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Abstract. This paper considers the existence of a local minimizer of a con-
formally invariant functional defined on a space of maps of a closed Riemann
surface into a compact Riemannian manifdld The functional is defined for a
given tensoH on N of type (1,2) and we call its extremal &h-surface. In fact,

we prove that there exists a local minimizer of the functional in a given homo-
topy class under certain conditions dbh H and the minimum of the Dirichlet
integral of maps of the homotopy class.

Mathematics Subject ClassificatioB8E12; 53A10; 58E20; 49Q15

0. Introduction

Let X' be a two dimensional compact Riemannian manifold without boundary
andN an n-dimensional compact Riemannian manifold isometrically embedded
into R'. For a smooth 2-formw on N, we define the functional

(0.1) l,(u) = 1/ |Vu|2dVg+2/ u*w
2 X P

for u € H3?(2; N). We note that functional (0.1) is invariant under an arbitrary
conformal reparametrization of the domain. In fact, any conformally invariant
functional satisfying a certain assumption can be written in the form of (0.1).
(cf. [Gr] or [J];Theorem1.2.1 ). We call (smooth) extremals of functional (0.1)
H-surfaces. The Euler-Lagrange equation of functional (0.1) is written as

(0.2) trace(Vdu) = 2H (u)(Vu A Vu)

whereH is the skew symmetric tensor of type(2,1) Nndefined by
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dwp(U,V,W):=(U,H(p)V,W)) for peN, U,V,WeTyN

((,) denotes the metric tensor bf and the right hand side of (0.2) stands for
0 0
—_ =2
HU)(VU A V) = 0 2H U)W ) U o))

wherez = x! + v/—1x2 denotes an isothermal coordinate and the metric tensor
of X is written aso?((dx1)? + (dx?)?).

Some well-known equations are special cases of (0.2).

(1) If dw =0, equation (0.2) is called the equation of harmonic maps.

(2) If a solutionu of equation (0.2) is conformalj parametrize a surface of
prescribed mean curvatuk¢(u) as a submanifold at regular points.

(3) If N = I3, equation (0.2) is usually called the equation of surfaces of pre-
scribed mean curvature. (But unless a solution is conformal, it does not
parametrize surfaces of prescribed mean curvadtuies a submanifold even
at regular point.) In this case, functional (0.1) and equation (0.2) are usually
written in the form;

03) L= [ VU + SQMs A b

(0.4) Au = 2H (u)uy, A uy,(wheredivQ(u) := 3H (u)).

We refer to [J] Chapterl and Chapter2 for more informations about basic
results on extremals of the functional.

In this paper, we study the existence of a local minimizer of functional (0.1).
Our fundamental problem can be stated as follows.

Problem(x). Does there exist an extremal or a (local) minimizer of functional
l,, defined in (0.1), in a given homotopy classs [X,N] ?

Our main theorem below is an answer to Problem For 2 C Y, set

D(u; ) := ;/ﬂ |Vul2dx

Main Theorem. Let X be a closed Riemann surface and N a compact Riemannian
manifold. Then there exists an absolute constant C such that; if there exists u
H12(2 N) and a (smooth) 2-form on &' which is an extension of 2-formon
N with
|[d@| - D(up; X) < C,

then, there exists a local minimizer qf in the free homotopy clagsig] induced
by w.

This theorem is a generalizations of a theorem of Sacks-Uhlenbeck [SaU] for

harmonic maps and a theorem of Steffen [Ste] for surfaces of prescribed mean
curvature. Let us recall these two theorems.
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Theorem (Sacks-Uhlenbeck)Let X' be a closed Riemann surface and N a
compact Riemannian manifold witth(N) = 0. Then, in any homotopy class
a € [X,N], there exists an energy minimizing harmonic map.

Theorem (Steffen).Let Q and H be as in (0.3) and (0.4). If there exisgsau
HL2(02; R3)(02 C R2) with

HZ - D(up; 2) < zw,

where H := sup|H (u)|, then there exists a local minimizer of functional (0.3) in
uens

{uo} + Hy2(12; B3).
Remark.

(1) Theorem 0.2 was reproved by Struwe [Strl] as a corollary of his theorem
on the heat flow of harmonic maps. Our basic ideas for the arguments in
Section 4 come from his method of heat flow of surfaces of constant mean
curvature in [Str2].

(2) The result similar to Theorem 0.3 was also proved by Steffen [Ste] for the
Plateau problem of disk-type. A weaker version of Theorem 0.3 is obtained
by Wente [W] previously.

Now we shall outline the contents of this paper briefly. In the first section,
we fix the notations and derive the Euler-Lagrange equation for the functional
l,. In section 2, we recall notations and theorems from geometric measure theory
which are needed to estimate the second t¢grn*w in functional (0.1). Section
3 describes the convergence properties of any sequence of solutions of Euler-
Lagrange equation with bounded Dirichlet integrals. Section 4 is devoted to the
study of evolution problems corresponding to our variational problem based on
[Str2]. Finally, in the last section, we prove our existence theorems for closed
domain.

AcknowledgementThe author would like to thank Prof. T.Ochiai for his useful suggestions and
Dr. N.Ishimura for his continuous encouragement. He is also grateful to the referee for pointing out
mistakes in the original manuscript.

1. Notations

Cke P HkP denote the usual dlder, Lebesgue, Sobolev space. When we
distinguish the time variable from the space variables, we use the notation
S92 x [Ty, T2))
={u € C(2 x [Ty, T2]); [ O5u € C*(2 x [Ty, T2)
if 2r +|s| <k}
LP(02 x [Ty, Ta])
={u € LP(2 x [Ty, T2]); O O3u € LP(2 x [T1, T2))
if 2r +|s| <k}
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for 2 Cc R". Here,s denotes the multi index, i.e.

S = (S1,-S) ENX...XN ||s|i=g+...+5,

a\* a\"
S =
g (D) (2

We define
HYP(Z,N) = {u € H*P(Z;");u(x) € N for almost everyx € X'}

for a manifoldN embedded im2'. LXP(X;N) is defined in the same manner.
Mainly, we work inH2(X;N). Note thatu € H?(X;N) induces free homo-
topy class sincaimX = 2 (see [ScU]). In the sequel, we fix a 2-form @

which is an extension of 2-forme on N and denote it again by. Adapting the
usual Einstein’s summation convention with respect to the coordindké, iset

w(u) = ;bij (udu Add (1<i,j<I),
wherelbj; is skew-symmetric. We also define the tensor fidldf type (1,2) on
R by
(H(p)(V,W),U) =dw(U,V, W),

whereU,V,W € T,R' and (,) denotes the canonical inner productiih. In
terms of the coordinate ift',

H'(P)(V, W) = Hj (p)V! WX

where

H®) = (ot @)+ 5o )+ 5 o))

Now we derive the Euler-Lagrange equatiori ofn terms of the coordinate in
R'. For giveny € C5°(X; k') we can define the variation throughe C1(2,N)
by u = w(u + ty) for sufficiently smallt. Then we have the first variational
formula of I ;

9
(Do) = ;| _lo(w)
0 1 2 9 .
= 8t‘t=0 [2/2 [Vu| dv} + 5t ‘t:O [Z/Eu w]
:/ gap {Dall D' + Djerr! (U)Da U Dguke' } 1/|gldx dx?
P
+/ 2H,, detOu’, DU)Dy 7' ' dx*dx?

