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Abstract. We prove that for any real numbgmwith 1 < p < n — 1, the ma% :B" —

S~ is the unique minimizer of the-energy functionalf,,, |Vu|P dz among all maps in
wh?(B™, ™) with boundary value: on 9B™.

1. Introduction

Let B™ be the unit ball irR™ with boundarypB™ = S"~!, whereS™~! is the unit
sphere iMR™. For anyp > 1, denote

WLP(B" §" ) = {u e W'P(B",R"): |ul=1 ael}.

We define they-energy of a map € Wh?(B", S7~1) with p > 1 by

@) Ey(u) = / [Vul? dz.

We say that a map is “p-harmonic” ifu € WP (B", §"~1) satisfies
/ |Vu|P™2Vu - Vo dr = /B |Vul|Pu - ¢ da

forall ¢ € Wy ?(B™,R") N L>®(B",R™).

Hildebrandt, Kaul and Widman in [HKW] found that the mﬁ@ from B" to
S™~1is aweakly harmonic map (obviously alsp-aarmonic map fot < p < n).
The question of whether the mq@l is a minimizer ofE, for 1 < p < n has
aroused great interests. Wher- 2 andn > 7, Jager and Kaul in [JK] first proved
that the mapljf—,‘ is a minimizer of £». Brezis, Coron and Lieb in [BCL] proved
the minimality forp = 2 andn = 3 (with another proof in [ABL]). Lin in [L]
proved the minimality fop = 2 andn > 3. Whenn > 3, Coron and Gulliver
in [CG] proved that the ma% is a minimizer of thep-energy £, for all integers
p € {1,2,3,...,n— 1} (with a simple proof in [AL]). The question of theenergy
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minimality of 5” for any non-integep remained open. It had no progress until
recently Hardt L|n and Wang in [HLW] proved thrf# is a minimizer of the p-
energy functional, for p € [n — 1,n). Forn > 2 +p + 2,/p andp > 2, the
p-energy minimality of the ma% was proved independently by Wang in [W]
and the author in [Ho]. However, the question is still open for other non-integer
cases (see [H, section 8]). In this paper, we give an answer to the question in the
following:

Theorem A.Whemnn > 3 and1 < p < n — 1, we have

E, ([;) < B, (u)

for anyu € WhP(B™, S"~1) withu = z ondB".

For the proof of Theorem A, we consider it in two different cases. The first
case is2 < p < n — 1. Applying the Coarea formula of [F] and the important
approximation result for mappings inta — 1)-sphere of/ 11 in [CG], we first
prove Theorem 4. Then we improve the idea [CG] that the modifiedergy of any
mapu : B" — S™~! is a constant times the average [of*~?|V (my o u)|? over
all 3-planesY in R™ wherery mapss € S™~! to the nearest point in trizsphere
(see Lemma 5). Another key point is to introduce a polar coordinai#’iso that
we cut B™ into three dimensional cones which are essentially equivalent to the
three dimensional bafB?. Through Theorem 4 and Lemma 5, we prove Theorem
6 which is slightly stronger than Theorem A 2r< p < n — 1. We would like
to point out that our proof for even integess> 2 here is simpler than the one in
[CG] forintegersp € {3, ...,n — 1}. The second case is to consiger 1. In this
case, we improve the sophisticated technique in [CG] of estimating the modified
1-energy of a map € W1?(B", S"~1) by averaging a related functional of the
composition ofu, with all nearest-point projections, of S»~! onto its geodesic
1-spheres (see Lemma 7). Theorem A is proved by Lemma 7 together with several
observations from the case one. Finally, we prove in Theorem 9 that the minimizer
Tal is the unique minimizer of, in W'?(B", S"~!) with boundary value: on
oB™.
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and comments, Chang-You Wang and Xu-Jia Wang for some comments and Jean-Michel
Coron and Robert Gulliver for their interests.

2. The proof of Theorem A

Casel.2<p<n-1

For anyu € W1P(B", S"~1), we denote

J(u) = [de(VuvuT)]?.
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Lemma 1. (Coarea formula) Iy € C%1(£2, S7~1) for an open sef2 C B™, then

@ /Q FI(v) da = /S / L T A

for every integrableR valued functionf on £2.
Proof. See [F], Theorem 3.2.22. O

Lemma 2. For eachs € 9B™, let M (s) be a Lipschitz curve insidB™ joining the
sto—s, andletf(t) > 0 be anon-decreasing and continuous functiondn|0, 1].
Then

