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Abstract. We give an existence result for constant mean curvature graphs in
hyperbolic spaceHn+1. Let Ω be a compact domain of a horosphere inH

n+1

whose boundary∂Ω is mean convex, that is, its mean curvatureH∂Ω (as a
submanifold of the horosphere) is positive with respect to the inner orientation.
If H is a number such that−H∂Ω < H < 1, then there exists a graph overΩ
with constant mean curvatureH and boundary∂Ω. Umbilical examples, when
∂Ω is a sphere, show that our hypothesis onH is the best possible.

1 Introduction

We will start by considering the upper halfspace model for the hyperbolic space
H

n+1. That is
H

n+1 = {(x1, . . . , xn+1) ∈ R
n+1; xn+1 > 0}

endowed with the metric

〈, 〉 =
dx2

1 + . . . + dx2
n+1

x2
n+1

.

In this setting, any horosphere ofH
n+1, after a suitable isommetry, can be mapped

on
L(c) = {(x1, . . . , xn+1) ∈ H

n+1; xn+1 = c}
for somec > 0. Let Ω ⊂ L(c) be a compact domain of such a horosphere andu
a smooth function defined onΩ. Then we will mean by the graph of the function
u the hypersurface

Σ = {(x, u(x)); x ∈ Ω}
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of H
n+1. This graphΣ will have constant mean curvatureH and boundary∂Ω

if and only if

Q(u) = div


 ∇u√

1 + |∇u|2


 − n

u


H − 1√

1 + |∇u|2


 = 0 onΩ(1)

u = c on ∂Ω(2)

where∇ and div denote the Euclidean gradient and divergence operators and|.|
is the Euclidean norm inRn. This assertion can be deduced from the following
more general fact. IfΣ is any (not necessarily graph) orientable hypersurface
immersed intoH

n+1 and N is a unit normal field onΣ with respect to the
hyperbolic metric, thenN ′(p) = N (p)/pn+1, wherep ∈ Σ and pn+1 = xn+1(p) is
an Euclidean unit normal field forΣ. Hence, the respective principal curvatures
ki (p) andk′

i (p) are related as follows

ki (p) = pn+1k′
i (p) + N ′

n+1(p) 1 ≤ i ≤ n,

whereN ′
n+1 = xn+1(N ′). So, the corresponding mean curvature functionsH and

H ′ satisfy
H (p) = pn+1H ′(p) + N

′
n+1(p).(3)

Now, whenΣ is a graph of a functionu it is well known that the Euclidean
mean curvature functionH ′ is given by

nH ′ = div


 ∇u√

1 + |∇u|2


 on Ω,

with respect to the orientationN ′ = (−∇u, 1)(1+|∇u|2)
−1

2 pointing to the positive
side of thexn+1-axis. Using (3) in this last equation we get (1) in the case where
H is constant. Notice that, in (1),H is the mean curvature corresponding to the
unit normal field pointing to the positive side ofxn+1. From now on, we will
choose that orientation for all the graphs whose boundary is in a horosphere.
With this choice, any domain of the horosphereL(c) will have constant mean
curvature 1.

The main purpose of this paper is to solve the Dirichlet problem (1)–(2) under
some convexity conditions onΩ. Equation (1) is of quasilinear elliptic type and
so the standard theory for this kind of equations can be applied [6, Part II].

Recently, existence and regularity theorems for constant mean curvature hy-
persurfaces in hyperbolic space have been obtained. When the asymptotic bound-
ary is prescribed, existence of complete minimal hypersurfaces was studied in
Anderson’s papers [2, 3] and more later by Lin [11] and Hardt and Lin [7].
When the mean curvature is a non-zero constant, recent advances can be found
in [1], [12] and [14]. The case of graphs, that we are interested in, was dealt
with in [4] when the boundary is included in a hyperbolic hyperplane, and in
[12] and [13] when it lies in a horosphere. In fact, ifΩ is a compact domain
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in a horosphere and∂Ω is mean convex, Nelli and Spruck constructed in [12] a
graph with constant mean curvatureH and boundary∂Ω for each 0< H < 1.
The estimates that they found there allowed them to construct graphs with con-
stant mean curvature and prescribed boundary at the infinity. Their method of
proof consists in blowing down from a minimal graph with boundary∂Ω in a
horosphere (whose existence is assured by the standard elliptic theory [6], as Lin
pointed out in [11]), until arriving at the very domainΩ whose mean curvature
is 1.

