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Abstract. We give an existence result for constant mean curvature graphs in
hyperbolic spacél™!. Let 2 be a compact domain of a horosphereHf**
whose boundarny(? is mean convex, that is, its mean curvatitg, (as a
submanifold of the horosphere) is positive with respect to the inner orientation.
If H is a number such thatHy, < H < 1, then there exists a graph over

with constant mean curvatuté and boundany(2. Umbilical examples, when

0f2 is a sphere, show that our hypothesistbris the best possible.

1 Introduction

We will start by considering the upper halfspace model for the hyperbolic space
H". That is
H™ = {(x, .. ., Xu1) € R™F Xq41 > O}

endowed with the metric

()= dx2 + ... +dx%,,
’ X

In this setting, any horosphere Bf'*1, after a suitable isommetry, can be mapped

on

L) = {(X, - - -, Xn+1) € H™ X041 = C}

for somec > 0. Let {2 C L(c) be a compact domain of such a horosphereand
a smooth function defined afa. Then we will mean by the graph of the function
u the hypersurface

Y ={(x,ux));x € 2}
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of H"*'. This graphX will have constant mean curvatuké and boundary)s?
if and only if

Vu n 1

M) Qu=div|———e ]| - |H-—=—— =0 on
Vi+vuz) Y \V/1+|Vul?
(2) u=c on o

whereV and div denote the Euclidean gradient and divergence operatolis| and
is the Euclidean norm iR". This assertion can be deduced from the following
more general fact. I& is any (not necessarily graph) orientable hypersurface
immersed intoH"™* and N is a unit normal field onY with respect to the
hyperbolic metric, themN’(p) = N(p)/pn+1, Wherep € X andpn+1 = Xn+1(P) IS

an Euclidean unit normal field faE'. Hence, the respective principal curvatures
ki (p) andk/(p) are related as follows

ki (P) = Pn+1k/ (P) + Np11(P) 1<i<n,

whereN/,; = x.+1(N’). So, the corresponding mean curvature functibhgand
H’ satisfy
©) H (p) = pnsaH ' (P) + Npya ().

Now, when X' is a graph of a functionu it is well known that the Euclidean
mean curvature functioll’ is given by

nH’ = div Vv on (2,

1+|vul®

with respect to the orientatidd’ = (—Vu, 1)(1+|Vu|2)%1 pointing to the positive
side of thexy+1-axis. Using (3) in this last equation we get (1) in the case where
H is constant. Notice that, in (1H is the mean curvature corresponding to the
unit normal field pointing to the positive side @f.,. From now on, we will
choose that orientation for all the graphs whose boundary is in a horosphere.
With this choice, any domain of the horosphérg) will have constant mean
curvature 1.
The main purpose of this paper is to solve the Dirichlet problem (1)—(2) under
some convexity conditions of?. Equation (1) is of quasilinear elliptic type and
so the standard theory for this kind of equations can be applied [6, Part II].
Recently, existence and regularity theorems for constant mean curvature hy-
persurfaces in hyperbolic space have been obtained. When the asymptotic bound-
ary is prescribed, existence of complete minimal hypersurfaces was studied in
Anderson’s papers [2, 3] and more later by Lin [11] and Hardt and Lin [7].
When the mean curvature is a non-zero constant, recent advances can be found
in [1], [12] and [14]. The case of graphs, that we are interested in, was dealt
with in [4] when the boundary is included in a hyperbolic hyperplane, and in
[12] and [13] when it lies in a horosphere. In fact,( is a compact domain
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in a horosphere and(? is mean convex, Nelli and Spruck constructed in [12] a
graph with constant mean curvatuse and boundary (2 for each O< H < 1.
The estimates that they found there allowed them to construct graphs with con-
stant mean curvature and prescribed boundary at the infinity. Their method of
proof consists in blowing down from a minimal graph with boundary in a
horosphere (whose existence is assured by the standard elliptic theory [6], as Lin
pointed out in [11]), until arriving at the very domai@d whose mean curvature
is 1.

