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1. Introduction

Let (M, g) be a compact Riemannian surface, aNdlf) ¢ R¥ be a Riemannian
submanifold. Recall that a heat flow of harmonic map frighto N is given by

(1.1) W = Ayu + g A(u)(Dju, Dju),

whereA is the 2nd fundamental form & in R¥ (for simplicity we will omit ¢
henceforth). Leti : M x (0, 00) — N be a global weak solution to (1.1), which is
smooth away from a finite number of singular poifigs ,ti)} € M x (0, o0). The
existence of such a was obtained by Struwe [St], which was a natural extension
of [SaU]. Let (o, To) be a singular point ofi andB be a small neighborhood of

Xo, it is easy to show that, asf To, u(-,t) — u(-, To) N HXNC>(B \ {X},N)
locally, but not inH%(B,N). Moreover, nearx,, by suitably rescalingi(-, t;)

for ti 7 To, one can show there are finite many nonconstant harmonic maps
wi 1 S? = N (1 <i < m), referred adubbles associated withi(-, t;). It is clear

that

() lim EQu( ), B) > E(u(, To),B) + 2} Ewi,$?).

Here E denotes the energy on the respective sets. It is widely believed that the
above inequality should be equality (cf. [J]). Indeed, recently there were many
interesting and remarkable results related to this issue. Parker [P] proved both
the energy identity and bubble tree convergence for sequences of harmonic maps
from surfaces. More recently, people have considered bubbling phenomena for
approximated harmonic maps or Palais-Smale sequences of controlled tension

* Both authors are partially supported by NSF.
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fields (say, bounded ih?), which has not only its own interest but also impor-
tant applications to heat flows (1.1). The energy identity for such Palais-Smale
sequences was proved by Qing [Q] in the cBisis the standard sphere, by Ding-
Tian [DT] and, independently, Wang [W] in the general case. Most recently, the
bubble tree convergence for such Palais-Smale sequences has been proved by
Qing-Tian [QT] (cf. Chen-Tian [CT] for related results). There are also some
results for high dimensional bubble phenomena due to Mou-Wang [MW].

When considering approximated harmonic méps}, Qing-Tian [QT] proved
that if u, have their tension fields boundedlif, then bubbles and the weak limit
are connected together without necks. In particular, the imagg @bnverges
pointwise to the image of the limit bubble tree maps.

For solutions to (1.1), the energy inequality (cf. [St]) implies that there exist
t, T oo such that

(1.3) sup||deu(, t)lzguy < oo
n

In particular, Qing-Tian [QT] obatined

Theorem I. There exist a harmonic map.u: M — N and a finite number of
bubbles{w; }12,, {a;}%; € M, and {\ }i%; C R: such that

(1.4) UG, t) = Uso () = D wh()llooquy = O,

i=1
wherew() = wi (53) — wi (00).

It is also very interesting to ask whether the above weak limjtsis unique
(i.e. independent of subsequenceg9f and there was some progress made by
Topping [T].

Despite these serious efforts, it is still a difficult open problem to understand
the behavior of solutions to (1.1) near the singular points at finite time, whose
existence was proved by Chang-Ding-Ye [CDY]. In the effort to understand this,
we discover a different but simpler proof of the above Theorem I. Recall that
the main idea of [QT] is follows. First, they showed the tangential energy of
the sequence in the neck region decays exponentially by using a special case
of the three circles theorem due to Simon [SI] for the perturbated system and
comparsions of the energy with piece-wise linear functions (i.e., geodesics in the
flat metric). Then they used tHe estimates of the Hopf differentials to control
the radial energy by the tangential energy. Both steps are somewhat involved.
Here, for heat flows, we calculated the second order derivative of the tangential
energy directly and found the so-called almost convexity property (cf. Lemma
2.1 below) which, in turn, implies the exponential decay property. Then we use
the Pohozaev inequality, which is an easy adoption of that for harmonic maps
to the approximated harmonic maps, to control the radial energy (cf. Lemma 2.4
below).
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For a singular timelp < oo, it does not seem possible to choose a sequence
tn T To such thatu(-,t,) satisfies (1.4). However we observe that the energy
density behaves liké mass near the singular point so that if we rescaley
suitable scales going to zero then (1.4) holds for the rescaled ones (cf. Lemma
4.1). Energy identity accounting for tiemass by finite many bubbles can then
be proved by applying the above method to the rescaled maps and energy identity
result for sequences of harmonic maps fré(cf. [J] [P]). Therefore, we can
prove