= [ {(V0.9¢) + (VU VU, )
)
+2(H (u)(Vu A Vu),D7(u) - p) } dV,
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where @,;5) denotes the metric tensor &f andD?r(Vu, Vu) andH' (u)(Vu A
Vu) are defined by

D27(Vu,Vu) = ¢g*’Dym(u)D,u Dsuk

1
V9l

Hence the Euler-Lagrange equationlgfis written as

H'(u)(Vu A Vu) :

Hj (u) det@u’, Du¥).

(1.1) Axu = D?r(u)(Vu, Vu) + 2D - H (u)(Vu A Vu)

where A5, stands for the Laplace-Beltrami operator bn
Very often our arguments do not depend on the special structure of the non-
linear term and valid for more general equation of the following type:

1.2) Asxu = I'U)(Vu, Vu).

wherel'(u)(Vu, Vu) is defined for a given symmetric tens@rof type (1, 2) on
&' and a given skew-symmetric tensBrof type (1, 2) onk' by

I'(u)(Vu, Vu) :=trace(u*A) + B(u)(Vu A Vu)

(B(u)(Vu A Vu) is defined in the same manner ldgu)(Vu A Vu)).

2. Isoperimetric inequalities and volume functionals

Foru € HY?(X2;N), we set
(2.1) V (U)[w] = V,(u) ::/Zu w

We call V (u)[w] = V,(u) the volume functinal. The notatioW (u)[] is used
when we think the volume functional as a current, while we \dsg€) when we
think it as a functional.

We shall recall basic definitions and notations of geometric measure theory.
See e.g. [F], [H-S], [Mg], [Si] for more informations about geometric measure
theory.

Forms and Currents
Let Z"(R"*) be the space of smooth (i.€>°) n-forms onR"™* with compact
support with the usual topology, namely,
"{a;} € Z"(R"K) converges tax € &M (R™K) iff the following two conditions
hold,

(1) supp «; is contained in some compact setlfi*c independent of.
(2) Every derivative of every coefficient ef; converges uniformly to that of

(o8
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Then, we define the space of curreritg(R") as the topological dual of
ZN(R"™K). The support of a currerif € Z,(R"™) is defined as the smallest
closed subset ¢ R"K such that for anyy € Z7"(R"™**) with supp aNK =,
we haveT[a] = 0. We say{T;} C Zn(R"*¥) converges weakly t& € Z,(R"*)
iff Tj(a) — T(a) for anya € Z"(R"*).

Mass and Comass
For o € (A"R"™)* (i.e. a is a skew symmetric multilinear form), we define the
comasga| of a as

] = sup{a(Xe, ..., %); % € R™ |x| < 1}.
And we define the comagea|k of a € Z"(R"™K) on K c R™K by

|alk = sup|a(x)].
xeK

(If K = ="k, we simply write|a|.) Then, we can define the mal§E|| of current
T € Zn(R™) by

IT| = sup{T(a): || < La € Z"@"%)}.

If |T|| < oo, T is called a current with finite mass.

Boundary of Currents
The boundandT € Z,.1(R™) of T € Z,(R") is defined by

AT (a) = T(da).

T € Z,(R"¥) is called a closed current iiT = 0.

Rectifiable Set
M C R™K is called a countably n-rectifiable set, Nf is written in the form

M=MoU (| JF®)

j=0

whereA C B", Fj : A/ — R™¥ is a Lipschitz map foj > 1 and.72"(Mg) = 0.

(-7Z" denotes the n-dimensional Hausdorff measure.)

If M is countably n-rectifiable, we can define the approximate tangent space
TxM for .7Z"-almost everyx € M.

Integral Current
T € Z,(R"X) is called an integral current, iff is written in the form

T(@)= [ (a,£0010(:d. 779
where M is a countably n-rectifiable set iR™ and ©(x) an integer-valued

.7¢"-summable function in M : M — A(R™K) is a.7#™ measurable function
such that for7Z"-almost everyx € M, £ can be expressed as
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EX) =11 A- - AT

where{, -, m} is an orthogonal basis dfyM .

We need the isoperimetric inequality due to Federer-Fleming [F-F]. (The best
constant, which is attained by the currents induced by spheres, is obtained by
Almgren [Al]).

Theorem 2.1 (Federer-Fleming, Aimgren).If T € Z,(R™) is an integral
current withdT = 0, then there exists an integral current ® Z,.1(R") with
OR =T such that
n+1l
IRl < y(n)- [T
where
1 _ F(nZB)

n+1 T

7= a(n+1)n - (n+1)"

n+l

((n+ Lyr2)"

a(n + 1) denotes (n+1)-dimensional Lebesgue measure of the unit ball'ih.

Moreover, if T is compactly supported, we can choose R with compact support.
We also need the following compactness theorem.(cf. [F]; 4.2.17 or [H-S];

Lecture 4 in Hardt's lecture.)

Theorem 2.2.SupposgT;} € Z,(R'), T; anddT; are integral currents for each
j, and
SJup{HTj [ +110T; I} < o0.

Then a subsequence £T; } converges weakly to an integral current T.

Lemma 2.3.
(1) For anya € Z3(R<),

Vo :HY2(Z;N)su— V@U)a] R

is a continuous functional.
(2) For u e HY?(X;N),

Vu): 7)) s a— / Ao e R
X
is a closed integral current with

ou 2| ou ou du

1

2
. < .4 = 2 _ 2 14v2
22) IV <. 4w /2(|6X1 oxc! <8X1,8X2>) dx'd,

Proof. Take a sequenc@y, } with u, — uin H2(XZ; R<). For anya € Z7%(R<),
we have
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‘LU;&—Lu*a‘ SZ{‘/U {aij (U)—aij (u,,)}det(uil,uf(z)
K K

/ aij (uy) det@ — ul, ., ul,)
Uk

+ +

/ aij (u,) detQ;, ., Uy, — ul 2)

Uk

j

whereUy is a coordinate system coverirlg. The first term converges to 0 by
Lebesgue’s convergence theorem by choosing a suitable subsequence, the second
and the third terms also converge to zero, sif¢gu, — u)|,2 — 0. This implies
assertion (1).

To prove (2), we first check the assertion foe C>° (X, R<).

(a) By Stokes’s Theorem, it is clear tha¥ (u) =0, 0V (u,v) =0.

(b) By the definition of mass of currents, it can be easily checked\tifaj
satisfies inequality (2.2).

