DOI (Digital Object Identifier) 10.1007/s005260100082

Min-Chun Hong

On the minimality of the $p\text{-harmonic map} \\ \frac{x}{|x|}:B^n \to S^{n-1}$

Received: 8 November 2000 / Accepted: 4 December 2000 / Published online: 4 May 2001 – © Springer-Verlag 2001

Abstract. We prove that for any real number p with $1 , the map <math>\frac{x}{|x|} : B^n \to S^{n-1}$ is the unique minimizer of the p-energy functional $\int_{B^n} |\nabla u|^p dx$ among all maps in $W^{1,p}(B^n, S^{n-1})$ with boundary value x on ∂B^n .

1. Introduction

Let B^n be the unit ball in \mathbb{R}^n with boundary $\partial B^n = S^{n-1}$, where S^{n-1} is the unit sphere in \mathbb{R}^n . For any p > 1, denote

$$W^{1,p}(B^n, S^{n-1}) = \{ u \in W^{1,p}(B^n, \mathbb{R}^n) : |u| = 1 \text{ a.e. } \}.$$

We define the *p*-energy of a map $u \in W^{1,p}(B^n, S^{n-1})$ with p > 1 by

(1)
$$E_p(u) = \int_{B^n} |\nabla u|^p \, dx.$$

We say that a map u is "*p*-harmonic" if $u \in W^{1,p}(B^n, S^{n-1})$ satisfies

$$\int_{B^n} |\nabla u|^{p-2} \nabla u \cdot \nabla \phi \, dx = \int_{B^n} |\nabla u|^p u \cdot \phi \, dx$$

for all $\phi \in W_0^{1,p}(B^n, \mathbb{R}^n) \cap L^{\infty}(B^n, \mathbb{R}^n)$.

Hildebrandt, Kaul and Widman in [HKW] found that the map $\frac{x}{|x|}$ from B^n to S^{n-1} is a weakly harmonic map (obviously also a *p*-harmonic map for $1). The question of whether the map <math>\frac{x}{|x|}$ is a minimizer of E_p for 1 has aroused great interests. When <math>p = 2 and $n \ge 7$, Jäger and Kaul in [JK] first proved that the map $\frac{x}{|x|}$ is a minimizer of E_2 . Brezis, Coron and Lieb in [BCL] proved the minimality for p = 2 and n = 3 (with another proof in [ABL]). Lin in [L] proved the minimality for p = 2 and $n \ge 3$. When $n \ge 3$, Coron and Gulliver in [CG] proved that the map $\frac{x}{|x|}$ is a minimizer of the *p*-energy E_p for all integers $p \in \{1, 2, 3, ..., n-1\}$ (with a simple proof in [AL]). The question of the *p*-energy

Research of the author was supported by the Australian Research Council

M.-C. Hong: School of Mathematical Sciences, The Australian National University, Canberra, ACT 0200, Australia

minimality of $\frac{x}{|x|}$ for any non-integer p remained open. It had no progress until recently Hardt, Lin and Wang in [HLW] proved that $\frac{x}{|x|}$ is a minimizer of the penergy functional E_p for $p \in [n-1,n)$. For $n \geq 2 + p + 2\sqrt{p}$ and $p \geq 2$, the p-energy minimality of the map $\frac{x}{|x|}$ was proved independently by Wang in [W] and the author in [Ho]. However, the question is still open for other non-integer cases (see [H, section 8]). In this paper, we give an answer to the question in the following:

Theorem A. When $n \ge 3$ and 1 , we have

$$E_p\left(\frac{x}{|x|}\right) \le E_p(u)$$

for any $u \in W^{1,p}(B^n, S^{n-1})$ with u = x on ∂B^n .

