Calc. Var. 8, 247-258 (1999)
© Springer-Verlag 1999

Harnack inequality for the Lagrangian mean
curvature flow

Knut Smoczyk*

Department of Mathematics, ETHiEch, CH-8092 airich, Switzerland

Received March 16, 1997 / Accepted April 24, 1998

Abstract. If L" is a Lagrangian manifold immersed into @lder-Einstein man-
ifold, nothing is known about its behavior under the mean curvature flow. As a
first result we derive a Harnack inequality for the mean curvature potential of
compact Lagrangian immersioh8 immersed intdR?".

1 Introduction

The mean curvature flow (MCF) for hypersurfaces in arbitrary Riemannian mani-
folds is well understood whereas almost nothing is known when the codimension
is greater than 1. The main problem in the study of immersions with higher codi-
mension is the fact that in general there is no canonical choice of a field of frames
in the normal bundle of the immersion and therefore the investigation of the sec-
ond fundamental form is a delicate problem. However, in some situations it is
possible to identify the tangent space of a submanifold in a unique manner with
its normal space. An example are the Lagrangian submanifolds. The geometry of
the ambient space then must guarantee that the MCF preserves the Lagrangian
structure. It turns out that this is true if the ambient space ahl&r-Einstein

[10]. Harnack inequalities have always been of great interest in the study of
partial differential equation (e.g. see [12]). Many interesting results are known
for geometric flow problems [1], [4], [5]. In this paper we will derive a Harnack
inequality for the Lagrangian angle in the situation of an immersed Lagrangian
manifold in R?". To explain our result we first recall some terminology and
definitions.

Let L" be a smooth manifold, immersed into alder-Einstein manifold
M 2" with complex structurd, curvatureK and metricg. Letw = g(J-, -) be the
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Kéahlerform onM and letg, w denote the pullbacks tb. If w = 0, thenL is
called Lagrangian or totally real. Given a-form on a Lagrangian immersion,
one can first use the metricto identify this I-form with a vector field and then
apply the complex structure which by the Lagrangian condition maps this tangent
vector field to a normal vector field. Assuming that we deform the Lagrangian
manifold in this direction one obtains the necessary condition that thferin

has to be closed in order to maintain the Lagrangian structure. It is possible
to define a tform in terms of the second fundamental form and we denote
this 1-form by “mean curvature form” (see definition below) since the resulting
deformation vector field is given by the mean curvature vector which can be
defined for arbitrary smooth immersions. It is then an easy consequence of the
Codazzi equations and a well-known fact that this mean curvature form is closed
and therefore an infinitesimal symplectic motion, if the ambient spacélideik-
Einstein. One can prove that this is not only an infinitesimal but also an actual
deformation (see [10]).

2 Notations
We define the following tensor ok
h(U, v, w) = _E(J (U), ﬁ’U’w) = E(ﬁy\] (U), w) )

whereV denotes the covariant derivative &h. For a fixed vectow this is
the second fundamental form with respect to the normal vetfoj. Assume

that F : L" — M?" is an immersion, thak', y*, i =1...n, a = 1...2n
are coordinates fot", M2 respectively and set := %F—X,ad% where double

indices are always summed from 1 noor to 2n respectively. Further we will
always write(u, v) instead ofg(u,v). Then

__ OFQF#s
90 =90 o ot

waﬁ zgﬁ'y‘]’ya
Wap = —Wga
V3=0,J%2=-1d, (J(v),I(w)) = (v,w) .

Sinceh(u, -, -) is the second fundamental form with respecti{o), we clearly
have

h(ex,&,§) = hj = hgi .

On the other hand the propertiesbimply that this tensor is also symmetric in

the other two indices. In the forthcoming we will st := %F—X," andvs = J(es).

We therefore have the Gauss-Weingarten-Codazzi equations:
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Proposition 2.1

(1) hik = hjik = hii
oe’ — .

2 %—Fﬂeﬁ+Flga<ejﬁ:—hnijg
ovd - 4

(3) 8xsi — Ty + Flﬁq v§ =hheel

(4) Vihgi — Vkhi = Ruigi

) Riki = R + 9™ (hmikhnji — Dimit M)

— (e} 0 (e}
(6) M = Daseie” +@sy [oseq

where an ungerlineciindex means that one has to take the image of this vector
underJ, e.g.Riju = (R(&, @)g,J(&))

Definition 2.2 _ .
H = HidXI = gkl hikl dx'

is called the mean curvature form on L.

If in addition L is immersed into a Khler-Einstein manifold then the trace of
the Codazzi equation (4) gives the identity

7) dH =0.