In this paper, we will obtainC0 andC1-estimates for constant mean curvature
graphs in hyperbolic space whose boundary is∂Ω in a horosphere, which allow
us to proof that one can blow up from the domainΩ to get graphs with fixed
boundary∂Ω and constant mean curvature, including the minimal one and even
with negative constant mean curvature. Concretely, we will prove

Theorem 1.1 LetΩ be a compact domain included in a horosphere ofH
n+1 such

that∂Ω is mean convex. Let H be a real number such that−H∂Ω < H ≤ 1. Then
there exists a graph overΩ with boundary∂Ω and constant mean curvature H .

Notice that if we think inH
n+1 as the upper halfspace model an equivalent

formulation of this result is as follows

Theorem 1.1 Let Ω be a compact domain included in the horosphere L(c) =
{x ∈ H

n+1; xn+1 = c}, c > 0 such that∂Ω is (Euclidean) mean convex. If H is
a real number such that−cH

′
∂Ω < H ≤ 1, where H

′
∂Ω is the Euclidean mean

curvature of∂Ω in L(c), then there exists a graph with constant mean curvature
H and boundary∂Ω.

Our hypothesis onH cannot be improved. In fact, one may consider umbilical
examples to see that, if∂Ω is a round (n − 1)-sphere with Euclidean mean
curvaturek > 0 lying in L(c), there are no umbilical graphs onΩ spanning∂Ω
with constant mean curvatureH ≤ −kc.

The plan of the paper is as follows. In Sect. 2 we analyse graphs on horo-
spheres in the Minkowski model for hyperbolic space and we apply the maximum
principle for constant mean curvature hypersurfaces to discuss some configura-
tions of embedded hypersurfaces with boundary in a horosphere. In sections 3
and 4 we derive height and gradient estimates for graphs of constant mean cur-
vature, orH -graphs, on horospheres. Finally in Sect. 5, we state the existence
theorem and a kind of uniqueness result.

2 Preliminaries

A fundamental tool to study equation (1) is the Hopf maximum principle ([6,
Theorem 9.2] and [8]). The following geometric consequence of that maximum
principle has been already used (see [5] for details and definitions):

Proposition 2.1 (Tangency principle) LetΣ1 andΣ2 be oriented hypersurfaces
in H

n+1 with constant mean curvature H1 ≤ H2. If Σ1 and Σ2 have a point p,



180 R. Ĺopez, S. Montiel

either in the interior or in the (analytic) boundary, where they are tangent, and
Σ1 lies aboveΣ2 near p, thenΣ1 and Σ2 must coincide in a neighbourhood of
p.

As a corollary of this, one has uniqueness for the Dirichlet problem (1)–(2)
corresponding to constant mean curvature graphs with boundary in a horosphere.
In fact, we can generalize this uniqueness to more general situations. So it will
be possible to obtain conditions assuming that a compact hypersurface whose
boundary is in a horosphere is included in some of the two domains determined
in H

n+1 by the horosphere. Following ideas from [9] we have the following result
which will be useful in the sequel.

Proposition 2.2 Let Σ be an oriented compact hypersurface immersed inH
n+1

with constant mean curvature H and whose boundaryΓ is a closed embedded
submanifold of a horosphere L(c). Let Ω be the bounded domain determined by
Γ in L(c). We have

1. If |H | ≤ 1, thenΣ is included in L(c)+ = {x ∈ H
n+1; xn+1 ≥ c}.

2. If |H | ≥ 1, Σ is embedded andΣ ∩ (L(c) − Ω) = ∅, thenΣ is included in
L(c)+ or L(c)− = {x ∈ H

n+1; xn+1 ≤ c}.