Theorem II. For Tp < oo, let u € C*(M x (0, To), N) be a solution to (1.1)
with To as its singular time. Then there exist a finite many bubblag!_, such
that

(15) lim E(u(, 1), M) = E(u(, To), M) + ; E(wi, S?).

We remark that the method here actually implies that if there are multiple
bubbles at a point then there is no necks between bubbles but there may have
a neck between bubbles and the weak lio(it, To). However, we believe that
u(-, To) is still continuous.

2. Preliminary estimates

The first Lemma is inspired by Parker [P].
Lemma 2.1 There existg > 0 such that if ue C>([Ty, T,] x S, N) satisfies

(2.1) Uy + Ugg = A(U)(Du, Du) + F,

andsugq, 1,jxst |DU| < €o. Then for te [Ty, T2,

d2
2.2 — 2> 2_ /F2
22 G L wk > [ wl—c [P

for some C> 0.
Proof. Direct computation, integration by parts, and substitution of (2.1) give

d? 2
— wl?=2 [ |ugl>+2 [ uu
dt2/51|9| /Sl|0t| /Sleett
= 2/ |U0t|2*2/ Ugg Ut
st st
= 2/ |Ugt|2+2/ |U09‘2
st st

— 2/ Uge (A(u)(Du, Du) + F)
SZI.

=1 +10+100.
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Now we estimatdll as follows.
n = 2/ Us (A(u)(Du, Du))e —2/ UgoF
st st
=2 / U (DA(U)(DU, DU)Up + 2A(U) (g, Ug)
Sl

+ 2AU)(Upe, W) — 2 /

UggF .
sl

Hence, by Cauchy inequality,

Il | < 2|DAi~qy sup [Duf? / Uy ?
[T1,To xSt st

+ 4A e / g g 2
Sl

#4Aln [l lwllu +2 vl F]
st st

1
<Gred [ lwlred [ wkrcd [ julrc [ IFP
st st st st

Therefore, if we choosey sufficently small, then

d2 2 17 2 1 2 2
el u > u - — u —-C F|-.
dtz/M _16/51|99| 16/31‘9‘ /51‘ |

On the other hand, the Poinéainequality ofS* gives

/|u9\2s/ oo ?,
st st

d2 2 2 2

il > _ .

g = [we-c [ e
This gives (2.2).

Now we analyze the solutions to the following 2nd ODE.

therefore

(23) P]/_/ — P]_ = —G(t)7T1 S t S T27
(2.4) P1(T1) = ey,
(2.5) P1(T2) = e2.

HereG(> 0) € LY([Ty, T2]) is given ,e; = Jstximyy |ug|?, ande, = Jsixiy |ug|2.
In fact, we can solve (2.3)—(2.5) explictly and get

Lemma 2.2 Let P, : [Ty, To] — R be a solution to (2.3)—(2.5), then

T2
(2.6) P.(t) = A€ +Be™' — %/ G(s)(es ! — e %) ds,
t

where
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. Av el2e, — ety + 3 fTTf G(s)(e® — e~ %) ds
( * ) - e2T2 _ eZTl ’

Tz s 2T —s
T1+2T: 2T1+T: — 1
28) . 1ey — 2 Toe, }eZTZ le G(s)(e® — e )ds

: e2T2 _ e2T1 2 e2T2 _ ele

DenoteP(t) = fslx{t} |ug|2. Then the maximum principle implies
P(t) < Pu(t), vVt € [T1, T2].