(c) V(u) is an integral current, sincé (u) can be written in the form

(2.3)

V(U)la] = / (009, €09)0090.779

where
O(x) = {number ofu~*(x) with multiplicity }
= ) sign(Du(p)).

u(p)=x

O is integer-valued for almost every € u(X) by Sard’s Theorem an® is
summable, since we have by the area formula

/ 16]d.72% < . ¢(u).
u(x)

Thus foru € C>(X, k<), V(u)[-] is a closed integral current with (2.2).
To establish the assertion far € H2(X,N), choose a sequencgu,} €
C>®(X; <) with u, — u in HY2(2; R<). Then, by assertion (1), we have

V(u,)[e] — V(u)a] for any o € Z3(R<).

HenceV (u) is the weak limit of sequences of closed integral currents with
(2.2). Thus,V (u) is also a closed integral current by Theorem 2.2 and satisfies
inequality (2.2). Q.E.D.

Proposition 2.4. Fix a smooth 2-formv on R< with |dw| < co. The functional
defined by

Vw:Hl’z(E;N)au»—>/ U'weR
P

is continuous and there holds
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(2.4) Voo (U)] < () 2(0)? - [dw].
Proof. Since the support of curren (u) is contained in compact manifol,

we may assume that is compactly supported to prove the continuity\of(-).
Hence, the continuity is an immediate consequence of Lemma 2.3.

SinceV (u) is a compactly supported closed integral current by Lemme 2.3,
Theorem 2.1 implies that there exists compactly supported cuRentZ3(R<)
with OR =V (u) and [[R]| < +(2)[V (u)]|*.

SinceV (u) andR are compactly supported, we can choase D?([2<) with
w =« in some neighborhood cuppW(u) U suppR Then we have

Vo (u)] = [V ()a]] = [RWda]| < 4(2) 2(u)?|dofsuppry) < 7(2)4(u)? [dw].
This proves inequality (2.4). Q.E.D.

3. Convergence of extremals

In this section, we shall obtain estimates for solutions of equation of type (1.2):
Asu = I'(u)(Vu, Vu),

With respect to any isothermal coordinateg, &;), equation (1.2) is expressed as:

(3.2) Apu = I'(U)(Vu, Vu)

where Ag = (,2.)% + (,2.)%. Namely equation (1.2) is conformally invariant.
From this observation, we have the following important fact: in order to obtain
a local estimate for equation (1.2), we can assume that the domain is a domain
in R2 with the flat metric by passing to an isothermal coordinate.

First, we define the homothetical transformation which is needed to observe
the asymptotic behavior.

Let (U,v,V) be an isothermal coordinate system @&h Namely, U C
Y, V c Candy : U — V is biholomorphic. We define the homothetic
transformation with the center € U and factor > 0 by

her @ Vir 3§ 97 Hg(x) +1€) €U

whereVy , = {€ € C;¢(x) +r& € V}. This definition ofhy, depends on the
local coordinate. But it does not matter for our purpose. Actually, we only con-
sider hy, ,, for the sequence wity — x andr; — 0. In this casehy ,, is to
be understood as the homothetical transformation defined fiedisothermal
coordinate system which contairs Note that ifu satisfies equation (3.1) w.r.t.
an isothermal coordinate, o hy , satisfies the same equation.

We shall start with the fundamental properties of solutions of (3.1r&n

Lemma 3.1. Let u € C%*(R% R') be a solution of (3.1) with finite Dirichlet
integral. Then, by the stereographic projection, u is identified with a map
C?%2(s?, ") which satisfies (1.2).
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Proof. By stereographic projectiony is identified with the mau of S? = R2 U
{oo} which is smooth except for the poirt= co. And U satisfies equation (1.2)
except forx = co. Then the removability of isolated singularities (cf. [SaU] or
[J];Theorem 2.4.1) implies € C?(S?; ') andu satisfies equation (1.2). Q.E.D.

We also give some notational conventions.

(1) c (small letter) denotes an absolute constant or a constant which depends on
the choice of an isothermal coordinate bfand C (capital letter) denotes
the constant depends & and the two formw on N. We specify whatC
depends on, if necessary. (e@(I"))

(2) We denote balls in a suitable isothermal coordinatB/lfp). Namely,B; (p) =
Y& |€ — w(p)| < r}) for an isothermal coordinatel(, +, V). We also
use the same notatidB (p) for geodesic balls ilN. To denote the geodesic
ball in X7, we use the notatioB(x,r). When we specify where the ball is
contained, we use the notati&t (p), BN (p). In any case, we always assume
thatr is sufficiently small so that the coordinate is defined.

Lemma 3.2.Let X be a closed Riemann surface. Suppésg c H?(X;R")
be a sequence witbupD (u;; 2) < M. Then for any$ > 0O, we can choose a
i

subsequencéu;, } such that there is a finite set = {x,...,xy} C X with the
following

Property (#)s:
(i) There holds

liminf D(ui,; B(Xm,r)) > 6
H— 00

foranyr>0,1<m<N,
(ii) For any x € X'\ A, there exists r> 0 with lim supD (u;,; B(x,r)) < 6.

H— 00

Proof. For p, | 0, we can choose a family of ballB(x/, p.)}k=1,...p, With

v

rc™ = (J. Then by diagonal argument, we can choose a subsequence, denoted
also by{u; }, such that for ank, v, there exists limD (u;; B(x;, 5 )).
| —0o0

We put
A= {x € 5 lim D(ui; B, pz”) > 6 for any v, k with x € B(x?, % }
| —00

Let {z,...,zv} be a finite subset ofd. Choosingp, sufficiently small,
B(x?, p,) NB(X”, p,) = ¢ for m# n. Thus we have

N
SN <> D(Ui;B(Zn, p) <D(U; £) <M.

m=1

for sufficiently largei. Hence
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i.e. A is a finite set. By our definition, it is easy to check thhtsatisfies the
desired properties. Q.E.D.

Lemma 3.3.For any u € H2(R?) and anyy € Cg°(Br(X)) with 0 < ¢ < 1
and|Ve| < &, there holds

[t
EZ
<c (/ u|2dx) (/ |Vul?p?dx + R‘Z/ |u|2dx)
Br(x) Br(x) Br(x)

Proof. See [Str3];Lemma 5.7. Q.E.D.

Lemma 3.4. Let 2 C R2 Suppose uc C?(X;N) satisfies (3.1). Then, there
existseo(|I"[) > 0 such that if Du; By (X0)) < o for some0 < r, then we have

2
C
/ 1V2ul? - Pdx < ) {/ |Vu|2dx}
Bar (Xo) r Bar (x0)

whereyp € C§°(By (Xo)) satisfiesd < ¢ < 1and|Vy| < 2.
Proof. Since u satisfies (3.1), there holds
|Au| < |T| - | VUl

Hence we have

(32) / |Au\2-¢2dxg|r|2/ Vul*e2dx.
BZr(XO)

Bor (XO)

By Lemma 3.3 and (3.2), we have

(3.3) / |Au|2-<p2dx§CF|2{/ vUde}
Bzr(XO) BZr(XO)

1
X {/ |V2u|2p2%dx + 2/ |Vu|2dx}.
Bar (%0) I JBa (%)

On the other hand, by integrating by parts twice and using binomial inequality,

we have
/ | Au?p?dx
Bzr(XD)

1 2112, .2 C 2
(3.4) > |Veul“pdx — [Vu|“dx.