Proof. 1. Consider the case|H | ≤ 1. Take a horosphereL(t), t < c, with t small
enough thatL(t) ∩ Σ = ∅. Now, we increaset to touchΣ the first time. Since
each horosphere has constant mean curvature 1 with respect to the unit normal
field pointing upwards and|H | ≤ 1, the tangency principle 2.1 implies that this
tangent contact is obtained fort = c and soΣ ⊂ L(c)+.

2. Suppose now that|H | ≥ 1. Take an Euclidean hemisphereS upon the
horosphereL(c) whose boundary discD is contained inL(c) and is large enough
thatΩ ⊂ int(D) and that the domainB determined byS∪D verifiesΣ∩L(c)+ ⊂
B. ThusΣ ∪ S ∪ (D − Ω) is a closed hypersurface embedded inH

n+1 and, so,
determines an interior domain, sayW. Choose a unit normal fieldB for Σ in
such a way thatN points into W at each point. It turns out that, if there are
points of the hypersurfaceΣ in both L(c)+ and L(c)−, then N takes the same
value at the points where thexn+1 coordinate attains its maximum and minimum
respectively. ReversingN if necessary, we can concluded that the unit normal
field (for which H ≥ 1) takes the same value at the highest and at the lowest
point of the hypersurface. Lowering a horosphere to the highest point or pushing
it up to the lowest one we obtain a contradiction using the tangency principle.
Thus the hypersurface lies in one ofL(c)+ or L(c)−. ut

Using the same tangency principle, when the considered hypersurfaceΣ is
a graph and taking the settled (upwards) orientation, we may sharpen the result
above.

Proposition 2.3 LetΣ be a graph over a domainΩ in a horosphere L(c) of H
n+1.

Suppose thatΣ has constant mean curvature H (with respect to the upwards
orientation). Then
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1. H ≤ 1 is equivalent toΣ ⊂ L(c)+ (the ”interior” domain).
2. H ≥ 1 is equivalent toΣ ⊂ L(c)− (the ”exterior” domain).

We can obtain, also as another consequence from the tangency principle the
next Corollart about monotonicity with respect toH of graphs with constant
mean curvatureH in H

n+1 whose boundary lies in a horosphere.

Corollary 2.4 (Monotonicity) Let Ω1, Ω2 be two compact domains in the horo-
sphere L(c) of H

n+1 such thatΩ1 ⊂ int(Ω2). Consider two graphsΣ1 and Σ2

over Ω1 and Ω2 with constant mean curvatures H1 and H2 (with respect to the
upwards orientation) and boundaries∂Ω1 and ∂Ω2. If H1 ≥ H2, then we have
that u1 ≤ u2 on Ω1. In particular, if Ω1 = Ω2, then u1 ≤ u2.

Proof. Suppose, without less of generality, that the point (0, c) ∈ Ω1, where
0 ∈ R

n and consider the group of hyperbolic translations (Euclidean homotheties)
given by

Ts : (x1 . . . , xn+1) 7−→ es(x1, . . . , xn+1)

where s ∈ R. Take s big enough thatTs(Σ2) does not intersectΣ1. Now we
bring backTs(Σ2) to its original position by decreasings until the first so with
Ts0(Σ2)∩Σ1 6= ∅. SinceΣ1 is a graph onΩ1 ⊂⊂ Ω2, Ts(∂Ω1) does not touchΣ1

for any s 6= 0. On the other hand, the tangency principle 2.1 forbids an interior
contact point inΣ1 ∩ Ts0(Σ2) becauseH1 ≥ H2. Thens0 ≤ 0 andΣ2 is overΣ1

on Ω1. ut
Remark 1An alternative proof of this Corollary 2.4 could be done from the
theory of quasilinar elliptic equations. In fact, ifu andv are solutions of (1), one
can apply the maximum principle to the difference functionu −v which satisfies
a linear elliptic equation. This is achieved in [10, (5.10)] whenu andv determine
constant mean curvature graphs over domains in hyperbolic hyperplanes. In the
case of graphs over horospheres, the same argument works ifH ≤ 1. But this
last inequality is a consequence, in our case, from Proposition 2.3.