In this paper, we will obtailC® andC !-estimates for constant mean curvature
graphs in hyperbolic space whose boundargfisin a horosphere, which allow
us to proof that one can blow up from the domdmto get graphs with fixed
boundaryos2 and constant mean curvature, including the minimal one and even
with negative constant mean curvature. Concretely, we will prove

Theorem 1.1 Let {2 be a compact domain included in a horospher&lbt! such
thatd(?2 is mean convex. Let H be a real number such thely, < H < 1. Then
there exists a graph ove® with boundaryd(2? and constant mean curvature H.

Notice that if we think inH"*! as the upper halfspace model an equivalent
formulation of this result is as follows

Theorem 1.1 Let {2 be a compact domain included in the horosphe(e) L=

{x € H"; x,+1 = ¢}, ¢ > 0 such thatd? is (Euclidean) mean convex. If H is
a real number such thatcH,, < H < 1, where H,, is the Euclidean mean
curvature ofdf?2 in L(c), then there exists a graph with constant mean curvature
H and boundanp 2.

Our hypothesis ol cannot be improved. In fact, one may consider umbilical
examples to see that, #f2 is a round ( — 1)-sphere with Euclidean mean
curvaturek > 0 lying in L(c), there are no umbilical graphs dn spanningds2
with constant mean curvatui¢ < —kc.

The plan of the paper is as follows. In Sect. 2 we analyse graphs on horo-
spheres in the Minkowski model for hyperbolic space and we apply the maximum
principle for constant mean curvature hypersurfaces to discuss some configura-
tions of embedded hypersurfaces with boundary in a horosphere. In sections 3
and 4 we derive height and gradient estimates for graphs of constant mean cur-
vature, orH -graphs, on horospheres. Finally in Sect. 5, we state the existence
theorem and a kind of unigqueness result.

2 Preliminaries

A fundamental tool to study equation (1) is the Hopf maximum principle ([6,
Theorem 9.2] and [8]). The following geometric consequence of that maximum
principle has been already used (see [5] for details and definitions):

Proposition 2.1 (Tangency principle) Let 3); and X, be oriented hypersurfaces
in H"™* with constant mean curvature;H< H,. If X and X, have a point p,
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either in the interior or in the (analytic) boundary, where they are tangent, and
X, lies aboveX; near p, then¥; and X, must coincide in a neighbourhood of

p.

As a corollary of this, one has uniqueness for the Dirichlet problem (1)—(2)
corresponding to constant mean curvature graphs with boundary in a horosphere.
In fact, we can generalize this uniqueness to more general situations. So it will
be possible to obtain conditions assuming that a compact hypersurface whose
boundary is in a horosphere is included in some of the two domains determined
in H"* by the horosphere. Following ideas from [9] we have the following result
which will be useful in the sequel.

Proposition 2.2 Let X be an oriented compact hypersurface immerse#'f*
with constant mean curvature H and whose bound&ris a closed embedded
submanifold of a horosphergd). Let {2 be the bounded domain determined by
I' in L(c). We have

1. If [H| < 1, thenY is included in I{c)*" = {x € H""L;xy.1 > c}.
2. If [H| > 1, X is embedded and’ N (L(c) — §2) = @, then X is included in
L(c)* or L(c)~™ = {x € H""L; x4 < c}.

Proof. 1. Consider the cagél | < 1. Take a horospheig(t), t < ¢, with t small
enough that (t) N X' = (). Now, we increase to touch X' the first time. Since
each horosphere has constant mean curvature 1 with respect to the unit normal
field pointing upwards an¢H | < 1, the tangency principle 2.1 implies that this
tangent contact is obtained for= ¢ and soX’ C L(c)*.

