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Abstract. We prove that for any real numberp with 1 < p ≤ n − 1, the map x
|x| : Bn →

Sn−1 is the unique minimizer of thep-energy functional
∫

Bn |∇u|p dx among all maps in
W 1,p(Bn, Sn−1) with boundary valuex on∂Bn.

1. Introduction

LetBn be the unit ball inRn with boundary∂Bn = Sn−1, whereSn−1 is the unit
sphere inRn. For anyp > 1, denote

W 1,p(Bn, Sn−1) = {u ∈ W 1,p(Bn,Rn) : |u| = 1 a.e.}.
We define thep-energy of a mapu ∈ W 1,p(Bn, Sn−1) with p > 1 by

Ep(u) =
∫

Bn

|∇u|p dx.(1)

We say that a mapu is “p-harmonic” ifu ∈ W 1,p(Bn, Sn−1) satisfies∫
Bn

|∇u|p−2∇u · ∇φdx =
∫

Bn

|∇u|pu · φdx

for all φ ∈ W 1,p
0 (Bn,Rn) ∩ L∞(Bn,Rn).

Hildebrandt, Kaul and Widman in [HKW] found that the mapx|x| from Bn to

Sn−1 is a weakly harmonic map (obviously also ap-harmonic map for1 < p < n).
The question of whether the mapx|x| is a minimizer ofEp for 1 < p < n has
aroused great interests. Whenp = 2 andn ≥ 7, J̈ager and Kaul in [JK] first proved
that the mapx

|x| is a minimizer ofE2. Brezis, Coron and Lieb in [BCL] proved
the minimality forp = 2 andn = 3 (with another proof in [ABL]). Lin in [L]
proved the minimality forp = 2 andn ≥ 3. Whenn ≥ 3, Coron and Gulliver
in [CG] proved that the mapx|x| is a minimizer of thep-energyEp for all integers
p ∈ {1, 2, 3, ..., n− 1} (with a simple proof in [AL]). The question of thep-energy
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minimality of x
|x| for any non-integerp remained open. It had no progress until

recently Hardt, Lin and Wang in [HLW] proved thatx|x| is a minimizer of the p-
energy functionalEp for p ∈ [n − 1, n). Forn ≥ 2 + p + 2

√
p andp ≥ 2, the

p-energy minimality of the mapx
|x| was proved independently by Wang in [W]

and the author in [Ho]. However, the question is still open for other non-integer
cases (see [H, section 8]). In this paper, we give an answer to the question in the
following:

Theorem A.Whenn ≥ 3 and1 < p ≤ n − 1, we have

Ep

(
x

|x|
)

≤ Ep(u)

for anyu ∈ W 1,p(Bn, Sn−1) with u = x on∂Bn.

For the proof of Theorem A, we consider it in two different cases. The first
case is2 ≤ p ≤ n − 1. Applying the Coarea formula of [F] and the important
approximation result for mappings into(n−1)-sphere ofW 1,n−1 in [CG], we first
prove Theorem 4. Then we improve the idea [CG] that the modified2-energy of any
mapu : Bn → Sn−1 is a constant times the average of

∫
r2−p|∇(πY ◦ u)|2 over

all 3-planesY in R
n whereπY mapss ∈ Sn−1 to the nearest point in the2-sphere

(see Lemma 5). Another key point is to introduce a polar coordinate inBn so that
we cutBn into three dimensional cones which are essentially equivalent to the
three dimensional ballB3. Through Theorem 4 and Lemma 5, we prove Theorem
6 which is slightly stronger than Theorem A for2 ≤ p ≤ n − 1. We would like
to point out that our proof for even integersp > 2 here is simpler than the one in
[CG] for integersp ∈ {3, ..., n − 1}. The second case is to considerp > 1. In this
case, we improve the sophisticated technique in [CG] of estimating the modified
1-energy of a mapu ∈ W 1,p(Bn, Sn−1) by averaging a related functional of the
composition ofu with all nearest-point projectionsπY of Sn−1 onto its geodesic
1-spheres (see Lemma 7). Theorem A is proved by Lemma 7 together with several
observations from the case one. Finally, we prove in Theorem 9 that the minimizer
x

|x| is the unique minimizer ofEp in W 1,p(Bn, Sn−1) with boundary valuex on
∂Bn.