2 JBa () r JBa ()
Combining (3.3) and (3.4) and pulttinrg = BC\1F|2’ we have the desired estimate
by absorbing the right hand side to the left hand side. Q.E.D.

Lemma 3.5.Let 2 C ¥ and ue C?(£2) a solution of (3.1). If there exists» 0
such that
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supD(u; B, (X)) < 0

xeX¥

then there exists a constant C depending on r 8ide (2 such that there holds

IV2ul

cen * VUl

Co(2) < C

Proof. Lemma 3.4 implies thél 22-bound;
/ |V2ul|?dx < C(r, £2').
Q/
Hence, by Sobolev’'s embedding theorem, we have
/ |[VulPdx < C(r, 2)
Q/

for any 1< p < oo. Sinceu satisfies equation (1.2), usual linear elliptic theory
implies
V2l + VUl < Cr, 2).

(Note that, we do not have the bound far||.» in general. But, of course, since

N is compact,|u||.» is bounded by terms dfl.) Then, again by Sobolev's em-
bedding theorem, we have the bound f&fu||c~ . Finally, using the interior
Schauder’s estimate, we obtain the desired result. Q.E.D.

Theorem 3.6.Supposgu; } C C?(X;N) satisfies (1.2) andupD(u;; X) < M.

Then, there exist a finite set (possibly an empty detF {Xi, ..., xy} of points
in ¥ and b € C>*(X;N), vy,...,on € C2%(2% N) satisfying the following
conditions: (taking a suitable subsequence if necessary,)

(@) D(ug; X) + Z D(vm; R?) < 0. Up satisfies equation (1.2, -, vy are

non-trivial solutlons of equation (1.2)y, --, vy can be identified with maps
01, ..., uy Of S? by stereographic projection and, ..., vy is @ smooth solution
of equation (1.2) in §,

(b) 4 — Ugin C2*(X\ A;N),

(c) There exists a sequenck ¥ X, ri. > 0 (m=1,...,N) with %, — Xq, 1\, — 0
such that

vl — vy locally in C2(R2; N)
where

U (€) = Ui (hy r, (9)),

(d) D(up) + Z D(vm) < I|m|nf D (u).

m=1
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Proof. Applying Lemma 3.2, we can choose a subsequence, which is again denoted
by {ui }, and find a finite setl = {xy, -+, xy } with property() 0.

1° Convergence at regular points

Choosing an fixed isothermal coordinate system, we can apply Lemma 3.5 to
u. Hence,u; is uniformly bounded irC?%(K) for anyK € X\ A. Thus, there
existsup € C2%(X'\ A)

U — Up in C%%(K)

for any K € X'\ A. Since the Dirichlet integral of; is uniformly bounded,
Dirichlet integral ofu; is also bounded. Hence, the removability of isolated
singularity (See [SaU] or [J]; Theorem 2.4.1) impligg € C%%(X) and ug
satisfies equation (1.2) i&'.

2°Singularity

We choose > 0 so thatB(Xm, p) "N\B(Xm/,p) = if m#m’ for 1 <mym’ <
N. Fixing an isothermal coordinate neighbourhoodkgf we set

ri, = inf{r > 0;there exists X B (Xn, )
with % < D(ui; B (X))} .

Let x!, be a point which attains the infimum above. The definitiomadnd the
convergence property ob' \ A proved above implies

i &
D(; By, () = -
X\ — Xm Il — 0.

We define the rescaled map by, := u; (hy i (£)) which satisfies equation (3.1).

And there holds ' .
D(vhyiBa(2)) <

for a ball By(z) in the isothermal coordinate which contained in the rescaled

domain. Note that the rescaled domain exhaii$tasi — oo. Then, applying

Lemma 3.5, we have

vy — vm  in CZX(RD).

Consequentlyy, is a non-trivial solution of equation (3.1) 2.

To obtain the bounds for the Dirichlet integral of, v;..,vn, We take cut-
off functions ¢" € C5°(Bar (Xm)) With 0 < ¢ < 1 andyy = 1 in B (Xm) for
1 < m < N. By the invariance of Dirichlet integral with respect to the scaling,
we have

1 . i
iI|m 2/\Vui|2<p{"dx > iI|m D (ui; Bry, (Xm)) = D (vm; Br(0)).

On the other hand, sinag converges irC%<(%'\ A), we have

|'1 Vu 21— ot 1-—oMdx>D 'ENB
im [ 190 @ e D B o)

m=1
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Thus, by tending — 0,R — oo, we obtain

N
D(uo) + ) D(vm) < lim D(w).

m=1

Since the Dirichlet integral ofy, is bounded, we can apply Lemma 3.1. Hence
v1,..,on can be identified with maps;, .., vy of S? by stereographic projection
anduvy, ..vy satisfies the equation (1,2). This proves the Theorem. Q.E.D.

4. Evolution of H-surfaces

We consider the evolution problem of equation (1.2). Namely, we consider the
following equation;

4.1) au Au — I'(u)(Vu, Vu)

(4.2) u(-,0) = Uo.

for given uy € H2(X;N). As in the previous section, we treat the equation
locally. Namely we consider the equation in isothermal coordinates. Equation
(4.1) is written with respect to an isothermal coordinatg x2) as follows.

(4.3) U = o~ 2(Aou + I'(u)(Vu, Vu))

whereo is the conformal factor of the isothermal coordinate. Namely the metric
tensorg of X is expressed with respect to the isothermal coordinatg as
o?((dx)? + (dx?)?).
For 2 C X, set
X(2 x[0,T):
={uel**(2 x[0,T]);[0,T] 5t — u(,t) € H? is continuous} .

We need a parabolic version of Lemma 3.2.

Lemma 4.1.Supposé € Cs°(B; (wo)) depend only on the distancé:d, wo) from
wo and suppose is non-increasing w.r.t.¢v, wp). Then, there exists constants
C andr such that for any T< co, r < and any fe LY2(B(wo,r) x [0, T]) N
CO([0, T], L?(B(wo, 1)), there holds

/ / |V |#¢2dxdt < C - sup D(f; B (wo))
B (wo,r)x[0,T]

o<t<T

X { / / |V [2¢%dxdt+r =2 / / Vf|2g2dxdt}.
B(wo,r)x[0,T] (wo) x[0,T]

Proof. See [Strl];Lemma 3.2 for the proof.

To obtain thelL.? bound forV2u , we begin with some computations.
Let ¢ € C5°(B(w,r)) satisfy the conditions of Lemma 4.1 and
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OSCr,w Sla Cr,wEl inB(wa;r)a

4
IV wl < .

In the sequel, we always assumec r and we simply write( for ¢ ,,, if there
is no danger of confusion.

