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1. Introduction

Let (M , g) be a compact Riemannian surface, and (N ,h) ⊂ RK be a Riemannian
submanifold. Recall that a heat flow of harmonic map fromM to N is given by

(1.1) ut = ∆gu + gij A(u)(Di u,Dj u),

whereA is the 2nd fundamental form ofN in RK (for simplicity we will omit g
henceforth). Letu : M ×(0,∞) → N be a global weak solution to (1.1), which is
smooth away from a finite number of singular points{(xi , ti )} ⊂ M ×(0,∞). The
existence of such au was obtained by Struwe [St], which was a natural extension
of [SaU]. Let (x0,T0) be a singular point ofu andB be a small neighborhood of
x0, it is easy to show that, ast ↑ T0, u(·, t) → u(·,T0) in H 1 ∩C∞(B \ {x0},N )
locally, but not in H 1(B,N ). Moreover, nearx0, by suitably rescalingu(·, ti )
for ti ↑ T0, one can show there are finite many nonconstant harmonic maps
ωi : S2 → N (1 ≤ i ≤ m), referred asbubbles, associated withu(·, ti ). It is clear
that

(∗) lim
ti ↑T0

E(u(·, ti ),B) ≥ E(u(·,T0),B) +
m∑

i =1

E(ωi ,S
2).

Here E denotes the energy on the respective sets. It is widely believed that the
above inequality should be equality (cf. [J]). Indeed, recently there were many
interesting and remarkable results related to this issue. Parker [P] proved both
the energy identity and bubble tree convergence for sequences of harmonic maps
from surfaces. More recently, people have considered bubbling phenomena for
approximated harmonic maps or Palais-Smale sequences of controlled tension

? Both authors are partially supported by NSF.
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fields (say, bounded inL2), which has not only its own interest but also impor-
tant applications to heat flows (1.1). The energy identity for such Palais-Smale
sequences was proved by Qing [Q] in the caseN is the standard sphere, by Ding-
Tian [DT] and, independently, Wang [W] in the general case. Most recently, the
bubble tree convergence for such Palais-Smale sequences has been proved by
Qing-Tian [QT] (cf. Chen-Tian [CT] for related results). There are also some
results for high dimensional bubble phenomena due to Mou-Wang [MW].

When considering approximated harmonic maps{un}, Qing-Tian [QT] proved
that if un have their tension fields bounded inL2, then bubbles and the weak limit
are connected together without necks. In particular, the image ofun converges
pointwise to the image of the limit bubble tree maps.

For solutions to (1.1), the energy inequality (cf. [St]) implies that there exist
tn ↑ ∞ such that

(1.3) sup
n
‖∂t u(·, tn)‖L2(M ) <∞.

In particular, Qing-Tian [QT] obatined

Theorem I. There exist a harmonic map u∞ : M → N and a finite number of
bubbles{ωi }m

i =1, {ai
n}m

i =1 ⊂ M , and{λi
n}m

i =1 ⊂ R+ such that

(1.4) ‖u(·, tn) − u∞(·) −
m∑

i =1

ωi
n(·)‖L∞(M ) → 0,

whereωi
n(·) = ωi (

·−ai
n

λi
n

) − ωi (∞).

It is also very interesting to ask whether the above weak limitsu∞ is unique
(i.e. independent of subsequences oftn), and there was some progress made by
Topping [T].

Despite these serious efforts, it is still a difficult open problem to understand
the behavior of solutions to (1.1) near the singular points at finite time, whose
existence was proved by Chang-Ding-Ye [CDY]. In the effort to understand this,
we discover a different but simpler proof of the above Theorem I. Recall that
the main idea of [QT] is follows. First, they showed the tangential energy of
the sequence in the neck region decays exponentially by using a special case
of the three circles theorem due to Simon [Sl] for the perturbated system and
comparsions of the energy with piece-wise linear functions (i.e., geodesics in the
flat metric). Then they used theL1 estimates of the Hopf differentials to control
the radial energy by the tangential energy. Both steps are somewhat involved.
Here, for heat flows, we calculated the second order derivative of the tangential
energy directly and found the so-called almost convexity property (cf. Lemma
2.1 below) which, in turn, implies the exponential decay property. Then we use
the Pohozaev inequality, which is an easy adoption of that for harmonic maps
to the approximated harmonic maps, to control the radial energy (cf. Lemma 2.4
below).
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For a singular timeT0 <∞, it does not seem possible to choose a sequence
tn ↑ T0 such thatu(·, tn) satisfies (1.4). However we observe that the energy
density behaves likeδ mass near the singular point so that if we rescaleu by
suitable scales going to zero then (1.4) holds for the rescaled ones (cf. Lemma
4.1). Energy identity accounting for theδ mass by finite many bubbles can then
be proved by applying the above method to the rescaled maps and energy identity
result for sequences of harmonic maps fromS2 (cf. [J] [P]). Therefore, we can
prove