Once we have established these preliminaries, we may come back to consider
the Dirichlet problem (1)–(2) that we wanted to solve. In order to find theseH -
graphs we will apply a version of continuity method. From the standard theory
for quasilinear elliptic equations [6], one concludes existence ofH -graphs over
a given domainΩ in the horosphereL(c) of H

n+1, for H lying in some interval
I by proving that

J = {H ∈ I ; there exists anH -graph onΩ whose boundary is∂Ω}
is a nonempty, open and closed set. We will achieve it as follows:

1. If 1 ∈ I , then J 6= ∅ because the very domainΩ is a graph with constant
mean curvature 1.

2. The implicit function theorem for elliptic partial differential equations assures
that, if we prove that the operatorQ in (1) is invertible, then we can solve
the Dirichlet problem (1)–(2) forH in some interval around of anyH0 for
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which we have a solution. In this way, the openess ofJ is reduced to check
the invertibility of Q.

3. Closedness ofI will be a consequence from obtaining a prioriC2,α-estimates
for any solution of (1)–(2). But the properties of divergence type quasilinear
elliptic equations and Schauder theory guarantee that theseC2,α-estimates
come from uniformC0 andC1-estimates (cf. [6]).

3 Height estimates

In order to obtain the height and gradient estimates that we need to prove ex-
istence of constant mean curvature graphs, it will be convenient to leave the
upper halfspace model forHn+1 that we have utilized before and consider the
hyperbolic space as a hyperquadric in a Lorentz space. In this way, the induced
metric on the graph takes a more manageable form.

So, we will represent byLn+2 the vector spaceRn+2 endowed with the Lorentz
metric

〈, 〉 = −dx2
0 + dx2

1 + . . . + dx2
n+1

and the hyperbolic space will be identified with

H
n+1 = {p ∈ L

n+2; 〈p, p〉 = −1, p0 > 0}
equipped with the (Riemannian) induced metric fromL

n+2. In this setting horo-
spheres, hyperplanes and spheres can be obtained intersectingH

n+1 with affine
hyperplanes ofLn+2. For example, any horosphere is given by

L(τ ) = {p ∈ H
n+1; 〈p, a〉 = τ}

where a ∈ L
n+2 is a nonzero lightlike vector, that is,〈a, a〉 = 0, andτ is a

positive number. When one fixes that vectora and movesτ ∈ R
+ one obtains a

foliation of H
n+1 by means of horospheres having the same point at the infinity.

It is easy to see that

ξ(p) = −p − 1
τ

a(4)

is a unit normal field onL(τ ) with respect to which the horosphere has constant
mean curvature 1. So, the ”interior” domainL(τ )+ determined by the horosphere
is given by {p ∈ H

n+1; 〈p, a〉 ≤ τ} and the ”exterior” one isL(τ )− = {p ∈
H

n+1; 〈p, a〉 ≥ τ}.
Now let Ω be a compact domain in the horosphereL(τ ) and f ∈ C∞(Ω).

Here the graphΣ of the functionf is (recall the form of the geodesics ofH
n+1

in this Minkowski model)

Σ = {coshf (q)q + sinhf (q)ξ(q); q ∈ Ω}.

That is, taking into account (4),

Σ = {e−f (q)q − 1
τ

sinhf (q)a; q ∈ Ω}.(5)
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Then, the points ofΣ belong toL(τ )+ or L(τ )− according tof is ≥ 0 or≤ 0. Thus,
if we choose the orientation ofΣ as we pointed out in the section above (upwards
orientation in the upper half-space model) we have that the corresponding position
vectorp and Gauss mapN satisfy

〈p, a〉 = τe−f 〈N , a〉 =
−τe−f√

1 + e2f |∇f |2
(6)

From that, it is not difficult to see that the two functionsu andf which determine
a graph over a domain in a horosphere corresponding to the two settings (upper
halfspace and Minkowski models) are related as follows

u =
1

〈p, a〉 =
1
τ

ef .

In this way, to obtainC0 and C1 estimates foru is equivalent to do the same
for f .

