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Abstract. If Ln is a Lagrangian manifold immersed into a Kähler-Einstein man-
ifold, nothing is known about its behavior under the mean curvature flow. As a
first result we derive a Harnack inequality for the mean curvature potential of
compact Lagrangian immersionsLn immersed intoR2n.

1 Introduction

The mean curvature flow (MCF) for hypersurfaces in arbitrary Riemannian mani-
folds is well understood whereas almost nothing is known when the codimension
is greater than 1. The main problem in the study of immersions with higher codi-
mension is the fact that in general there is no canonical choice of a field of frames
in the normal bundle of the immersion and therefore the investigation of the sec-
ond fundamental form is a delicate problem. However, in some situations it is
possible to identify the tangent space of a submanifold in a unique manner with
its normal space. An example are the Lagrangian submanifolds. The geometry of
the ambient space then must guarantee that the MCF preserves the Lagrangian
structure. It turns out that this is true if the ambient space is Kähler-Einstein
[10]. Harnack inequalities have always been of great interest in the study of
partial differential equation (e.g. see [12]). Many interesting results are known
for geometric flow problems [1], [4], [5]. In this paper we will derive a Harnack
inequality for the Lagrangian angle in the situation of an immersed Lagrangian
manifold in R

2n. To explain our result we first recall some terminology and
definitions.

Let Ln be a smooth manifold, immersed into a Kähler-Einstein manifold
M 2n with complex structureJ , curvatureK and metricg. Let ω = g(J ·, ·) be the
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Kählerform onM and letg, ω denote the pullbacks toL. If ω = 0, thenL is
called Lagrangian or totally real. Given a 1−form on a Lagrangian immersion,
one can first use the metricg to identify this 1−form with a vector field and then
apply the complex structure which by the Lagrangian condition maps this tangent
vector field to a normal vector field. Assuming that we deform the Lagrangian
manifold in this direction one obtains the necessary condition that this 1−form
has to be closed in order to maintain the Lagrangian structure. It is possible
to define a 1−form in terms of the second fundamental form and we denote
this 1−form by “mean curvature form” (see definition below) since the resulting
deformation vector field is given by the mean curvature vector which can be
defined for arbitrary smooth immersions. It is then an easy consequence of the
Codazzi equations and a well-known fact that this mean curvature form is closed
and therefore an infinitesimal symplectic motion, if the ambient space is Kähler-
Einstein. One can prove that this is not only an infinitesimal but also an actual
deformation (see [10]).

2 Notations

We define the following tensor onL:

h(u, v, w) := −g(J (u),∇vw) = g(∇vJ (u), w) ,

where ∇ denotes the covariant derivative onM . For a fixed vectoru this is
the second fundamental form with respect to the normal vectorJ (u). Assume
that F : Ln → M 2n is an immersion, thatxi , yα, i = 1 . . .n, α = 1 . . .2n
are coordinates forLn, M 2n respectively and setei := ∂Fα

∂xi
∂

∂yα , where double
indices are always summed from 1 ton or to 2n respectively. Further we will
always write〈u, v〉 instead ofg(u, v). Then

gij = gαβ

∂Fα

∂xi

∂Fβ

∂xj

ωαβ = gβγJγ
α

ωαβ = −ωβα

∇J = 0, J 2 = −Id , 〈J (v), J (w)〉 = 〈v, w〉 .
Sinceh(u, ·, ·) is the second fundamental form with respect toJ (u), we clearly
have

h(ek ,ei ,ej ) = hkij = hkji .