Lemma 4.2. Suppose ue X(B(w,r) x [0,T]) satisfies (4.1)-(4.2). Then there

holds
// | Au|?¢?dxdt+C {/ |Vur |?¢%dx — / |Vu02§2dx}
B(w,r)x[0,T]
-

SC(F){// [Vul*¢%dxdt+ ., sup |Vu|2dx}
B(w,r)x[0,T] I 0<t<T JB(w,r)

where y(x) := u(x,t).
Proof. Integrating by parts, we have,

1
(4.4)285’t / IVulP¢?, dx = / (Vu, Varu)¢2dx
Py

= —/<6tu,Au>Czdx— 2/<8tu,Vu)V§§dx
= —/|8tu|2(2dx+/(&u,F(u)(Vu,Vu))Czdxf2/<6tu,Vu>VC(dx
< f;/\6‘tu|2C2dx+C(F)/|Vu\4C2dx+c/|Vu|Z|V(\2dx

where we used the binomial inequality to obtain the last inequality.
Integrating the inequality above w.rtt. we have

(4.5) ;{/Wuﬂz(zdx/Wuozgzdx}
1
" / / auPdxdt < C(1)] / / IVu[*c2dxdt
2 J JBwo,r)x[0,T] B(wo,r)x[0,T]
+T2 sup/ \Vu\zdx}.
' 0<t<T JB: (wo)
Sinceu satisfies equation (4.1),

(4.6) / / | Au|?¢2dxdt

< C(D) / / |Vu|*¢?dxdt+c / / |6yu?¢2dxdt.
B(w,r)x[0,T] B(w,r)x[0,T]

Hence, by (4.5) and (4.6), we obtain,
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// | Auf?¢2dxdt+C {/ |Vur [2¢2dx — / VUO|ZC2dX}
B(w,r)x[0,T]

< C(F){ // |Vu|*¢2dxdt+ T2 sup \Vu\zdx}
B(w,r)x[0,T] r

0<t<T JB, (w)
Q.E.D.
Next, foru e X(£2 x [0, T]), we set

e(u,r,T;0) = sup / |Vu/?dx
0<t<T,B(w,r)C 2 JB(w,r)

for 2 C X. If there is no danger of confusion, we simply writ¢r, T) for
e(u,r,T; Q).

Lemma 4.3. Suppose = X(B(wo, R) x [0, T]) satisfies (4.1)-(4.2). Then, there
existse(I") > 0 such that ife(r, T; B(wo, R)) < ¢, there holds,

// |V2u|?¢2dxdt + 1 {/ VUTZCde—/|Vuo|2§2dx}
B(w,r)x[0,T] 2

CT
S rz €(U7 raT; Bl’(w))

where¢ = ¢ -

Proof. Lemma 4.1 and Lemma 4.2 imply,

4.7) / / | Au|?¢2dxdt+ C { / |Vur|2¢2dx — / vUo|2<2dx}
B(w,r)x[0,T]
<cmee.n{ [f Vet | )
B(w,r)x[0,T] r

On the other hand, integrating by parts twice, we have,

(4.8) / / |V2u|2¢2dxdt
B(w,r)x[0,T]
< 2// |Au|2<2dxdt+// |Vul?|V¢|?dxdt
B(w,r)x[0,T] B(w,r)x[0,T]

+C / / |Vu|?¢dxdt < 2 / / | Au|¢2dxdt
B(w,r)x[0,T] B(w,r)x[0,T]
cT
+ 2 e(r,T).

where the last term in the middle comes from the curvature term. From (4.7) and
(4.8), we obtain,

// |V2u|2¢2dxdt+ C {/Wuﬂzczdx—/|Vu0|2§2dx}
B(w,r)x[0,T]

T
< Gl T){ //B(w 1)x[0,T] ‘VZU|2<2dth+ I’Z}
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Choosinge := 216 and absorbing the first term on the right hand side to the left,

we obtain the desired result. Q.E.D.

Lemma 4.4.Suppose &« X (X x [0, T]) satisfies (4.1)—(4.2). Then there exists a
constant C= C(I') ande = ¢(I") < § such that if

sup [ |Vuwl|?¢? dx < ¢
weX JXY ’

for some0 < r < r, then there holds

sup / Vw2, dx < 2¢

we X, 0<t<r
whereT = min(T, Cr?).

Proof. Let L be the minimal number such that for ang0Or < r and anyx € X,
geodesic balB(x,r) can be covered by balls with radius},. Sete := J .
We set

7= max{to €[0,T]; sup /|Vut|2§r2,wdx < 25} .

wEX,0<t<ty
Sincet — u; € HY2? is continuous;y > 0. If 7 # T, choosewy € X so that
/ VU, [P X = 22 .

Since we can find € X(i = 1,...,L) with By (wg) C UiLzl B: (%) by the
definition of L, we have

L
sup |V 2dx < sup Z/ V|22, dx < 2:L = .
0<t<7 JB(wo,r) o<t<r {4 ’

Thus, we can apply Lemma 4.3 f&=r, w = wp. Then we obtain
T
e < /|Vu,|2g21w0dx— / IVu, 2¢?,,,dx < C - 27

This impliesT > Cr?2. Q.E.D.

Lemma 4.5.Suppose & X(B(wo, R) x [0, T]) satisfies (4.1)-(4.2).
Then there holds,

1
3| [ Turiuax— [ 17w, ox

< / / |V2u|?¢2dxdt + CZTs(r ,T; Br(wo))
By (w) x[0,T] r

Proof. It follows from (4.4),
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z'at/Vu(dx

§C/|8tu|2<2dx+c/|Vu|4C2dx+c/|Vu|2|VC\2dx.
Since|dwul? < |Au|? + C|Vu[*,
Z‘at/Wu(dx

gc/|V2u|2C2dx+C/|Vu\4(2dx+c/|Vu|2|V§\2dx.

Integrating the equation above wi.twe have,

1
| [ 19wl o [ vuiic o

CT
<c // |V2u|2¢2dxdt+ C // [Vul*¢Zdxdt+ ~, =(r, T; Br).
B (w)x[0,T] Br (w)x[0,T] r

Estimating 2nd term on the left hand side by Lemma 4.1, we obtain the desired
result. Q.E.D.

In the following Lemma, we work in an isothermal coordinate and obtain the
estimate depending on conformal factoassociated to the coordinate.

Lemma 4.6. Suppose & X (Br(wo) x [0,1]) satisfies (4.3) for some< T. Set
Ro := sup{r > 0;e(r,t; Br(wo)) < 5}

Then,oiu, Vu,u € Lz’p(Bg(wo) x [1,t]) foranyl < p < co,7 > 0 and
there exists a constant C which depends-oh, Ry, sup, lo|, iNfegwe) |o| @and
SURs, () | V| such that

R(wo)

”u”LZ’P(Bg(wo)X[T,t]) + ||atu”LZ’P(Bg(wo)x[T,t]) + ||vu||L2=P(Br2<(w0)><[T,t]) <C

where all the norms are taken with respect to the isothermal coordinate.