Acknowledgement.The author would like to thank Ben Andrews for many useful discussions
and comments, Chang-You Wang and Xu-Jia Wang for some comments and Jean-Michel
Coron and Robert Gulliver for their interests.

2. The proof of Theorem A

Case I.2 ≤ p ≤ n − 1

For anyu ∈ W 1,p(Bn, Sn−1), we denote

J(u) =
[
det(∇u∇uT )

]1/2
.
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Lemma 1. (Coarea formula) Ifv ∈ C0,1(Ω,Sn−1) for an open setΩ ⊂ Bn, then∫
Ω

fJ(v) dx =
∫

Sn−1

∫
v−1(s)

f dH1 dASn−1(2)

for every integrablēR valued functionf onΩ.

Proof. See [F], Theorem 3.2.22. ��
Lemma 2. For eachs ∈ ∂Bn, letM(s) be a Lipschitz curve insideBn joining the
s to−s, and letf(t) ≥ 0 be a non-decreasing and continuous function int ∈ [0, 1].
Then ∫

M(s)
f(|x|) dH1(x) ≥ 2

∫ 1

0
f(r)dr.(∗)

Proof. Without loss of generality, sets = (1, 0, ..., 0) and−s = (−1, 0, ..., 0).
We splitM(s) into two Lipschitz curvesM+(s) andM−(s) whereM+(s) is a
Lipschitz curve inside the domain{x = (x1, ...xn) ∈ Bn : x1 ≥ 0} andM−(s) is
another Lipschitz curve in the domain{x = (x1, ...xn) ∈ Bn : x1 ≤ 0}. For each
ri ≥ 0, we consider the(n−1)-planeRn−1

ri
:= {x = (x1, ..., xn) ∈ R

n : x1 = ri}.
Let ri, ri+1 be two positive numbers with0 ≤ ri < ri+1 ≤ 1. Then we have two
n− 1-dimensional planesRn−1

ri
andR

n−1
ri+1

corresponding tori andri+1. Then we
see thatM+(s) must across at least one pointai on the planeRn−1

ri
and another

pointai+1 on the planeRn−1
ri+1

. Without loss of generality, we may assume that the
curveM+(s) from ai to ai+1 inside the domain between two planesR

n−1
ri

and
R

n−1
ri+1. The length of the curve ofM+

s betweenai andai+1 must be larger than or
equal to|ri+1 − ri| which is the distance of the two planesR

n−1
ri

andR
n−1
ri+1

. For
eachri, we have|ai| ≥ ri. Sincef(t) is non-decreasing int, we have

f(|ai|) ≥ f(ri).

Let ri, i = 1, ..., k, bek different points of[0, 1] with 0 = r1 < r2 < ... <
rk = 1. Then we havek corresponding pointsari

in M+(s), and

k−1∑
i=1

f(|ai|)|ai+1 − ai|M+(s) ≥
k−1∑
i=1

f(ri)|ri+1 − ri|.

Let tk be the maximum|ri+1 − ri| for i = 1, ..., k − 1. Letting tk → 0, we have∫
M+(s)

f(|x|)dH1 ≥
∫ 1

0
f(r)dr

so the inequality (∗) is proved. ��
Now we need an approximation result for maps inW 1,n−1(Bn, Sn−1). As in

[CG], we defineR to be the class of mapsv ∈ W 1,n−1(Bn;Sn−1) such that

(i) v = x
|x| on a neighbourhood of∂Bn;

(ii) v is locally Lipschitz onBn\Σ, for a setΣ of finitely many points; and
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(iii) for a.e.s ∈ Sn−1, v−1(s)∪v−1(−s)∪Σ is a regular, oriented1-dimensional
Lipschitz manifold ofBn having boundary only in∂Bn.