Theorem II . For T0 < ∞, let u ∈ C∞(M × (0,T0),N ) be a solution to (1.1)
with T0 as its singular time. Then there exist a finite many bubbles{ωi }l

i =1 such
that

(1.5) lim
t↑T0

E(u(·, t),M ) = E(u(·,T0),M ) +
l∑

i =1

E(ωi ,S
2).

We remark that the method here actually implies that if there are multiple
bubbles at a point then there is no necks between bubbles but there may have
a neck between bubbles and the weak limitu(·,T0). However, we believe that
u(·,T0) is still continuous.

2. Preliminary estimates

The first Lemma is inspired by Parker [P].

Lemma 2.1. There existsε0 > 0 such that if u∈ C∞([T1,T2] × S1,N ) satisfies

(2.1) utt + uθθ = A(u)(Du,Du) + F ,

and sup[T1,T2]×S1 |Du| ≤ ε0. Then for t∈ [T1,T2],

(2.2)
d2

dt2

∫
S1
|uθ|2 ≥

∫
S1
|uθ|2 − C

∫
S1
|F |2,

for some C> 0.

Proof. Direct computation, integration by parts, and substitution of (2.1) give

d2

dt2

∫
S1
|uθ|2 = 2

∫
S1
|uθt |2 + 2

∫
S1

uθuθtt

= 2
∫

S1
|uθt |2 − 2

∫
S1

uθθutt

= 2
∫

S1
|uθt |2 + 2

∫
S1
|uθθ|2

− 2
∫

S1
uθθ(A(u)(Du,Du) + F )

= I + II + III .
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Now we estimateIII as follows.

III = 2
∫

S1
uθ(A(u)(Du,Du))θ − 2

∫
S1

uθθF

= 2
∫

S1
uθ(DA(u)(Du,Du)uθ + 2A(u)(uθθ,uθ)

+ 2A(u)(uθt ,ut )) − 2
∫

S1
uθθF .

Hence, by Cauchy inequality,

|III | ≤ 2‖DA‖L∞(N ) sup
[T1,T2]×S1

|Du|2
∫

S1
|uθ|2

+ 4‖A‖L∞(N )

∫
S1
|uθθ||uθ|2

+ 4‖A‖L∞(N )

∫
S1
|uθt ||uθ||ut | + 2

∫
S1
|uθθ||F |

≤ (
1
2

+ Cε2
0)
∫

S1
|uθθ|2 + Cε2

0

∫
S1
|uθ|2 + Cε2

0

∫
S1
|uθt |2 + C

∫
S1
|F |2.

Therefore, if we chooseε0 sufficently small, then

d2

dt2

∫
S1
|uθ|2 ≥ 17

16

∫
S1
|uθθ|2 − 1

16

∫
S1
|uθ|2 − C

∫
S1
|F |2.

On the other hand, the Poincaré inequality ofS1 gives
∫

S1
|uθ|2 ≤

∫
S1
|uθθ|2,

therefore
d2

dt2

∫
S1
|uθ|2 ≥

∫
S1
|uθ|2 − C

∫
S1
|F |2.

This gives (2.2).
Now we analyze the solutions to the following 2nd ODE.