) /M(s) F(lel) dH (@) > 2 / F(r)dr

Proof. Without loss of generality, set = (1,0,...,0) and—s = (-1,0,...,0).
We split M (s) into two Lipschitz curves\/ *(s) and M~ (s) where M *(s) is a
Lipschitz curve inside the domaix: = (1, ...x,) € B™ : 21 > 0} andM ~(s) is
another Lipschitz curve in the domajn = (x4, ...x,) € B™ : 21 < 0}. For each
r; > 0,we considerthén—1)-planeR? ! := {2 = (1,...,2,) € R" : 21 = 14}
Letr;, r;+1 be two positive numbers With < r; < r;+1 < 1. Then we have two
n — 1-dimensional plane®!' ! andR} "~ corresponding to; andr;; 1. Then we
see thatM *(s) must across at least one pointon the planeéR?~! and another
pointa;1 on the planeRy’ ™ L, Without loss of generality, we may assume that the
curve M *(s) from a; to a;,; inside the domain between two plangs ™ L and
R™-Y . The length of the curve af/; betweeru; anda;,; must be larger than or

ri+1°
equal to|r;+1 — 7| which is the distance of the two plang& ' andR}'"*. For

Ti41"

eachr;, we havela;| > r;. Sincef(t) is non-decreasing ity we have

fllail) = f(rq).

Letr;, ¢ = 1,..., k, bek different points of[0, 1] with 0 = r; < rs < ... <
rr = 1. Then we havé corresponding points,, in M, (s), and

>T‘

—1 k—1

flaiDlaiv1 — aipr+(s) >Zf Mrivr —ril.

=1

Let ¢, be the maximunyr;;q — r;| fori =1,....k — 1. Letting¢;, — 0, we have

1
/ f(lz)yaH? > / F(r)dr
M+(s) 0

so the inequality«) is proved. O

Now we need an approximation result for mapsiit-"—1(B", S"~1). Asin
[CG], we defineR to be the class of mapse Win=1(B"; S"~1) such that

i v= | ;ona neighbourhood @i B™;
(ii) wvis locally Lipschitz onB™\ X, for a set)’ of finitely many points; and
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(iii) fora.e.s € S 1, v~ (s)Uv~1(—s)U X is aregular, orientet-dimensional
Lipschitz manifold of B™ having boundary only i®B™.

From [CG, Theorem 3.2], we have

Proposition 3. R is dense in
Ert ={uecwt1(B" S" ') :u=x0ndB"}.
Then we have

Theorem 4. Let f(r) > 0 be a non-decreasing and continuous functiom i
[0,1]. Then we have

L in— n—
© et [ vt as

for every mapy € Whn=1(B" S"~1) withu = 2 ondB™, wherer = |z| in B™.

Proof. According to Proposition 3, it is enough to consider all mafsthe class
R. For eachy € R, we denote? = B™\X andM (s) = v 1(s) Nv~1(—s) N 2.
Applying the Coarea formula (Lemma 1), we obtain

— 1
@ [ sebwde= [ e aages

1
—5 [ ] sl dage,
JSn=1 JM(s)

whereM (s) := v~ (s)Uv~! (—s)UX isaregular, oriented Lipschitzdimensional
manifold having boundary ifB™.
By Lemma 2, we have

-1
/ f(|z|) dH > 2/ f(r)dr.
M(s) 0

Combining this with (4), we have

X
®) fz)) () dz > [ f(|2])J () da-
Bn Bn |z
By applying the arithmetic geometric mean inequality to the eigenvalues of the
symmetric non-negative definite — 1) x (n — 1) matrix VoVoT, we have
(6) Vo""Hz) > (n = 1)"F J(v(z))
where equality holds for = ﬁ By (5)—(6), we obtain

™ FeivoP =t de > [ (a9 da

Br ||

for anyv € R. Theorem 4 follows. O
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Given a3-planeY C R", we define
Ty 5"t Sminy

byry (u) = «'/|u'|, whereu' is the orthogonal projection afontoY . The singular
set ofry is the(n — 4)-sphereS" ' NY.
We need to modify a lemma of [CG, Lemma 1.2] in the following:

Lemma 5. For anyp with 2 < p < n, there is a constant = ¢(n) > 0 such that
foranyu € Whr(Bn, Sn-1)
®) C/ r27P|Vul® do = / / r27P|V(ry ou)|? dz dG(Y)

n YeGs(Rm) JBn

wheredG is the bi-invariant volume form on the Grassmann manifgjdR"™).