2. Suppose now thgH| > 1. Take an Euclidean hemisphe®eupon the
horospherd.(c) whose boundary disb is contained in_(c) and is large enough
that2 C int(D) and that the domaiB determined by8UD verifies X NL(c)* C
B. ThusX USU (D — £2) is a closed hypersurface embeddedHif* and, so,
determines an interior domain, s&y. Choose a unit normal fiel&@ for X' in
such a way thalN points intoW at each point. It turns out that, if there are
points of the hypersurfac& in both L(c)* andL(c)~, thenN takes the same
value at the points where thg.; coordinate attains its maximum and minimum
respectively. Reversindyl if necessary, we can concluded that the unit normal
field (for whichH > 1) takes the same value at the highest and at the lowest
point of the hypersurface. Lowering a horosphere to the highest point or pushing
it up to the lowest one we obtain a contradiction using the tangency principle.
Thus the hypersurface lies in one lofc)* or L(c)~. O

Using the same tangency principle, when the considered hypersutfase
a graph and taking the settled (upwards) orientation, we may sharpen the result
above.

Proposition 2.3 Let X be a graph over a domaif? in a horosphere (c) of H"*L.
Suppose that’ has constant mean curvature H (with respect to the upwards
orientation). Then
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1. H < 1is equivalent ta¥ C L(c)* (the "interior” domain).
2. H > 1is equivalent ta¥' C L(c)~ (the "exterior” domain).

We can obtain, also as another consequence from the tangency principle the
next Corollart about monotonicity with respect kb of graphs with constant
mean curvaturéd in H"! whose boundary lies in a horosphere.

Corollary 2.4 (Monotonicity) Let (24, {2, be two compact domains in the horo-
sphere I(c) of H"! such thatf2; C int(f2,). Consider two graphsC; and X
over §2; and 2, with constant mean curvatures; Find H, (with respect to the
upwards orientation) and boundarié&?; and 9(2,. If H; > H,, then we have
that iy < up on (5. In particular, if 2, = (2, then y < u,.

Proof. Suppose, without less of generality, that the pointcfOc (2;, where
0 € R" and consider the group of hyperbolic translations (Euclidean homotheties)
given by

Ts: (Xt Xne1) — €(Xe, . .., Xne1)

wheres € R. Take s big enough thafls(%,) does not intersect;. Now we
bring backTs(X>) to its original position by decreasirguntil the first so with
T (XZ2)N X1 # 0. SinceX; is a graph o2y CC (2,, Ts(921) does not touchy;
for any s # 0. On the other hand, the tangency principle 2.1 forbids an interior
contact point in¥; N Tg,(X2) becauséH; > H,. Thensy < 0 and X, is over Xy
on {2;. a

Remark 1An alternative proof of this Corollary 2.4 could be done from the
theory of quasilinar elliptic equations. In fact,ufandv are solutions of (1), one

can apply the maximum principle to the difference function v which satisfies

a linear elliptic equation. This is achieved in [10, (5.10)] wheandv determine
constant mean curvature graphs over domains in hyperbolic hyperplanes. In the
case of graphs over horospheres, the same argument warks<ifl. But this

last inequality is a consequence, in our case, from Proposition 2.3.

Once we have established these preliminaries, we may come back to consider
the Dirichlet problem (1)—(2) that we wanted to solve. In order to find ttése
graphs we will apply a version of continuity method. From the standard theory
for quasilinear elliptic equations [6], one concludes existencH afraphs over
a given domainf? in the horospheré(c) of H"™?, for H lying in some interval
| by proving that

J ={H € I;there exists ai -graph on{2 whose boundary 92}

is a nonempty, open and closed set. We will achieve it as follows:

1. If 1 €1, thenJ # 0 because the very domaif? is a graph with constant
mean curvature 1.

2. The implicit function theorem for elliptic partial differential equations assures
that, if we prove that the operat@ in (1) is invertible, then we can solve
the Dirichlet problem (1)—(2) foH in some interval around of anlly for
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which we have a solution. In this way, the openess & reduced to check
the invertibility of Q.

3. Closedness df will be a consequence from obtaining a pri@#-estimates
for any solution of (1)—(2). But the properties of divergence type quasilinear
elliptic equations and Schauder theory guarantee that tBéseestimates
come from uniformC® and C*-estimates (cf. [6]).