P′′
1 − P1 = −G(t),T1 ≤ t ≤ T2,(2.3)

P1(T1) = ε1,(2.4)

P1(T2) = ε2.(2.5)

HereG(≥ 0) ∈ L1([T1,T2]) is given ,ε1 =
∫

S1×{T1} |uθ|
2, andε2 =

∫
S1×{T2} |uθ|

2.
In fact, we can solve (2.3)–(2.5) explictly and get

Lemma 2.2. Let P1 : [T1,T2] → R be a solution to (2.3)–(2.5), then

(2.6) P1(t) = Aet + Be−t − 1
2

∫ T2

t
G(s)(es−t − et−s) ds,

where
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(2.7) A =
eT2ε2 − eT1ε1 + 1

2

∫ T2
T1

G(s)(es − e2T1−s) ds

e2T2 − e2T1
,

(2.8) B =
eT1+2T2ε1 − e2T1+T2ε2

e2T2 − e2T1
− 1

2
e2T2

∫ T2
T1

G(s)(es − e2T1−s) ds

e2T2 − e2T1
.

DenoteP(t) =
∫

S1×{t} |uθ|2. Then the maximum principle implies

P(t) ≤ P1(t),∀t ∈ [T1,T2].

Hence we obtain, by direct calculation,

Lemma 2.3. Under the same conditions of Lemma 2.2. Assume G(t) = e−2t H (t)
with H ∈ L1([T1,T2]) and 0 < T1 << T2 <∞. Then

∫ T2

T1

|P(t)| 1
2 dt ≤ |A| 1

2 (e
T2
2 − e

T1
2 ) + |B| 1

2 (e−
T1
2 − e−

T2
2 )

+ (e−
T1
2 − e−

T2
2 )(
∫ T2

T1

|H (t)|dt)
1
2

≤ C(
√
ε1 +

√
ε2) + C(

∫ T2

T1

|H (t)|dt)
1
2 .(2.9)

Now we drive the Pohozaev inequality for two dimensional approximated
harmonic maps.
Lemma 2.4. Let u∈ C∞(B2

1 ,N ) be a solution to

(2.10) ∆u + A(u)(Du,Du) = h,

with h ∈ L2(B2
1 ). Then

(2.11)
∫
∂BR

|ur |2 ≤ R−2
∫
∂BR

|uθ|2 + 2
∫

BR

|h||Du|,

for any 0 < R < 1.

Proof. Multiplying both sides of (2.10) byxDu and integrating it overBR, we
get ∫

BR

|Du|2 − R
∫
∂BR

|ur |2 +
1
2

∫
BR

xD(|Du|2) = −
∫

BR

h · xDu.

Note also that

1
2

∫
BR

xD(|Du|2) = −
∫

BR

|Du|2 +
1
2

R
∫
∂BR

|Du|2.

Hence,
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1
2

∫
∂BR

|Du|2 −
∫
∂BR

|ur |2 = −R−1
∫

BR

h · xDu,

which implies (2.11), if we write|Du|2 = |ur |2 + 1
r 2 |uθ|2.

Lemma 2.5. Let u ∈ C∞(B2
1 × (0, t0),N ) be a solution to (1.1). Then, for0 <

t ≤ s < t0 and 0 < R≤ 1
2,

(2.12)
∫

BR

|Du|2(x, s) dx ≤
∫

B2R

|Du|2(x, t) dx + C(s− t)R−2E0,

and
(2.13)∫

BR

|Du|2(x, t) dx ≤
∫

B2R

|Du|2(x, s) dx + C
∫ s

t

∫
B1

|∂t u|2 + C(s− t)R−2E0.

Here E0 = E(u(·,0),M ).

Proof. Let φ ∈ C∞
0 (B2

1 ) be such that 0≤ φ ≤ 1 , φ = 1 onBR, andφ = 0 outside
B2R. Multiplying (1.1) byφ2∂t u, we get

− 2
∫

B2
1

|Du|2|Dφ|2 − 1
2

∫
B2

1

|∂t u|2φ2

≤
∫

B2
1

|∂t u|2φ2 +
d
dt

(
1
2

∫
B2

1

|Du|2φ2)

≤ 2
∫

B2
1

|Du|2|Dφ|2 +
1
2

∫
B2

1

|∂t u|2φ2.

Integrating these inequalities fromt to s, one get (2.12) and (2.13).

For R > 0 and (x, t) ∈ R2 × R−, denotePR(x, t) = {(y, s) ∈ R2 × R− :
|y − x| ≤ R, t − R2 ≤ s ≤ t}. Now we can state the small energy regularity
estimates (cf. [St1] for proofs).