From [CG, Theorem 3.2], we have

Proposition 3. R is dense in

En−1
x = {u ∈ W 1,n−1(Bn, Sn−1) : u = x on∂Bn}.

Then we have

Theorem 4. Let f(r) ≥ 0 be a non-decreasing and continuous function inr ∈
[0, 1]. Then we have∫

Bn

f(r)|∇ x

|x| |
n−1 dx ≤

∫
Bn

f(r)|∇u|n−1 dx(3)

for every mapu ∈ W 1,n−1(Bn, Sn−1) with u = x on∂Bn, wherer = |x| in Bn.

Proof. According to Proposition 3, it is enough to consider all mapsv in the class
R. For eachv ∈ R, we denoteΩ = Bn\Σ andM(s) = v−1(s) ∩ v−1(−s) ∩ Σ.

Applying the Coarea formula (Lemma 1), we obtain∫
Ω

f(|x|)J(v) dx =
∫

Sn−1

∫
v−1(s)

f(|x|) dH1 dASn−1(4)

=
1
2

∫
Sn−1

∫
M(s)

f(|x|) dH1 dASn−1 ,

whereM(s) := v−1(s)∪v−1(−s)∪Σ is a regular, orientedLipschitz1-dimensional
manifold having boundary in∂Bn.

By Lemma 2, we have∫
M(s)

f(|x|) dH1 ≥ 2
∫ 1

0
f(r)dr.

Combining this with (4), we have∫
Bn

f(|x|)J(v) dx ≥
∫

Bn

f(|x|)J(
x

|x| ) dx.(5)

By applying the arithmetic geometric mean inequality to the eigenvalues of the
symmetric non-negative definite(n − 1) × (n − 1) matrix∇v∇vT , we have

|∇v|n−1(x) ≥ (n − 1)
n−1

2 J(v(x))(6)

where equality holds forv = x
|x| . By (5)–(6), we obtain

∫
Bn

f(|x|)|∇v|n−1 dx ≥
∫

Bn

f(|x|)|∇ x

|x| |
n−1 dx(7)

for anyv ∈ R. Theorem 4 follows. ��
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Given a3-planeY ⊂ R
n, we define

πY : Sn−1 → Sn−1 ∩ Y

byπY (u) = u′/|u′|, whereu′ is the orthogonal projection ofuontoY . The singular
set ofπY is the(n − 4)-sphereSn−1 ∩ Y .

We need to modify a lemma of [CG, Lemma 1.2] in the following:

Lemma 5. For anyp with 2 ≤ p < n, there is a constantc = c(n) > 0 such that
for anyu ∈ W 1,p(Bn, Sn−1)

c

∫
Bn

r2−p|∇u|2 dx =
∫

Y ∈G3(Rn)

∫
Bn

r2−p|∇(πY ◦ u)|2 dx dG(Y )(8)

wheredG is the bi-invariant volume form on the Grassmann manifoldG3(Rn).

Proof. As in [CG], for any tangent vectorV to Sn−1, we have

c|V |2 =
∫

Y ∈G3(Rn)
|DπY (V )|2 dG(Y ).

Then

cr2−p|∇u|2 =
∫

Y ∈G3(Rn)
r2−p|∇(πY ◦ u)|2 dG(Y ).(9)

Integrating both sides of (9) overBn, we obtain (8) by Fubini’s theorem. ��
Then we have

Theorem 6. For 2 ≤ p < n, we have∫
Bn

r2−p|∇ x

|x| |
2 dx ≤

∫
Bn

r2−p|∇u|2 dx(10)

for anyu ∈ W 1,p(Bn, Sn−1) with u = x on∂Bn.