For the proof of Theorem A, we consider it in two different cases. The first case is $2 \le p \le n-1$. Applying the Coarea formula of [F] and the important approximation result for mappings into (n-1)-sphere of $W^{1,n-1}$ in [CG], we first prove Theorem 4. Then we improve the idea [CG] that the modified 2-energy of any map $u: B^n \to S^{n-1}$ is a constant times the average of $\int r^{2-p} |\nabla(\pi_Y \circ u)|^2$ over all 3-planes Y in \mathbb{R}^n where π_Y maps $s \in S^{n-1}$ to the nearest point in the 2-sphere (see Lemma 5). Another key point is to introduce a polar coordinate in B^n so that we cut B^n into three dimensional cones which are essentially equivalent to the three dimensional ball B^3 . Through Theorem 4 and Lemma 5, we prove Theorem 6 which is slightly stronger than Theorem A for $2 \le p \le n-1$. We would like to point out that our proof for even integers p > 2 here is simpler than the one in [CG] for integers $p \in \{3, ..., n-1\}$. The second case is to consider p > 1. In this case, we improve the sophisticated technique in [CG] of estimating the modified 1-energy of a map $u \in W^{1,p}(B^n, S^{n-1})$ by averaging a related functional of the composition of u with all nearest-point projections π_Y of S^{n-1} onto its geodesic 1-spheres (see Lemma 7). Theorem A is proved by Lemma 7 together with several observations from the case one. Finally, we prove in Theorem 9 that the minimizer $\frac{x}{|x|}$ is the unique minimizer of E_p in $W^{1,p}(B^n, S^{n-1})$ with boundary value x on ∂B^n .

Acknowledgement. The author would like to thank Ben Andrews for many useful discussions and comments, Chang-You Wang and Xu-Jia Wang for some comments and Jean-Michel Coron and Robert Gulliver for their interests.

2. The proof of Theorem A

Case I. $2 \le p \le n-1$

For any $u \in W^{1,p}(B^n, S^{n-1})$, we denote

$$J(u) = \left[\det(\nabla u \nabla u^T)\right]^{1/2}.$$

Lemma 1. (*Coarea formula*) If $v \in C^{0,1}(\Omega, S^{n-1})$ for an open set $\Omega \subset B^n$, then

(2)
$$\int_{\Omega} fJ(v) \, dx = \int_{S^{n-1}} \int_{v^{-1}(s)} f \, dH^1 \, dA_{S^{n-1}}$$

for every integrable \mathbb{R} valued function f on Ω .

Proof. See [F], Theorem 3.2.22.

Lemma 2. For each $s \in \partial B^n$, let M(s) be a Lipschitz curve inside B^n joining the s to -s, and let $f(t) \ge 0$ be a non-decreasing and continuous function in $t \in [0, 1]$. Then

(*)
$$\int_{M(s)} f(|x|) \, d\mathcal{H}^1(x) \ge 2 \int_0^1 f(r) dr.$$

Proof. Without loss of generality, set s = (1, 0, ..., 0) and -s = (-1, 0, ..., 0). We split M(s) into two Lipschitz curves $M^+(s)$ and $M^-(s)$ where $M^+(s)$ is a Lipschitz curve inside the domain $\{x = (x_1, ..., x_n) \in B^n : x_1 \ge 0\}$ and $M^-(s)$ is another Lipschitz curve in the domain $\{x = (x_1, ..., x_n) \in B^n : x_1 \le 0\}$. For each $r_i \ge 0$, we consider the (n-1)-plane $\mathbb{R}_{r_i}^{n-1} := \{x = (x_1, ..., x_n) \in \mathbb{R}^n : x_1 = r_i\}$. Let r_i, r_{i+1} be two positive numbers with $0 \le r_i < r_{i+1} \le 1$. Then we have two n-1-dimensional planes $\mathbb{R}_{r_i}^{n-1}$ and $\mathbb{R}_{r_{i+1}}^{n-1}$ corresponding to r_i and r_{i+1} . Then we see that $M^+(s)$ must across at least one point a_i on the plane $\mathbb{R}_{r_i}^{n-1}$ and another point a_{i+1} on the plane $\mathbb{R}_{r_{i+1}}^{n-1}$. Without loss of generality, we may assume that the curve $M^+(s)$ from a_i to a_{i+1} inside the domain between two planes $\mathbb{R}_{r_i}^{n-1}$ and $\mathbb{R}_{r_{i+1}}^{n-1}$. The length of the curve of M_s^+ between a_i and a_{i+1} must be larger than or equal to $|r_{i+1} - r_i|$ which is the distance of the two planes $\mathbb{R}_{r_i}^{n-1}$ and $\mathbb{R}_{r_{i+1}}^{n-1}$. For each r_i , we have $|a_i| \ge r_i$. Since f(t) is non-decreasing in t, we have