Lemma 2.6. There existε0 > 0 and C > 0 such that if u∈ C∞(R2 × R−,N ) is
a solution to (1.1) satisfying R−2

∫
PR(x,t) |Du|2 ≤ ε2

0 for some(x, t) ∈ R2 × R−,
then

(2.14) R2 sup
PR

2
(x,t)

|Du|2 ≤ CR−2
∫

PR(x,t)
|Du|2,

and

(2.15) R4 sup
PR

2
(x,t)

|∂t u|2 ≤ C(ε0,E0).

Corollary 2.7. There existsε0 > 0 such that if u∈ C∞(R2×R−,N ) is a solution

to (1.1) satisfying
∫

PR0
(x0,t0) |Du|2 ≤ ε2

0
4 and

∫
PR0

(x0,t0) |∂t u|2 ≤ ε2
0
4 , then
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(2.16) R0|Du|(x0, t0) ≤ C(E0), R2
0|∂t u|(x0, t0) ≤ C(ε0,E0).

Proof. Let δ0 = min{ ε0√
4CE0

, 1
4}. From (2.13), we have, for anyt ∈ [t0−δ2

0R2
0, t0],

∫
Bδ0R0

(x0)
|Du|2(x, t) dx ≤ 3ε2

0

4
.

Therefore,

(2.17) (δ0R0)−2
∫

Pδ0R0
(x0,t0)

|Du|2 dxdt≤ 3ε2
0

4
,

and (2.14) of Lemma 2.6 implies

R2
0|Du|2(x0, t0) ≤ Cδ−2

0 ε2
0 ≤ C(E0),

and (2.15) gives
R4

0|∂t u|2(x0, t0) ≤ C(ε0,E0).

3. A new proof of Theorem I

We may assumeM = B2
1 henceforth. Lettn ↑ ∞ be such that

(3.1) lim
n→∞

∫
B2

1

|∂t u|2(·, tn) = 0, lim
n→∞

∫
B2

1×[tn−1,tn ]
|∂t u|2 = 0.

Denoteun(·) = u(·, tn). From the reduction procedure of bubbling illustrated by
[DT] (cf. also [Q] [W]), theorem I follows from the following lemma, which
deals with the single bubble case. To describe it more clearly, let’s assume that
un = u(·, tn) → u∞ in H 1(Bδ \ {0},N ) locally but not inH 1(Bδ,N ), hereδ is
given and small. Assume also that there only exists one bubbleω1 such that for
someλn → 0 andxn → 0,

ũn(x) = un(xn + λnx) → ω1

in H 1 ∩C1(R2,N ) locally. For largeR > 0, denoteAn(δ,R) = {x ∈ R2 : Rλn ≤
|x − xn| ≤ δ} and Σn(δ,R) = [| logδ|, | logRλn|] × S1. Thereforef (r , θ) =
(e−r , θ) : Σn(δ,R) → An(Σ,R) is conformal ifΣn(δ,R) is equipped with the flat
metric. Letvn : Σn(δ,R) → N be vn(r , θ) = un(e−r , θ). Then

(3.2) ∆vn + A(vn)(Dvn,Dvn) = h̄n, in Σn(δ,R),

whereh̄n(r , θ) = e−2r∂t u(e−r , θ, tn) and

(3.3) ‖h̄n‖L2([r ,∞)×S1) ≤ e−r ‖∂t u(·, tn)‖L2(Be−r ).

Also the conformal invariance ofE implies,
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(3.4)
∫
Σn(δ,R)

|Dvn|2 =
∫

An(δ,R)
|Dun|2.

From the assumption that there exists only one bubbleω1, we know (cf. [DT])

(3.5)
∫

B
e−(r−2)\B

e−(r +2)

|Dun|2 =
∫

[r−2,r +2]×S1
|Dvn|2 ≤ 1

4
ε2

0,

∀r ∈ [| logδ|, | logRλn|]. With these preparations, we have

Lemma 3.1. Assume un vn are as above. Then

(3.6) lim
δ↓0

lim
R↑∞

lim
n→∞

∫
An(δ,R)

|Dun|2 = 0,

and

(3.7) lim
δ↓0

lim
R↑∞

lim
n→∞oscAn(δ,R)un = 0.