Proof. LetY be a3-plane⊂ R
n. After a rotation, we may assume thatY = R

3. We
writex = (x1, x2, ..., xn) ∈ R

n, y = (x1, x2, x3) ∈ R
3, z = (x4, ..., xn) ∈ R

n−3

andr2 = |y|2 + |z|2. We also denotev = πY ◦ u andv0 = πY ◦ u0 = y
|y| with

u0 = x
|x| . We claim∫

Bn

r2−p|∇v|2 dx ≥
∫

Bn

r2−p|∇v0|2 dx.(∗∗)

To prove this, we introduce polar coordinates(r, φ1, ..., φn−1) inBn as follows:

x1 = r sinφ1 sinφ2... sinφn−2 sinφn−1

x2 = r cosφ1 sinφ2... sinφn−2 sinφn−1

x3 = r cosφ2... sinφn−2 sinφn−1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

xn−1 = r cosφn−2 sinφn−1

xn = r cosφn−1.
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Then the Jacobian in these polar coordinates is

J =
∂(x1, x2, ..., xn)
∂(r, φ1, .., φn−1)

= rn−1 sinn−2 φn−1 sinn−3 φn−2... sinφ2.

Using the above polar coordinates, we have∫
Bn

r2−p|∇yv|2 dx

=
∫ π

0
. . .

∫ π

0

∫ 2π

0

∫ 1

0
|∇yv|2rn−1+2−p sinn−2 φn−1 . . . sinφ2 dr dφ1 . . . dφn−1

=
∫ π

0
. . .

∫ π

0
Gφ3,...,φn−1(v, p) sinn−2 φn−1 sinn−3 φn−2 . . . sin2 φ3 dφ3 . . . dφn−1

where

Gφ3,...,φn−1(v, p) :=
∫ π

0

∫ 2π

0

∫ 1

0
rn−1−p|∇yv|2r2 sinφ2 dr dφ1 dφ2.

For any fixed pair(φ0
3, ..., φ

0
n−1), (r, φ1, φ2, φ

0
3, ...φ

0
n−1) are coordinates in a three

dimensional coneC0 inBn with boundary(1, φ1, φ2, φ
0
3, ...φ

0
n−1). Through a trans-

formation, the coneC0 is essentially equivalent to a3-dimensional ballB3. We
define polar coordinates inB3 by

x̃1 = r sinφ1 sinφ2

x̃2 = r cosφ1 sinφ2

x̃3 = r cosφ2.

Then from the polar coordinates in the coneC0, we know

x1 = x̃1 sinφ0
3... sinφ

0
n−2 sinφ0

n−1

x2 = x̃2 sinφ0
3... sinφ

0
n−2 sinφ0

n−1

x3 = x̃3 sinφ0
3... sinφ

0
n−2 sinφ0

n−1.

By Theorem 4 (with n=3), we have

Gφ0
3,...,φ0

n−1
(v, p) = c1

∫
B3

|x̃|n−1−p|∇x̃v|2 dx̃

≥ c1

∫
B3

|x̃|n−1−p|∇x̃v0|2 dx̃ = Gφ0
3,...,φ0

n−1
(v0, p)

due to the fact thatv|∂B3 = v0|∂B3 = x̃
|x̃| = y

|y| wherec1 is a constant depending

only onφ0
3, ..., φ

0
n−1. This implies∫

Bn

r2−p|∇v|2 dx ≥
∫

Bn

r2−p|∇yv|2 dx

≥
∫

Bn

r2−p|∇yv0|2 dx =
∫

Bn

r2−p|∇v0|2 dx.
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This proves our claim (∗∗). Combining (8) with the claim (∗∗) yields (10). ��
As a consequence of Theorem 4, we give a proof of Theorem A for the case of

2 ≤ p ≤ n − 1:

Proof of Theorem A for case one.Forx ∈ Bn, we have

|∇ x

|x| |
2 =

n − 1
r2 .