$$f(|a_i|) \ge f(r_i).$$

Let r_i , i = 1, ..., k, be k different points of [0, 1] with $0 = r_1 < r_2 < ... < r_k = 1$. Then we have k corresponding points a_{r_i} in $M_+(s)$, and

$$\sum_{i=1}^{k-1} f(|a_i|) |a_{i+1} - a_i|_{M^+(s)} \ge \sum_{i=1}^{k-1} f(r_i) |r_{i+1} - r_i|.$$

Let t_k be the maximum $|r_{i+1} - r_i|$ for i = 1, ..., k - 1. Letting $t_k \to 0$, we have

$$\int_{M^+(s)} f(|x|) d\mathcal{H}^1 \ge \int_0^1 f(r) dr$$

so the inequality (*) is proved.

Now we need an approximation result for maps in $W^{1,n-1}(B^n, S^{n-1})$. As in [CG], we define \mathcal{R} to be the class of maps $v \in W^{1,n-1}(B^n; S^{n-1})$ such that

- (i) $v = \frac{x}{|x|}$ on a neighbourhood of ∂B^n ;
- (ii) v is locally Lipschitz on $B^n \setminus \Sigma$, for a set Σ of finitely many points; and

П

(iii) for a.e. $s \in S^{n-1}$, $v^{-1}(s) \cup v^{-1}(-s) \cup \Sigma$ is a regular, oriented 1-dimensional Lipschitz manifold of B^n having boundary only in ∂B^n .

From [CG, Theorem 3.2], we have

Proposition 3. \mathcal{R} is dense in

$$\mathcal{E}_x^{n-1} = \{ u \in W^{1,n-1}(B^n, S^{n-1}) : u = x \text{ on } \partial B^n \}.$$

Then we have

Theorem 4. Let $f(r) \ge 0$ be a non-decreasing and continuous function in $r \in [0, 1]$. Then we have

(3)
$$\int_{B^n} f(r) |\nabla \frac{x}{|x|}|^{n-1} \, dx \le \int_{B^n} f(r) |\nabla u|^{n-1} \, dx$$

for every map $u \in W^{1,n-1}(B^n, S^{n-1})$ with u = x on ∂B^n , where r = |x| in B^n .

Proof. According to Proposition 3, it is enough to consider all maps v in the class \mathcal{R} . For each $v \in \mathcal{R}$, we denote $\Omega = B^n \setminus \Sigma$ and $M(s) = v^{-1}(s) \cap v^{-1}(-s) \cap \Sigma$.

Applying the Coarea formula (Lemma 1), we obtain

(4)
$$\int_{\Omega} f(|x|) J(v) \, dx = \int_{S^{n-1}} \int_{v^{-1}(s)} f(|x|) \, d\mathcal{H}^1 \, dA_{S^{n-1}}$$
$$= \frac{1}{2} \int_{S^{n-1}} \int_{M(s)} f(|x|) \, d\mathcal{H}^1 \, dA_{S^{n-1}}.$$

where $M(s) := v^{-1}(s) \cup v^{-1}(-s) \cup \Sigma$ is a regular, oriented Lipschitz 1-dimensional manifold having boundary in ∂B^n .

By Lemma 2, we have

$$\int_{M(s)} f(|x|) \, d\mathcal{H}^1 \ge 2 \int_0^1 f(r) dr$$

Combining this with (4), we have

(5)
$$\int_{B^n} f(|x|)J(v) \, dx \ge \int_{B^n} f(|x|)J(\frac{x}{|x|}) \, dx$$

By applying the arithmetic geometric mean inequality to the eigenvalues of the symmetric non-negative definite $(n-1) \times (n-1)$ matrix $\nabla v \nabla v^T$, we have

(6)
$$|\nabla v|^{n-1}(x) \ge (n-1)^{\frac{n-1}{2}} J(v(x))$$

where equality holds for $v = \frac{x}{|x|}$. By (5)–(6), we obtain

(7)
$$\int_{B^n} f(|x|) |\nabla v|^{n-1} \, dx \ge \int_{B^n} f(|x|) |\nabla \frac{x}{|x|}|^{n-1} \, dx$$

for any $v \in \mathcal{R}$. Theorem 4 follows.