3 Height estimates

In order to obtain the height and gradient estimates that we need to prove ex-
istence of constant mean curvature graphs, it will be convenient to leave the
upper halfspace model f&"*! that we have utilized before and consider the
hyperbolic space as a hyperquadric in a Lorentz space. In this way, the induced
metric on the graph takes a more manageable form.

So, we will represent b."*? the vector spacR"*? endowed with the Lorentz
metric

<7> = —dX§+dX12+...+er$+l

and the hyperbolic space will be identified with
H"™ = {p € L"? (p,p) = —1,po > 0}

equipped with the (Riemannian) induced metric friuti2. In this setting horo-
spheres, hyperplanes and spheres can be obtained intersdétihgvith affine
hyperplanes ol."*?. For example, any horosphere is given by

L(r) ={p € H"; (p,a) = 7}

wherea € L"*2 is a nonzero lightlike vector, that iga,a) = 0, andr is a
positive number. When one fixes that vectoand moves € R* one obtains a
foliation of H"™*! by means of horospheres having the same point at the infinity.
It is easy to see that

@ ép)=—p-a

is a unit normal field oriL(7) with respect to which the horosphere has constant
mean curvature 1. So, the "interior” domdifr)* determined by the horosphere
is given by {p € H"; (p,a) < 7} and the "exterior” one id.(7)~ = {p €
H"; (p,a) > 7}.

Now let {2 be a compact domain in the horosphéfe) andf € C>({2).
Here the graph® of the functionf is (recall the form of the geodesics H'**
in this Minkowski model)

X = {coshf (q)q + sinhf (q)¢(a); q € 2}.

That is, taking into account (4),

(5) »={e@q - 1 sinhf (q)a; q € 12}.
T
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Then, the points of belong toL(7)* or L(7)~ according td is > 0 or< 0. Thus,

if we choose the orientation df' as we pointed out in the section above (upwards
orientation in the upper half-space model) we have that the corresponding position
vectorp and Gauss mapl satisfy

—ref

\/1+e|Vf|?

From that, it is not difficult to see that the two functiomandf which determine
a graph over a domain in a horosphere corresponding to the two settings (upper
halfspace and Minkowski models) are related as follows

(6) (p,ay=re"  (N,a)=

1 _ 1

u-=

(p,a) 7

In this way, to obtainC® and C! estimates fowu is equivalent to do the same
for f.

Suppose now that’ is any hypersurface (not necessarily graph) immersed
into H"*! viewed in this Minkowski frame. lip stands for the position vector
function onX in L."*2, we have the known equation (see [10] for instance)

(7) Ap =np+nHN

where A is the Laplacian of the induced metric. Moreover, when the mean
curvature functiorH of X' is constant, we obtain (see [10] again)

(8) AN = —nHp — |o|*N,

whereo is the second fundamental form of the immersion. From these equations,
we will start to get height estimates for graphs in the hyperbolic space.

Theorem 3.1 Let I" be a closedn — 1)-dimensional submanifold @&"*! and
a € L"*2, Then there exists a constant € Cy(I, a) depending only od” and a,
such that ifY is a compact hypersurface bounded Byand its mean curvature
function satisfies A < 1, we have

sup|(p,a)| < Cy.
pex

Proof. Let {ep, €y, ...,en+1} be the canonical basis @f"*2. If N is the Gauss
map of X, then for anyp € ¥

(HN(p) +p,HN(p) +p) =H? -1 < 0.
Then by continuity and sincé, eg) = —po < 0, we have
(HN(p) +p, &) < 0.