The Lagrangian MCF equation now takes the form

Baxn —7HnV .

n

0
— F o= mnH J

In [10] we proved that the evolution equations for the metric, the second
fundamental form and the mean curvature form are given by

Lemma 2.3 5
(8) 5% = —2H'hy;

8 —_ n m m np
(9) & ikl = Vkvj' H —H (hnj it + hnl hmkj) +H RﬂkU
(10) %H =dd'H +KH .

Here df denotes the negative adjoint th i.e. dTH = V'H; = ¢'ViH;. In
particular for the formH := e~H we obtain the evolution equation
0

{3 =ddty
(11) 5H =ddH .
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Lemma 2.4 (Representation formula)Assume that { = F(L) is compact, ori-
entable and evolves under the MCF and thatsxan arbitrary but fixed point on
L and denote the initial mean curvature form by.H

(a) There exists a unique smooth family of functignsmoothly depending on
time such that

t
ﬁ::Ho+d§/ Agpdr)
0

t
M¢iLAwﬂ=&m

P(x) =0,
in particular the cohomology class of does not change.
(b) If Hp is exact, then there exists a unique smooth family of functjoesch
that

H =d¢
9, _
aqﬁ—&b
mLin¢0:0.

(c) If S c L is simply connected then there exist a uniqgue smooth family of
functionsg on S such that

H =d¢
0

af= a9
msln¢o:0.

Proof. Define the formH;(x) := Ho(x)+d (f(; dfHdr) where we integrate point-
wise. This form surely exists, sin@fH is smooth. For the time derivative we

obtain 5 5
“O=adg =4[/
8tH dd™H 8tH

and sinceHo = Ho = Ho we concluded = H. Now we use the decomposition
theorem and can expre$s as a unique suntd = ¢ + d¢, wheredy = 0,
#(%) = 0 andyy, ¢ are smooth. Thed™H =dfd¢ = Ae. This proves (a). (b) is
a direct consequence of (a) since then the harmonicypartO and therefore

- t
H — Hp =d(¢t — ¢o) = d(/o Agdr).
This implies t
9 _
d(/o 06— Agdr) =0

which means that there exists a smooth funcfi{t) such thatggb — A¢ =1 ().
Now define$ = d)—fé fdr —min_¢o. This function has all the desired properties.
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If o, q~5 are two functions with the same properties thafw — 5) = 0 and
consequently there exists a functibft) such thatp = ¢ +f (t). Since%(gb— Q) =

A(p — %5) = 0 we conclude that this function is a constantvhich has to be
zero since mingo = mMin_ ¢o = 0. This proves uniqueness. (c) follows in the
same way as (b) sindd is closed and therefore exact on any simply connected
ScCL. O

In view of part (b) we make the following definition:

Definition 2.5 A solution for the Lagrangian MCF for which the initial mean
curvature form is exact will be called an exact solution.

So for an exact solution to the MCF we obtain a smooth family of mean curvature
potentials¢ with H = d¢ and g(ﬁ = A¢ + K¢ which is unique up to adding

a constant multiple o€<'. In particular the mean curvature vector for a closed
exact solution vanishes always at least in two points.

3 The result

During this section we will assume that the ambient spa@?iswith its canoni-
cal complex structure and thkt is a compact Lagrangian immersion with exact
mean curvature form.

Remark: In this context it is natural to ask wether there exist Lagrangian im-
mersions with exact mean curvature form. If the target manifold M is arbitrary
then any Lagrangian immersion of the sphefev8th n > 1 or any other simply
connected manifold has exact mean curvature form since the first Betti number
vanishes in that case. On the other hand a figure eight curghias total curva-

ture zero, thus H must be exact. In addition any torus obtained as a cross product
of n different figure eight curves i@ viewed as a Lagrangian immersion @'

also has exact mean curvature form.

Assume thaf : L x [0,1tp) is @ smooth positive solution of the “heat” equation

of

(**) 5 - Atf )

where 4, is the Laplace Beltrami Operator w.r.t. the metyig,t). Solutions

of (xx) appear in abundance, the mean curvature potential is one example (we
will give more examples in the remark below) and therefore it is important to
investigate them. Let us define the tensors

H "hinj

hi mnhmnj .

a;
bij

The first result is quite general:



252 K. Smoczyk

Theorem 3.1 Let f be a positive solution of-¢) with f < A and let B> 0 be
an upper bound for the tensoy; bi.e. bj V!V < B[V | WV € TL. Then

(12) (1— e Y Vi|? < 2Bf?2 |n($) .

