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Abstract. This paper considers the existence of a local minimizer of a con-
formally invariant functional defined on a space of maps of a closed Riemann
surface into a compact Riemannian manifoldN . The functional is defined for a
given tensorH on N of type (1,2) and we call its extremal anH -surface. In fact,
we prove that there exists a local minimizer of the functional in a given homo-
topy class under certain conditions onN , H and the minimum of the Dirichlet
integral of maps of the homotopy class.
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0. Introduction

Let Σ be a two dimensional compact Riemannian manifold without boundary
andN an n-dimensional compact Riemannian manifold isometrically embedded
into Rl . For a smooth 2-formω on N , we define the functional

(0.1) Iω(u) :=
1
2

∫
Σ

|∇u|2dVΣ + 2
∫
Σ

u∗ω

for u ∈ H 1,2(Σ; N ). We note that functional (0.1) is invariant under an arbitrary
conformal reparametrization of the domain. In fact, any conformally invariant
functional satisfying a certain assumption can be written in the form of (0.1).
(cf. [Gr] or [J];Theorem1.2.1 ). We call (smooth) extremals of functional (0.1)
H-surfaces. The Euler-Lagrange equation of functional (0.1) is written as

(0.2) trace(∇du) = 2H (u)(∇u ∧∇u)

whereH is the skew symmetric tensor of type(2,1) onN defined by
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dωp(U ,V ,W) := 〈U ,H (p)(V ,W)〉 for p ∈ N , U ,V ,W ∈ TpN

(〈, 〉 denotes the metric tensor ofN and the right hand side of (0.2) stands for

H (u)(∇u ∧∇u) := σ−2H (u)(u∗(
∂

∂x1
), u∗(

∂

∂x2
))

wherez = x1 +
√−1x2 denotes an isothermal coordinate and the metric tensor

of Σ is written asσ2((dx1)2 + (dx2)2).

Some well-known equations are special cases of (0.2).

(1) If dω = 0, equation (0.2) is called the equation of harmonic maps.
(2) If a solution u of equation (0.2) is conformal,u parametrize a surface of

prescribed mean curvatureH (u) as a submanifold at regular points.
(3) If N = R3, equation (0.2) is usually called the equation of surfaces of pre-

scribed mean curvature. (But unless a solution is conformal, it does not
parametrize surfaces of prescribed mean curvatureH as a submanifold even
at regular point.) In this case, functional (0.1) and equation (0.2) are usually
written in the form;

(0.3) Iω :=
1
2

∫
|∇u|2 +

4
3

Q(u)(ux1 ∧ ux2)dx

(0.4) ∆u = 2H (u)ux1 ∧ uu2(wheredivQ(u) := 3H (u)).

We refer to [J] Chapter1 and Chapter2 for more informations about basic
results on extremals of the functionalIω.

In this paper, we study the existence of a local minimizer of functional (0.1).
Our fundamental problem can be stated as follows.

Problem(?). Does there exist an extremal or a (local) minimizer of functional
Iω, defined in (0.1), in a given homotopy classα ∈ [Σ,N ] ?

Our main theorem below is an answer to Problem (?). ForΩ ⊂ Σ, set

D(u;Ω) :=
1
2

∫
Ω

|∇u|2dx

Main Theorem. LetΣ be a closed Riemann surface and N a compact Riemannian
manifold. Then there exists an absolute constant C such that; if there exists u0 ∈
H 1,2(Σ,N ) and a (smooth) 2-form̃ω onRl which is an extension of 2-formω on
N with

|dω̃| · D(u0;Σ) < C ,

then, there exists a local minimizer of Iω in the free homotopy class[u0] induced
by u0.

This theorem is a generalizations of a theorem of Sacks-Uhlenbeck [SaU] for
harmonic maps and a theorem of Steffen [Ste] for surfaces of prescribed mean
curvature. Let us recall these two theorems.
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Theorem (Sacks-Uhlenbeck).Let Σ be a closed Riemann surface and N a
compact Riemannian manifold withπ2(N ) = 0. Then, in any homotopy class
α ∈ [Σ,N ], there exists an energy minimizing harmonic map.

Theorem (Steffen).Let Q and H be as in (0.3) and (0.4). If there exists u0 ∈
H 1,2(Ω;R3)(Ω ⊂ R2) with

H 2
0 · D(u0;Ω) <

2
3
π,

where H0 := sup
u∈R3

|H (u)|, then there exists a local minimizer of functional (0.3) in

{u0} + H 1,2
0 (Ω;R3).

Remark.

(1) Theorem 0.2 was reproved by Struwe [Str1] as a corollary of his theorem
on the heat flow of harmonic maps. Our basic ideas for the arguments in
Section 4 come from his method of heat flow of surfaces of constant mean
curvature in [Str2].

(2) The result similar to Theorem 0.3 was also proved by Steffen [Ste] for the
Plateau problem of disk-type. A weaker version of Theorem 0.3 is obtained
by Wente [W] previously.

Now we shall outline the contents of this paper briefly. In the first section,
we fix the notations and derive the Euler-Lagrange equation for the functional
Iω. In section 2, we recall notations and theorems from geometric measure theory
which are needed to estimate the second term

∫
Σ

u∗ω in functional (0.1). Section
3 describes the convergence properties of any sequence of solutions of Euler-
Lagrange equation with bounded Dirichlet integrals. Section 4 is devoted to the
study of evolution problems corresponding to our variational problem based on
[Str2]. Finally, in the last section, we prove our existence theorems for closed
domain.

Acknowledgement.The author would like to thank Prof. T.Ochiai for his useful suggestions and
Dr. N.Ishimura for his continuous encouragement. He is also grateful to the referee for pointing out
mistakes in the original manuscript.

1. Notations

Ck,α, Lp,H k,p denote the usual Ḧolder, Lebesgue, Sobolev space. When we
distinguish the time variable from the space variables, we use the notation

Sk,α(Ω × [T1,T2])

:= {u ∈ C(Ω × [T1,T2]); ∂r
t ∂

s
xu ∈ Cα(Ω × [T1,T2])

if 2r + |s| ≤ k}
Lk,p(Ω × [T1,T2])

:= {u ∈ Lp(Ω × [T1,T2]); ∂r
t ∂

s
xu ∈ Lp(Ω × [T1,T2])

if 2r + |s| ≤ k}
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for Ω ⊂ Rn. Here,s denotes the multi index, i.e.

s = (s1, ..., sn) ∈ N× ...× N , |s| := s1 + ... + sn,

∂s
xu : =

(
∂

∂x1

)s1

· · · ·
(

∂

∂xn

)sn

u.

We define

H k,p(Σ,N ) :=
{

u ∈ H k,p(Σ;Rl ); u(x) ∈ N for almost everyx ∈ Σ}
for a manifoldN embedded inRl . Lk,p(Σ; N ) is defined in the same manner.
Mainly, we work in H 1,2(Σ; N ). Note thatu ∈ H 1,2(Σ; N ) induces free homo-
topy class sincedimΣ = 2 (see [ScU]). In the sequel, we fix a 2-form onRl

which is an extension of 2-formω on N and denote it again byω. Adapting the

usual Einstein’s summation convention with respect to the coordinate inRl , set

ω(u) =
1
2

bij (u)dui ∧ duj (1 ≤ i , j ≤ l ),

wherebij is skew-symmetric. We also define the tensor fieldH of type (1,2) on
Rl by

〈H (p)(V ,W),U 〉 = dω(U ,V ,W),

whereU ,V ,W ∈ TpR
l and 〈, 〉 denotes the canonical inner product inRl . In

terms of the coordinate inRl ,

H i (p)(V ,W) = H i
jk (p)V j Wk

where

H i
jk (p) =

1
4

(
∂bij

∂uk
(p) +

∂bjk

∂ui
(p) +

∂bki

∂uj
(p)

)
Now we derive the Euler-Lagrange equation ofIω in terms of the coordinate in

Rl . For givenϕ ∈ C∞
0 (Σ;Rl ) we can define the variation throughu ∈ C1(Σ,N )

by ut := π(u + tϕ) for sufficiently small t . Then we have the first variational
formula of Iω;

〈DIω, u̇0〉 =
∂

∂t

∣∣∣
t=0

Iω(ut )

=
∂

∂t

∣∣∣
t=0

[
1
2

∫
Σ

|∇ut |2dV

]
+
∂

∂t

∣∣∣
t=0

[
2
∫
Σ

u∗ω
]

=
∫
Σ

gαβ
{

Dαui Dβϕ
i + Djkπ

i (u)Dαuj Dβukϕi
}√|g|dx1dx2

+
∫
σ

2H i
jk det(Duj ,Duk)Dlπ

iϕl dx1dx2

=
∫
Σ

{〈∇u,∇ϕ〉 + 〈D2π(u)(∇u,∇u), ϕ〉
+2〈H (u)(∇u ∧∇u),Dπ(u) · ϕ〉} dV ,
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where (gαβ) denotes the metric tensor ofΣ andD2π(∇u,∇u) andH i (u)(∇u ∧
∇u) are defined by

D2π(∇u,∇u) := gαβDjkπ(u)Dαuj Dβuk

H i (u)(∇u ∧∇u) :=
1√|g|H

i
jk (u) det(Duj ,Duk).