Thus from (7),A{p, &) < 0 and the maximum principle implies that
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9) 0> —po = (p, &) > Min(p, &) := B,
pel’
andB; depends only od". Now, we take 1< i < n+1. Then

—(p,e0)’+(p,&)? < (p,p) = —1

and from (9)

(@) < \/(p.&o)2 —1< /B2 1:=B,.
Finally, leta = agep + . . . + @n+1€1+1. Then

|(p,a)| < |ao|[B1| + Ba(lau| + ... + [@n+1]) := Cy.
0

Remark 2Theorem 3.1 has a different geometric proof in the upper halfspace
model. Since the hypersurfacg is compact, we consider a sphesein H"*!

that containsY in its inside. The mean curvature 8fis greater than one with
respect to the orientation pointing inside. So, we m8via a fix direction until

S touchesY. SinceH? < 1, the tangency principle assures that this only occurs
at boundary points. We get the a priori bounds*bfn some coordinate moving

S in that direction. Also, it is important to recall that the above reasoning says
that any compact hypersurface Hi"** with H? < 1 has non empty boundary
(see [5]).

As consequence of Theorem 3.1, we obi@fhestimates for graphs on horo-
spheres with constant mean curvatitewhenH belongs to the interval [@].

Corollary 3.2 Let 2 be a compact domain a horosphere I6f*1. Then there
exists a constant £= C,(f2) depending only o2, such that if¥' is a graph of a
function f on{2 with constant mean curvature H, H [0, 1], and with boundary
012, we have

o<t <C,.

Proof. Let L(7) be the horosphere containing. Recall that with the chosen
orientation for graphs, we have thatis included inL(7)*, and thenf > 0. By
rotating coordinates and with the notation of Theorem 3.1, we assume that the
lightlike vector that define&(r) is a = —ey — e;. For anyp € X,

(10) (P — Po)(P1 + Po) = —PE + P2 < (p,p) = —1.

Since(p,a) = po — p1 > 0, we havep; < po. The inequality (10) and the fact
thatB; < —pg imply
1 1
> — F
PpLtpo ~ —2B;

Bs.

(p,a) =po—p1 >

From (5)

f < IogBl =C,.
3
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Finally we analyse the cadé ¢ [0, 1].

Theorem 3.3 Let be a number HZ [0, 1]. There exists a constant;G Cz(H)
depending only on H such that¥ is the graph of a function f on any compact
domains? in a horosphere oH"*! whose boundary 852, we have

1. ifH <0,
0<f <C(Cas.

2. ifH > 1,
C;<f <.

Proof. Let L(7) = {p € L"*%; (p,a) = 7} be the horosphere wher@ is. Using
formulas (7) and (8) we conclude

(11) A(H (p,a) + (N,a)) = —(jo|* — nH?)(N,a) > 0.
Then the maximum principle gives

(12) H(p,a) +(N(p),a) < maxH7 +(N,a)) <H
Now we have

0 la] = [a"|” + (N, &)* — (p,a)* > (N,a)* - (p,a)"

(<N ) a> + <pa a>)(<N ’ a> - <pa a)),

wherea' is the tangent part od on X. Since(N(p),a) — (p,a) < 0, we have

(13) (N(p),a) +(p,a) > 0.

From (12) and (13)
(14) (H —1)p,a) <HT.

Since(p, a) = e "®), the inequality (14) yields the desir&f-estimates of if

we set
H-1
Cs :=log T

4 Gradient estimates

In the analysis of (1)—-(2) and in the search of a pri6d*-estimates, it is
necessary to establish a priori gradient estimates for solutions of the Dirichlet
problem. We follow working in the Minkowski model and we will need some
convexity assumptions on the domdih
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Theorem 4.1 Let {2 be a compact domain of a horosphere such th@tis mean
convex. Let be a graph onf2 bounded by (2 with constant mean curvature H.
If

_Haﬂ <H < 17

then there exists a constanf € C4(f2, H) depending only o2 and H such that

sup|Vf| < Cy.
2

Proof. From equation (11), there existse 90X such that
(15) H{p,a)+(N,a) <H7+(N(q),a).
Moreover at the poing,

H (vq,a) + (([dN)qvg,a) <0,

wherev is the interior conormal alongX'. On the other hand, sindé¢ < 1 we
know by Sect. 2 thafp,a) < = and then, in any point of" := 92, (v,a) <O0.
So we have

(H — o(vg,vq)){vg,a) < 0.