For anyu ∈ W 1,p(Bn, Sn−1) with u = x, we have from (10)∫
Bn

|∇ x

|x| |
p dx ≤

∫
Bn

|∇ x

|x| |
p−2|∇u|2 dx.

By the Hölder inequality, we have

∫
Bn

|∇ x

|x| |
p−2|∇v|2 ≤

[∫
Bn

|∇ x

|x| |
p

] p−2
p
[∫

Bn

|∇u|p
] 2

p

due to the fact thatp ≥ 2. Thus for2 ≤ p ≤ n − 1,∫
Bn

|∇ x

|x| |
p dx ≤

∫
Bn

|∇u|p dx

for anyu ∈ W 1,p(Bn, Sn−1) with u = x on∂Bn. ��
Case II. 1 < p ≤ n − 1

In this case, our proof is based on the techniques of [CG, Sect. 2].
Let Y be a2-plane inR

n and consider a projection

πY : Sn−1 → Sn−1 ∩ Y

defined byπY (u) = u′
|u′| whereu′ is the orthogoal projection ofu ontoY .

Lemma 7. For n > p ≥ 1, there exists a constantc = c(n) such that for any
u ∈ W 1,p(Bn, Sn−1)

c

∫
Bn

r1−p|∇u| dx ≥ −
∫

G2(Rn)

∫
Bn

r1−pJ(π ◦ u) dx dG(Y )

where−∫
G2(Rn) := 1

|G2(Rn)|
∫

G2(Rn) denotes the average over the Grassmann man-

ifold G2(Rn). Moreover, equality holds ifu = x
|x| is horizontally conformal.

Proof. For a2-planeY and a mapu, we writeZ for the 1-plane inTu(x)S
n−1

parallel to the subspace ofY orthogonal toπY (u(x)), whereTu(x)S
n−1 is the

tangent plane ofSn−1 atu(x).
As in [CG, Lemma 2.2], we have

r1−p|∇u| ≥ (n−1)
1
2 r1−p−

∫
G1(TuSn−1)

[
det(πZ∇u∇uTπT

Z )
]1/2

dG(Z).(11)
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Moreover,

∇(πY ◦ u)(x) =
πZ ◦ ∇u(x)

cos d(u(x), Y )

whered(u(x), Y ) is the distance inSn from u(x) ∈ Sn to Y ∩ Sn.
Thus

−
∫

G2(Rn)
J(πY ◦ u)(x) dG(Y )(12)

= c′ −
∫

G1(TuSn−1)

[
det(πZ∇u∇uTπT

Z )
]1/2

dG(Z)

wherec′ = c′(n) is independent ofx andu. Using (11)–(12), Lemma 7 is proved
with c = (n − 1)1/2c′ ��

Now we complete the proof of Theorem A.

Proof of Theorem A.Let Y be a2-plane inR
n. We denote

v = πY ◦ u : Bn → Sn−1 ∩ Y

andJ(v) = [det(∇v∇vT )]1/2.
Without loss of generality, we may assume thatY = R

2 andSn−1 ∩ Y = S1.
We write

∇v =

(
∂v1

∂x1
. . . ∂v1

∂xn
∂v2

∂x1
. . . ∂v2

∂xn

)

Then we considerMk to be any2 × 2 matrix defined by

Mk :=

(
∂v1

∂xk1

∂v1

∂xk2
∂v2

∂xk1

∂v2

∂xk2

)

wherek1 andk2 are two different elements of{1, 2, ..., n}, i.e.1 ≤ k1 < k2 ≤ n.
By Laplace’s identity, we have

det(∇v∇vT ) =
c(2)

n∑
k=1

(detMk)(detMT
k ) =

c(2)
n∑

k=1

|detMk|2

wherec(2)n = n!
(n−2)!2! . We writex = (y, z) ∈ R

n with y ∈ R
2 andz ∈ R

n−2.
Thus

J(v) ≥ Jy(v) = [det(∇yv∇yv
T )]1/2.