Suppose now thatΣ is any hypersurface (not necessarily graph) immersed
into H

n+1 viewed in this Minkowski frame. Ifp stands for the position vector
function onΣ in L

n+2, we have the known equation (see [10] for instance)

∆p = np + nHN(7)

where ∆ is the Laplacian of the induced metric. Moreover, when the mean
curvature functionH of Σ is constant, we obtain (see [10] again)

∆N = −nHp − |σ|2N ,(8)

whereσ is the second fundamental form of the immersion. From these equations,
we will start to get height estimates for graphs in the hyperbolic space.

Theorem 3.1 Let Γ be a closed(n − 1)-dimensional submanifold ofHn+1 and
a ∈ L

n+2. Then there exists a constant C1 = C1(Γ, a) depending only onΓ and a,
such that ifΣ is a compact hypersurface bounded byΓ and its mean curvature
function satisfies H2 ≤ 1, we have

sup
p∈Σ

|〈p, a〉| ≤ C1.

Proof. Let {e0, e1, . . . , en+1} be the canonical basis ofLn+2. If N is the Gauss
map ofΣ, then for anyp ∈ Σ

〈HN (p) + p, HN (p) + p〉 = H 2 − 1 ≤ 0.

Then by continuity and since〈p, e0〉 = −p0 < 0, we have

〈HN (p) + p, e0〉 ≤ 0.

Thus from (7),∆〈p, e0〉 ≤ 0 and the maximum principle implies that
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0 > −p0 = 〈p, e0〉 ≥ min
p∈Γ

〈p, e0〉 := B1(9)

andB1 depends only onΓ . Now, we take 1≤ i ≤ n + 1. Then

−〈p, e0〉2 + 〈p, ei 〉2 ≤ 〈p, p〉 = −1

and from (9)

|〈p, ei 〉| ≤
√

〈p, e0〉2 − 1 ≤
√

B2
1 − 1 := B2.

Finally, let a = a0e0 + . . . + an+1en+1. Then

|〈p, a〉| ≤ |a0||B1| + B2(|a1| + . . . + |an+1|) := C1.

ut
Remark 2Theorem 3.1 has a different geometric proof in the upper halfspace
model. Since the hypersurfaceΣ is compact, we consider a sphereS in H

n+1

that containsΣ in its inside. The mean curvature ofS is greater than one with
respect to the orientation pointing inside. So, we moveS in a fix direction until
S touchesΣ. SinceH 2 ≤ 1, the tangency principle assures that this only occurs
at boundary points. We get the a priori bounds ofΣ in some coordinate moving
S in that direction. Also, it is important to recall that the above reasoning says
that any compact hypersurface inHn+1 with H 2 ≤ 1 has non empty boundary
(see [5]).

As consequence of Theorem 3.1, we obtainC0-estimates for graphs on horo-
spheres with constant mean curvatureH , whenH belongs to the interval [0, 1].

Corollary 3.2 Let Ω be a compact domain a horosphere ofH
n+1. Then there

exists a constant C2 = C2(Ω) depending only onΩ, such that ifΣ is a graph of a
function f onΩ with constant mean curvature H , H∈ [0, 1], and with boundary
∂Ω, we have

0 ≤ f ≤ C2.

Proof. Let L(τ ) be the horosphere containingΩ. Recall that with the chosen
orientation for graphs, we have thatΣ is included inL(τ )+, and then,f ≥ 0. By
rotating coordinates and with the notation of Theorem 3.1, we assume that the
lightlike vector that definesL(τ ) is a = −e0 − e1. For anyp ∈ Σ,

(p1 − p0)(p1 + p0) = −p2
0 + p2

1 ≤ 〈p, p〉 = −1.(10)

Since〈p, a〉 = p0 − p1 ≥ 0, we havep1 ≤ p0. The inequality (10) and the fact
that B1 ≤ −p0 imply

〈p, a〉 = p0 − p1 ≥ 1
p1 + p0

≥ 1
−2B1

:= B3.

From (5)
f ≤ log

τ

B3
:= C2.

ut
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Finally we analyse the caseH 6∈ [0, 1].