This inequality and sincévy, a) < 0 imply that

n—1

(16) > o, v) > (n—1H,

i=1

where{v,...,vn_1} an orthonormal frame in the tangent spdg@X. At the
boundary points we have

(17) o(vi,vi) = ol (vi, i) (N(Q), n(a)) —

(N, a)

where ! denotes the second fundamental formIofas submanifold oL(7)
andn is the unit normal field td” in L(7) that points inside. I€ = —p — %a is
the unit normal field oriL(7),

(v, a)?

1=2(68) = (197 + (N7 = 5= + (N, &%

This formula joint with the equality
1=(N,N) = (N,7)?+(N,&)?

assures that
(v,a)

(N,nm) =

From (16), (17) and sinckl is positive, we have at the point

(18) (N(a).a) < Hp(q)(vg,a) — 7H.
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First, we consider the case thakOH < 1. Then inequalities (15) and (18) yield
(19) H(p,a) + (N(p),a) <0
for anyp € X. As a consequence of Corollary 3.2 and (19)

(N(p),a) < —H(p,a) < —H7e © =B, <0

andB, depends only o2 andH .
Now let us study the caseHr < H < 0. As (a,a) = 0, we have

(v,a) = —y/72 — (N,a)2.
Then (18) gives
(20)  (L+Hr(@)?)(N(a),a)®+2rH(N(q),a) + r*(H? — Hr(a)?) > 0.

Some of the two roots of the left side is positive becadsg 0. As the function
(N,a) is negative becausE is a graph, we have

21)  (N@),a) < ——

< T (H - Hr@y 1+ Hr@) ~ H2)

The hypothesis ofl assures that the right side in (21) is negative. Now (15),
(21) and the fact thatHr < H < 0 imply

(N,a) < H(T<p,a>)+1+|_|TF(q)Z<HHp\/m)
T 2 - —_—
1+|—|F(q)2<H —Hr(q)y/1+Hr(a) —H2> =Bs < 0,

whereBs depends only o2 andH.
Therefore we are able to find negative constaitsand Bs depending only
onH and (2 such that

(N,a) <Bs<0 onf,if0<H <1
(N,a) <Bs<0 onf,if -Hr <H <O.

Now it is easy to conclude from (6), Corollary 3.2 and Theorem 3.3 that there
exists a constant,, depending only o2 andH such thafVf| < C,. O
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5 The main result

In Sect. 4, Theorem 4.1 gives us a priori gradient estimates for a constant mean
curvature graph defined in a mean convex domain of a horosphere when the
mean curvature satisfies some assumptions with respect to the convexity of the
boundary. This fact joint with the height estimates established in Sect. 3, allow
us to use the standard theory of existence for the Dirichlet problem (1)—(2).

Theorem 5.1 Let {2 be a compact domain of a horosphere such th@tis mean
convex. Then if ki, is the mean curvature function of2 with respect to the
inner normal, and H is a number such that

—Hpn <H <1
there exists a graph of? of constant mean curvature H and boundar§.
Proof. Let us consider the set
J ={H € [—Hsg, 1]; the problem (1)—(2) can be solved foir}.

Since (2 is a domain of a horosphere, the number 1 belongs. tGorollary 3.2
and Theorem 4.1 show thatis closed.

Finally we prove thatl is an open set. For this, H € J, one would be able
to solve the Dirichlet problem in some interval arourd Let > be aH -graph
with boundaryo(? and X' = graph(1). Define

H:C2%%X) — CYX)

mapping each € C2*(X) in the mean curvature of the graph definedubyhe
mapH between both Banach spaces has as its differential the linearized operator
of the mean curvature:

L=dH =A+|o|*—n.