On the other hand the properties ofJ imply that this tensor is also symmetric in
the other two indices. In the forthcoming we will seteα

i := ∂Fα

∂xi andνs := J (es).
We therefore have the Gauss-Weingarten-Codazzi equations:
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Proposition 2.1
hijk = hjik = hjki(1)

∂eγ
k

∂xj
− Γ n

kj e
γ
n + Γ

γ

αβeα
k eβ

j = −hn
kjν

γ
n(2)

∂νγ
s

∂xi
− Γ l

isν
γ
l + Γ

γ

αβeα
i ν

β
s = hn

iseγ
n(3)

∇l hkji − ∇khlji = Rlkj i(4)

Rijkl = Rijkl + gmn(hmikhnjl − hmil hnjk)(5)

hjkl = ωαβeα
jk eβ

l + ωδγΓ
δ

αβeα
j eβ

k eγ
l ,(6)

where an underlined index means that one has to take the image of this vector
underJ , e.g.Ri jkl = 〈R(ek ,el )ej , J (ei )〉
Definition 2.2

H := Hi dxi := gkl hikl dxi

is called the mean curvature form on L.

If in addition L is immersed into a K̈ahler-Einstein manifold then the trace of
the Codazzi equation (4) gives the identity

dH = 0 .(7)

The Lagrangian MCF equation now takes the form

∂

∂t
Fα = −gmnHmJα

β

∂Fβ

∂xn
= −H nνα

n .(∗)

In [10] we proved that the evolution equations for the metric, the second
fundamental form and the mean curvature form are given by

Lemma 2.3
∂

∂t
gij = −2H l hlij(8)

∂

∂t
hjkl = ∇k∇j Hl − H n(h m

nj hmkl + h m
nl hmkj) + H nRnkl j(9)

∂

∂t
H = dd†H + KH .(10)

Here d† denotes the negative adjoint tod, i.e. d†H = ∇i Hi = gij ∇i Hj . In
particular for the formH̃ := e−tK H we obtain the evolution equation

∂

∂t
H̃ = dd†H̃ .(11)
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Lemma 2.4 (Representation formula)Assume that Lt = Ft (L) is compact, ori-
entable and evolves under the MCF and that x0 is an arbitrary but fixed point on
L and denote the initial mean curvature form by H0.

(a) There exists a unique smooth family of functionsφ, smoothly depending on
time such that

H̃ = H0 + d
(∫ t

0
∆φdτ

)
∆

(
φ−

∫ t

0
∆φdτ

)
= d†H0

φ(x0) = 0 ,

in particular the cohomology class of̃H does not change.
(b) If H0 is exact, then there exists a unique smooth family of functionsφ such

that
H̃ = dφ

∂

∂t
φ = ∆φ

min
L
φ0 = 0 .

(c) If S ⊂ L is simply connected then there exist a unique smooth family of
functionsφ on S such that

H̃ = dφ

∂

∂t
φ = ∆φ

min
S
φ0 = 0 .

Proof. Define the formĤt (x) := H0(x)+d
(∫ t

0 d†H̃ dτ
)

where we integrate point-

wise. This form surely exists, sinced†H̃ is smooth. For the time derivative we
obtain

∂

∂t
Ĥ = dd†H̃ =

∂

∂t
H̃

and sinceĤ0 = H̃0 = H0 we concludeĤ = H̃ . Now we use the decomposition
theorem and can express̃H as a unique sum̃H = ψ + dφ, where d†ψ = 0,
φ(x0) = 0 andψ, φ are smooth. Thend†H̃ = d†dφ = ∆φ. This proves (a). (b) is
a direct consequence of (a) since then the harmonic partψ ≡ 0 and therefore

H̃ − H0 = d(φt − φ0) = d
(∫ t

0
∆φdτ

)
.

This implies

d
(∫ t

0

∂

∂t
φ−∆φdτ

)
= 0

which means that there exists a smooth functionf (t) such that∂
∂tφ−∆φ = f (t).