Hence the Euler-Lagrange equation ofIω is written as

(1.1) ∆Σu = D2π(u)(∇u,∇u) + 2Dπ · H (u)(∇u ∧∇u)

where∆Σ stands for the Laplace-Beltrami operator onΣ.
Very often our arguments do not depend on the special structure of the non-

linear term and valid for more general equation of the following type:

(1.2) ∆Σu = Γ (u)(∇u,∇u).

whereΓ (u)(∇u,∇u) is defined for a given symmetric tensorA of type (1, 2) on
Rl and a given skew-symmetric tensorB of type (1, 2) onRl by

Γ (u)(∇u,∇u) := trace(u∗A) + B(u)(∇u ∧∇u)

(B(u)(∇u ∧∇u) is defined in the same manner asH (u)(∇u ∧∇u)).

2. Isoperimetric inequalities and volume functionals

For u ∈ H 1,2(Σ; N ), we set

(2.1) V (u)[ω] = Vω(u) :=
∫
Σ

u∗ω

We call V (u)[ω] = Vω(u) the volume functinal. The notationV (u)[·] is used
when we think the volume functional as a current, while we useVω(·) when we
think it as a functional.

We shall recall basic definitions and notations of geometric measure theory.
See e.g. [F], [H-S], [Mg], [Si] for more informations about geometric measure
theory.

Forms and Currents
Let D n(Rn+k) be the space of smooth (i.e.C∞) n-forms onRn+k with compact
support with the usual topology, namely,
”{αi } ⊂ D n(Rn+k) converges toα ∈ D n(Rn+k) iff the following two conditions
hold,

(1) supp αi is contained in some compact set inRn+k independent ofi .
(2) Every derivative of every coefficient ofαi converges uniformly to that of

α.”
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Then, we define the space of currentsDn(Rn+k) as the topological dual of
D n(Rn+k). The support of a currentT ∈ Dn(Rn+k) is defined as the smallest
closed subsetK ⊂ Rn+k such that for anyα ∈ D n(Rn+k) with supp α∩K = ∅,
we haveT[α] = 0. We say{Tj } ⊂ Dn(Rn+k) converges weakly toT ∈ Dn(Rn+k)
iff Tj (α) → T(α) for anyα ∈ D n(Rn+k).

Mass and Comass
For α ∈ (∧nRn+k)∗ (i.e. α is a skew symmetric multilinear form), we define the
comass|α| of α as

|α| := sup
{
α(x1, ..., xn); xi ∈ Rn+k , |xi | < 1

}
.

And we define the comass|α|K of α ∈ D n(Rn+k) on K ⊂ Rn+k by

|α|K = sup
x∈K

|α(x)|.

(If K = Rn+k , we simply write|α|.) Then, we can define the mass‖T‖ of current
T ∈ Dn(Rn+k) by

‖T‖ := sup
{

T(α); |α| ≤ 1, α ∈ D n(Rn+k)
}
.

If ‖T‖ <∞, T is called a current with finite mass.

Boundary of Currents
The boundary∂T ∈ Dn+1(Rn+k) of T ∈ Dn(Rn+k) is defined by

∂T(α) := T(dα).

T ∈ Dn(Rn+k) is called a closed current iff∂T = 0.

Rectifiable Set
M ⊂ Rn+k is called a countably n-rectifiable set, iffM is written in the form

M = M0 ∪
∞⋃

j =0

Fj (Aj )


whereAj ⊂ Rn, Fj : Aj → Rn+k is a Lipschitz map forj ≥ 1 andH n(M0) = 0.
(H n denotes the n-dimensional Hausdorff measure.)
If M is countably n-rectifiable, we can define the approximate tangent space
TxM for H n-almost everyx ∈ M .

Integral Current
T ∈ Dn(Rn+k) is called an integral current, iffT is written in the form

T(α) =
∫

M
〈α(x), ξ(x)〉Θ(x)dH n(x)

where M is a countably n-rectifiable set inRn+k and Θ(x) an integer-valued
H n-summable function in M.ξ : M 7→ ∧(Rn+k) is a H n measurable function
such that forH n-almost everyx ∈ M , ξ can be expressed as
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ξ(x) = τ1 ∧ · · · ∧ τn

where{τ1, ··, τn} is an orthogonal basis ofTxM .

We need the isoperimetric inequality due to Federer-Fleming [F-F]. (The best
constant, which is attained by the currents induced by spheres, is obtained by
Almgren [Al]).

Theorem 2.1 (Federer-Fleming, Almgren).If T ∈ Dn(Rn+k) is an integral
current with∂T = 0, then there exists an integral current R∈ Dn+1(Rn+k) with
∂R = T such that

‖R‖ ≤ γ(n) · ‖T‖ n+1
n

where

γ(n) :=
1

α(n + 1)
1
n · (n + 1)

n+1
n

=
Γ ( n+3

2 )

((n + 1)π
1
2 )

n+1
n

α(n + 1) denotes (n+1)-dimensional Lebesgue measure of the unit ball inRn+1.
Moreover, if T is compactly supported, we can choose R with compact support.

We also need the following compactness theorem.(cf. [F]; 4.2.17 or [H-S];
Lecture 4 in Hardt’s lecture.)

Theorem 2.2.Suppose{Tj } ∈ Dn(Rl ), Tj and∂Tj are integral currents for each
j , and

sup
j
{‖Tj ‖ + ‖∂Tj ‖} <∞.

Then a subsequence of{Tj } converges weakly to an integral current T .

Lemma 2.3.
(1) For anyα ∈ D 2(Rl),

Vα : H 1,2(Σ; N ) 3 u 7→ V (u)[α] ∈ R

is a continuous functional.
(2) For u ∈ H 1,2(Σ; N ),

V (u) : D 2(Rl) 3 α 7→
∫
Σ

u
∗α ∈ R

is a closed integral current with

(2.2) ‖V (u)‖ ≤ A(u) :=
∫
Σ

(
| ∂u
∂x1

|2| ∂u
∂x2

|2 − 〈 ∂u
∂x1

,
∂u
∂x2

〉2

) 1
2

dx1dx2,

Proof.Take a sequence{uν} with uν → u in H 1,2(Σ;Rl). For anyα ∈ D 2(Rl),
we have



62 M. Toda

∣∣∣ ∫
Σ

u∗να−
∫
Σ

u∗α
∣∣∣ ≤∑

k

{ ∣∣∣∣∫
Uk

{αij (u) − αij (uν)} det(ui
x1, u

j
x2)

∣∣∣∣
+

∣∣∣∣∫
Uk

αij (uν) det(ui
x1 − ui

ν,x1, u
j
x2)

∣∣∣∣ +

∣∣∣∣∫
Uk

αij (uν) det(ui
ν,x1, u

j
x2 − uj

ν,x2)

∣∣∣∣ }
(2.3)

whereUk is a coordinate system coveringΣ. The first term converges to 0 by
Lebesgue’s convergence theorem by choosing a suitable subsequence, the second
and the third terms also converge to zero, since|∇(uν − u)|L2 → 0. This implies
assertion (1).

To prove (2), we first check the assertion foru ∈ C∞(Σ,Rl).

(a) By Stokes’s Theorem, it is clear that∂V (u) = 0, ∂V (u, v) = 0.

(b) By the definition of mass of currents, it can be easily checked thatV (u)
satisfies inequality (2.2).

(c) V (u) is an integral current, sinceV (u) can be written in the form

V (u)[α] =
∫

u(Σ)
〈α(x), ξ(x)〉Θ(x)dH 2(x)

where

Θ(x) =
{

number ofu−1(x) with multiplicity
}

=
∑

u(p)=x

sign(Du(p)).

Θ is integer-valued for almost everyx ∈ u(Σ) by Sard’s Theorem andΘ is
summable, since we have by the area formula∫

u(Σ)
|Θ|dH 2 ≤ A(u).