We work in the Minkowski model. The kernel of this operator is trivial because
L(N,a) =—n(H(p,a)+(N,a)) >0, and (N,a)<O

The first inequality is a consequence from (19), in the casel® < 1, and is
trivially true whenH < 0 (recall that(p,a) > 0 and(N,a) < 0). HenceL is a
Fredholm operator of index zero amdis a isomorphism. The implicit function
theorem assures the Dirichlet problem can be solved around the Malue O

As we have pointed out in the Introduction, Theorem 5.1 was showed in
[12] for 0 < H < 1. However it is worthwhile to remark the geometric sense
of our proof. In contrast to [12], we begin the continuity method with the given
geometric solution of (1)—(2) foH = 1: the very domain? C L(c). After this
and thanks to Corollary 3.2 and Theorem 4.1, we can "blow up” from the 1-graph
(2 until we reach the minimal solutioH = 0 and, after this, untiH > —Hgyg,.

Finally, as a corollary of Theorem 5.1, we will give a certain uniqueness
result for embedded constant mean curvature hypersurfaces with boundary in a
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horosphere that generalizes, in some sense, another one that appears in [12]. Let
X’ be an embedded compact hypersurface of constant mean curMature with
boundary in a horosphere. Let us consider the upper halfspace modélfor
L(c) = {X.+1 = ¢} the horosphere containin@X’ and {2 the bounded domain
by 0% in L(c). Assume that” is included in the "interior” domairi(c)* (for
instance, ifH? < 1, this inclusion is assured by Proposition 2.2). ThHew 2
dividesL(c)* in two domains, and one of them is bounded, ¥dy SinceY is
an oriented hypersurface, its unit normal fiéldpoints towardsV or H"* — W

in the whole of ¥. Spruck and Nelli [12] have proved that if & H < 1
andN points toH"! — W, then X is the graph given by Theorem 5.1 . With
these considerations and with stronger hypothesi&'pwe extend this result for
negative values ol . For this, we need the next definition. L&tbe a compact
domain inL(c) and f,0) € R" x {0}. We call thevertical hyperbolic cylinder
determined by? and , 0) the set given by

US>0TS(Q)7

whereTg denotes the hyperbolic translation from the poimtQ), i.e., Ts is the
Euclidean homothety of? from (p,0) with ratio € (see Corollary 2.4). With
this definition, we prove the following uniqueness result:

Corollary 5.2 Let(? C L(c) be a mean convex compact domain star-shaped with
respect to some interior poirfp, c) of {2 and let H be a nhumber such that

—Hyo <H <O0.

Let X be a compact embedded hypersurface with constant mean curvature H that
lies in L(c)" and included in the vertical hyperbolic cylinder determined’bgnd

the point(p, 0). If its Gauss map N points towards the exterior of the bounded
domain determined by’ U {2, then X' is the graph obtained in Theorem 5.1.

Proof. Let G be theH-graph bounded byJ{? given by Theorem 5.1. Notice
that the orientation o1& is that one pointing upwards. Also, denote W the
bounded domain ifl"*! determined byX U £2. With a similar reasoning as in
Corollary 2.4, using hyperbolic translations and since the orientatiol points
towardsH"** — W, X lies belowG.

Now we consider the poinp(c) € {2 with respect to whicl? is star-shaped.
Let {h;;t > O} be the horizontal homotheties from, ), where we suppose that
ho is the identity andh(2) C hs(f2) if s < t. Then we have a foliation of the
domain 2 by {h(92)}. Moreover, each domaif; := h;({2) is mean convex
and with mean curvaturelyy, satisfying

(22) 0 < Hpn < Hapn, t>0.

From (22), letG; be theH -graph on(2 with boundaryd( whose existence
is assured by Theorem 5.1. From the monotonocity and sihceonverges to
(p,c), if t is big enoughG; is included in the domaiw. Now we lett — O
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until touching X' a first timety. If to > 0, this happens betweds, and X' at
some interior point because

aGtO = aQ'[O C |nt(Q)

But the tangency principle gives a contradictionNif denotes the unit normal
field on Gy, thenN(q) = Ny, (q) because they point towar@'"* —W. Therefore
to must be 0 and sal' lies aboveG. This fact and the first part of the proof
imply that G and X' agree. O
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