Given a 3-plane $Y \subset \mathbb{R}^n$, we define

$$\pi_Y: S^{n-1} \to S^{n-1} \cap Y$$

by $\pi_Y(u) = u'/|u'|$, where u' is the orthogonal projection of u onto Y. The singular set of π_Y is the (n-4)-sphere $S^{n-1} \cap Y$.

We need to modify a lemma of [CG, Lemma 1.2] in the following:

Lemma 5. For any p with $2 \le p < n$, there is a constant c = c(n) > 0 such that for any $u \in W^{1,p}(B^n, S^{n-1})$

(8)
$$c \int_{B^n} r^{2-p} |\nabla u|^2 dx = \int_{Y \in G_3(\mathbb{R}^n)} \int_{B^n} r^{2-p} |\nabla (\pi_Y \circ u)|^2 dx \, dG(Y)$$

where dG is the bi-invariant volume form on the Grassmann manifold $G_3(\mathbb{R}^n)$.

Proof. As in [CG], for any tangent vector V to S^{n-1} , we have

$$c|V|^2 = \int_{Y \in G_3(\mathbb{R}^n)} |D\pi_Y(V)|^2 \, dG(Y).$$

Then

(9)
$$cr^{2-p}|\nabla u|^2 = \int_{Y \in G_3(\mathbb{R}^n)} r^{2-p}|\nabla(\pi_Y \circ u)|^2 dG(Y).$$

Integrating both sides of (9) over B^n , we obtain (8) by Fubini's theorem.

Then we have

Theorem 6. For $2 \le p < n$, we have

(10)
$$\int_{B^n} r^{2-p} |\nabla \frac{x}{|x|}|^2 \, dx \le \int_{B^n} r^{2-p} |\nabla u|^2 \, dx$$

for any $u \in W^{1,p}(B^n, S^{n-1})$ with u = x on ∂B^n .

Proof. Let Y be a 3-plane $\subset \mathbb{R}^n$. After a rotation, we may assume that $Y = \mathbb{R}^3$. We write $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, $y = (x_1, x_2, x_3) \in \mathbb{R}^3$, $z = (x_4, ..., x_n) \in \mathbb{R}^{n-3}$ and $r^2 = |y|^2 + |z|^2$. We also denote $v = \pi_Y \circ u$ and $v_0 = \pi_Y \circ u_0 = \frac{y}{|y|}$ with $u_0 = \frac{x}{|x|}$. We claim

(**)
$$\int_{B^n} r^{2-p} |\nabla v|^2 \, dx \ge \int_{B^n} r^{2-p} |\nabla v_0|^2 \, dx.$$

To prove this, we introduce polar coordinates $(r, \phi_1, ..., \phi_{n-1})$ in B^n as follows:

$$x_{1} = r \sin \phi_{1} \sin \phi_{2} \dots \sin \phi_{n-2} \sin \phi_{n-1}$$

$$x_{2} = r \cos \phi_{1} \sin \phi_{2} \dots \sin \phi_{n-2} \sin \phi_{n-1}$$

$$x_{3} = r \cos \phi_{2} \dots \sin \phi_{n-2} \sin \phi_{n-1}$$

$$\dots$$

$$x_{n-1} = r \cos \phi_{n-2} \sin \phi_{n-1}$$

$$x_{n} = r \cos \phi_{n-1}.$$

Then the Jacobian in these polar coordinates is

$$J = \frac{\partial(x_1, x_2, \dots, x_n)}{\partial(r, \phi_1, \dots, \phi_{n-1})} = r^{n-1} \sin^{n-2} \phi_{n-1} \sin^{n-3} \phi_{n-2} \dots \sin \phi_2.$$