Thus for u ∈ C∞(Σ,Rl), V (u)[·] is a closed integral current with (2.2).
To establish the assertion foru ∈ H 1,2(Σ,N ), choose a sequence{uν} ∈
C∞(Σ;Rl) with uν → u in H 1,2(Σ;Rl). Then, by assertion (1), we have

V (uν)[α] → V (u)[α] for any α ∈ D 2(Rl).

Hence V (u) is the weak limit of sequences of closed integral currents with
(2.2). Thus,V (u) is also a closed integral current by Theorem 2.2 and satisfies
inequality (2.2). Q.E.D.

Proposition 2.4. Fix a smooth 2-formω onRl with |dω| < ∞. The functional
defined by

Vω : H 1,2(Σ; N ) 3 u 7→
∫
Σ

u∗ω ∈ R

is continuous and there holds
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(2.4) |Vω(u)| ≤ γ(2)A(u)
3
2 · |dω|.

Proof. Since the support of currentV (u) is contained in compact manifoldN ,

we may assume thatω is compactly supported to prove the continuity ofVω(·).
Hence, the continuity is an immediate consequence of Lemma 2.3.

SinceV (u) is a compactly supported closed integral current by Lemme 2.3,
Theorem 2.1 implies that there exists compactly supported currentR ∈ D3(Rl)
with ∂R = V (u) and‖R‖ ≤ γ(2)‖V (u)‖ 3

2 .
SinceV (u) andR are compactly supported, we can chooseα ∈ D2(Rl) with

ω = α in some neighborhood ofsuppV(u) ∪ suppR. Then we have

|Vω(u)| = |V (u)[α]| = |R(u)[dα]| ≤ γ(2)A(u)
3
2 ·|dα|suppR(u) ≤ γ(2)A(u)

3
2 ·|dω|.

This proves inequality (2.4). Q.E.D.

3. Convergence of extremals

In this section, we shall obtain estimates for solutions of equation of type (1.2):

∆Σu = Γ (u)(∇u,∇u),

With respect to any isothermal coordinate (x1, x2), equation (1.2) is expressed as:

(3.1) ∆0u = Γ (u)(∇u,∇u)

where∆0 := ( ∂
∂x1 )2 + ( ∂

∂x2 )2. Namely equation (1.2) is conformally invariant.
From this observation, we have the following important fact: in order to obtain
a local estimate for equation (1.2), we can assume that the domain is a domain
in R2 with the flat metric by passing to an isothermal coordinate.

First, we define the homothetical transformation which is needed to observe
the asymptotic behavior.

Let (U , ψ,V ) be an isothermal coordinate system onΣ. Namely, U ⊂
Σ, V ⊂ C and ψ : U → V is biholomorphic. We define the homothetic
transformation with the centerx ∈ U and factorr > 0 by

hx,r : Vx,r 3 ξ 7→ ψ−1(ψ(x) + r ξ) ∈ U

where Vx,r := {ξ ∈ C;ψ(x) + r ξ ∈ V}. This definition ofhx,r depends on the
local coordinate. But it does not matter for our purpose. Actually, we only con-
sider hxi ,ri for the sequence withxi → x and ri → 0. In this case,hxi ,ri is to
be understood as the homothetical transformation defined for afixed isothermal
coordinate system which containsx. Note that ifu satisfies equation (3.1) w.r.t.
an isothermal coordinate,u ◦ hx,r satisfies the same equation.

We shall start with the fundamental properties of solutions of (3.1) onR2.

Lemma 3.1. Let u ∈ C2,α(R2,Rl ) be a solution of (3.1) with finite Dirichlet
integral. Then, by the stereographic projection, u is identified with a mapū ∈
C2,α(S2,Rl ) which satisfies (1.2).
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Proof. By stereographic projection,u is identified with the map ¯u of S2 = R2 ∪
{∞} which is smooth except for the pointx = ∞. And ū satisfies equation (1.2)
except forx = ∞. Then the removability of isolated singularities (cf. [SaU] or
[J];Theorem 2.4.1) implies ¯u ∈ C2(S2;Rl ) andū satisfies equation (1.2). Q.E.D.

We also give some notational conventions.

(1) c (small letter) denotes an absolute constant or a constant which depends on
the choice of an isothermal coordinate ofΣ and C (capital letter) denotes
the constant depends onN and the two formω on N . We specify whatC
depends on, if necessary. (e.g.C(Γ ))

(2) We denote balls in a suitable isothermal coordinate byBr (p). Namely,Br (p) =
ψ−1({ξ; |ξ − ψ(p)| < r }) for an isothermal coordinate (U , ψ,V ). We also
use the same notationBr (p) for geodesic balls inN . To denote the geodesic
ball in Σ, we use the notationB(x, r ). When we specify where the ball is
contained, we use the notationBΣ

r (p),BN
r (p). In any case, we always assume

that r is sufficiently small so that the coordinate is defined.

Lemma 3.2. Let Σ be a closed Riemann surface. Suppose{ui } ⊂ H 1,2(Σ;Rl )
be a sequence withsup

i
D(ui ;Σ) ≤ M . Then for anyδ > 0, we can choose a

subsequence{uiµ} such that there is a finite setΛ = {x1, ..., xN} ⊂ Σ with the
following

Property(])δ:
(i) There holds

lim inf
µ→∞ D(uiµ ; B(xm, r )) > δ

for any r > 0, 1 ≤ m ≤ N ,
(ii) For any x ∈ Σ \ Λ, there exists r> 0 with lim sup

µ→∞
D(uiµ ; B(x, r )) ≤ δ.

Proof. For ρν ↓ 0, we can choose a family of balls{B(xνk , ρν)}k=1,...,pν with

Σ ⊂pν→ →
k=1

⋃
. Then by diagonal argument, we can choose a subsequence, denoted

also by{ui }, such that for anyk, ν, there exists lim
i→∞

D(ui ; B(xνk ,
ρν
2 )).

We put

Λ :=
{

x ∈ Σ; lim
i→∞

D(ui ; B(xνk ,
ρν
2

) > δ for any ν, k with x ∈ B(xνk ,
ρν
2 )
}

Let {z1, ..., zN} be a finite subset ofΛ. Choosingρν sufficiently small,
B(xνk , ρν) ∩ B(xνl , ρν) = φ for m /= n. Thus we have

δN ≤
N∑

m=1

D(ui ; B(zm, ρ) ≤ D(u;Σ) ≤ M .

for sufficiently largei . Hence

N ≤ M
δ
,
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i.e. Λ is a finite set. By our definition, it is easy to check thatΛ satisfies the
desired properties. Q.E.D.

Lemma 3.3. For any u ∈ H 1,2
loc (R2) and anyϕ ∈ C∞

0 (BR(x)) with 0 ≤ ϕ ≤ 1
and |∇ϕ| ≤ 4

R, there holds∫
R2

|u|4ϕ2dx

≤ c

(∫
BR(x)

|u|2dx

)(∫
BR(x)

|∇u|2ϕ2dx + R−2
∫

BR(x)
|u|2dx

)

Proof. See [Str3];Lemma 5.7. Q.E.D.

Lemma 3.4. Let Ω ⊂ R2. Suppose u∈ C2(Σ; N ) satisfies (3.1). Then, there
existsε0(|Γ |) > 0 such that if D(u; B2r (x0)) ≤ ε0 for some0< r , then we have∫

B2r (x0)
|∇2u|2 · ϕ2dx ≤ C

r 2

{∫
B2r (x0)

|∇u|2dx

}2

whereϕ ∈ C∞
0 (B2r (x0)) satisfies0 ≤ ϕ ≤ 1 and |∇ϕ| ≤ 2

r .

Proof. Since u satisfies (3.1), there holds

|∆u| ≤ |Γ | · |∇u|2.
Hence we have

(3.2)
∫

B2r (x0)
|∆u|2 · ϕ2dx ≤ |Γ |2

∫
B2r (x0)

|∇u|4ϕ2dx.

By Lemma 3.3 and (3.2), we have∫
B2r (x0)

|∆u|2 · ϕ2dx ≤ C |Γ |2
{∫

B2r (x0)
|∇u|2dx

}
(3.3)

×
{∫

B2r (x0)
|∇2u|2ϕ2dx +

1
r 2

∫
B2r (x0)

|∇u|2dx

}
.

On the other hand, by integrating by parts twice and using binomial inequality,
we have ∫

B2r (x0)
|∆u|2ϕ2dx

≥ 1
2

∫
B2r (x0)

|∇2u|2ϕ2dx− C
r 2

∫
B2r (x0)

|∇u|2dx.(3.4)

Combining (3.3) and (3.4) and puttingε0 = 1
8C|Γ |2 , we have the desired estimate

by absorbing the right hand side to the left hand side. Q.E.D.