Proof. From the estimate similar to the one used in Lemma 3.12 in [Str 2], we
obtain
/ |V2ul?dx < C
B34R (wo)

for anyt e [r, T]. This implies||Vu(:, )|/ (wo)) < C for any 1< p < oo by
Sobolev’'s embedding theorem. )
Differentiating equation (4.3) w.r.t. andx, we obtain

(O — 0 2A)Vu =D,I"(Vu,Vu) - Vu+ I'(V2u, Vu) + I'(Vu, V2u)
4.9) +Dy I"(Vu, Vu) + Vo 2 Au,

(4.10) (8, — 0~ 2A)0u = DI (Vu, Vu) - du + I'(Véu, Vu) + I'(Vu, Vo).
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Applying linear parabolic theory to equation (4.8f-bounds forvu, V2u im-
plies theL?P-bound forVu. Especially, this gives theP-bounds forVo,u. Then
applying the linear parabolic theory for equation (4.10), we obt&iPrbounds
for d;u. Thus we obtain the desired result. Q.E.D

Lemma 4.7.Suppose & X(X x (0, T)) satisfies (4.1)-(4.2) and CR> T where
C is the constant in Lemma 4.4. If there exisgs>R0 with

(4.11) supD (ug; Br, (X)) < ¢,
xex

u extends to solution € S>*(X x (0, T]).

Proof. By (4.11), we can apply Lemma 4.4. Then, we ha{e, F;°,T; X)) < 2e.
Then applying Lemma 4.6, we obtain the following estimate.

ullzo@g woyxtr) * |10tUllzo@g w17+ VUllzp@g (o iy
< C(Ry,7,T,0)
for any O< 7 <t < T. Since the constant is independentt pfve obtain
ullizo@g woyxtr. Ty Ak UllL20@ g (wo) <177

*HIVullizs@g woxinm < C-

This implies thatC*-norm of Vu, V2u and d;u is uniformly bounded onZ x
[, T). Thus we obtain the desired result. Q.E.D.

So far, we do not need special structure of non-linear term. But in the fol-
lowing Lemma, we need the assumption;

(4.12) I'(u)(Vu, Vu) = D?7' (u)(Vu, Vu) + 2D 7 - H (u)(Vu A Vu).

Lemma 4.8.Suppose e X(X2' %[0, T]) satisfies (4,1)-(4,2) andl satisfies (4.12).
Then, Du(-,t)) and L,(u(-,t)) are absolute continuous in & [0, T] and there
holds

(4.13) —//2 |Bpu|?dxdt = I, (ur) — I, (Uo),

where y(x) := u(x,t).

Proof. Differentiating and integrating by parts, (noting ti#ati = 0 on9X.)

)
8t ‘t:TIW(Ut)
) 1 -
= / (Vu,, Vo, )dx + ‘ / by (u,) det(Vu!, Vul )dx
bl 8t t=7 5 2
:/ {{(Vu,,Vou,) — (I'(u;)(Vu,, Vu,), du, ) } dx
b

4.14) = —/Z |6vu,|?dx € LY([0, T]),
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0

ot t=‘rD(Ut)
(4.15) =[x(Vu,, Vo )dx = — [ (Au,, du.)dx € LY([O, T]).
Integrating (4.14) w.r.tt, we obtain (4.13). Q.E.D.
Theorem 4.9.

() For any wp € HY2(X;N), there exists a solution u of (4.1)-(4.2) with the
following properties:

(@) ue S?*(X x (0,7]) N X(X x [0, 7]) for somer > 0,

(b) Maximal existence time T 0 of solution u with property (a) above is
characterized by the following property, if it is finite.

There existx € X such that

(4.16) limsupD (u(-,t); Br(X)) > ¢
t—T
forany R> 0.
(I1) Let u; be a solution in (I). If u satisfies sup D(u;; X) = Dy < oo and
tel0,T)

[/ 16wu?dxdt < 0o and suppose (4.16) holds for< T < oo, then we have the
following asymptotic behavior:

There existsir> 0,x € X, ti — T such that

(c)ri — 0, x — X, wherex € X is a point which satisfies (4.16),

(d) The rescaled map' (¢) = u(hy r, (€), 1) has the following convergence prop-
erty

V(&) — v(©) in CI(EF)
v is a solution of (1.1) with Qv; R¥) < cc.
(I If T = oo and there exists no point which satisfies (4.16), then we have

(e) There exists a time sequencavith t — oo such that
u(,t) — U in C**(X)
and uy, is an extremal of }.

Proof of (I). For C1« initial datau, we can establish the short time existence
of S2« solution of (4.1)-(4.2) (cp.[Str2];Lemma 3.16). For a general initial data
U € HY2(X;N), take a sequenag € C> such that

u) — up in HY2(3;N).
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Let u®(x,t) be the solution with initial data and T® the maximal time of
existence ofu®(x,t). Sinceul® converges inH-2(>;N), there existsR > 0
such that

(4.17) D(ud;B(x,R)) < & for anyx € X.

By Lemma 4.7 and the definition af®), we haveCR? < T®. Applying Lemma
4.6, we obtain

(4.18) [uM|izn(sxircrey + VUM 2o xircrey + 100UY | L2n(s x(r.crey < C

forany 1< p <ocandr > 0.
On the other hand, (4.17) and Lemma 4.3 imply

(4.19) V2™ 25 jo,crep < C.

Hence, by Lemma 4.1, we have

(4.20) VUl (s xpo.crep < C-

Thus, sincdd,u®|2 < C(|Aul? +|Vul?), (4.19) and (4.20) imply
(4.21) lloculliz(sxo,crey < C.

By (4.18)-(4.21), we have the following convergence property.

u® — u  weakly inL>P(X x [, CR?]) N L2%(X x [0, CR?))
vu® — Vu  weakly inL>P(Z x [, CR?)),
ou® — gu  weakly inL>P(X x [r, CR?),
for any 1< p < oo and 0< 7 < CR2.
We shall checku € C°([0,CR?]; H2(X;N)). By the L>P estimate above,
u® converge uniformly inu € C°((0, CR?J; HY2(X;N)). So we only have to
prove the continuity at = 0. Sincedu € L?(X x [0,T]), u attains its initial

value ug continuously inL? and, by (4.17), Dirichlet integral afi is uniformly
bounded. Thus, for an§ > 0, there existdy with

D(ut; X) > D(up; &) — 6

for any 0< t < to. Applying Lemma 4.3 forut(k) and lettingk — oo, we have

// |V2u|¢?dxdt < C2t+<5
2 x[0,t] R

for 0 <t <ty. By Lemma 4.5, we obtain

‘/ |Vut|2(2dxf/|Vu0\2§2dx Ci+s
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for 0 < t < to. This provesu € C([0, CR?]; HY2(X;N)). Thus, we construct
a local solutionu € X(X' x [0, CR?]) N S>*(X x (0, CR?]). Assertion (b) is the
direct consequence of Lemma 4.7.