Using the above polar coordinates, we have

$$\begin{aligned} &\int_{B^n} r^{2-p} |\nabla_y v|^2 \, dx \\ &= \int_0^{\pi} \dots \int_0^{\pi} \int_0^{2\pi} \int_0^1 |\nabla_y v|^2 r^{n-1+2-p} \sin^{n-2} \phi_{n-1} \dots \sin \phi_2 \, dr \, d\phi_1 \dots \, d\phi_{n-1} \\ &= \int_0^{\pi} \dots \int_0^{\pi} G_{\phi_3,\dots,\phi_{n-1}}(v,p) \sin^{n-2} \phi_{n-1} \sin^{n-3} \phi_{n-2} \dots \sin^2 \phi_3 \, d\phi_3 \dots \, d\phi_{n-1} \end{aligned}$$

where

$$G_{\phi_3,\dots,\phi_{n-1}}(v,p) := \int_0^\pi \int_0^{2\pi} \int_0^1 r^{n-1-p} |\nabla_y v|^2 r^2 \sin \phi_2 \, dr \, d\phi_1 \, d\phi_2.$$

For any fixed pair $(\phi_3^0, ..., \phi_{n-1}^0)$, $(r, \phi_1, \phi_2, \phi_3^0, ..., \phi_{n-1}^0)$ are coordinates in a three dimensional cone C_0 in B^n with boundary $(1, \phi_1, \phi_2, \phi_3^0, ..., \phi_{n-1}^0)$. Through a transformation, the cone C_0 is essentially equivalent to a 3-dimensional ball B^3 . We define polar coordinates in B^3 by

$$\tilde{x}_1 = r \sin \phi_1 \sin \phi_2$$
$$\tilde{x}_2 = r \cos \phi_1 \sin \phi_2$$
$$\tilde{x}_3 = r \cos \phi_2.$$

Then from the polar coordinates in the cone C_0 , we know

$$\begin{aligned} x_1 &= \tilde{x}_1 \sin \phi_3^0 \dots \sin \phi_{n-2}^0 \sin \phi_{n-1}^0 \\ x_2 &= \tilde{x}_2 \sin \phi_3^0 \dots \sin \phi_{n-2}^0 \sin \phi_{n-1}^0 \\ x_3 &= \tilde{x}_3 \sin \phi_3^0 \dots \sin \phi_{n-2}^0 \sin \phi_{n-1}^0. \end{aligned}$$

By Theorem 4 (with n=3), we have

$$\begin{aligned} G_{\phi_3^0,\dots,\phi_{n-1}^0}(v,p) &= c_1 \int_{B^3} |\tilde{x}|^{n-1-p} |\nabla_{\tilde{x}} v|^2 \, d\tilde{x} \\ &\geq c_1 \int_{B^3} |\tilde{x}|^{n-1-p} |\nabla_{\tilde{x}} v_0|^2 \, d\tilde{x} = G_{\phi_3^0,\dots,\phi_{n-1}^0}(v_0,p) \end{aligned}$$

due to the fact that $v|_{\partial B^3} = v_0|_{\partial B^3} = \frac{\tilde{x}}{|\tilde{x}|} = \frac{y}{|y|}$ where c_1 is a constant depending only on $\phi_3^0, ..., \phi_{n-1}^0$. This implies

$$\int_{B^n} r^{2-p} |\nabla v|^2 \, dx \ge \int_{B^n} r^{2-p} |\nabla_y v|^2 \, dx$$
$$\ge \int_{B^n} r^{2-p} |\nabla_y v_0|^2 \, dx = \int_{B^n} r^{2-p} |\nabla v_0|^2 \, dx.$$

This proves our claim (**). Combining (8) with the claim (**) yields (10). \Box

As a consequence of Theorem 4, we give a proof of Theorem A for the case of $2 \le p \le n-1$:

Proof of Theorem A for case one. For $x \in B^n$, we have

$$|\nabla \frac{x}{|x|}|^2 = \frac{n-1}{r^2}.$$

For any $u \in W^{1,p}(B^n, S^{n-1})$ with u = x, we have from (10)

$$\int_{B^n} |\nabla \frac{x}{|x|}|^p \, dx \le \int_{B^n} |\nabla \frac{x}{|x|}|^{p-2} |\nabla u|^2 \, dx.$$