Proof. As in [CG], for any tangent vectdr to S™~!, we have
cV|? :/ |Dry (V)2 dG(Y).
YeG3(R™)

Then
9) er? P |Vul|* = / r27P|V (rry o u)|? dG(Y).
Y eGs(R")
Integrating both sides of (9) ové?™, we obtain (8) by Fubini’s theorem. O
Then we have

Theorem 6. For 2 < p < n, we have
(10) / 2P|V

for anyu € WP (B", S"~1) withu = x ondB".

Proof. LetY be a3-planec R™. After a rotation, we may assume that= R*. We
write z = (21,79, ..., ) € R", y = (11,22, 23) € R3, 2 = (24, ..., 2,) € R*3
andr? = |y|> + |z|2. We also denote = 7y o v andvg = 7y o ug = ﬁ with
Uy = ‘ff—' We claim

ﬁ|2dx§/ 2P| Vul? dx
x Bn

() /T2_p|Vv|2dm2/ r27P|Vuo|? d.

To prove this, we introduce polar coordinatesps, ..., ¢,,—1 ) in B™ as follows:

r1 = 7Sin ¢ sin @s...sin ¢y _o Sin ¢y 1

To = 7 COS @1 SN ¢s... siN @, _o sin ¢, 1

T3 = 7 COS(Qg...8IN Py _o8in ¢y, 1
Tp—1 = TCOSQﬁan Singbnfl

Ty = TCOSQp_1.
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Then the Jacobian in these polar coordinates is

01, T2, 000y Tn) g

J = Sin" "2 g1 sin" "3 By, _a... sin po.

N 6(7", ¢17 .y ¢n71) -

Using the above polar coordinates, we have

/ r2 7P|V, v do
B,

T T 2 1
:// / / |V o2 2P sin™ 2 ¢, 1 .. .singodrde; ... dbn_y
0 0 0 0

s ™
:// Gy by (V,0)SIN" "2 1 8IN" 3 Bpy_n...8I0° P3dep3 ... ddp_1
0 0

where

T 27 1
Gyt s (0,7) = / / / PRI, 020 sin g dr dy dbo.
0 0 0

For any fixed pai(¢9, ..., 9% ), (v, ¢1, ¢2, ¢3, ...¢% _,) are coordinates in a three

Fn—1

dimensional con&; in B™ with boundary(1, ¢1, ¢2, ¢9, ...¢% _;). Through atrans-

n—1
formation, the coné, is essentially equivalent to &xdimensional ballB3. We
define polar coordinates iR? by

Z1 = rsin ¢ sin g
Zo = T COS ¢ Sin ¢g

T3 = 7 COS Po.
Then from the polar coordinates in the cdfhg we know

r1 = Fpsing)...sin ) _,sind?_,

Ty = Tosin@)...sindd_,sind?

0

T3 = T3sin¢J...sin @) _,sin 2.

By Theorem 4 (with n=3), we have
......

.....

due to the fact that|sgs = volsns = ﬁ = f’ﬂ wherec; is a constant depending
only ongy, ..., % ;. This implies

/r27p|Vv\2dz2/ 2P|V, |* dz

2/ r2*p\vyv0\2dx:/ 2P|V |? da.
n B'n/
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This proves our claims(x). Combining (8) with the claim«x) yields (10). O
As a consequence of Theorem 4, we give a proof of Theorem A for the case of
2<p<n-1:

Proof of Theorem A for case on&orz € B™, we have

vip=221
E

For anyu € Wh?(B", S»~1) with u = z, we have from (10)

r2

/ |V%|pdaz§/ |v| P .

By the Holder inequality, we have

/ |v&|p—2|vv|2 < |:/ |v£ p:| P [/ Vup:| P
B 7] B |zl Bn

due to the fact thgt > 2. Thusfor2 < p <n —1,

/ |V£|pdx§/ |Vul? dz
B |7 Bn

foranyu € WiP(B" S"~1) with u = 2 on9B". O
Casell.l<p<n-1

In this case, our proof is based on the techniques of [CG, Sect. 2].
LetY be a2-plane inR™ and consider a projection

Ty 8" 5 8T lny
defined byry (u) = T ’I whereu’ is the orthogoal projection af ontoY.
Lemma 7. For n > p > 1, there exists a constart= c(n) such that for any
uwe Whe(B® §n=1)
/ 1P|Vl dx > / P J(1 o u)dr dG(Y)

n Ga(R™) n

— 1
yvhereJCG2 ®) = TGED] fcz (&) denotes the average over the Grassmann man-
ifold Go(R™). Moreover, equality holds if = | i is horizontally conformal.