Proof. From (3.1) and (3.5), one can apply Corollary 2.7 to get

|Dvn|(r , θ) = e−r |Dun|(e−r , θ) ≤ C(E0),

h̄n(r , θ) = e−2r |∂t u|(e−r , θ, tn) ≤ C(ε0,E0).(3.8)

∀r ∈ [| logδ|, | logRλn|]. Let Gn(r ) =
∫

S1×{r} |h̄n(r , θ)|2. Then, by (3.1) and
(3.3), we have

(3.9)
∫ | log Rλn|

| logδ|
e2r Gn(r ) dr =

∫
An(δ,R)

|∂t u(·, tn)|2 → 0.

Using (3.2), (3.8), (3.9), andW2,4 interior estimates, we get

‖D2vn‖L4([r−1,r +1]×S1) ≤ C(‖Dvn‖L4([r−2,r +2]×S1)

+ ‖|Dvn|2‖L4([r−2,r +2]×S1) + ‖h̄n‖L4([r−2,r +2]×S1))

≤ C [‖Dvn‖
1
2
L∞(Σn(δ,R))‖Dvn‖

1
2
L2([r−2,r +2]×S1)

+ ‖h̄n‖
1
2
L∞(Σn(δ,R))‖h̄n‖

1
2
L2([r−2,r +2]×S1)

] ≤ Cε0.

∀r ∈ [| logδ|, | logRλn|].
Therefore, the Sobolev embedding theorem and (3.5) give

‖Dvn‖L∞(Σn(δ,R)) ≤ Cε0.

Hence we can apply Lemma 2.1– 2.3, withu, F , G, T1, T2, replaced byvn, h̄n,
Gn, | logδ|, | logRλn| respectively, to conclude
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∫ | log Rλn|

| logδ|
(
∫

S1
|(vn)θ|2)

1
2 ≤ (

∫
S1×{| log Rλn|}

|(vn)θ|2)
1
2

+ (
∫

S1×{| logδ|}
|(vn)θ|2)

1
2 +

√
δ(
∫

Bδ

|∂t u(·, tn)|2)
1
2

→ 0.(3.10)

Here we have used the fact that both
∫

S1×{| log Rλn|} |(vn)θ|2 and∫
S1×{| logδ|} |(vn)θ|2 converge to zero. Applying Lemma 2.4, we have

(3.11)
∫

S1×{r}
|(vn)r |2 ≤

∫
S1×{r}

|(vn)θ|2 + 2e−r
∫

Be−r

|∂t u(·, tn)||Dun|,

for any r ∈ [| logδ|, | logRλn|]. In particular,

∫ | log Rλn|

| logδ|
(
∫

S1
|(vn)r |2)

1
2 ≤

∫ | log Rλn|

| logδ|
(
∫

S1
|(vn)θ|2)

1
2

+ 2
∫ | log Rλn|

| logδ|
e−

r
2 (
∫

Be−r

|∂t u(·, tn)||Dun|) 1
2

≤ o(1) + 2(
∫ | log Rλn|

| logδ|
e−

r
2 )(
∫

Bδ

|∂t u(·, tn)|2)
1
4 (
∫

Bδ

|Dun|2)
1
4

≤ o(1) + 2
√
δ(
∫

Bδ

|∂t u(·, tn)|2)
1
4 (
∫

Bδ

|Dun|2)
1
4 → 0.(3.12)

Therefore,
∫
Σn(δ,R)

|Dvn| ≤ (2π)
1
2 (
∫ | log Rλn|

| logδ|
[(
∫

S1
|(vn)r |2)

1
2 + (

∫
S1
|(vn)θ|2)

1
2 ] dr → 0.

This clearly implies (3.7). It is very easy to verify that (3.7) follows from (3.6).

4. Proof of Theorem II

In this section, we prove the energy identity (1.5). First, we observe

Lemma 4.1. Let u∈ C∞(B2
1 × (0, t0),N ) be a solution to (1.1) with(0, t0) being

its only singular point. Then there exists a positive m such that

(4.1) |Du|2(x, t) dx → mδ0 + |Du|2(x, t0) dx,

for t ↑ t0, as Radon measures.Hereδ0 denotes theδ-mass at 0.

Proof. For any twosi ↑ t0, ti ↑ t0, according to Lemma 4.1 there existm > 0
andm′ > 0 such that, after taking subsequences,

|Du|2(x, si ) dx → mδ0 + |Du|2(x, t0) dx

|Du|2(x, ti ) dx → m′δ0 + |Du|2(x, t0) dx,
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as Radon measures inB2
1 .