Proof of (Il). Suppose (4.16) holds at= T. For a sequencg with r; | 0, we
set

ti :=sup{t € (0,T);D(u,;B(x,r)) <e foranyx € ¥ and 0< 7 < t}.

If T =00, lett; satisfy

(4.22) / / |0u[?dxdt — 0
Ix[ti—1,t]

by choosing a suitable subsequence. et X be a point which attains the
supremum in the definition df. From the definition, it follows immediately that

t — T, X — X.

for somex € X which satisfies (4.16). Then fix an isothermal coordinate
which containsx ando = 1 atx and define the rescaled map by v'(,s) =
u(hy r, (€), ti +r?s). v; also satisfies equation

(4.23) A = o2 (Agui + I'(0)(Vi, Vuy)).
Note that the conformal factaer satisfies
oc—1 Vo — 0 uniformly on any compact subset

as the rescaling factar tends to 0. By the definition df, for anyK & RF and
sufficiently largei, there exist® > 0

(4.24)  sup{D(vi(,s);B1-s(§));{ €K ands e [-1,0]} <¢,

(4.25) D (vi(+,0);B14s(€)) > .

Thus by (4.23),(4.24) and Lemma 4.6, we have unifarff (K x [—%,0])
bound fordv;, Vui. Since

// |Opv; |Pdxdt < // |6yu[?dxdt — 0,
JK x[—1,0] . EX[Iiffiz,ti]

v (-,0) converges to a non-trivial extremal in le,’c"‘(ﬂ%"). Finiteness of the
Dirichlet integral ofv follows from the conditionD (u;; X) := Dg < oo. Thus,

we can apply Lemma 3.1 to, v can be identified with an extremal 82. This

proves (c) and (d).

Proof of (Ill). Chooset; — . If T = oo and there exists no point which satisfies
(4.16), there exists > 0 with

sup{D(u(-t); B, (x));x € X, te[t,t+Cri} <2&
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by Lemma 4.4. Hence, by Lemma 4.6, we have the uniform bound

HU||52~a(2x[ti+§Cr2,ti+Cr2]) <C.

This implies
u(-,t +Cr?) — uy in C2%(3Z;N)

choosing a suitable subsequence. Since

// |0pu)?dxdt < oo,
37 %x[0,00)

// |&yu?dxdt — 0.
X x [t ,t+Cr?]

This implies thatu., satisfies equation (1.1). Q.E.D.

we may assume

5. Results

Theorem 5.1.Let N be a compact Riemannian manifold wig{N) = 0 and ~
a closed Riemann surface. If there exists a mag t -2(2; N) which satisfies

1

(5.1) o (Up) - |[dw|? < 212
1

(5.2) Do ) [dwl® < g o

where~(2) is the isoperimetric constant defined in Theorem 2.1, then there exists
a local minimizer ue C%(X,N) of I, which is homotopic to g1 In fact, u
satisfies

l,(u)=inf {l,(u);u € H**(Z;N), D(u;X)

1
< oypopiaar I}

where[ug] € [X : N] denotes the free homotopy class induced py u

Proof. By Proposition 2.4, fou € H2(X;N), we have
(5.3) l,(u) =D(u; X) + 2V, (u) > D(u; X) — 2K - D(u; X)2,

where K := ~(2)|dw|. Setf(t) =t — 2Kt:. Observe thaf (t) is monotone
increasing in the interval [leiz]. Let g(s) denotes the inverse function of
f(t) (0<t< 4) defined in the interval [0,4.]. Inequality (5.3) implies:

5.4) If Du;2)< <

1 1
oK 2’ l, <s< 27K27then,D(u;E) < g(S) < g2

Set
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m := inf {Iw(u); ueHY2(;N), D(u; %) < u is homotopic touo} .

1
oK 2’
Chooseu; € H32(X; N), which is homotopic taly, such that

(5.5) D(u;X) < 9K 2’
(5.6) lo(U; X) — m.

Let w; be the solution of the evolution problem:

Owi = Awj — Dzﬂ(wi)(Vwi , Vuwi) — 2D m(wdw),
wi(-,0) = y;

constructed in Theorem 4.9. L& be the maximal existence time of smooth
solutionw;. We shall prove for sufficiently large

(1) There exist®o < ¢, such thatD (wi(-,t)) < Dg for 0 <t < T,
(2) Ty = co. Moreover,w; produces no singularity as— oo in the sense of
Theorem 4.9.

Proof of (1).Suppose there existsQty < T; with D (wj (-, tg)) > 9,%2. Since the
map [QT;) >t — w;i(-,t) € HY2(X;N) is continuous by Theorem 4.9, there
exists 0< t; < tp with D(wi(-,t1); X)) = 9&2. Then, by (5.4)),(wi(-,t1); X) >
27}<2. But this is a contradiction, since by Lemma 4.8,

1
Iw(wi('atl)) < Iu(ui) < 27K 2"
Hence, by (5.4), we obtain the desired result.

Proof of (2). SupposeT; < oo. By Theorem 4.9 (II) and (1), there exists a
singular pointx € X. Then there existi, r¢, X« (Omitting the index, since we
fix the indexi for a while )with

t« =T, r«k—0, X —X
such that
w() — v in CZX(R?)
wherew(§) = wi (hy r, (€), t&). And v satisfies (1.1) and
(5.7) D(v; R?) > ¢

By the removability of isolated singularity, can be identified with the extremal
of S? by stereographic projection. Hence for sufficiently laRe> 0, we may
assume

vk (9Br(0)) C B, (v(c0))

for0< p < min(ng ,1(N)). Hence there exists a energy minimizing harmonic
map hy with
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hk(Br(0))CB,(p),
k| 9Bx(0) = Nk |9Br(0)

(cf. [J]; Lemma 4.1.4, or [Mr]). Moreover, takinR > O sufficiently large, we
may assume

(5.8) Dmﬂmm<mmgé)
whereA := inf {D(u; X);u € HY*(Z;N), u is homotopic toup }.(We may as-
sumeA > 0, since, by Theorem of Sacks-Uhlenbeék,> 0 for non-trivial
homotopy class.) Then we can construct two auxiliary méfs € Lip(X),
Vi € Lip(R?)(which is identified withVy € Lip(S?) by stereographic projec-
tion) as follows;

wy(X) if x € X'\ Bry (X),
hie(P6) if x € Bry,(x)-

W (X) := {

_ Ju@ 1 ©) if & €Br(0),
W@'{Mfﬁimew\%@.

Here, we setw(X) := w(X, t) and U, ¢, V) is a isothermal coordinate system
centered aky. By our definition,

(5.9) /wﬁw:/ Wk*w+/ Viw,
b)) b)) s?