Now defineφ̃ := φ−∫ t
0 fdτ−minLφ0. This function has all the desired properties.
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If φ, φ̃ are two functions with the same properties thend(φ − φ̃) = 0 and
consequently there exists a functionf (t) such thatφ = φ̃+ f (t). Since ∂

∂t (φ− φ̃) =

∆(φ − φ̃) = 0 we conclude that this function is a constantc which has to be
zero since minL φ0 = minL φ̃0 = 0. This proves uniqueness. (c) follows in the
same way as (b) sincẽH is closed and therefore exact on any simply connected
S ⊂ L. ut
In view of part (b) we make the following definition:

Definition 2.5 A solution for the Lagrangian MCF for which the initial mean
curvature form is exact will be called an exact solution.

So for an exact solution to the MCF we obtain a smooth family of mean curvature
potentialsφ̃ with H = dφ̃ and ∂

∂t φ̃ = ∆φ̃ + K φ̃ which is unique up to adding
a constant multiple ofeKt . In particular the mean curvature vector for a closed
exact solution vanishes always at least in two points.

3 The result

During this section we will assume that the ambient space isR
2n with its canoni-

cal complex structure and thatLn is a compact Lagrangian immersion with exact
mean curvature form.

Remark: In this context it is natural to ask wether there exist Lagrangian im-
mersions with exact mean curvature form. If the target manifold M is arbitrary
then any Lagrangian immersion of the sphere Sn with n > 1 or any other simply
connected manifold has exact mean curvature form since the first Betti number
vanishes in that case. On the other hand a figure eight curve inC has total curva-
ture zero, thus H must be exact. In addition any torus obtained as a cross product
of n different figure eight curves inC viewed as a Lagrangian immersion inCn

also has exact mean curvature form.

Assume thatf : L × [0, t0) is a smooth positive solution of the “heat” equation

∂f
∂t

= ∆t f ,(∗∗)

where∆t is the Laplace Beltrami Operator w.r.t. the metricg(·, t). Solutions
of (∗∗) appear in abundance, the mean curvature potential is one example (we
will give more examples in the remark below) and therefore it is important to
investigate them. Let us define the tensors

aij := H nhnij

bij := h mn
i hmnj .

The first result is quite general:
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Theorem 3.1 Let f be a positive solution of (∗∗) with f ≤ A and let B> 0 be
an upper bound for the tensor bij , i.e. bij V i V j ≤ B|V |2, ∀V ∈ TL. Then

(1 − e−2Bt)|∇f |2 ≤ 2Bf 2 ln(
A
f

) .(12)

Proof. We compute

∂

∂t
|∇f |2 = 2aij ∇i f ∇j f + 2∇i f ∇i∆f

= 2aij ∇i f ∇j f +∆|∇f |2 − 2|∇i ∇j f |2 − 2Rij ∇i f ∇j f

= ∆|∇f |2 − 2|∇i ∇j f |2 + 2bij ∇i f ∇j f

and then

∂

∂t
|∇f |2

f
= ∆

|∇f |2
f

− 2
f
|∇i ∇j f − ∇i f ∇j f

f
|2 +

2
f

bij ∇i f ∇j f .(13)

We also have
∂

∂t
(f ln(

A
f

)) = ∆(f ln(
A
f

)) +
|∇f |2

f
.

Let p := 1
2B (1 − e−2Bt). Then ∂

∂t p = 1 − 2Bp and we obtain for

h := p
|∇f |2

f
− f ln(

A
f

)

∂

∂t
h = ∆h − 2p

f
|∇i ∇j f − ∇i f ∇j f

f
|2 + (

∂

∂t
p − 1)

|∇f |2
f

+
2p
f

bij ∇i f ∇j f

≤ ∆h + (
∂

∂t
p − 1 + 2Bp)

|∇f |2
f

= ∆h

and the result follows from the maximum principle since att = 0 we haveh ≤ 0.
ut

Remark: The condition that bij − Bgij is negative semidefinite is true on any
compact time interval[0,T0] on which a smooth solution of (∗) exists as long as
we choose a large constant B. However a uniform bound for bij is mostly not
given and not expected. It is natural that the eigenvalues of bij should tend to
infinity whenever a singularity occurs during the flow. In special situations, like
for Lagrangian graphs inCn, we expect the tensor bij to be uniformly bounded
in t and that these graphs converge to a minimal Lagrangian immersion.