By the Hölder inequality, we have

$$\int_{B^n} |\nabla \frac{x}{|x|}|^{p-2} |\nabla v|^2 \le \left[\int_{B^n} |\nabla \frac{x}{|x|}|^p \right]^{\frac{p-2}{p}} \left[\int_{B^n} |\nabla u|^p \right]^{\frac{2}{p}}$$

due to the fact that $p \ge 2$. Thus for $2 \le p \le n - 1$,

$$\int_{B^n} |\nabla \frac{x}{|x|}|^p \, dx \le \int_{B^n} |\nabla u|^p \, dx$$

for any $u \in W^{1,p}(B^n, S^{n-1})$ with u = x on ∂B^n .

Case II. 1

In this case, our proof is based on the techniques of [CG, Sect. 2]. Let Y be a 2-plane in \mathbb{R}^n and consider a projection

$$\pi_Y: S^{n-1} \to S^{n-1} \cap Y$$

defined by $\pi_Y(u) = \frac{u'}{|u'|}$ where u' is the orthogoal projection of u onto Y.

Lemma 7. For $n > p \ge 1$, there exists a constant c = c(n) such that for any $u \in W^{1,p}(B^n, S^{n-1})$

$$c\int_{B^n} r^{1-p} |\nabla u| \, dx \ge \int_{G_2(\mathbb{R}^n)} \int_{B^n} r^{1-p} J(\pi \circ u) \, dx \, dG(Y)$$

where $\int_{G_2(\mathbb{R}^n)} := \frac{1}{|G_2(\mathbb{R}^n)|} \int_{G_2(\mathbb{R}^n)} denotes the average over the Grassmann manifold <math>G_2(\mathbb{R}^n)$. Moreover, equality holds if $u = \frac{x}{|x|}$ is horizontally conformal.

Proof. For a 2-plane Y and a map u, we write Z for the 1-plane in $T_{u(x)}S^{n-1}$ parallel to the subspace of Y orthogonal to $\pi_Y(u(x))$, where $T_{u(x)}S^{n-1}$ is the tangent plane of S^{n-1} at u(x).

As in [CG, Lemma 2.2], we have

(11)
$$r^{1-p}|\nabla u| \ge (n-1)^{\frac{1}{2}}r^{1-p} \int_{G_1(T_uS^{n-1})} \left[\det\left(\pi_Z \nabla u \nabla u^T \pi_Z^T\right)\right]^{1/2} dG(Z).$$

Moreover,

$$\nabla(\pi_Y \circ u)(x) = \frac{\pi_Z \circ \nabla u(x)}{\cos d(u(x), Y)}$$

where d(u(x), Y) is the distance in S^n from $u(x) \in S^n$ to $Y \cap S^n$.

Thus

(12)
$$\int_{G_2(\mathbb{R}^n)} J(\pi_Y \circ u)(x) \, dG(Y)$$
$$= c' \int_{G_1(T_u S^{n-1})} \left[\det \left(\pi_Z \nabla u \nabla u^T \pi_Z^T \right) \right]^{1/2} \, dG(Z)$$

where c' = c'(n) is independent of x and u. Using (11)–(12), Lemma 7 is proved with $c = (n-1)^{1/2}c'$

Now we complete the proof of Theorem A.

Proof of Theorem A. Let Y be a 2-plane in \mathbb{R}^n . We denote

$$v = \pi_Y \circ u : B^n \to S^{n-1} \cap Y$$

and $J(v) = [\det (\nabla v \nabla v^T)]^{1/2}$.

