))dt ≤ C

∫ δ

0
(δ − t)|∇X|2(γ(t))dt. (5.6)

Therefore|∇X|(γ(t)) = 0, and thenX(γ(t)) = 0 on [0, δγ) providedδγC < 1.
From the above procedure we see that the constantδγ depends only on those
quantities that appear in (3.3) and the connection∇. So there is a neighbourhood
B(P, δ) of the pointP ∈ Ω on which the vector fieldX vanishes. The fact that
the radiusδ is independent of the pointP gives us the chance to extend the above
argument step by step to every point in the domainΩ. Therefore the vector fieldX
vanishes everywhere on the domainΩ. This ends the proof of Proposition 5.1.

Let Nfin(X) be the zero sets of finite order. A theorem of C. Bär [3] says that
the setNfin(X) has Hausdorff dimension at lastn− 2 providedX is a nontrivial
solution of an elliptic system. By this result and Proposition 5.1 we get immediately

Corollary 5.2. LetX ∈ C∞(M, TM) be a nontrivial solution of the equation
(5.2), then the Hausdorff dimension of the zero set of the vector fieldX is at least
of codimension two, i.e.,

dimH(N (X)) ≤ n− 2. (5.7)
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We use Corollary 5.2 to deduce a new kind of Korn type inequality with interior
vanishing condition in the domainΩ.

Theorem 5.3.Lete ⊂ Ω ⊂ Mwith dimH(e) > n−2, then there exists a constant
C such that inequality∫

Ω

|T (X)|2dvol ≤ C

∫
Ω

|L(X)|2dvol (5.8)

holds for anyX ∈ H1,2(Ω, TΩ) withX|e = 0.

Proof. The proof is a standard contradiction argument. If the announced inequality
were false, there would exist a sequence{Xj} ⊂ H1.2(Ω, TΩ) with∫

Ω
|T (Xj)|2 = 1,∫

Ω
|L(Xj)|2 → 0. (5.9)

Combining the Korn inequality with the compactness of Rellich, we may assume
that this sequence converges toX in H1,2(Ω, TΩ) strongly. Hence

L(X) = 0.

By (3.3) we haveX ∈ H2,2(Ω, TΩ) and then for all integralk,X ∈ Hk,2(Ω, TΩ).
ThereforeX ∈ C∞(Ω, TΩ). What we want to deduce is that

X|e = 0. (5.10)

We derive it by an extended version of Egorov’s theorem which says that a strongly
convergent sequence inH1,2(Ω, TΩ) has a pointwise convergent subsequence
outside a set of Hausdorff dimension at leastn−2. See [1]and [9]. By our assumption
of dimH(e) > n− 2, the vector fieldX will vanish on the sete and then vanishes
on the whole domainΩ by Corollary 5.2. This is a contradiction with (5.9).

The last result in this note will concern the boundary conditions for the Korn
inequality. The special feature in the Korn inequality is that one only needs partial
information on the boundaryΩ.

Theorem 5.5. LetΩ ⊂ M be an open set with boundary∂Ω ofC1,1, then there
are positive constantsδ andC such that the inequality∫

Ω

|T (X)|2dvol ≤ C

∫
Ω

|L(X)|2dvol (5.11)

holds for anyX ∈ H1,2(Ω, TΩ) that vanishes on the intersection of∂Ω with some
ball B(P, δ), P ∈ ∂Ω.
Proof. Let X ∈ H1,2(Ω, TM) be a vector field withL(X) = 0 andX|γ = 0.
It can be proved by (3.3) thatX ∈ Hk,2(Ω, TM) for any k. ThereforeX ∈
C0,1(Ω, TM).

We can take a positive constantδ with the property that at every pointP ∈ ∂Ω
there are coordinates around the pointP such thatB(P, 2δ) ∩ Ω = {x : x1 >
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0} ∩ B(P, 2δ). LetΩr = (0, r) × {B(P, δ) ∩ ∂Ω}. Suppose the vector fieldX
satisfies the condition in the Theorem. Multiplying the two sides of the inequality

∂

∂x1 |X|2 ≤ |∇ ∂
∂x1
X|2 + |X|2

by r − x1 and integrating on the domainΩr we will get∫
Ωr

|X|2dvol ≤ r

∫
Ωr

(
|∇ ∂

∂x1
X|2 + |X|2

)
dvol.

We also have a constantC1 which depends only on the metricg so that

|∇ ∂
∂x1
X|2 ≤ C1

|L(x)|2 +
∑
j≥2

|∇ ∂

∂xj
X|2

 .
Using Theorem 1.1 w.r.t. the variables(x2, · · · , xn) gives∫

Ωr

|X|2dvol ≤ r

∫
Ωr

(
(1 + C)|X|2 + C|L(X)|2) dvol (5.12)

with a constantC independent ofr. If the vector fieldX also satisfies the equation
(5.2) on the domainΩ, we have then an inequality∫

Ωr

|X|2dvol ≤ r(1 + C)
∫
Ωr

|X|2dvol. (5.13)

This implies thatX = 0 on the domainΩr providedr(1+C) < 1. Hence the vector
fieldX vanishes at every point of the domainΩ by the strong unique continuation
property. The same contradiction argument as in the proof of Theorem 5.3 gives
the announced inequality (5.11).

In the case of the Lie derivative and if we assume thatΩ is convex in the sense
that the shortest geodesic between any two points inΩ is also contained inΩ,
we can weaken the condition on the size of the set at whichX vanishes. The key
observation is the following Lemma.

Lemma 5.6. Let i(M) be the injectivity radius of the manifoldM, X a Killing
field, i.e.,LXg = 0. If the Killing fieldX vanishes at the pointsP , Q with the
distance betweenP andQ less than the injectivity radiusi(M), then it will also
vanish on the shortest geodesic connecting the pointsP andQ.

Proof. Let ψt be the1−parameter group generated by the vector fieldsX. This
group consists of local isometries. It also has fixed pointsP andQ by the van-
ishing condition. Since the distance is less than the injectivity radius, the shortest
geodesic between the pointsP andQ will be unique and therefore invariant under
the isometry groupψt. Hence the Killing fieldX vanishes on the geodesic.

Corollary 5.7. Let M, i(M) andX be as in the above Lemma,γ ⊂ Ω with
diameterd(γ) = max{dist(P,Q);P,Q ∈ Ω} < i(M). If the Killing fieldX
vanishes at every pointP ∈ γ then it will also vanish on the convex envelope ofγ.
Furthermore, if dimH(γ) > n− 2, thenX vanishes identically on the setΩ.
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Proof. The first statement is a direct application of Lemma 5.6. Lete be the convex
envelope of the setγ, thene, as a convex set, has Hausdorff dimension at least
codimension 1 because dimH(γ) > n−2. If dimH(e∩Ω) ≤ n−2, then there is a
pointP ∈ ∂Ω withB(P, δ)∩∂Ω ⊂ e for someδ > 0. An application of Theorem
5.5 gives the second statement in the Corollary 5.7. Otherwise, we use Corollary
5.2 to assure thatX vanishes at every point ofΩ.

Theorem 5.8. LetΩ ⊂ M be a convex set with boundary∂Ω of C1,1, γ ⊂ ∂Ω
with dimH(γ) > n − 2, then there are positive constantsδ andC such that the
inequality ∫

Ω

|T (X)|2dvol ≤ C

∫
Ω

|LXg|2dvol (5.14)

holds for anyX ∈ H1,2(Ω, TΩ) that vanishes onγ.

Proof. Using Corollary 5.7 and the same contradiction argument as above.
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