Corollary 3.2 There exists a constant C depending only on L0 = F0(Ln) such
that for any positive solution f of (∗∗) and 0< t ≤ 1 we have

f (x, t) ≤ C

tn/2

∫
L

f (x, t)dµt (x) .(14)



Harnack inequality for the Lagrangian mean curvature flow 253

Proof. This follows in the same way as in [3], if we take into account that

∂

∂t

∫
L

fdµt =
∫

L
∆f − f |H |2dµt = −

∫
L

f |H |2dµt ≤ 0 .

ut
Lemma 3.3 Let f be a solution of (∗∗). Then we have

(
∂

∂t
−∆)

∂

∂t
f = 2hkij ∇i Hj ∇kf + 2aij ∇i ∇j f(15)

Proof. For the time derivative of the connectionΓ k
ij one has

−gij ∂

∂t
Γ k

ij = −1
2
gij gkl (∇i (

∂

∂t
glj ) + ∇j (

∂

∂t
gli ) − ∇l (

∂

∂t
gij ))

= gij gkl (∇i alj + ∇j ali − ∇l aij )

= 2hkij ∇i Hj ,(16)

where we used the Codazzi equation in the last step. Then (16) and (8) give

∂

∂t
∆f =

∂

∂t
(gij ∇i ∇j f ) = 2aij ∇i ∇j f +∆(

∂

∂t
f ) − gij ∂

∂t
(Γ k

ij )∇kf

= ∆(
∂

∂t
f ) + 2aij ∇i ∇j f + 2hkij ∇i Hj ∇kf .

ut
Corollary 3.4 Letφ be a solution of (∗∗) with dφ = H . i.e.φ is the mean curva-
ture potential of an exact solution. Then we have

(
∂

∂t
−∆)

∂

∂t
φ = 4aij ∇i ∇j φ .(17)

We want to derive a Harnack inequality forφ. To this end let us define the
function

h := ∆φ− p
|∇φ|2
φ

+ qφ

with two positive functionsp and q depending only ont and to be determined
later.

Lemma 3.5 Assume thatφ is a solution of (∗∗) with dφ = H and minL0 φ = 1
and that bij V i V j ≤ B|V |2 for any V ∈ TL. Then

∂

∂t
h ≥ ∆h +

p
nφ

(h2 + 2h(
p − 2
φ

|∇φ|2 − qφ))

+ p(
(p − 2)2

n
− 2)

|∇φ|4
φ3

− (
2p(p − 2)q

n
+
∂

∂t
p + 2B(p + 2

φ2

p
))

|∇φ|2
φ

+ (
pq2

n
+
∂

∂t
q)φ .(18)
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Proof. We need the evolution equation forh. With (13) and (17) we get

∂

∂t
h = ∆(

∂

∂t
φ) + 4aij ∇i ∇j φ− (

∂

∂t
p)

|∇φ|2
φ

+ (
∂

∂t
q)φ

− p(∆
|∇φ|2
φ

− 2
φ

|∇i ∇j φ− ∇iφ∇j φ

φ
|2 +

2
φ

bij ∇iφ∇j φ) + q∆φ

= ∆h + 4aij ∇i ∇j φ + 2
p
φ

|∇i ∇j φ− ∇iφ∇j φ

φ
|2

− (
∂

∂t
p)

|∇φ|2
φ

+ (
∂

∂t
q)φ− 2p

φ
bij ∇iφ∇j φ .