Lemma 3.5.LetΩ ⊂ Σ and u∈ C2(Ω) a solution of (3.1). If there exists r> 0
such that
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sup
x∈Σ

D(u; Br (x)) <
ε0

2

then there exists a constant C depending on r andΩ′
b Ω such that there holds

‖∇2u‖Cα(Ω′) + ‖∇u‖Cα(Ω′) < C .

Proof. Lemma 3.4 implies theH 2,2-bound;∫
Ω′
|∇2u|2dx < C(r , Ω′).

Hence, by Sobolev’s embedding theorem, we have∫
Ω′
|∇u|pdx < C(r , Ω′)

for any 1≤ p <∞. Sinceu satisfies equation (1.2), usual linear elliptic theory
implies

‖∇2u‖Lp(Ω′) + ‖∇u‖Lp(Ω′) < C(r , Ω′).

(Note that, we do not have the bound for‖u‖Lp in general. But, of course, since
N is compact,‖u‖Lp is bounded by terms ofN .) Then, again by Sobolev’s em-
bedding theorem, we have the bound for‖∇u‖Cα(Ω′). Finally, using the interior
Schauder’s estimate, we obtain the desired result. Q.E.D.

Theorem 3.6.Suppose{ui } ⊂ C2(Σ; N ) satisfies (1.2) andsupD(ui ;Σ) ≤ M .
Then, there exist a finite set (possibly an empty set)Λ := {x1, ..., xN} of points
in Σ and u0 ∈ C2,α(Σ; N ), v1, ..., vN ∈ C2,α(R2; N ) satisfying the following
conditions: (taking a suitable subsequence if necessary,)

(a) D(u0;Σ) +
N∑

m=1
D(vm;R2) < ∞. u0 satisfies equation (1.2).v1, ··, vN are

non-trivial solutions of equation (1.2).v1, ··, vN can be identified with maps
v̄1, ..., v̄N of S2 by stereographic projection and̄v1, ..., v̄N is a smooth solution
of equation (1.2) in S2,

(b) ui → u0 in C2,α(Σ \ Λ; N ),
(c) There exists a sequence xi

m ∈ Σ, r i
m > 0 (m=1,...,N) with xim → xm, r i

m → 0
such that

vi
m −→ vm locally in C2,α(R2; N )

where

vi
m(ξ) := ui (hxi ,ri (ξ)),

(d) D(u0) +
N∑

m=1
D(vm) ≤ lim inf

i→∞
D(ui ).
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Proof. Applying Lemma 3.2, we can choose a subsequence, which is again denoted
by {ui }, and find a finite setΛ = {x1, ··, xN} with property(]) ε0

2
.

1◦ Convergence at regular points
Choosing an fixed isothermal coordinate system, we can apply Lemma 3.5 to

ui . Hence,ui is uniformly bounded inC2,α(K ) for any K b Σ \ Λ. Thus, there
existsu0 ∈ C2,α(Σ \ Λ)

ui −→ u0 in C2,α(K )

for any K b Σ \ Λ. Since the Dirichlet integral ofui is uniformly bounded,
Dirichlet integral of ui is also bounded. Hence, the removability of isolated
singularity (See [SaU] or [J]; Theorem 2.4.1) impliesu0 ∈ C2,α(Σ) and u0

satisfies equation (1.2) inΣ.

2◦Singularity
We chooseρ > 0 so thatB(xm, ρ)∩B(xm′ , ρ) = φ if m /= m′ for 1≤ m,m′ ≤

N . Fixing an isothermal coordinate neighbourhood ofxm, we set

r i
m := inf

{
r > 0; there exists x∈ B

(
xm,

ρ
2

)
with ε0

4 ≤ D(ui ; Br (x))
}
.

Let xi
m be a point which attains the infimum above. The definition ofΛ and the

convergence property onΣ \ Λ proved above implies

D(ui ; Br i
m
(xi

m)) =
ε0

4
,

xi
m → xm r i

m → 0.

We define the rescaled map byvi
m := ui (hxi

m,r
i
m
(ξ)) which satisfies equation (3.1).

And there holds
D(vi

m; B1(z)) ≤ ε0

2
for a ball B1(z) in the isothermal coordinate which contained in the rescaled
domain. Note that the rescaled domain exhaustsR2 as i → ∞. Then, applying
Lemma 3.5, we have

vi
m −→ vm in C2,α

loc (R2).

Consequentlyvm is a non-trivial solution of equation (3.1) inR2.
To obtain the bounds for the Dirichlet integral ofu0, v1.., vN , we take cut-

off functionsϕm
r ∈ C∞

0 (B2r (xm)) with 0 ≤ ϕr ≤ 1 andϕr ≡ 1 in Br (xm) for
1 ≤ m ≤ N . By the invariance of Dirichlet integral with respect to the scaling,
we have

lim
i→∞

1
2

∫
|∇ui |2ϕm

r dx ≥ lim
i→∞

D(ui ; BRri
m
(xi

m)) ≥ D(vm; BR(0)).

On the other hand, sinceui converges inC2,α(Σ \ Λ), we have

lim
i→∞

1
2

∫
|∇ui |2(1− ϕ1

r ) · · · (1− ϕN
r )dx ≥ D(u0;Σ \

N⋃
m=1

Br (xm)).
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Thus, by tendingr → 0,R→∞, we obtain

D(u0) +
N∑

m=1

D(vm) ≤ lim
i→∞

D(ui ).

Since the Dirichlet integral ofvm is bounded, we can apply Lemma 3.1. Hence
v1, .., vN can be identified with maps ¯v1, .., v̄N of S2 by stereographic projection
and v̄1, ..v̄N satisfies the equation (1,2). This proves the Theorem. Q.E.D.

4. Evolution of H-surfaces

We consider the evolution problem of equation (1.2). Namely, we consider the
following equation;

∂t u = ∆u − Γ (u)(∇u,∇u)(4.1)

u(·, 0) = u0.(4.2)

for given u0 ∈ H 1,2(Σ; N ). As in the previous section, we treat the equation
locally. Namely we consider the equation in isothermal coordinates. Equation
(4.1) is written with respect to an isothermal coordinate (x1, x2) as follows.

(4.3) ∂t u = σ−2(∆0u + Γ (u)(∇u,∇u))

whereσ is the conformal factor of the isothermal coordinate. Namely the metric
tensorg of Σ is expressed with respect to the isothermal coordinate asg =
σ2((dx1)2 + (dx2)2).

ForΩ ⊂ Σ, set

X(Ω × [0,T]) :

=
{

u ∈ L2,2(Ω × [0,T]); [0,T] 3 t 7→ u(·, t) ∈ H 1,2 is continuous.
}
.

We need a parabolic version of Lemma 3.2.

Lemma 4.1.Supposeζ ∈ C∞
0 (Br (w0)) depend only on the distance d(w,w0) from

w0 and supposeζ is non-increasing w.r.t.d(w,w0). Then, there exists constants
C andr̄ such that for any T<∞, r < r̄ and any f ∈ L1,2(B(w0, r )× [0,T]) ∩
C0([0,T], L2(B(w0, r )), there holds∫∫

B(w0,r )×[0,T]
|∇f |4ζ2dxdt≤ C · sup

0<t<T
D(ft ; Br (w0))

×
{∫∫

B(w0,r )×[0,T]
|∇2f |2ζ2dxdt + r−2

∫∫
Br (w0)×[0,T]

|∇f |2ζ2dxdt

}
.

Proof. See [Str1];Lemma 3.2 for the proof.

To obtain theL2 bound for∇2u , we begin with some computations.
Let ζr ∈ C∞

0 (B(w, r )) satisfy the conditions of Lemma 4.1 and
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0 ≤ ζr ,w ≤ 1, ζr ,w ≡ 1 inB(w, 1
2r ),

|∇ζr ,w| < 4
r
.

In the sequel, we always assumer < r̄ and we simply writeζ for ζr ,w, if there
is no danger of confusion.

Lemma 4.2. Suppose u∈ X(B(w, r ) × [0,T]) satisfies (4.1)-(4.2). Then there
holds ∫∫

B(w,r )×[0,T]
|∆u|2ζ2dxdt + C

{∫
|∇uT |2ζ2dx−

∫
|∇u0|2ζ2dx

}
≤ C(Γ )

{∫∫
B(w,r )×[0,T]

|∇u|4ζ2dxdt +
T
r 2

sup
0≤t≤T

∫
B(w,r )

|∇u|2dx
}

where ut (x) := u(x, t).