Proof. We compute

—|Vf|2 = 22l VifV;f +2V'T v, Af
= 2al Vit Vif + A|VF|? — 2|V, Vf |2 — 2R VI VI
= A|VF? = 2|V Vif |2+ 20 VI VI
and then
o |VE? _ |VER 2 Vit Vif , 2 i
1 L =AlL S v - — L P+ S VIEVIT
We also have
IV \2

(f In( )) A(f In( ))+

Letp:= %(1 — e*ZBt). Thenap =1 — 2Bp and we obtain for

_ VI A
h:=p : —fIn(f)
0 2p Vifv;f 0 |Vf|2
ah = Ah——|vivjf—%|2+(§ p—1) b.Jvalf
IV ?
< Ah+(—p 1+ 2Bp) = Ah

and the result follows from the maximum principle sincé at0 we haveh < 0.
O

Remark: The condition that p — Bg; is negative semidefinite is true on any
compact time intervd0, To] on which a smooth solution of) exists as long as
we choose a large constant B. However a uniform bound forsbmostly not
given and not expected. It is natural that the eigenvalues;o$tpuld tend to
infinity whenever a singularity occurs during the flow. In special situations, like
for Lagrangian graphs inC", we expect the tensofj to be uniformly bounded

in t and that these graphs converge to a minimal Lagrangian immersion.

Corollary 3.2 There exists a constant C depending only @n=LFy(L") such
that for any positive solution f of¢) and0 <t < 1 we have

(14) f(x,t) < tn%/Lf(x,t)dpt(x).
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Proof. This follows in the same way as in [3], if we take into account that

Q/fdutZ/Af—f|H|2dut=—/f|H\2th§0.
ot L L L

Lemma 3.3 Let f be a solution ofx). Then we have
9 9. _ Kij i
(15) (a - A)ﬁf =20 ViH; Vi f + 2a' V; V;f

Proof. For the time derivative of the connecticl?;]< one has

) 1 0
g ST = 5 MV O+, (5p9) =V & 51 %))
= IJ kl (V q; + VJ a — VIaij)
(16) = 2th1 ViHj,

where we used the Codazzi equation in the last step. Then (16) and (8) give

0

0, i 0 -
A = ViV =22 ViV £ A - g S TV

A(gf) +2al v, V;f + 2h Vi H Vi f
O

Corollary 3.4 Let¢ be a solution of £x) with d¢ = H.. i.e. ¢ is the mean curva-
ture potential of an exact solution. Then we have

0 0 i
(17) (57— A6 = 40 ViV;0.

We want to derive a Harnack inequality fgr. To this end let us define the

function

[Vgl?

h:=A¢—p——+q¢

with two positive functiongp and g depending only ort and to be determined
later.

Lemma 3.5 Assume thap is a solution of ¢x) with d¢p = H andmin,, ¢ = 1
and that h V'VJ < B|V|? for any V € TL. Then

%h > Ah+%(h2+2h(%\v¢\z—Q¢))
. p((p;2)2_2)2f4
(M + e a2ty
(18) ML q)¢

n
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Proof. We need the evolution equation fbr With (13) and (17) we get

0
ah

|ch5|2

A 0)+ 40 91916~ (50) o 4 (2 a)o

|Vo|? V¢m¢
¢ ¢

= Ah+4aiivivj¢+29|vivj¢f

~ pA |2+ gbu V'oVig) +qAp
VigVjé

¢
( Q)¢— b|,V¢V‘¢

2
—SIViVio-
|2

2
B (7 )\w

Using Schwarz’ inequality we obtain

) 2
4"ViVi¢p > —*|aij | = 2¢|Vi Vol

‘fb.,v oVig— W Vi,

can estimate

We also have

where we set = 5 and used thatg; |> = b V' ¢ V! ¢. With this inequality we
0 p Vi¢Vig, _p 4
> IWViV.h—2—— 17|16 _ 2
8th > Ah+ |V.VJ¢ 2 5 | 2¢3\V¢\
v 2
- (—p)' s G2 + 20 v
Vivio- 2V 00 > S(racel v - 2 L0
2
_ %(Aqﬁ 2|V¢|

= (h2+2h( |V¢|2 q¢))

1 - 2 2
+ ﬁ(7|v¢| —qo)*.

With this inequality and the assumption bj we obtain

%h Ah+7(h2+2h( 2|96[2 — )
(p—2)2 \V¢\4
+ p( n -2) ¢3
2p(p — 2 Vol
(M + peapral o
ML Q)(b

n

which is (18). O
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Theorem 3.6 Let ¢ be a solution of £x) with d¢ = H, min,, ¢ = 1 and with
max, ¢ < A. Assume that.,b/'VJ < B|V|? on a time interval[0, T) for any

V € TL. Setk:= 2 m and Tp := 2(n+l)B In 'ij Then the following inequality holds
on [0, min{T, To})

2
(19) Ap — |V5| + qu 0,

where p= (2 +k)e 2(*1Bt _ k.