Using Schwarz’ inequality we obtain

4aij ∇i ∇j φ ≥ −2
ε
|aij |2 − 2ε|∇i ∇j φ|2

= −4φ
p

bij ∇iφ∇j φ− p
φ

|∇i ∇j φ|2 ,

where we setε = p
2φ and used that|aij |2 = bij ∇iφ∇j φ. With this inequality we

can estimate

∂

∂t
h ≥ ∆h +

p
φ

|∇i ∇j φ− 2
∇iφ∇j φ

φ
|2 − 2

p
φ3

|∇φ|4

− (
∂

∂t
p)

|∇φ|2
φ

+ (
∂

∂t
q)φ− 2(

p
φ

+ 2
φ

p
)bij ∇iφ∇j φ .

We also have

|∇i ∇j φ− 2
∇iφ∇j φ

φ
|2 ≥ 1

n
(trace(∇i ∇j φ− 2

∇iφ∇j φ

φ
))2

=
1
n

(∆φ− 2
|∇φ|2
φ

)2

=
1
n

(h2 + 2h(
p − 2
φ

|∇φ|2 − qφ))

+
1
n

(
p − 2
φ

|∇φ|2 − qφ)2 .

With this inequality and the assumption onbij we obtain

∂

∂t
h ≥ ∆h +

p
nφ

(h2 + 2h(
p − 2
φ

|∇φ|2 − qφ))

+ p(
(p − 2)2

n
− 2)

|∇φ|4
φ3

− (
2p(p − 2)q

n
+
∂

∂t
p + 2B(p + 2

φ2

p
))

|∇φ|2
φ

+ (
pq2

n
+
∂

∂t
q)φ

which is (18). ut
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Theorem 3.6 Let φ be a solution of (∗∗) with dφ = H , minL0 φ = 1 and with
maxL0 φ ≤ A. Assume that bij V i V j ≤ B|V |2 on a time interval[0,T) for any

V ∈ TL. Set k:= 2A2

1+n and T0 := 1
2(n+1)B ln k+2

k+1. Then the following inequality holds
on [0,min{T,T0})

∆φ− p
|∇φ|2
φ

+
n
tp
φ ≥ 0 ,(19)

where p= (2 + k)e−2(n+1)Bt − k.

Proof. We use (18) withq = n
tp . This gives

∂

∂t
h ≥ ∆h +

p
nφ

(h2 + 2h(
p − 2
φ

|∇φ|2 − n
tp
φ))

+ p(
(p − 2)2

n
− 2)

|∇φ|4
φ3

− (
∂

∂t
p + 2B(p + 2

φ2

p
))

|∇φ|2
φ

− n
tp2

(
∂

∂t
p)φ .

On [0,min{T,T0}) we have
1 ≤ p ≤ 2

and therefore− 2p(p−2)q
n ≥ 0. We also have∂

∂t p = −2(n + 1)B(p + k) ≤ 0 and the
maximum principle and (∗∗) imply that 1≤ φ ≤ A on [0,T). Consequently

p(
(p − 2)2

n
− 2)

|∇φ|4
φ3

≥ −2p
|∇φ|4
φ3

≥ −2p
|∇φ|4
φ

−(
∂

∂t
p + 2B(p + 2

φ2

p
))

|∇φ|2
φ

≥ −(−2nBp− 2k(n + 1)B + 4BA2)
|∇φ|2
φ

− n
tp2

(
∂

∂t
p)φ ≥ 0 .

In view of

B|∇φ|2 ≥ bij ∇iφ∇j φ = |aij |2 ≥ 1
n

(trace(aij ))2 =
1
n

|∇φ|4

we also obtain|∇φ|4 ≤ nB|∇φ|2 and then

∂

∂t
h ≥ ∆h +

p
nφ

(h2 + 2h(
p − 2
φ

|∇φ|2 − n
tp
φ))

− (−2nBp− 2k(n + 1)B + 4BA2 + 2nBp)
|∇φ|2
φ

= ∆h +
p

nφ
(h2 + 2h(

p − 2
φ

|∇φ|2 − n
tp
φ)) .