Hence we obtain, by direct calculation,

Lemma 2.3 Under the same conditions of Lemma 2.2. Assur(t¢ Se—2H (t)
with H € LY([T1, T2]) and0 < Ty << T, < oo. Then

To N ; . ]
[ poran < bt - e+ plie ¥ —e by

T

T T T2 1
+(e-7—e-7)(/T H (D) dty

Ty 1
(2.9) < (Ve Vi) +e( | T HOldk

Now we drive the Pohozaev inequality for two dimensional approximated
harmonic maps.
Lemma 2.4 Let uc C>(B2 N) be a solution to

(2.10) Au + A(u)(Du, Du) = h,

with h € L%(B). Then

(2.11) [ wE<r? [ w2 i,
8Br 8Bg Br

foranyO < R < 1.
Proof. Multiplying both sides of (2.10) bxDu and integrating it oveBg, we

get
1
|DU|2*R/ |Ur|2+*/ XD(\DUIZ):f/ h - xDu.
BR aBR 2 BR BR

Note also that

1 1
> [ xooupy== [ pup+sr [ pput
2 Jeq Br 2" Joeg

Hence,



374 F. Lin, C. Wang

1
—/ |Dul? — / lu?=-Rt [ h-xDu,
2 9BR 9BR Br

which implies (2.11), if we writgDu|? = [u; |2 + 5 |ug|2.

Lemma 2.5 Let u € C>=(B? x (0,t),N) be a solution to (1.1). Then, fdr <
t<s<tpandO<R< 1,

(2.12) /|Du|2(x7s)dx§/ IDu?(x,t)dx + C(s — t)R™2Eq,
Br Bor
and
(2.13) .
/|Du|2(x,t)dx§/ \Du|2(x,s)dx+c/ / |0¢ul® + C(s — t)R2Ep.
Br Bar t JBg

Here & = E(u(-,0),M).
Proof. Let ¢ € C§°(B?) be such that &2 ¢ < 1, ¢ = 1 onBg, and¢ = 0 outside
Bor. Multiplying (1 1) by $?0u, we get

/|Du| IDof - /|au| %
/|atu|¢+dt2/ IDul6?)
2
sz/Bwa Dyl +2/Bf|atu¢.

Integrating these inequalities frotnto s, one get (2.12) and (2.13).

ForR > 0 and §,t) € R? x R_, denotePgr(x,t) = {(y,s) € RZ x R_ :
ly — x| < Rt — R?> < s < t}. Now we can state the small energy regularity
estimates (cf. [St1] for proofs).

Lemma 2.6 There existo > 0 and C > 0 such that if uc C*(R? x R_,N) is
a solution to (1.1) satisfying R?fPR(X 9 |Duj? < €3 for some(x,t) € R? x R_,
then ’

(2.14) R? sup |Dul? < CR*Z/ |Duf?,
PB (XJ) PR(X t)
2
and
(2.15) R* sup |4u|? < C(eo, Eo).
PE(X,t)
2

Corollary 2.7. There exists > 0 such that if uc C>(R? x R_, N) is a solution
2 2
. . 2 € 2 €
to (1.1) sat'SW'”wp%(m,to) |Duj* < 2 and fPRO(XO~,tO) |Oul> < 2, then
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(2.16) Ro|Du|(Xo, to) < C(Eo), R§|dtu|(Xo, to) < C(eo, Eo).

Proof. Let 5o = min{ ;OCEO, 2}. From (2.13), we have, for artye [to— 63R3, to],

2
/ |Dul?(x, t) dx < 3%
BsgRy (*0) 4
Therefore,
2
(2.17) (6oRo) 2 / |Du? dxdt < ﬁ,
J Psgry (%0:t0) 4
and (2.14) of Lemma 2.6 implies
R3[Du*(%o, to) < Cd % < C(Eq),

and (2.15) gives
Rg|0:u[?(%o, to) < C(eo, Eo).