Without loss of generality, we may assume that $Y = \mathbb{R}^2$ and $S^{n-1} \cap Y = S^1$. We write

$$\nabla v = \begin{pmatrix} \frac{\partial v^1}{\partial x_1} & \cdots & \frac{\partial v^1}{\partial x_n} \\ \frac{\partial v^2}{\partial x_1} & \cdots & \frac{\partial v^2}{\partial x_n} \end{pmatrix}$$

Then we consider M_k to be any 2×2 matrix defined by

$$M_k := \begin{pmatrix} \frac{\partial v^1}{\partial x_{k_1}} & \frac{\partial v^1}{\partial x_{k_2}} \\ \frac{\partial v^2}{\partial x_{k_1}} & \frac{\partial v^2}{\partial x_{k_2}} \end{pmatrix}$$

where k_1 and k_2 are two different elements of $\{1, 2, ..., n\}$, i.e. $1 \le k_1 < k_2 \le n$. By Laplace's identity, we have

$$\det(\nabla v \nabla v^T) = \sum_{k=1}^{c_n^{(2)}} (\det M_k) (\det M_k^T) = \sum_{k=1}^{c_n^{(2)}} |\det M_k|^2$$

where $c_n^{(2)} = \frac{n!}{(n-2)!2!}$. We write $x = (y, z) \in \mathbb{R}^n$ with $y \in \mathbb{R}^2$ and $z \in \mathbb{R}^{n-2}$. Thus

$$J(v) \ge J_y(v) = [\det(\nabla_y v \nabla_y v^T)]^{1/2}.$$

Then we have

$$\int_{B^n} r^{1-p} J(v) \, dx \ge \int_{B^n} r^{1-p} J_y(v) \, dy$$

where equality holds if $v = v_0 = \pi \circ u_0$ with $u_0 = \frac{x}{|x|}$.

By (5), we have

$$\int_{B^2} r^{n-1-p} J_y(v) \, dy \ge \int_{B^2} r^{n-1-p} J_y(\frac{y}{|y|}) \, dy.$$

Then repeating a similar argument with polar coordinates in B^n as in Theorem 6, we have

$$\int_{B^n} r^{1-p} J(v) \, dx \ge \int_{B^n} r^{1-p} J(v_0) \, dx$$

where $v = \pi_Y u$ and $v_0 = \pi_y \circ u_0$.

By Lemma 7, we obtain

(13)
$$\int_{B^n} r^{1-p} |\nabla u| \, dx \ge \int_{B^n} r^{1-p} |\nabla u_0| \, dx$$

which implies

$$\int_{B^n} |\nabla u|^p \, dx \ge \int_{B^n} |\nabla u_0|^p \, dx$$

for all $u \in W^{1,p}(B^n, S^{n-1})$ with u = x on ∂B^n .

By Fubini's theorem, we have

Remark 8. For $m, n \in \mathbb{Z}$ with m > n, write $x = (y, z) \in \mathbb{R}^m$ with $y \in \mathbb{R}^n$ and $z \in \mathbb{R}^{m-n}$. Then the map $u_0(x) = \frac{y}{|y|} : B^m \to S^{n-1}$ is a minimizer of E_p in $W^{1,p}(B^m, S^{n-1})$ with boundary value u_0 on ∂B^n .

Now we prove a uniqueness theorem in the following:

Theorem 9. For $1 , the map <math>u_0 = \frac{x}{|x|} : B^n \to S^{n-1}$ is the unique minimizer of E_p in $W^{1,p}(B^n, S^{n-1})$ with boundary value x on ∂B^n .

Proof. By Theorem A, we know that u_0 is a minimizer of E_p in $W^{1,p}(B^n, S^{n-1})$. We assume that u_1 is another minimizer of E_p in $W^{1,p}(B^n, S^{n-1})$ with boundary value x on ∂B^n , i.e.

(14)
$$\int_{B^n} |\nabla u_1|^p \, dx = \int_{B^n} |\nabla u_0|^p \, dx.$$

When 1 , By (13), we know

$$\int_{B^n} |\nabla u_0|^p \, dx \le \int_{B^n} |\nabla u_0|^{p-1} |\nabla u| \, dx$$

for any $u \in W^{1,p}$ with u = x on ∂B^n . By Young's inequality, we have

(15)
$$|\nabla u_0|^{p-1} |\nabla u_1| \le \frac{p-1}{p} |\nabla u_0|^p + \frac{1}{p} |\nabla u_1|^p.$$

By the assumption of minimizers u_0 , we have

$$\int_{B^n} |\nabla u_0|^p \, dx \le \int_{B^n} |\nabla u_0|^{p-1} |\nabla u_1| \, dx$$
$$\le \int_{B^n} \left(\frac{p-1}{p} |\nabla u_0|^p + \frac{1}{p} |\nabla u_1|^p \right) \, dx = \int_{B^n} |\nabla u_0|^p \, dx.$$

which implies (16)

$$|\nabla u_1| = |\nabla u_0|$$
 for a.e. $x \in B^n$.