The theorem now follows from the parabolic maximum principle. ut
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We come to the integral version of the Harnack inequality

Corollary 3.7 Assume that the assumptions in Theorem (3.6) are satisfied. Fur-
ther assume that X1,X2 are two points on Ln and let d(X1,X2) denote the geodesic
distance of X1 to X2 on (Ln, gt1). Then

ln
φ(X2, t2)
φ(X1, t1)

≥ −n ln
t2
t1

− e2
√

nB(t2−t1) (n + 1)B
2(r (t1) − r (t2))

d(X1,X2)2 ,(20)

where r(t) := p(t) + 2(n + 1)Bkt and0< t1 < t2 < min{T,T0}.

Proof. Let us choose a pathX(t) with X(ti ) = Xi ; i = 1,2 and set

l (t) := ln(φ(X(t), t)) .

We obtain

l (t2) − l (t1) =
∫ t2

t1

∂l
∂t

+ 〈∇l , Ẋ〉dt

=
∫ t2

t1

∆φ

φ
+ 〈∇l , Ẋ〉dt .

Now we use inequality (19) and Cauchy-Schwarz to estimate

l (t2) − l (t1) ≥ −n
∫ t2

t1

1
tp

dt − 1
4

∫ t2

t1

1
p

|Ẋ|2gt
dt .

Let λ denote any eigenvalue ofaij . We certainly haveλ2 ≤ |aij |2 = bij ∇iφ∇j φ.
On the other hand we obtain from the assumptions onbij that bij ∇iφ∇j φ ≤
B|∇φ|2. Since|aij |2 ≥ 1

n (trace(aij ))2 = 1
n |∇φ|4 we obtainλ2 ≤ nB2 and ∂

∂t gij =
−2aij implies

∂

∂t
gij ≤ 2

√
nBgij

and then
|Ẋ|2gt

≤ e2
√

nB(t−t1)|Ẋ|2gt1
.

If we assume thatX is a geodesic on (Ln, gt1) parametrized by arclength

s = a(r (t1) − r (t))

then we can proceed in the same way as in [3] to compute∫ t2

t1

1
p

|Ẋ|2gt
dt ≤ e2

√
nB(t2−t1) 2(n + 1)B

r (t1) − r (t2)
d(X1,X2)2 .

In addition we havep ≥ 1 and therefore∫ t2

t1

1
tp

dt ≤ ln
t2
t1
.

This completes the proof. ut
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Remark: As one can easily see from the proof of Lemma 2.4 any closed1−form
η that evolves according to

∂

∂t
η = dd†η

gives rise to a local solution of (∗∗), which is given by the potential ofη. Now let
W ∈ R

2n be a fixed vector. We define the following1−forms on L

ηi := 〈F , νi 〉
τi := 〈F ,ei 〉
λi := 〈W, νi 〉
ρi := 〈W,ei 〉 .

Using equations (2) and (3) we easily deduce that all these forms are closed
(τ, λ, ρ are even exact). The evolution equation for F is just

∂

∂t
F = ∆F

since the mean curvature vector is equal to the Laplacian of F . This implies the
evolution equations

(
∂

∂t
− dd†)γ =

{ −2H if γ = η
0 if γ = τ, λ, ρ

(21)

and in particular( ∂
∂t − dd†)(η + 2tH ) = 0. We also have

∂

∂t
(|F |2 + 2nt) = ∆(|F |2 + 2nt) ,

in fact |F |2

2 + nt is just the potential ofτ .
In [5] a matrix Harnack inequality for the mean curvature has been proved for

weakly convex hypersurfaces. It would be interesting to find an analogue result for
the Lagrangian mean curvature flow. We tried this for a long time. The equations
are indeed very similar and appear in a beautiful manner. However the situation
for Lagrangian immersions is much harder since the mean curvature flow in this
case is rather a coupled system of parabolic equations and therefore the first
problem is to find some sort of convexity assumption (or perhaps a totally different
assumption) that is preserved during the flow and which would give a good control
on the second fundamental form.
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