(5.10) D (wi; £)=D (Wk; &) + D (Vi : S?) — 2D (hy; Br(0)).
Hence
(5.11) Lo (wi) = 1 (W) + 1, (Vi) — 2D (h; Br(0)).

By (5.7), (5.8) and (5.11), we have

— 1
(5.12) D(Wi; X) = D(wi; X) + 2D (he; £) — D(Vi; S?) < D(wy; X) < oK 2"
Sincem,(N) = 0, wx andWy are homotopic. Hence, by the definition mf and

(5.12),
Iw(Wk) > m.

By inequality (5.3), we have
(Vi) >D (Vii; S?) — 2KD (Vi; S?)?
>D (Vi $9 {1 - 2KD (ui; 2)? |

1 - 1
> " D(V; S? A
_3(k )>3

Hence, by (5.11), we obtain
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1 1
lo(Ui) > 1, (wk) > m+ 3A— 2D (hy; Br(0)) > m+ 6A.

This contradicts to our choice af. This provesT; = co. The same argument
implies w; produces no singularity ag — oco. Thus we have proved (2).

Now, we shall complete the proof of the theorem. By (1), (2) and Theorem
4.9 (e), there exists a time sequene~ oo such that

wi(-,t) — G in C2>
wherelj is an extremal of ,. And (j; satisfies

D(; %) < Do < o,

lw(ﬁi) — m.
Hence by Theorem 3.@; tonverges to an extremalin C2< except for finitely
many singular points. But by the argument similar to the one used in the proof
of (2), there can be no singular point. Henog cdnverges tas in C%%(X, N).
By the continuity ofl,, implies that

D(u;X) <Dg< lo(UW)=m

1
9K 2’
and it is obviousu € [u;] = [ug]. Thusu satisfies desired properties. Q.E.D.

Proof of the Main Theorenit follows from the following corollary of Theorem
5.1.

Corollary 5.2. Let ¥ and N be as in Theorem 5.1. Suppese [X : N] is a
given homotopy class. Set

A, =inf{D(u; );u e HY3(Z;N), u€a}.
If

I
(2

wherep is a unique solution of equation + M; = 217 then there exists a local
minimizer ue « of |, with

(5.13) A, - |dw|?® <

I, (u) = inf {lw(u);u e HY(Z:N), D(u; X) < 97(2)1-dw2’ uc a}

Proof. By Theorem of Sacks-Uhlenbeck, there exists an energy minimizing har-
monic mapup in a given homotopy class. Then, by the isoperimetric inequality,
we have

1., (U0) <D (Up; X) +29(2) - |dw] - D (uo; X)*

3 4
=As +29(2) - [dw|AZ < 2728
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Henceuy satisfies (5.1). (5.2) is automatically satisfied by (5.13). Thus, by The-
orem 5.1, we obtain the result. Q.E.D.
The proof of Theorem 5.1 and Corollary 5.2 imply the following theorem.

Theorem 5.3.Let Wy : m1(X) — m1(X) be a homomorphism induced by a given
map € HY2(X; N). If up satisfies (5.1) and (5.2), there exists a local minimizer
u of I, with

Uy =Uoy

l,(u)=m := inf {Iw(u); |dw|? - D(u; X) < 2771(2)2, Uoy = uﬁ} .

Set
Ay, = inf{D(u; );u € HY2(Z;N), Uy = ugy} .
Especially, if
. 2 1%
Aoy |0 < oy

wherey is as in Corollary 5.2, there exists a minimizerof l,, with

Uy = Uy, lo(u)=m.

Proof. The proof of Theorem 5.1 and Corollary 5.2 can be adapted to the proof
of the theorem. In fact, the auxiliary mafj constructed in the proof of (2) in

the proof of Theorem 5.1 induces the same homomorphism as the one induced
by wy. Q.E.D.

Finally, we shall study extremals &?. Set

M ::{a € m(N); there exists a magy : S> — N with

1 1

D(up; S?) < Oldwl? - (2P I, (Up) < 27ldwl? - 42 [Ug] = a}.

Theorem 5.4.Supposer € M. Then, there exists a finite subdet;, ..., an} in
M such that

(1) a=oy+---+an,
(2) Eachqa; (1 <i < N)isinduced by extremal wf |, with

1
27|dwl|? - v(2)?’
1
9ldwl? - v(2)*

D(ui; S?) <

Iw(ui) <
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Proof. Let up € H%?(S?; N) be a map with

(5.14) D (Uo; sz)<9i2,
1

(5.15) l,(Ug)< 27K 2’

(5.16) [Uo] = .

By Theorem 4.9, there exists a solution of the evolution problem;

dw = Aw — D27(w)(Vw, Vw) — 2D (w*dw)
w(-,0) =u.

Let 0 < T < oo be the maximal time of existence of smooth solutionAs in
the proof of (1) in the proof of Theorem 5.1, we can show

D(w(-,t),S?) < fort € [0, T).

27K 2
We also have
1
Iw(w(7t)) < 9K2

Either of the following two cases can happen;

fort € [0, T).

(1) T = o and the solution produces no singularitytat oo in the sense of
Theorem 4.9 (II).

(2) 0< T < o and the solution produces singularitytat T in the sense of
Theorem 4.9 (II).

If case (1) happens, we obtain the desired result by Theorem 4.9 (lIl). Suppose
case (2) happens. Then, there ekists T, X — X, r; — 0 such that the rescaled
map u; (€) = wi (exp 1, ti) converges to extremal of B2 in C2*(R2 N). For
sufficiently largeR, we may assume that there exists an energy minimizing
harmonic maph; € C%%(Bgr(0);N) whose image is contained in some convex
ball in N (cf.[J]; Lemma 4.1.4. or [Mr]) with

hi|oBe(0) = viloBr(o)

3
D(hi; Br(0)) < 5
We construct auxiliary maps as in the proof of Theorem 5.1.

0 = {00 T X € 82\ Br (%),
VVI(X) a {hl ((ﬁ&ri(X)) If X e BRn (X|)

o JU(@H©) if € € Br(O),
he= {hi(ﬁié) if ¢ € %\ BR(0).
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V; can be identified with the Lipschitz ma{z of S? by the stereographic pro-
jection. By our choice oh; and our definition ofW; andV;, there holds for
sufficiently largei

[Vi]=[u] € m2(N),

(5.17) [wi] = [Wi] + [Vi]=[Wi] + [u] € m2(N).
We also have,
(5.18) D(Wi; S?) =D (w;; S?) + D(h; Br(0)) — D (vi; Br(0))
1 _ € 1 €
Somz oS ome T o
(519) Iw(\/vi):lw(wi) - Iw(VI)
1 1 1
Sokz2 ~ gP) < gear

Hence takingW; as the initial value of evolution problem in stead wf, we
take the same procedure. Since by (5.18), Dirichlet integral of the map decreases
at Ieast§ at each step of the procedure, finally the case (1) happens and the
procedure ends in finitely many steps. Thus we obtain the desired result by
(5.17). Q.E.D.
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