Proof. Integrating by parts, we have,

1
2
∂

∂t

∫
|∇u|2ζ2

r ,wdx =
∫
Σ

〈∇u,∇∂t u〉ζ2dx(4.4)

= −
∫
〈∂t u, ∆u〉ζ2dx− 2

∫
〈∂t u,∇u〉∇ζζdx

= −
∫
|∂t u|2ζ2dx +

∫
〈∂t u, Γ (u)(∇u,∇u)〉ζ2dx− 2

∫
〈∂t u,∇u〉∇ζζdx

≤ −1
2

∫
|∂t u|2ζ2dx + C(Γ )

∫
|∇u|4ζ2dx + c

∫
|∇u|2|∇ζ|2dx

where we used the binomial inequality to obtain the last inequality.
Integrating the inequality above w.r.t.t , we have

1
2

{∫
|∇uT |2ζ2dx−

∫
|∇u0|2ζ2dx

}
(4.5)

+
1
2

∫∫
B(w0,r )×[0,T]

|∂t u|2ζ2dxdt≤ C(Γ )
{∫∫

B(w0,r )×[0,T]
|∇u|4ζ2dxdt

+
T
r 2

sup
0≤t≤T

∫
Br (w0)

|∇u|2dx
}
.

Sinceu satisfies equation (4.1),∫∫
|∆u|2ζ2

r dxdt(4.6)

≤ C(Γ )
∫∫

B(w,r )×[0,T]
|∇u|4ζ2dxdt + c

∫∫
B(w,r )×[0,T]

|∂t u|2ζ2dxdt.

Hence, by (4.5) and (4.6), we obtain,
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∫∫
B(w,r )×[0,T]

|∆u|2ζ2dxdt + C

{∫
|∇uT |2ζ2dx−

∫
|∇u0|2ζ2dx

}
≤ C(Γ )

{∫∫
B(w,r )×[0,T]

|∇u|4ζ2dxdt +
T
r 2

sup
0≤t≤T

∫
Br (w)

|∇u|2dx
}

Q.E.D.

Next, for u ∈ X(Ω × [0,T]), we set

ε(u, r ,T;Ω) := sup
0≤t≤T,B(w,r )⊂Ω

∫
B(w,r )

|∇u|2dx

for Ω ⊂ Σ. If there is no danger of confusion, we simply writeε(r ,T) for
ε(u, r ,T;Ω).

Lemma 4.3. Suppose u∈ X(B(w0,R) × [0,T]) satisfies (4.1)-(4.2). Then, there
existsε(Γ ) > 0 such that ifε(r ,T; B(w0,R)) < ε, there holds,∫∫

B(w,r )×[0,T]
|∇2u|2ζ2dxdt +

1
2

{∫
|∇uT |2ζ2dx−

∫
|∇u0|2ζ2dx

}
≤ CT

r 2
ε(u, r ,T; Br (w)).

whereζ = ζr ,w.

Proof. Lemma 4.1 and Lemma 4.2 imply,∫∫
B(w,r )×[0,T]

|∆u|2ζ2dxdt + C

{∫
|∇uT |2ζ2dx−

∫
|∇u0|2ζ2dx

}
(4.7)

≤ C(Γ )ε(r ,T)
{∫∫

B(w,r )×[0,T]
|∇2u|2ζ2dxdt +

T
r 2

}
On the other hand, integrating by parts twice, we have,∫∫

B(w,r )×[0,T]
|∇2u|2ζ2dxdt(4.8)

≤ 2
∫∫

B(w,r )×[0,T]
|∆u|2ζ2dxdt +

∫∫
B(w,r )×[0,T]

|∇u|2|∇ζ|2dxdt

+C
∫∫

B(w,r )×[0,T]
|∇u|2ζ2dxdt≤ 2

∫∫
B(w,r )×[0,T]

|∆u|2ζ2dxdt

+
cT
r 2
ε(r ,T).

where the last term in the middle comes from the curvature term. From (4.7) and
(4.8), we obtain,∫∫

B(w,r )×[0,T]
|∇2u|2ζ2dxdt + C

{∫
|∇uT |2ζ2dx−

∫
|∇u0|2ζ2dx

}
≤ C(Γ )ε(r ,T)

{∫∫
B(w,r )×[0,T]

|∇2u|2ζ2dxdt +
T
r 2

}
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Choosingε := 1
2C and absorbing the first term on the right hand side to the left,

we obtain the desired result. Q.E.D.

Lemma 4.4.Suppose u∈ X(Σ × [0,T]) satisfies (4.1)–(4.2). Then there exists a
constant C= C(Γ ) andε = ε(Γ ) < ε

4 such that if

sup
w∈Σ

∫
Σ

|∇u0|2ζ2
r ,ωdx < ε

for some0< r < r , then there holds

sup
w∈Σ,0≤t≤τ

∫
|∇ut |2ζ2

r ,wdx ≤ 2ε ,

whereτ = min(T,Cr2).

Proof. Let L be the minimal number such that for any 0< r < r and anyx ∈ Σ,
geodesic ballB(x, r ) can be covered byL balls with radiusr

2. Setε := ε
2L .

We set

τ := max

{
t0 ∈ [0,T]; sup

w∈Σ,0≤t≤t0

∫
|∇ut |2ζ2

r ,wdx ≤ 2ε

}
.

Sincet 7→ ut ∈ H 1,2 is continuous,τ > 0. If τ /= T, choosew0 ∈ Σ so that∫
|∇uτ |2ζ2

r ,w0
dx = 2ε .

Since we can findxi ∈ Σ(i = 1, . . . , L) with Br (w0) ⊂ ⋃L
i =1 Br

2
(xi ) by the

definition of L, we have

sup
0≤t≤τ

∫
B(w0,r )

|∇ut |2dx ≤ sup
0≤t≤τ

L∑
i =1

∫
|∇ut |2ζ2

r ,xi
dx ≤ 2εL = ε .

Thus, we can apply Lemma 4.3 forR = r , w = w0. Then we obtain

ε ≤
∫
|∇uτ |2ζ2

r ,w0
dx−

∫
|∇uτ |2ζ2

r ,w0
dx ≤ C · τ

r 2
· ε .

This impliesτ ≥ Cr2. Q.E.D.

Lemma 4.5.Suppose u∈ X(B(w0,R) × [0,T]) satisfies (4.1)-(4.2).
Then there holds,

1
2

∣∣∣∣∫ |∇uT |2ζ2
r ,wdx−

∫
|∇u0|2ζ2

r ,wdx

∣∣∣∣
≤
∫∫

Br (w)×[0,T]
|∇2u|2ζ2dxdt +

CT
r 2
ε(r ,T; BR(w0))

Proof. It follows from (4.4),
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1
2

∣∣∣∣ ∂∂t

∫
|∇u|2ζ2dx

∣∣∣∣
≤ c

∫
|∂t u|2ζ2dx + C

∫
|∇u|4ζ2dx + c

∫
|∇u|2|∇ζ|2dx.

Since|∂t u|2 ≤ |∆u|2 + C |∇u|4,
1
2

∣∣∣∣ ∂∂t

∫
|∇u|2ζ2dx

∣∣∣∣
≤ c

∫
|∇2u|2ζ2dx + C

∫
|∇u|4ζ2dx + c

∫
|∇u|2|∇ζ|2dx.

Integrating the equation above w.r.t.t , we have,

1
2

∣∣∣ ∫ |∇uT |2ζ2
r ,wdx−

∫
|∇u0|2ζ2

r ,wdx
∣∣∣

≤ c
∫∫

Br (w)×[0,T]
|∇2u|2ζ2dxdt + C

∫∫
Br (w)×[0,T]

|∇u|4ζ2dxdt +
CT
r 2
ε(r ,T; BR).

Estimating 2nd term on the left hand side by Lemma 4.1, we obtain the desired
result. Q.E.D.

In the following Lemma, we work in an isothermal coordinate and obtain the
estimate depending on conformal factorσ associated to the coordinate.

Lemma 4.6.Suppose u∈ X(BR(w0) × [0, t ]) satisfies (4.3) for some t≤ T . Set
R0 := sup

{
r > 0;ε(r , t ; BR(w0)) < ε̄

2

}
.

Then,∂t u,∇u, u ∈ L2,p(BR
2
(w0) × [τ, t ]) for any 1 < p < ∞, τ > 0 and

there exists a constant C which depends onτ,T,R0, supBR(w0) |σ|, infBR(w0) |σ| and
supBR(w0) |∇σ| such that

‖u‖L2,p(B R
2

(w0)×[τ,t ]) + ‖∂t u‖L2,p(B R
2

(w0)×[τ,t ]) + ‖∇u‖L2,p(B R
2

(w0)×[τ,t ]) ≤ C

where all the norms are taken with respect to the isothermal coordinate.