Theorem 3.3 Let be a number H6∈ [0, 1]. There exists a constant C3 = C3(H )
depending only on H such that ifΣ is the graph of a function f on any compact
domainΩ in a horosphere ofHn+1 whose boundary is∂Ω, we have

1. if H < 0,

0 ≤ f ≤ C3.

2. if H > 1,

C3 ≤ f ≤ 0.

Proof. Let L(τ ) = {p ∈ L
n+1; 〈p, a〉 = τ} be the horosphere whereΩ is. Using

formulas (7) and (8) we conclude

∆(H 〈p, a〉 + 〈N , a〉) = −(|σ|2 − nH 2)〈N , a〉 ≥ 0.(11)

Then the maximum principle gives

H 〈p, a〉 + 〈N (p), a〉 ≤ max
∂Σ

(H τ + 〈N , a〉) ≤ H τ.(12)

Now we have

0 = |a|2 = |aT |2 + 〈N , a〉2 − 〈p, a〉2 ≥ 〈N , a〉2 − 〈p, a〉2

= (〈N , a〉 + 〈p, a〉)(〈N , a〉 − 〈p, a〉),

whereaT is the tangent part ofa on Σ. Since〈N (p), a〉 − 〈p, a〉 ≤ 0, we have

〈N (p), a〉 + 〈p, a〉 ≥ 0.(13)

From (12) and (13)

(H − 1)〈p, a〉 ≤ H τ.(14)

Since〈p, a〉 = τe−f (p), the inequality (14) yields the desiredC0-estimates off if
we set

C3 := log
H − 1

H
.

ut

4 Gradient estimates

In the analysis of (1)–(2) and in the search of a prioriC2,α-estimates, it is
necessary to establish a priori gradient estimates for solutions of the Dirichlet
problem. We follow working in the Minkowski model and we will need some
convexity assumptions on the domainΩ.
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Theorem 4.1 Let Ω be a compact domain of a horosphere such that∂Ω is mean
convex. LetΣ be a graph onΩ bounded by∂Ω with constant mean curvature H .
If

−H∂Ω < H ≤ 1,

then there exists a constant C4 = C4(Ω, H ) depending only onΩ and H such that

sup
Ω

|∇f | ≤ C4.

Proof. From equation (11), there existsq ∈ ∂Σ such that

H 〈p, a〉 + 〈N , a〉 ≤ H τ + 〈N (q), a〉.(15)

Moreover at the pointq,

H 〈νq, a〉 + 〈(dN)qνq, a〉 ≤ 0,

whereν is the interior conormal along∂Σ. On the other hand, sinceH ≤ 1 we
know by Sect. 2 that〈p, a〉 ≤ τ and then, in any point ofΓ := ∂Ω, 〈ν, a〉 ≤ 0.
So we have

(H − σ(νq, νq))〈νq, a〉 ≤ 0.

This inequality and since〈νq, a〉 ≤ 0 imply that

n−1∑
i =1

σ(vi , vi ) ≥ (n − 1)H ,(16)

where{v1, . . . , vn−1} an orthonormal frame in the tangent spaceTq∂Σ. At the
boundary points we have

σ(vi , vi ) = σΓ (vi , vi )〈N (q), η(q)〉 − 〈N , a〉
τ

(17)

whereσΓ denotes the second fundamental form ofΓ as submanifold ofL(τ )
andη is the unit normal field toΓ in L(τ ) that points inside. Ifξ = −p − 1

τ a is
the unit normal field onL(τ ),

1 = 〈ξ, ξ〉 = 〈ν, ξ〉2 + 〈N , ξ〉2 =
〈ν, a〉2

τ2
+ 〈N , ξ〉2.

This formula joint with the equality

1 = 〈N , N〉 = 〈N , η〉2 + 〈N , ξ〉2

assures that

〈N , η〉 =
〈ν, a〉

τ
.