For anyε > 0, there existsη > 0 such that
∫

B2
2η
|Du|2(x, t0) ≤ ε. Therefore,

(2.12) and (2.13) imply

m ≥
∫

B2
2η

|Du|2(x, si ) − ε

≥
∫

Bη

|Du|2(x, ti ) − Cδ−2|si − ti |E0 −
∫ ti

si

∫
B2

1

|∂t u|2 − ε

≥
∫

Bη

|Du|2(x, ti ) − 2ε ≥ m′ − 2ε.

Hencem ≥ m′. Similarly m ≤ m′.

Proof of Theorem II. AssumeT0 = 0, M = B2
1 , and (0,0) is the only singular

point of u From (4.1), we know that there existstn ↑ 0 andλn ↓ 0 such that

(4.2) lim
n→∞

∫
Bλn

|Du|2(x, tn) dx = m.

Let un(x, t) = u(λnx, tn + λ2
nt). Thenun satisfies (1.1) onB2

λ−1
n
× [−2,0) and

(4.3)
∫ 2

−2

∫
B2

λ−1
n

|∂t un|2 =
∫ tn+2λ2

n

tn−2λ2
n

∫
B2

1

|∂t u|2 → 0,

asn →∞. Therefore, by Fubin’s theorem, there existsηn ∈ (−1,− 1
2) such that

(4.4)
∫

B2

λ−1
n

|∂t un|2(·, ηn) → 0,
∫

B2

λ−1
n

×(−2,2)
|∂t un|2 → 0.

Note also, from (2.12), that

(4.5)
∫

BR

|Dun|2(·, ηn) ≥
∫

B1

|Dun|2(·,0)− CR−2E0 ≥ m− CR−2E0.

In particular,

(4.6) lim
R→∞

∫
BR

|Dun|2(·, ηn) ≥ m.

In fact, by Lemma 4.1, we have

(4.7) lim
R→∞

∫
BR

|Dun|2(·, ηn) = m.

From (4.7), we know that for eachR > 0 un(·, ηn) weakly converges tov ∈
H 1(BR,N ). In fact, v is a constant map, since we can assume|tn| ≤ 2λ2

n and
observe
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∫
BR

|un(·, ηn) − un(·,−tnλ
−2
n )|2 ≤ 4

∫ 2

−2

∫
BR

|∂t un|2 → 0,

and ∫
BR

|Dun(·,−tnλ
−2
n )|2 =

∫
BRλn

|Du|2(·,0) → 0.

For eachR > 0, we now apply the proof of theorem II (i.e., Sect. 3) toun(·, ηn)
on BR to conclude that there existNR bubbles{ωi ,R}NR

i =1 such that

(4.8) lim
n→∞

∫
BR

|Dun|2(·, ηn) =
NR∑
i =1

E(ωi ,R,S
2).

Since there exists a universialε0 > 0 such that any bubbleω : S2 → N has
E(ω,S2) ≥ ε0, we know that 1≤ NR ≤ [ m

ε0
]. Therefore, there are ad ∈ [1, [ m

ε0
]]

and a subsequenceR ↑ ∞ such thatNR = d and

(4.9) m = lim
R↑∞

lim
n→∞

∫
BR

|Dun|2(·, ηn) = lim
R↑∞

d∑
i =1

E(ωi ,R,S
2).

Note that fori = 1, · · · ,d, {ωi ,R} are sequences of harmonic maps fromS2 to N
whose energies are uniformly bounded. Hence we can apply the results of Jost
[J] (cf. also Parker [P]) to conclude that fori = 1, · · · ,d, there existNi ∈ [1, [ m

ε0
]]

andNi bubbles{ωi ,j }Ni
j =1 such that

(4.10) lim
R↑∞

E(ωi ,R,S
2) =

Nl∑
j =1

E(ωi ,j ,S
2).

Therefore, by (4.8), (4.9), (4.10), we have

(4.11) m =
d∑

i =1

Ni∑
j =1

E(ωi ,j ,S
2).

Hereωi ,j are bubbles for 1≤ i ≤ d,1 ≤ j ≤ Ni . It is easy to see that (4.11) and
Lemma 4.1 imply (1.5). The proof is complete.
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