Proof. From the estimate similar to the one used in Lemma 3.12 in [Str 2], we
obtain ∫

B 3R
4

(w0)
|∇2u|2dx < C

for any t ∈ [τ,T]. This implies‖∇u(·, t)‖Lp(B 3R
4

(w0)) < C for any 1< p <∞ by

Sobolev’s embedding theorem.
Differentiating equation (4.3) w.r.t.t andx, we obtain

(∂t − σ−2∆)∇u = DuΓ (∇u,∇u) · ∇u + Γ (∇2u,∇u) + Γ (∇u,∇2u)

+DxΓ (∇u,∇u) +∇σ−2∆u,(4.9)

(∂t − σ−2∆)∂t u = DuΓ (∇u,∇u) · ∂t u + Γ (∇∂t u,∇u) + Γ (∇u,∇∂t u).(4.10)
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Applying linear parabolic theory to equation (4.9),Lp-bounds for∇u,∇2u im-
plies theL2,p-bound for∇u. Especially, this gives theLp-bounds for∇∂t u. Then
applying the linear parabolic theory for equation (4.10), we obtainL2,p-bounds
for ∂t u. Thus we obtain the desired result. Q.E.D

Lemma 4.7.Suppose u∈ X(Σ× (0,T)) satisfies (4.1)-(4.2) and CR2 > T where
C is the constant in Lemma 4.4. If there exists R0 > 0 with

(4.11) sup
x∈Σ

D(u0; BR0(x)) < ε̄,

u extends to solution̄u ∈ S2,α(Σ × (0,T]).

Proof. By (4.11), we can apply Lemma 4.4. Then, we haveε(u, R0
2 ,T;Σ) < 2ε̄.

Then applying Lemma 4.6, we obtain the following estimate.

‖u‖L2,p(B R
2

(w0)×[τ,t ]) + ‖∂t u‖L2,p(B R
2

(w0)×[τ,t ])+‖∇u‖L2,p(B R
2

(w0)×[τ,t ])

≤ C(R0, τ,T, σ)

for any 0< τ < t < T. Since the constant is independent oft , we obtain

‖u‖L2,p(B R
2

(w0)×[τ,T])+‖∂t u‖L2,p(B R
2

(w0)×[τ,T])

+‖∇u‖L2,p(B R
2

(w0)×[τ,T]) ≤ C .

This implies thatCα-norm of∇u,∇2u and∂t u is uniformly bounded onΣ ×
[τ,T). Thus we obtain the desired result. Q.E.D.

So far, we do not need special structure of non-linear term. But in the fol-
lowing Lemma, we need the assumption;

(4.12) Γ (u)(∇u,∇u) = D2πi (u)(∇u,∇u) + 2Dπ · H (u)(∇u ∧∇u).

Lemma 4.8.Suppose u∈ X(Σ×[0,T]) satisfies (4,1)-(4,2) andΓ satisfies (4.12).
Then, D(u(·, t)) and Iω(u(·, t)) are absolute continuous in t∈ [0,T] and there
holds

(4.13) −
∫∫

Σ

|∂t u|2dxdt = Iω(uT ) − Iω(u0),

where ut (x) := u(x, t).

Proof. Differentiating and integrating by parts, (noting that∂t u = 0 on∂Σ.)

∂

∂t

∣∣∣
t=τ

Iω(ut )

=
∫
Σ

〈∇uτ ,∇∂t uτ 〉dx +
∂

∂t

∣∣∣
t=τ

∫
Σ

1
2

bij (uτ ) det(∇ui
τ ,∇uj

τ )dx

=
∫
Σ

{〈∇uτ ,∇∂t uτ 〉 − 〈Γ (uτ )(∇uτ ,∇uτ ), ∂t uτ 〉} dx

= −
∫
Σ

|∂t uτ |2dx ∈ L1([0,T]),(4.14)
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∂

∂t

∣∣∣
t=τ

D(ut )

=
∫
Σ
〈∇uτ ,∇∂t uτ 〉dx = − ∫

Σ
〈∆uτ , ∂t uτ 〉dx ∈ L1([0,T]).(4.15)

Integrating (4.14) w.r.t.t , we obtain (4.13). Q.E.D.

Theorem 4.9.
(I) For any u0 ∈ H 1,2(Σ; N ), there exists a solution u of (4.1)-(4.2) with the
following properties:

(a) u ∈ S2,α(Σ × (0, τ ]) ∩ X(Σ × [0, τ ]) for someτ > 0,

(b) Maximal existence time T> 0 of solution u with property (a) above is
characterized by the following property, if it is finite.

There exists̄x ∈ Σ such that

(4.16) lim sup
t→T

D(u(·, t); BR(x̄)) > ε̄

for any R> 0.

(II) Let ut be a solution in (I). If ut satisfies sup
t∈[0,T)

D(ut ;Σ) := D0 < ∞ and∫∫
Σ
|∂t u|2dxdt<∞ and suppose (4.16) holds for0< T ≤ ∞, then we have the

following asymptotic behavior:

There exists ri > 0, xi ∈ Σ, ti → T such that

(c) ri −→ 0, xi −→ x̄, wherex̄ ∈ Σ is a point which satisfies (4.16),

(d) The rescaled mapvi (ξ) = u(hxi ,ri (ξ), ti ) has the following convergence prop-
erty

vi (ξ) −→ v(ξ) in C2,α
loc (R2)

v is a solution of (1.1) with D(v;R2) <∞.

(III) If T = ∞ and there exists no point which satisfies (4.16), then we have

(e) There exists a time sequence ti with ti →∞ such that

u(·, ti ) −→ u∞ in C2,α(Σ)

and u∞ is an extremal of Iω.

Proof of (I). For C1,α initial data u0, we can establish the short time existence
of S2,α solution of (4.1)-(4.2) (cp.[Str2];Lemma 3.16). For a general initial data
u0 ∈ H 1,2(Σ; N ), take a sequenceu(k)

0 ∈ C∞ such that

u(k)
0 −→ u0 in H 1,2(Σ; N ).
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Let u(k)(x, t) be the solution with initial datau(k)
0 andT (k) the maximal time of

existence ofu(k)(x, t). Sinceu(k)
0 converges inH 1,2(Σ; N ), there existsR > 0

such that

(4.17) D(u(k)
0 ; B(x,R)) < ε̄ for any x ∈ Σ.

By Lemma 4.7 and the definition ofT (k), we haveCR2 < T (k). Applying Lemma
4.6, we obtain

(4.18) ‖u(k)‖L2,p(Σ×[τ,CR2]) + ‖∇u(k)‖L2,p(Σ×[τ,CR2]) + ‖∂t u
(k)‖L2,p(Σ×[τ,CR2]) ≤ C

for any 1≤ p <∞ andτ > 0.
On the other hand, (4.17) and Lemma 4.3 imply

(4.19) ‖∇2u(k)‖L2(Σ×[0,CR2]) < C .

Hence, by Lemma 4.1, we have

(4.20) ‖∇u(k)‖L4(Σ×[0,CR2]) < C .

Thus, since|∂t u(k)|2 ≤ C(|∆u|2 + |∇u|4), (4.19) and (4.20) imply

(4.21) ‖∂t u‖L2(Σ×[0,CR2]) < C .

By (4.18)-(4.21), we have the following convergence property.

u(k) −→ u weakly in L2,p(Σ × [τ,CR2]) ∩ L2,2(Σ × [0,CR2])

∇u(k) −→ ∇u weakly in L2,p(Σ × [τ,CR2]),

∂t u
(k) −→ ∂t u weakly in L2,p(Σ × [τ,CR2]),

for any 1≤ p <∞ and 0< τ < CR2.
We shall checku ∈ C0([0,CR2]; H 1,2(Σ; N )). By the L2,p estimate above,

u(k) converge uniformly inu ∈ C0((0,CR2]; H 1,2(Σ; N )). So we only have to
prove the continuity att = 0. Since∂t u ∈ L2(Σ × [0,T]), u attains its initial
valueu0 continuously inL2 and, by (4.17), Dirichlet integral ofut is uniformly
bounded. Thus, for anyδ > 0, there existst0 with

D(ut ;Σ) ≥ D(u0;Σ) − δ

for any 0< t ≤ t0. Applying Lemma 4.3 foru(k)
t and lettingk →∞, we have∫∫

Σ×[0,t ]
|∇2u|ζ2dxdt≤ C

R2
t + δ

for 0< t ≤ t0. By Lemma 4.5, we obtain∣∣∣∣∫ |∇ut |2ζ2dx−
∫
|∇u0|2ζ2dx

∣∣∣∣ ≤ C
R2

t + δ
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for 0 < t ≤ t0. This provesu ∈ C0([0,CR2]; H 1,2(Σ; N )). Thus, we construct
a local solutionu ∈ X(Σ × [0,CR2]) ∩ S2,α(Σ × (0,CR2]). Assertion (b) is the
direct consequence of Lemma 4.7.