Since u_1 is a minimizer, it is also stationary, i.e. it satisfies

$$\int_{B^n} [|\nabla u|^p \operatorname{div} \phi - p |\nabla u|^{p-2} u_{x_i} u_{x_k} \phi_{x_i}^k] \, dx = 0.$$

for all $\phi \in C_0^1(B^n; \mathbb{R}^n)$. It is well-known that u_1 also satisfies the following monotonicity formula:

$$\rho^{p-n} \int_{B_{\rho}} |\nabla u_1|^p \, dx - \sigma^{p-n} \int_{B_{\sigma}} |\nabla u_1|^p \, dx = p \int_{B_{\rho} \setminus B_{\sigma}} r^{p-n} |\frac{\partial u_1}{\partial r}|^2 \, dx.$$

for two constants σ , ρ with $0 < \sigma < \rho \le 1$. Since $|\nabla u_1| = |\nabla u_0| = \frac{(n-1)^{1/2}}{r}$, the right side of the above monotonicity identity is zero which implies

$$\int_{B_{\rho}\setminus B_{\sigma}} r^{p-n} \left|\frac{\partial u_1}{\partial r}\right|^2 dx = 0.$$

This implies

$$\frac{\partial u_1}{\partial r} = 0, \quad \text{a.e. for } 0 < r \leq 1$$

Therefore $u_1 = u_0$ a.e. in B^n

References

- [ABL] F. J. Almgren, W. Browder and E.H. Lieb, Co-area, liquid crystals, and minimal surfaces, S. S. Chern, ed. Springer Lecture Notes in math. 1306 (1988), 1–12
- [AL] M. Avellenada and F. H. Lin, Fonctions quasi affines et minimization de $\int |\nabla u|^p$, C. R. Acad. Sci. Paris **306** (1988), 355–358
- [BCL] H. Brezis, J.-M. Coron and E.H. Lieb, Harmonic maps with defects, Commun. Math. Phys. 107 (1986), 649–705
- [CG] J. -M. Coron and R. Gulliver, Minimizing *p*-harmonic maps into spheres, J. Reine Angew. Math. 401 (1989), 82–100
- [F] H. Federer, Geometric Measure Theory, Berlin-Heidelberg-New York (1969)
- [H] R. Hardt, Singularities of harmonic maps, Bull. Ameri. Math, Soci. 34 (1997), 15–34
- [HL] R. Hardt and F. H. Lin, Mappings minimizing the L^p norm of the gradient, Comm. P. A. M. **15** (1987), 555–588
- [HLW] R. Hardt, F. H. Lin and C. Y. Wang, The *p*-energy minimality of x/|x|, Commu. in Analysis and Geometry **6** (1998), 141–152
- [HKW] S. Hilderandt, H. Kaul and K.-O. Widman, An existence theorem for harmonic mappping of Riemannian manifolds, Acta Math. 138 (1977), 1–16
- [Ho] M.-C. Hong, On the Jäger Kaul theorem concerning harmonic maps, Ann. Inst. H. Poincare, Analyse non Liéare 17 (2000), 35–46
- [JK] W. Jäger and H. Kaul, Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine Angew. Math. 343 (1983), 146–161
- [L] F.-H. Lin, Une remarque sur L'application x/|x|, C. R. Acad. Sc. Paris **305** (1987), 529–531
- [Lu] S. Luckhaus, Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, Ind. Univ. Math. J. 37 (1988), 349–367
- [W] C. Y. Wang, Minimality, stability, and perturbation for some *p*-harmonic maps, Ind. Univ. Math. 47 (1998), 725–740