3. A new proof of Theorem |

We may assum#l = BZ henceforth. Let, | oo be such that

(3.1) Iim/ |Oul?(-,th) = 0, Iim/ |6ul? = 0.
n—oo /B2 N=00 JBZx[tn—1,tn]

Denoteun(:) = u(-,t,). From the reduction procedure of bubbling illustrated by
[DT] (cf. also [Q] [W]), theorem | follows from the following lemma, which
deals with the single bubble case. To describe it more clearly, let's assume that
Up = U(-,th) — Uso in HY(Bs \ {0},N) locally but not inH(Bs, N), hereé is

given and small. Assume also that there only exists one bubbtich that for
some), — 0 andx, — O,

Un(X) = U (Xy + AnX) — wy

in HXN CY(R?,N) locally. For largeR > 0, denoteA,(6,R) = {x € R? : R\, <
IX — Xa| < 6} and X,(6,R) = [|logé|,|logRA,[] x St. Thereforef(r,0) =
(e™",0): Xn(6, R) — Ay(X, R) is conformal if X, (6, R) is equipped with the flat
metric. Letv, : 2n(6,R) — N bewv,(r,6) =u,(e™",6). Then

(32) Auvy + A(vn)(Dun, Dvn) = hn, in 0 (6, R),
whereh,(r,6) = e~2 du(e", 6,t,) and
(3.3) ||ﬁnHL2([r,oo)><Sl) < e_r||atu('7tn)|||_2(Be_r)~

Also the conformal invariance d& implies,
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(3.4) / D |? =/ |Dun .
Zn(6,R) An(6,R)
From the assumption that there exists only one bubhleve know (cf. [DT])
2_ 2_1,
(35) |DUn| - ‘D'Un| S Zﬁo,
By—(r—2)\Bo—(r+2) [r—2,r+2]xst

vr € [|logé|, |log R\,|]. With these preparations, we have
Lemma 3.1 Assume gl v, are as above. Then

(3.6) lim lim lim / |Du, |2 =0,
610 RToo N—o0 An(8,R)

and

(3.7) lim lim lim 0sG,s,rRUn = 0.

510 Rl oo N—00

Proof. From (3.1) and (3.5), one can apply Corollary 2.7 to get

IDwn|(r,6) = €' [Dun|(e™", 6) < C(Eo),
(3.8) hn(r,0) = € Z|3ul(e™", 0, t,) < C(eo, Eo).

vr € [|logs|, |logRA[]. Let Ga(r) = Ja1, i, lha(r, 0)|2. Then, by (3.1) and
(3.3), we have
[logRAn|
(3.9) / e? Gn(r)dr = / 13U, t)|2 — O.
|log 6] An(8,R)
Using (3.2), (3.8), (3.9), anv2* interior estimates, we get
||D2Un||L4([r—1,r+1]><Sl) < C(”DvnHL“([r—Z,r+2]><Sl)
+ ”|DUH‘2||L4([r72,r+2]><Sl) + [Pl —2,r+21xs1))
1 1
< CllIBvnllfoe s mp P onll 2 —2 4211
+ th”Ifoo(Zn(&,R))thHfZ([r,Z’r.'.z]Xsl)] < Ceo.

Vr € [|logé], |log RAq|].
Therefore, the Sobolev embedding theorem and (3.5) give

[Dvn||Loe(sn(s.R) < Ceo.

Hence we can apply Lemma 2.1- 2.3, withF, G, Ty, Ty, replaced by, B,
Gy, |logé|, | logRAn| respectively, to conclude
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|logRAn| 1
/ (/ [(wn)olD)? < ( |(un)o)?

|log | Stx{|logRAn|}
1 1
+([ a2+ Va([ P}
Slx{|logé|} Bs
(3.10) )

Here we have used the fact that baflh (| 54ry,y |(vn)el* and
fSlx{|Iog6|} |(vn)s|? converge to zero. Applying Lemma 2.4, we have

(3.11) / (e[ < / (un)ol? + 267" / 4U(- )| Dt
Stx{r} Six{r} r

B.—

for anyr € [|logé|, |logRAn|]. In particular,

/Ilol;’jmn (/ () 2 </IOQRA” (/ (wn)e[2)?

[logRAn| ‘ 1
2 s jout. ) ow)?
Be_r

log 6|
|logRAn|

§0(1)+2(/

| log 6|

(3.12) < o(1) +2ﬁ(/8‘ |8tu(~,tn)|2)%(/8‘ IDuy |2 — 0.

e—%)(/B U t) A /B Dun )}

Therefore,

[logRAn|
% 2% 2% o0
/En(&R) [Dun| < (27) (/“0@“S [(/Sl |(vn)r|?)2 + (/Sl I(on)el2)3]dr — 0

This clearly implies (3.7). It is very easy to verify that (3.7) follows from (3.6).