Proof of (II). Suppose (4.16) holds att = T. For a sequenceri with ri ↓ 0, we
set

ti := sup{t ∈ (0,T); D(uτ ; B(x, ri )) < ε̄ for any x ∈ Σ and 0< τ < t} .
If T = ∞, let ti satisfy

(4.22)
∫∫

Σ×[ti−1,ti ]
|∂t u|2dxdt→ 0

by choosing a suitable subsequence. Letxi ∈ Σ be a point which attains the
supremum in the definition ofti . From the definition, it follows immediately that

ti −→ T, xi −→ x̄.

for some ¯x ∈ Σ which satisfies (4.16). Then fix an isothermal coordinate
which contains ¯x andσ = 1 at x̄ and define the rescaled mapvi by vi (ξ, s) =
u(hxi ,ri (ξ), ti + r 2

i s). vi also satisfies equation

(4.23) ∂tvi = σ−2(∆0vi + Γ (vi )(∇vi ,∇vi )).

Note that the conformal factorσ satisfies

σ → 1, ∇σ → 0 uniformly on any compact subset

as the rescaling factorri tends to 0. By the definition ofti , for anyK b R2 and
sufficiently largei , there existsδ > 0

sup{D(vi (·, s); B1−δ(ξ)); ξ ∈ K ands ∈ [−1, 0]} ≤ ε̄,(4.24)

D(vi (·, 0);B1+δ(ξ)) ≥ ε̄.(4.25)

Thus by (4.23),(4.24) and Lemma 4.6, we have uniformL2,p(K × [− 1
2, 0])

bound for∂tvi ,∇vi . Since∫∫
K×[−1,0]

|∂tvi |2dxdt≤
∫∫

Σ×[ti−r 2
i ,ti ]

|∂t u|2dxdt−→ 0,

vi (·, 0) converges to a non-trivial extremalv in C2,α
loc (R2). Finiteness of the

Dirichlet integral ofv follows from the condition;D(ut ;Σ) := D0 < ∞. Thus,
we can apply Lemma 3.1 tov, v can be identified with an extremal ofS2. This
proves (c) and (d).

Proof of (III). Chooseti →∞. If T = ∞ and there exists no point which satisfies
(4.16), there existsr > 0 with

sup
{

D(u(·, t); Br (x)); x ∈ Σ, t ∈ [ti , ti + Cr2]
}
< 2ε̄
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by Lemma 4.4. Hence, by Lemma 4.6, we have the uniform bound

‖u‖S2,α(Σ×[ti + 1
2 Cr2,ti +Cr2]) < C .

This implies
u(·, ti + Cr2) −→ u∞ in C2,α(Σ; N )

choosing a suitable subsequence. Since∫∫
Σ×[0,∞)

|∂t u|2dxdt<∞,

we may assume ∫∫
Σ×[ti ,ti +Cr2]

|∂t u|2dxdt→ 0.

This implies thatu∞ satisfies equation (1.1). Q.E.D.

5. Results

Theorem 5.1.Let N be a compact Riemannian manifold withπ2(N ) = 0 andΣ
a closed Riemann surface. If there exists a map u0 ∈ H 1,2(Σ; N ) which satisfies

Iω(u0) · |dω|2 < 1
27γ(2)2

,(5.1)

D(u0;Σ) · |dω|2 < 1
9γ(2)2

,(5.2)

whereγ(2) is the isoperimetric constant defined in Theorem 2.1, then there exists
a local minimizer u∈ C2,α(Σ,N ) of Iω which is homotopic to u0. In fact, u
satisfies

Iω(u)=inf
{

Iω(u); u ∈ H 1,2(Σ; N ), D(u;Σ)

<
1

9γ(2)2|dω|2 , u ∈ [u0]

}
,

where[u0] ∈ [Σ : N ] denotes the free homotopy class induced by u0.

Proof. By Proposition 2.4, foru ∈ H 1,2(Σ; N ), we have

(5.3) Iω(u) = D(u;Σ) + 2Vω(u) ≥ D(u;Σ) − 2K · D(u;Σ)
3
2 ,

where K := γ(2)|dω|. Set f (t) = t − 2Kt
3
2 . Observe thatf (t) is monotone

increasing in the interval [0, 1
9K 2 ]. Let g(s) denotes the inverse function of

f (t) (0 ≤ t ≤ 1
9K 2 ) defined in the interval [0, 1

27K 2 ]. Inequality (5.3) implies:

(5.4) If D(u;Σ) ≤ 1
9K 2

, Iω ≤ s <
1

27K 2
, then,D(u;Σ) ≤ g(s) < 1

9K 2 .

Set
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m := inf

{
Iω(u); u ∈ H 1,2(Σ; N ), D(u;Σ) <

1
9K 2

, u is homotopic tou0

}
.

Chooseui ∈ H 1,2(Σ; N ), which is homotopic tou0, such that

D(ui ;Σ) <
1

9K 2
,(5.5)

Iω(ui ;Σ) −→ m.(5.6)

Let wi be the solution of the evolution problem:

∂twi = ∆wi − D2π(wi )(∇wi ,∇wi ) − 2Dπ(w∗i dω),

wi (·, 0) = ui

constructed in Theorem 4.9. LetTi be the maximal existence time of smooth
solutionwi . We shall prove for sufficiently largei :

(1) There existsD0 <
1

9K 2 such thatD(wi (·, t)) ≤ D0 for 0≤ t < Ti ,
(2) Ti = ∞. Moreover,wi produces no singularity ast → ∞ in the sense of

Theorem 4.9.

Proof of (1).Suppose there exists 0≤ t0 < Ti with D(wi (·, t0)) > 1
9K 2 . Since the

map [0,Ti ) 3 t 7→ wi (·, t) ∈ H 1,2(Σ; N ) is continuous by Theorem 4.9, there
exists 0≤ t1 < t0 with D(wi (·, t1);Σ) = 1

9K 2 . Then, by (5.4),Iω(wi (·, t1);Σ) ≥
1

27K 2 . But this is a contradiction, since by Lemma 4.8,

Iω(wi (·, t1)) ≤ Iω(ui ) <
1

27K 2
.

Hence, by (5.4), we obtain the desired result.

Proof of (2). SupposeTi < ∞. By Theorem 4.9 (II) and (1), there exists a
singular point ¯x ∈ Σ. Then there existstk , rk , xk (Omitting the indexi , since we
fix the indexi for a while )with

tk → Ti , rk → 0, xk → x̄

such that
vk(ξ) −→ v in C2,α

loc (R2)

wherevk(ξ) = wi (hxk ,rk (ξ), tk). And v satisfies (1.1) and

(5.7) D(v;R2) > ε̄.

By the removability of isolated singularity,v can be identified with the extremal
of S2 by stereographic projection. Hence for sufficiently largeR > 0, we may
assume

vk(∂BR(0)) ⊂ Bρ(v(∞))

for 0 < ρ < min( π
2κN

, i (N )). Hence there exists a energy minimizing harmonic
maphk with
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hk(BR(0))⊂Bρ(p),

vk |∂BR(0) =hk |∂BR(0)

(cf. [J]; Lemma 4.1.4, or [Mr]). Moreover, takingR > 0 sufficiently large, we
may assume

(5.8) D(hk ; BR(0))< min(
A
12
,
ε̄

2
).

whereA := inf
{

D(u;Σ); u ∈ H 1,2(Σ; N ), u is homotopic tou0
}

.(We may as-
sume A > 0, since, by Theorem of Sacks-Uhlenbeck,A > 0 for non-trivial
homotopy class.) Then we can construct two auxiliary mapsWk ∈ Lip(Σ),
Vk ∈ Lip(R2)(which is identified withV̄k ∈ Lip(S2) by stereographic projec-
tion) as follows;

Wk(x) :=

{
wk(x) if x ∈ Σ \ BRrk (xk),

hk(
φxk (x)

rk
) if x ∈ BRrk (xI ).

Vk(ξ) :=

{
v(φ−1

xk
(ξ)) if ξ ∈ BR(0),

hk( R2·ξ
|ξ|2 ) if ξ ∈ R2 \ BR(0).