Proof. We use (18) withg = . This gives

%h > Ah+—(h2+2h( S —¢))
(p— 2)2 |V¢\4
+ p( n ¢3
2
~ (ZproB(p+ 2))'Vf'
B tp2 ot p)¢
On [0, min{T, To}) we have
1<p<2

and therefore-222-24 > 0. We also haveZ.p = —2(n+1)B(p+k) < 0 and the
maximum principle and«) imply that 1< ¢ < A on [0, T). Consequently

(p — 2y Vol* |V¢|4 Vol*
p( o 2) pe > —2p—s- B = ZDT
2 2
—(—p +2B(p + 27)) Vq‘f > —(—2nBp— 2k(n + 1)B + 4BA?) V(f'
—tpfz(ap)éb > 0.

In view of
N 1 1
BIVo[* > by V'oV ¢ = |ay | > —(trace))* = ~|Vo[*
we also obtaifVe¢[* < nB|V#|? and then

0
ah

v

Ah (hZ o |V<z5|2 - *¢))

2
— (—2nBp—2k(n+1)B + 4BA? + 2n|3p)| (f

= Ah+—{¥+2m |vm2——¢»

The theorem now follows from the parabohc maximum principle. O
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We come to the integral version of the Harnack inequality

Corollary 3.7 Assume that the assumptions in Theorem (3.6) are satisfied. Fur-
ther assume that XX, are two points on L and let dX;, X;) denote the geodesic
distance of Xto X, on (L", g,). Then

oot 1l evmsew_ (NHLB 2
T R 200 ()

where 1(t) := p(t) + 2(n + 1)Bkt and0 < t; < t; < min{T, To}.

Proof. Let us choose a pati(t) with X(t) =X;;i = 1,2 and set

[(t) := In(a(X(t),1)) .
We obtain

2 9| :
— +(VI. X
L (VI,X)dt

t2A¢ .
/tl¢+<V|,x>dt.

Now we use inequality (19) and Cauchy-Schwarz to estimate

I(tz) —1(ta)

L1 1 (21,
— > —dt — = — .
|(t2) |(t1) > —N N tpdt 4A p|X|gtdt

Let \ denote any eigenvalue af . We certainly have\? < |a; | = b V' ¢ V! ¢.
On the other hand we obtain from the assumptionsbprthat b; V' ¢Vig <
B|V¢[2 Since|a; |> > L(trace;))? = 2|V¢[* we obtainA? < nB? and 2 g; =
—2q; implies

0
7 Ji < 2y/nByj

and then _ _
X[, < VBt |Z

If we assume thaK is a geodesic onL{, g;,) parametrized by arclength
s=a(r(ty) —r(t)

then we can proceed in the same way as in [3] to compute

. 2(n+1)B
ZIX 2 dt < e2VMBle—t) 22T =I2 (X, Xp)? .
/11 pl gt < rty) —r(tx) (%, %)

In addition we havep > 1 and therefore

L q t
/—dtgln—z.
y P t1

This completes the proof. O
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Remark: As one can easily see from the proof of Lemma 2.4 any clbséatm
7 that evolves according to

0
o =ddf
ol dd™n

gives rise to a local solution ofk), which is given by the potential gf Now let
W € R?" be a fixed vector. We define the followibgforms on L

noo= <F7Vi>
n = (Fe)
>\i = <W, l/|>
pi = (W,e)

Using equations (2) and (3) we easily deduce that all these forms are closed
(r, A\, p are even exact). The evolution equation for F is just

0
SF=AF
ot

since the mean curvature vector is equal to the Laplacian of F. This implies the
evolution equations

9 —2H ify=7
Y 4dh~ = T=n
(@) (5t —dd'n { 0 ify=7Ap

and in particular( — dd)(n + 2tH) = 0. We also have
%(\F |+ 2nt) = A(JF |2 + 2nt) ,

in fact @ +nt is just the potential of.

In [5] a matrix Harnack inequality for the mean curvature has been proved for
weakly convex hypersurfaces. It would be interesting to find an analogue result for
the Lagrangian mean curvature flow. We tried this for a long time. The equations
are indeed very similar and appear in a beautiful manner. However the situation
for Lagrangian immersions is much harder since the mean curvature flow in this
case is rather a coupled system of parabolic equations and therefore the first
problem is to find some sort of convexity assumption (or perhaps a totally different
assumption) that is preserved during the flow and which would give a good control
on the second fundamental form.
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