From (16), (17) and sinceHΓ is positive, we have at the pointq

〈N (q), a〉 ≤ HΓ (q)〈νq, a〉 − τH .(18)
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First, we consider the case that 0< H < 1. Then inequalities (15) and (18) yield

H 〈p, a〉 + 〈N (p), a〉 ≤ 0(19)

for any p ∈ Σ. As a consequence of Corollary 3.2 and (19)

〈N (p), a〉 ≤ −H 〈p, a〉 ≤ −H τe−C2 := B4 < 0

andB4 depends only onΩ andH .
Now let us study the case−HΓ < H ≤ 0. As 〈a, a〉 = 0, we have

〈ν, a〉 = −
√

τ2 − 〈N , a〉2.

Then (18) gives

(1 + HΓ (q)2)〈N (q), a〉2 + 2τH 〈N (q), a〉 + τ2(H 2 − HΓ (q)2) ≥ 0.(20)

Some of the two roots of the left side is positive becauseH ≤ 0. As the function
〈N , a〉 is negative becauseΣ is a graph, we have

〈N (q), a〉 ≤ τ

1 + HΓ (q)2

(
H − HΓ (q)

√
1 + HΓ (q)2 − H 2

)
.(21)

The hypothesis onH assures that the right side in (21) is negative. Now (15),
(21) and the fact that−HΓ < H ≤ 0 imply

〈N , a〉 ≤ H (τ − 〈p, a〉) +
τ

1 + HΓ (q)2

(
H − HΓ

√
1 + HΓ (q)2 − H 2

)

≤ τ

1 + HΓ (q)2

(
H − HΓ (q)

√
1 + HΓ (q)2 − H 2

)
:= B5 < 0,

whereB5 depends only onΩ andH .
Therefore we are able to find negative constantsB4 and B5 depending only

on H andΩ such that

〈N , a〉 ≤ B4 < 0 on Ω, if 0 < H < 1.
〈N , a〉 ≤ B5 < 0 on Ω, if −HΓ < H ≤ 0.

Now it is easy to conclude from (6), Corollary 3.2 and Theorem 3.3 that there
exists a constantC4, depending only onΩ andH such that|∇f | ≤ C4. ut
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5 The main result

In Sect. 4, Theorem 4.1 gives us a priori gradient estimates for a constant mean
curvature graph defined in a mean convex domain of a horosphere when the
mean curvature satisfies some assumptions with respect to the convexity of the
boundary. This fact joint with the height estimates established in Sect. 3, allow
us to use the standard theory of existence for the Dirichlet problem (1)–(2).

Theorem 5.1 Let Ω be a compact domain of a horosphere such that∂Ω is mean
convex. Then if H∂Ω is the mean curvature function of∂Ω with respect to the
inner normal, and H is a number such that

−H∂Ω < H ≤ 1,

there exists a graph onΩ of constant mean curvature H and boundary∂Ω.

Proof. Let us consider the set

J = {H ∈ [−H∂Ω , 1]; the problem (1)–(2) can be solved forH }.

SinceΩ is a domain of a horosphere, the number 1 belongs toJ . Corollary 3.2
and Theorem 4.1 show thatJ is closed.

Finally we prove thatJ is an open set. For this, ifH ∈ J , one would be able
to solve the Dirichlet problem in some interval aroundH . Let Σ be aH -graph
with boundary∂Ω andΣ = graph(u). Define

H : C2,α(Σ) −→ Cα(Σ)

mapping eachv ∈ C2,α(Σ) in the mean curvature of the graph defined byv. The
mapH between both Banach spaces has as its differential the linearized operator
of the mean curvature:

L = dH = ∆ + |σ|2 − n.

We work in the Minkowski model. The kernel of this operator is trivial because

L〈N , a〉 = −n(H 〈p, a〉 + 〈N , a〉) ≥ 0, and 〈N , a〉 < 0

The first inequality is a consequence from (19), in the case 0< H < 1, and is
trivially true whenH ≤ 0 (recall that〈p, a〉 ≥ 0 and〈N , a〉 < 0). HenceL is a
Fredholm operator of index zero andL is a isomorphism. The implicit function
theorem assures the Dirichlet problem can be solved around the valueH . ut

As we have pointed out in the Introduction, Theorem 5.1 was showed in
[12] for 0 < H < 1. However it is worthwhile to remark the geometric sense
of our proof. In contrast to [12], we begin the continuity method with the given
geometric solution of (1)–(2) forH = 1: the very domainΩ ⊂ L(c). After this
and thanks to Corollary 3.2 and Theorem 4.1, we can ”blow up” from the 1-graph
Ω until we reach the minimal solutionH = 0 and, after this, untilH > −H∂Ω .