Then we have ∫
Bn

r1−pJ(v) dx ≥
∫

Bn

r1−pJy(v) dy

where equality holds ifv = v0 = π ◦ u0 with u0 = x
|x| .

By (5), we have∫
B2

rn−1−pJy(v) dy ≥
∫

B2
rn−1−pJy(

y

|y| ) dy.
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Then repeating a similar argument with polar coordinates inBn as in Theorem 6,
we have ∫

Bn

r1−pJ(v) dx ≥
∫

Bn

r1−pJ(v0) dx

wherev = πY u andv0 = πy ◦ u0.
By Lemma 7, we obtain∫

Bn

r1−p|∇u| dx ≥
∫

Bn

r1−p|∇u0| dx(13)

which implies ∫
Bn

|∇u|p dx ≥
∫

Bn

|∇u0|p dx

for all u ∈ W 1,p(Bn, Sn−1) with u = x on∂Bn. ��
By Fubini’s theorem, we have

Remark 8. For m,n ∈ Z withm > n, write x = (y, z) ∈ R
m with y ∈ R

n and
z ∈ R

m−n. Then the mapu0(x) = y
|y| : Bm → Sn−1 is a minimizer ofEp in

W 1,p(Bm, Sn−1) with boundary valueu0 on∂Bn.
Now we prove a uniqueness theorem in the following:

Theorem 9. For 1 < p ≤ n − 1, the mapu0 = x
|x| : Bn → Sn−1 is the unique

minimizer ofEp inW 1,p(Bn, Sn−1) with boundary valuex on∂Bn.

Proof. By Theorem A, we know thatu0 is a minimizer ofEp in W 1,p(Bn, Sn−1).
We assume thatu1 is another minimizer ofEp in W 1,p(Bn, Sn−1) with boundary
valuex on∂Bn, i.e. ∫

Bn

|∇u1|p dx =
∫

Bn

|∇u0|p dx.(14)

When1 < p ≤ n − 1, By (13), we know∫
Bn

|∇u0|p dx ≤
∫

Bn

|∇u0|p−1|∇u| dx

for anyu ∈ W 1,p with u = x on∂Bn. By Young’s inequality, we have

|∇u0|p−1|∇u1| ≤ p − 1
p

|∇u0|p +
1
p
|∇u1|p.(15)

By the assumption of minimizersu0, we have∫
Bn

|∇u0|p dx ≤
∫

Bn

|∇u0|p−1|∇u1| dx

≤
∫

Bn

(
p − 1
p

|∇u0|p +
1
p
|∇u1|p

)
dx =

∫
Bn

|∇u0|p dx.

which implies
|∇u1| = |∇u0| for a.e.x ∈ Bn.(16)
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Sinceu1 is a minimizer, it is also stationary, i.e. it satisfies∫
Bn

[|∇u|pdivφ − p|∇u|p−2uxiuxk
φk

xi
] dx = 0.

for all φ ∈ C1
0 (Bn; Rn). It is well-known thatu1 also satisfies the following

monotonicity formula:

ρp−n

∫
Bρ

|∇u1|p dx − σp−n

∫
Bσ

|∇u1|p dx = p

∫
Bρ\Bσ

rp−n|∂u1

∂r
|2 dx.

for two constantsσ, ρ with 0 < σ < ρ ≤ 1. Since|∇u1| = |∇u0| = (n−1)1/2

r , the
right side of the above monotonicity identity is zero which implies∫

Bρ\Bσ

rp−n|∂u1

∂r
|2 dx = 0.

This implies
∂u1

∂r
= 0, a.e. for0 < r ≤ 1

Thereforeu1 = u0 a.e. inBn ��
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[Lu] S. Luckhaus, Partial Ḧolder continuity for minima of certain energies among maps
into a Riemannian manifold, Ind. Univ. Math. J.37 (1988), 349–367

[W] C. Y. Wang, Minimality, stability, and perturbation for somep-harmonic maps, Ind.
Univ. Math.47 (1998), 725–740