4. Proof of Theorem Il

In this section, we prove the energy identity (1.5). First, we observe
Lemma 4.1 Let u € C>(B2? x (0, 1), N) be a solution to (1.1) wit0, to) being
its only singular point. Then there exists a positive m such that

(4.1) IDu?(x,t) dx — mép + |Du|?(x, to) dx,

for t 7 tg, as Radon measureblere §; denotes thé-mass at 0.

Proof. For any twos T to, tj T tg, according to Lemma 4.1 there exist > 0
andm’ > 0 such that, after taking subsequences,

IDuf?(x,s) dx — mdo + |Duj?(x, to) dx
IDU?(x, t;) dx — m’&o + |Dul?(x, to) dx,
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as Radon measures BY.
For anye > 0, there exists) > 0 such thatf;, [Duf?(x,to) < e. Therefore,
2n

(2.12) and (2.13) imply

m > / IDul?(x,5) — €
BZ

2n
Z/
B

> [ |DuA(x,t) —2e >m — 2.
B”?

It
DuP(x.t) - Co s ~tlEa— [ [ o -
S

y Bl

Hencem > nm'. Similarly m < m’.

Proof of Theorem Il AssumeT, = 0, M = B2, and (QO0) is the only singular
point of u From (4.1), we know that there exigtsT 0 and, | O such that

(4.2) nlim/ IDuf?(x, t,) dx = m.
— 00 B)\

n

Let un(X,t) = u(AnX, ty + A2t). Thenu, satisfies (1.1) orrisi_:L x [-2,0) and

2 th+2)2
(4.3) / / |6tun|2=/ /|8tu|2—>0,
-2 B;l th—2)% /B2

asn — oo. Therefore, by Fubin’s theorem, there existse (—1, —%) such that

(4.4) / 104 Un 2. 7) — O, / B2 — 0.
Bi_l Bi_lx(fz,Z)

Note also, from (2.12), that
@) [ Puftom) = [ |Pwf.0)- CR%E > m— CR %
Br By
In particular,
(4.6) lim / DU |?(-, ) > m.
R—oo Br
In fact, by Lemma 4.1, we have
4.7) lim / |DUn (-, ) = m.
R—oo Br
From (4.7), we know that for eacR > 0 u,(-,7n) weakly converges to €

H(Bg,N). In fact, v is a constant map, since we can assutpe< 2)\2 and
observe
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2
|Un('a77n)*un('7*tn/\r172)|2 §4/ |3tun|2H07
Br —2.JBg

and

/|Dun(-,—tnA;2)|2=/ IDuf(,0) — 0.
Br BrAn

For eachR > 0, we now apply the proof of theorem Il (i.e., Sect. 3, nn)
on Bg to conclude that there exidig bubbles{wi,R}:\‘fl such that

Nr
(48) Jm [ P = e S

i=1

Since there exists a universigj > 0 such that any bubble : S> — N has
E(w, S?) > o, we know that 1< Ng < []- Therefore, there ared € [1,[2]]
and a subsequené® ] oo such thatNg = d and

d
4.9 m= lim lim Dun|?(-,mn) = lim Y " E(wi g, S?).
(49) tm i [ 10u ) = fim S € .8
Note that fori = 1,---,d, {wi r} are sequences of harmonic maps fr6fto N
whose energies are uniformly bounded. Hence we can apply the results of Jost
[J] (cf. also Parker [P]) to conclude that for 1, - - - . d, there exist; € [1, [g]]

andN; bubbles{w; ; }]-N:il such that

Ny
(4.10) dim E(wip, $7) = Zl E(wi,. S?).
J:

Therefore, by (4.8), (4.9), (4.10), we have

N

d
(4.11) m=> "> E(w,,S).

i=1 j=1

Herew; j are bubbles for Ki <d,1<j <N;. Itis easy to see that (4.11) and
Lemma 4.1 imply (1.5). The proof is complete.
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