Finally, as a corollary of Theorem 5.1, we will give a certain uniqueness
result for embedded constant mean curvature hypersurfaces with boundary in a
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horosphere that generalizes, in some sense, another one that appears in [12]. Let
Σ be an embedded compact hypersurface of constant mean curvatureH and with
boundary in a horosphere. Let us consider the upper halfspace model forH

n+1,
L(c) = {xn+1 = c} the horosphere containing∂Σ and Ω the bounded domain
by ∂Σ in L(c). Assume thatΣ is included in the ”interior” domainL(c)+ (for
instance, ifH 2 ≤ 1, this inclusion is assured by Proposition 2.2). ThenΣ ∪ Ω
divides L(c)+ in two domains, and one of them is bounded, sayW. SinceΣ is
an oriented hypersurface, its unit normal fieldN points towardsW or H

n+1 − W
in the whole ofΣ. Spruck and Nelli [12] have proved that if 0< H < 1
and N points toH

n+1 − W, thenΣ is the graph given by Theorem 5.1 . With
these considerations and with stronger hypothesis onΣ, we extend this result for
negative values ofH . For this, we need the next definition. LetΩ be a compact
domain inL(c) and (p, 0) ∈ R

n × {0}. We call thevertical hyperbolic cylinder
determined byΩ and (p, 0) the set given by

∪s>0Ts(Ω),

whereTs denotes the hyperbolic translation from the point (p, 0), i.e., Ts is the
Euclidean homothety ofΩ from (p, 0) with ratio es (see Corollary 2.4). With
this definition, we prove the following uniqueness result:

Corollary 5.2 LetΩ ⊂ L(c) be a mean convex compact domain star-shaped with
respect to some interior point(p, c) of Ω and let H be a number such that

−H∂Ω < H ≤ 0.

LetΣ be a compact embedded hypersurface with constant mean curvature H that
lies in L(c)+ and included in the vertical hyperbolic cylinder determined byΩ and
the point(p, 0). If its Gauss map N points towards the exterior of the bounded
domain determined byΣ ∪ Ω, thenΣ is the graph obtained in Theorem 5.1.

Proof. Let G be theH -graph bounded by∂Ω given by Theorem 5.1. Notice
that the orientation onG is that one pointing upwards. Also, denote byW the
bounded domain inHn+1 determined byΣ ∪ Ω. With a similar reasoning as in
Corollary 2.4, using hyperbolic translations and since the orientation onΣ points
towardsH

n+1 − W, Σ lies belowG.
Now we consider the point (p, c) ∈ Ω with respect to whichΩ is star-shaped.

Let {ht ; t ≥ 0} be the horizontal homotheties from (p, c), where we suppose that
h0 is the identity andht (Ω) ⊂ hs(Ω) if s < t . Then we have a foliation of the
domainΩ by {ht (∂Ω)}. Moreover, each domainΩt := ht (Ω) is mean convex
and with mean curvatureH∂Ωt satisfying

0 < H∂Ω < H∂Ωt t > 0.(22)

From (22), letGt be theH -graph onΩt with boundary∂Ωt whose existence
is assured by Theorem 5.1. From the monotonocity and sinceΩt converges to
(p, c), if t is big enough,Gt is included in the domainW. Now we let t → 0
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until touchingΣ a first time t0. If t0 > 0, this happens betweenGt0 and Σ at
some interior pointq because

∂Gt0 = ∂Ωt0 ⊂ int(Ω).

But the tangency principle gives a contradiction: ifNt0 denotes the unit normal
field onGt0, thenN (q) = Nt0(q) because they point towardsH

n+1−W. Therefore
t0 must be 0 and so,Σ lies aboveG. This fact and the first part of the proof
imply that G andΣ agree. ut
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