Here, we setwk(x) := w(x, tk) and (U , φxk ,V ) is a isothermal coordinate system
centered atxk . By our definition,∫

Σ

w∗kω=
∫
Σ

W∗
k ω +

∫
S2

V̄ ∗
k ω,(5.9)

D(wk ;Σ)=D(Wk ;Σ) + D(V̄k : S2) − 2D(hk ; BR(0)).(5.10)

Hence

(5.11) Iω(wk) = Iω(Wk) + Iω(Vk) − 2D(hk ; BR(0)).

By (5.7), (5.8) and (5.11), we have

(5.12) D(Wk ;Σ) = D(wk ;Σ) + 2D(hk ;Σ) − D(V̄k ; S2) < D(wk ;Σ) <
1

9K 2
.

Sinceπ2(N ) = 0, wk and Wk are homotopic. Hence, by the definition ofm and
(5.12),

Iω(Wk) ≥ m.

By inequality (5.3), we have

Iω(V̄k)≥D(V̄k ; S2) − 2KD(V̄k ; S2)
3
2

≥D(V̄k ; S2)
{

1− 2KD(wk ;Σ)
1
2

}
≥1

3
D(V̄k ; S2) >

1
3

A.

Hence, by (5.11), we obtain
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Iω(ui ) ≥ Iω(wk) > m +
1
3

A− 2D(hk ; BR(0))> m +
1
6

A.

This contradicts to our choice ofui . This provesTi = ∞. The same argument
implieswi produces no singularity astk →∞. Thus we have proved (2).

Now, we shall complete the proof of the theorem. By (1), (2) and Theorem
4.9 (e), there exists a time sequence,tk →∞ such that

wi (·, tk) −→ ũi in C2,α

whereũi is an extremal ofIω. And ũi satisfies

D(ũi ;Σ) ≤ D0 <
1

9K 2
,

Iω(ũi ) −→ m.

Hence by Theorem 3.6, ˜ui converges to an extremalu in C2,α except for finitely
many singular points. But by the argument similar to the one used in the proof
of (2), there can be no singular point. Hence, ˜ui converges tou in C2,α(Σ,N ).
By the continuity ofIω implies that

D(u;Σ) ≤ D0 <
1

9K 2
, Iω(u) = m

and it is obviousu ∈ [ui ] = [u0]. Thusu satisfies desired properties. Q.E.D.

Proof of the Main Theorem.It follows from the following corollary of Theorem
5.1.

Corollary 5.2. Let Σ and N be as in Theorem 5.1. Supposeα ∈ [Σ : N ] is a
given homotopy class. Set

Aα = inf
{

D(u;Σ); u ∈ H 1,2(Σ; N ), u ∈ α} .
If

(5.13) Aα · |dω|2 < µ

γ(2)2

whereµ is a unique solution of equationµ + µ
3
2 = 1

27 then there exists a local
minimizer u∈ α of Iω with

Iω(u) = inf

{
Iω(u); u ∈ H 1,2(Σ; N ), D(u;Σ) <

1
9γ(2)2|dω|2 , u ∈ α

}
.

Proof. By Theorem of Sacks-Uhlenbeck, there exists an energy minimizing har-
monic mapu0 in a given homotopy classα. Then, by the isoperimetric inequality,
we have

Iω(u0)≤D(u0;Σ) + 2γ(2) · |dω| · D(u0;Σ)
3
2

=Aα + 2γ(2) · |dω|A3
2
α <

4
27γ(2)2

.
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Henceu0 satisfies (5.1). (5.2) is automatically satisfied by (5.13). Thus, by The-
orem 5.1, we obtain the result. Q.E.D.

The proof of Theorem 5.1 and Corollary 5.2 imply the following theorem.

Theorem 5.3.Let u0] : π1(Σ) → π1(Σ) be a homomorphism induced by a given
map u0 ∈ H 1,2(Σ; N ). If u0 satisfies (5.1) and (5.2), there exists a local minimizer
u of Iω with

u]=u0]

Iω(u)=m := inf

{
Iω(u); |dω|2 · D(u;Σ) <

1
27γ(2)2

, uo] = u]

}
.

Set

Au0]
= inf

{
D(u;Σ); u ∈ H 1,2(Σ; N ), u] = u0]

}
.

Especially, if

Au0]
· |dω|2 ≤ µ

γ(2)2

whereµ is as in Corollary 5.2, there exists a minimizer uof Iω with

u0] = u], Iω(u) = m.

Proof. The proof of Theorem 5.1 and Corollary 5.2 can be adapted to the proof
of the theorem. In fact, the auxiliary mapWk constructed in the proof of (2) in
the proof of Theorem 5.1 induces the same homomorphism as the one induced
by wk . Q.E.D.

Finally, we shall study extremals ofS2. Set

M :=
{
α ∈ π2(N ); there exists a mapu0 : S2 → N with

D(u0; S2) <
1

9|dω|2 · γ(2)2
, Iω(u0) <

1
27|dω|2 · γ(2)2

, [u0] = α
}
.

Theorem 5.4.Supposeα ∈ M . Then, there exists a finite subset{α1, ..., αN} in
M such that

(1) α = α1 + · · · + αN ,
(2) Eachαi (1 ≤ i ≤ N ) is induced by extremal ui of Iω with

D(ui ; S2) <
1

27|dω|2 · γ(2)2
,

Iω(ui ) <
1

9|dω|2 · γ(2)2
.
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Proof. Let u0 ∈ H 1,2(S2; N ) be a map with

D(u0; S2)<
1

9K 2
,(5.14)

Iω(u0)<
1

27K 2
,(5.15)

[u0]=α.(5.16)

By Theorem 4.9, there exists a solution of the evolution problem;

∂tw = ∆w − D2π(w)(∇w,∇w) − 2Dπ(w∗dω)

w(·, 0) = u.

Let 0< T ≤ ∞ be the maximal time of existence of smooth solutionw. As in
the proof of (1) in the proof of Theorem 5.1, we can show

D(w(·, t),S2) <
1

27K 2
for t ∈ [0,T).

We also have

Iω(w(·, t)) <
1

9K 2
for t ∈ [0,T).

Either of the following two cases can happen;

(1) T = ∞ and the solution produces no singularity att = ∞ in the sense of
Theorem 4.9 (II).

(2) 0 < T ≤ ∞ and the solution produces singularity att = T in the sense of
Theorem 4.9 (II).

If case (1) happens, we obtain the desired result by Theorem 4.9 (III). Suppose
case (2) happens. Then, there existti → T, xi → x̄, ri → 0 such that the rescaled
map ui (ξ) = wi (expxi ri ξ, ti ) converges to extremalu of R2 in C2,α

loc (R2,N ). For
sufficiently largeR, we may assume that there exists an energy minimizing
harmonic maphi ∈ C2,α(BR(0);N ) whose image is contained in some convex
ball in N (cf.[J]; Lemma 4.1.4. or [Mr]) with

hi |∂BR(0) = vi |∂BR(0)

D(hi ; BR(0))<
ε̄

2

We construct auxiliary maps as in the proof of Theorem 5.1.

Wi (x) :=

{
w(x) if x ∈ S2 \ BRri (xi ),

hi (
φxi (x)

ri
) if x ∈ BRri (xi ).

Vi (ξ) :=

{
v(φ−1

xi
(ξ)) if ξ ∈ BR(0),

hi (
R2·ξ
|ξ|2 ) if ξ ∈ R2 \ BR(0).
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Vi can be identified with the Lipschitz map̄V of S2 by the stereographic pro-
jection. By our choice ofhi and our definition ofWi and Vi , there holds for
sufficiently largei

[V̄i ]=[u] ∈ π2(N ),

[wi ] = [Wi ] + [Vi ]=[Wi ] + [u] ∈ π2(N ).(5.17)

We also have,

D(Wi ; S2)=D(wi ; S2) + D(hi ; BR(0))− D(vi ; BR(0))(5.18)

≤ 1
27K 2

− ε̄ +
ε̄

2
≤ 1

27K 2
− ε̄

2
,

Iω(Wi )= Iω(wi ) − Iω(Vi )(5.19)

≤ 1
9K 2

− 1
3

D(vi ) <
1

9K 2
.

Hence takingWi as the initial value of evolution problem in stead ofu0, we
take the same procedure. Since by (5.18), Dirichlet integral of the map decreases
at least ε̄2 at each step of the procedure, finally the case (1) happens and the
procedure ends in finitely many steps. Thus we obtain the desired result by
(5.17). Q.E.D.

References

[Al] Almgren, F.J., Optimal isoperimetric inequalities. Ind. U. Math. J.35, 451–547 (1986)
[F] Federer, H., Geometric Measure Theory. Springer Verlag, New York, 1969
[F-F] Federer, H., Fleming, W.H., Normal and integral currents. Ann. Math.72, 458–520 (1960)
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