Proof. For a2-planeY and a mapu, we write Z for the 1-plane inTu(I)S"—1
parallel to the subspace af orthogonal torry (u(x)), whereT},,)S™"~! is the
tangent plane o™~ ! atu(z).

As in [CG, Lemma 2.2], we have

A1) 7P|V > (n—1)%r1—P][ [det(r,VuvuTrL)]"? dG(2).
G1(T, S 1)
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Moreover,
7wz o Vu(x)

cosd(u(z),Y)

whered(u(z),Y) is the distance i5™ from u(z) € S"toY N S™.
Thus

(12) ][ T(ry o u)(x) dG(Y)
G2 (R™)

V(ry ou)(z) =

= c'][ [det(r;VuVu'7})] 1z dG(Z)
G1 (T, Sm—1)
wherec’ = ¢/(n) is independent of andu. Using (11)—(12), Lemma 7 is proved
with ¢ = (n — 1)/2¢ O
Now we complete the proof of Theorem A.
Proof of Theorem ALetY be a2-plane inR"™. We denote
v=myou:B"— S"INYy

and.J(v) = [det(VoVoT)]/2,
Without loss of generality, we may assume thiat R? andS" ' NY = S*.

We write
vt dul
_ | 9z " oa,
Vo= 52 P
Oxry " Oxy
Then we considelM}, to be any2 x 2 matrix defined by

vt ovt
R azkl Bxk
My, = v 81122

6:%1 6mk2

wherek; andk, are two different elements dfl, 2, ..., n},i.e.1 < ky < ks < n.
By Laplace’s identity, we have

e
det(Vovo”) =) "(detMy)(det M) Z | det My|?
k=1
wherec!?) = m We writex = (y,2) € R® with y € R? andz € R" 2.
Thus

J(v) > Jy(v) = [det(V,oV,07)]2
Then we have

<

rl_pJ(U)de/ P

n

(v) dy
B

where equality holds it = vy = 7 o ug with ug = ﬁ
By (5), we have

[y [y
B2 B2 \y|
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Then repeating a similar argument with polar coordinateB’iras in Theorem 6,
we have

/rlpr(v)dIZ/ 7P J(vg) da

wherev = myu andvg = 7, o ug.
By Lemma 7, we obtain

(13) / 7P|\ Vu| dx > / 7P| V| do
which implies
/ |VulP dx Z/ [Vug|? dz
BTL Bn,
forallu € WhP(B", S"~1) with u = x on9dB™. 0

By Fubini’s theorem, we have

Remark 8. For m,n € Z withm > n, writez = (y, z) € R™ withy € R™ and

z € R™™ ™. Then the mapy(z) = @4‘ : B™ — $™~1is a minimizer ofE,, in
whr(B™, §"=1) with boundary value:, on 9B™.
Now we prove a uniqueness theorem in the following:

Theorem 9. For 1 < p < n — 1, the mapug = ﬁ : B™ — S"~1is the unique
minimizer ofE, in W1*(B™, S"~1) with boundary value: on 9B".

Proof. By Theorem A, we know that, is a minimizer ofs, in Wt-»(B", S"~1).
We assume that; is another minimizer ofz, in W?(B", S*~1) with boundary
valuez on9dB", i.e.

(14) / |Vuq|P dz :/ |Vugl? dz.
B‘n, Bn
Whenl < p < n — 1, By (13), we know
/ [Vugl? de < / |Vuo [P~ [ Vu| de
n B7L

for anyu € W1P with w = x ondB™. By Young's inequality, we have

-1 1
(15) Vo~ V| < 2= |Vuo|P + = |V |P.

p p
By the assumption of minimizers,, we have

/ \Vu0|pda:§/ |Vuo [P~ Vuy | da
n B”L

-1 1
§/ <p|Vu0p +|Vu1|p> dx:/ [Vugl? dz.
n p p Bn
which implies

(16) |Vuy| = |Vug| fora.ex € B".
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Sinceu; is a minimizer, it is also stationary, i.e. it satisfies
[ 19 updive — Vs s, 6k, dz =0,
for all ¢ € C3(B™;R™). It is well-known thatu; also satisfies the following

monotonicity formula:

pp*"/ |Vu1\pdx70p7”/ |Vu1|pdx:p/ rp’”|%|2dw.
B, B, B,\B, or

. . 1Y/
for two constants, p with 0 < ¢ < p < 1. Since|Vu,| = |Vug| = M, the

right side of the above monotonicity identity is zero which implies ’

/ 7'p*"|%|2d1‘:0.
Bp\BU 8T

This implies

%:0, ae foro<r<1

or
Thereforeu; = ug a.e. inB™ O
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